

Effective, Affordable, and Sustainable Solutions for Land & Water Environment

May 8, 2018

To:

Town of Wayland- Conservation Commission Ms. Linda Hansen 41 Cochituate Road Wayland, MA 01778

Subject: 24 School Street – Mounding Calculations/Stormwater Review

Dear Ms. Hansen and Commissioners:

The emailed documents are to address the review comments by Nover-Armstrong Associates, Inc. (NAA) dated March 9, 2018. The package includes documents and plan as listed in the following:

- Response letter dated May 8, 2018 by Creative Land & Water Engineering, LLC (CLAWE)
 1a. Grading plan with soil test pits, monitoring wells, profile sections, and footprints of SAS and infiltration area marked by Metrowest Engineering, Inc. (MWE)
- Slug Test and Groundwater Mounding Analysis Report, 24 School Street, Wayland, MA, revised May 7, 2018, by CLAWE
- 3. Drainage report, revised May 2018 by MWE
- 4. Site plan set (5 sheets), revised April 20, 2018 by MWE.
- 5. Watershed plans (existing and propsed), April 23, 2018 by MWE

Please feel free to contact us if you have any questions.

Sincerely, Creative Land & Water Engineering, LLC by

Desheng Wang, Ph.D., P.E. Hydrogeologist and Certified Wetland Scientist

cc: DEP NERO, Wetland Division, 205B Lowell Street, Wilmington, MA 01801 Chris D'Antonio, Chadwick Homes, LLC.
Mark Kablack, esq., M.A. Kablack & Associates, P.C.
Brian Nelson, Metrowest Engineering Ruth McCawley Geoffroy, NAA

Wayland ZBA

508-281-1694 (office) 774-454-0266 (cell) 508-281-1694 (Fax) CLWEL@CREATIVE-Land-Water-Eng.com WWW.CREATIVE-Land-Water-Eng.com

Effective, Affordable, and Sustainable Solutions for Land & Water Environment

May 8, 2018

To: Town of Wayland- Conservation Commission
 Ms. Linda Hansen
 41 Cochituate Road
 Wayland, MA 01778

Subject: 24 School Street – Mounding Calculations/Stormwater Review

Dear Ms. Hansen and Commissioners:

We received and reviewed the review comments on groundwater mounding calculations/stormwater by Nover-Armstrong Associates, Inc. (NAA) dated March 9, 2018. The groundwater mounding analysis has been updated to incorporate the recommendations in the review comment letter. This letter briefly addresses the comments in the same sequence as in the comment letter by NAA. To facilitate the next round review, we quoted the comments first in italic and then followed by our response in Bold.

- The following information is necessary to fully review the mounding calculations: (1)
 - *Revised drainage calculations and site / stormwater management system design;*

Response: MWE will provide a revised drainage design and report and plans consistent with the updated groundwater mounding calcs.

• Superimpose property lines, MWs and SAS/infiltration structure over mounding report soils map;

To be provided by MWE.

• Soil boring logs; and

Response: See attached soil boring logs in revised mounding report for the three monitoring wells.

• *Groundwater mounding results of combined SAS and stormwater infiltration system mounds.*

Response: The summary table showed the combined maximum groundwater mounding heights in the updated report. More plots along the long axis edge and field corner are provided in the revised analysis in the updated report.

• Groundwater elevations are seasonally higher in March/April than in January. ESHGW should be measured throughout March/April as monitoring wells are

Response: As agreed on the phone working conference with NAA, the high groundwater measurement in March was used for the revised mounding analysis. See updated groundwater monitoring data in the report.

• The 100-year stormwater mound elevation is reported to be 7.48 feet above seasonal high groundwater (elevation 166.32). The mounding calculations identified that the stormwater infiltration system must be raised by two feet. No design is available to gauge the impact of this mound and what a redesigned drainage system will consist of. (3)

Response: The drainage system has been revised by MWE and the groundwater mounding analysis has been updated with the latest drainage data.

• The mounding calcs state that "the maximum height is only reference and does not need to be considered as it will be temporarily stored in the infiltration chambers." Revised drainage calculations must show that all of the volume claimed to be infiltrated during the 100-year storm is able to be stored within the infiltrators to confirm that the claims made in the mounding calcs will occur. (4)

Response: The infiltration has been designed with storage to store runoff for a 2-year storm event. Overflow path is provided for larger storm events.

• Mounding calcs show a recharge volume of 5,318 cu. ft. for the revised 100-year event. The September 2017 drainage calcs show the stormwater infiltration system with a greater recharge volume of 5,756 cu. ft. required for the same event. Without a drainage design and calculations, the mounding calcs cannot be confirmed. (5)

Response: Previous revision to the system caused this. The current revision is now consistent with the groundwater mounding. See MWE report. The latest 100-year recharge volume is 4344 cu ft.

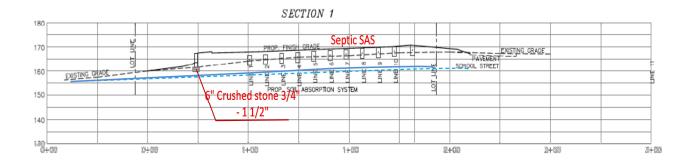
- There seems to be conflicting saturated thicknesses (depth/thickness of aquifer) reported throughout the mounding calculations. For example, the hydraulic conductivity calculation sheet for MW-3, which is within the infiltration structure, shows the depth of aquifer at 8.0 ft.; Table 3 shows the aquifer thickness between EHGW and bottom of aquifer for MW-3 to be 16.14 ft.; and, the revised 100-year mound calculation initial saturated thickness for the infiltration structure is 15.9 ft. These different measurements, for what appears to be the same dimension, should be corrected or explained. (6)
- Response: As we explained on our phone conference, the drilling information is limited. We used the bottom elevation at MW 1 as the bottom of aquifer as the well is located at the most upgradient location and under a normal condition, the aquifer would pitch towards the lower valley and with lower bottom elevation. However, the drilling had stopped at drilling restriction, which would likely be a larger boulder or stone to prevent drilling going further down. It would be adequate to use the drilling limit for groundwater monitoring and conservative to test the hydraulic conductivity. As a confirmation, this time, we also analyzed the stormwater recharge mounding using

the bottom of MW3 for the aquifer depth calculation. Both analyses showed satisfactory de-water condition for the infiltration chamber.

- Other parameters in the calculations should be explained including the stark difference in hydraulic conductivity for MW-1 and MW-2 under the SAS at 25.97 ft./day vs. MW-3, within the infiltration structure, which is almost 4 times less at 6.51 ft./day. Saturated thickness is integral to hydraulic conductivity (how fast ground water travels through the saturated soil) thus reducing the height of the groundwater mound. Depth of aquifer for MW-1 is 13.2 ft. on the hydraulic conductivity calculation sheet as compared to MW-3 at 8.0 ft., both relatively close. Additionally, these two wells appear to be within the same Narragansett silt loam soil group. (7)
- Response: All drilling and testing have limited reflection of the true site condition. As we explained above, the difference in well depth and hydraulic conductivities might be due to the ledge or large boulders and/or micro soil limitation in the specific drilling location. The macro site hydraulic conductivity would be normally better than a micro testing result as it would be less impacted by many micro limiting factors like large stone at the bottom of the testing pit. MW1 and MW2 showed a quite consistent condition, and the lesser hydraulic conductivity was used for the SAS mounding calculation and the MW3 hydraulic conductivity was used for the stormwater infiltration mounding analysis to be safe.
- The September 2017 drainage calculations identify that although both soil types identified on the site are hydrologic soil group (HSG) A; it is then reported that the soils will be considered HSG B because it is "more conservative." This assumption should be more fully evaluated as it may <u>overestimate</u> the pre-existing runoff rate and volume, requiring <u>less</u> mitigation in the post-development condition. (8)
- Response: Field testing and evaluation showed HSG B soil condition. In the NRCS soil map, Narragansett was classified as HSG B soil in the Middlesex County soil map published in 1989. The websoil survey map changed the soil group to HSG A. However, the fieled soil elevation and percolation testing showed more consistent with HSG B soil. This is the reason HSG B was used in the analysis. Our phone conference reached an agreement on this.
- The infiltration system should empty in 72 hours, even in the 100 year event, as it must be available for subsequent storm events. (9)

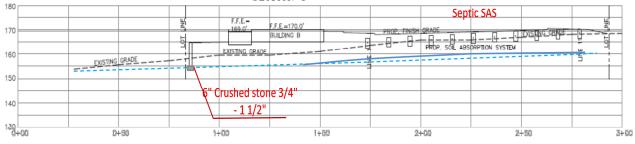
Response: Agreed. The updated analysis and report reflect this agreement.

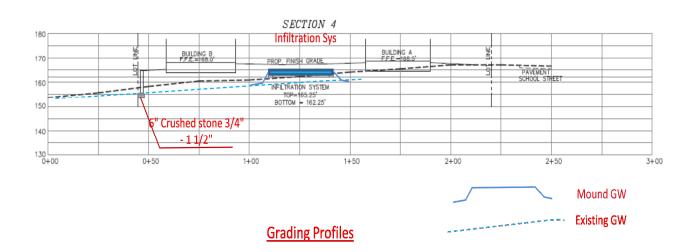
In addition, as requested at our working phone conference, four profiles across septic SAS and the stormwater infiltration area are plotted to show that the groundwater movement and mounding will not be impacted by the retain wall or building foundation as there will be no basement for all the buildings, which will built on quite amount of fill above groundwater. See the profiles for details. As the retaining wall footing in some locations may get close the high water table, it should be checked in the field to make sure the retaining wall footing will be set at or slightly above the seasonal high groundwater table to assure the proper groundwater movement. To add a safety factor here, a 6" thick crushed stones is recommended as the subbase of the retaining wall to facilitate the water move, which would be equivalent to more than 3 ft sandy soil flow passing capacity.


Please feel free to contact us if you have any questions.

Sincerely, Creative Land & Water Engineering, LLC by

Desheng Wang, Ph.D., P.E. Hydrogeologist and Certified Wetland Scientist

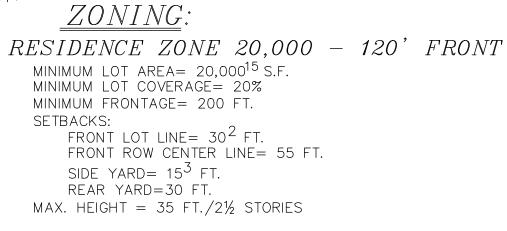

cc: DEP NERO, Wetland Division, 205B Lowell Street, Wilmington, MA 01801 Chris D'Antonio, Chadwick Homes, LLC. Mark Kablack, esq., M.A. Kablack & Associates, P.C. Brian Nelson, Metrowest Engineering



SECTION	2
---------	---

180												_	_
100									Se	otic SAS			
170				PROP. FINISH	Infiltration	Sys				PROP. FINISH GRA	DE		_
160	PAVEMENT		EXISTING GRADE		ILTRATION SYSTE TOP=165.25'			4- -	PROP	SOL ADSORPTION			_
150	EAST PLAIN STREET				TOP=165.25' DITOM = 162.25'			5				1	
													_
140													
130 01	+00	0	+50	<u> </u> 1+4	90	। 14	-30	2	+00	2	+50		3+60

NOTES:


- 1. SUBJECT PARCEL IS SHOWN AS ASSESSORS MAP 52, LOT 189. RECORD TITLE FROM BOOK 69050. PAGE 394.
- 2. UTILITY LOCATIONS DEPICTED ON THIS PLAN, BOTH ABOVE- AND BELOW-GROUND, ARE BASED UPON DIRECT FIELD OBSERVATIONS MADE BY METROWEST ENGINEERING, INC. PERSONNEL DURING A FIELD SURVEY, RECORD PLAN LOCATIONS, OR DIGSAFE PAINT-INDICATORS. METROWEST ENGINEERING, INC. DOES NOT WARRANT THAT ALL UTILITIES ARE SHOWN OR THAT UTILITIES THAT ARE DEPICTED ARE SHOWN IN THE CORRECT LOCATION, OR WITH THE PROPER MATERIAL DESIGNATION. METROWEST ENGINEERING, INC. DOES NOT WARRANT OR PROVIDE AN EXPRESS OR IMPLIED WARRANTY THAT ALL SUBSURFACE IMPROVEMENTS ARE SHOWN OR ARE SHOWN CORRECTLY, INCLUDING, BUT NOT LIMITED TO, UTILITIES, UNDERGROUND VAULTS, UNDERGROUND TANKS OR CHAMBERS, BUNKERS, DUCT BANKS, AND/OR OTHER MAN-MADE IMPROVEMENTS THAT LIE BENEATH THE GROUND SURFACE AT THE TIME OF THE SURVEY.
- 3.CONTRACTOR IS SOLELY RESPONSIBLE FOR ESTABLISHING EXISTING LOCATIONS OF ALL SUB-SURFACE UTILITIES AND MAN-MADE IMPROVEMENTS AND FOR THE REQUIREMENTS TO REPLACE, RELOCATE OR REPAIR EXISTING UTILITIES IN THE EVENT OF DAMAGE OCCURRING DURING CONSTRUCTION. MWE IS NOT RESPONSIBLE OR LIABLE FOR DELAYS OR COSTS ASSOCIATED WITH REMOVING/REPLACING/RELOCATING OF EXISTING UTILITIES REGARDLESS OF WHETHER SAID UTILITIES ARE ACCURATELY DEPICTED ON THIS SURVEY.
- 4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014.

BENCHMARKS

ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.=163.84'), A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CULVERT UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1929.)

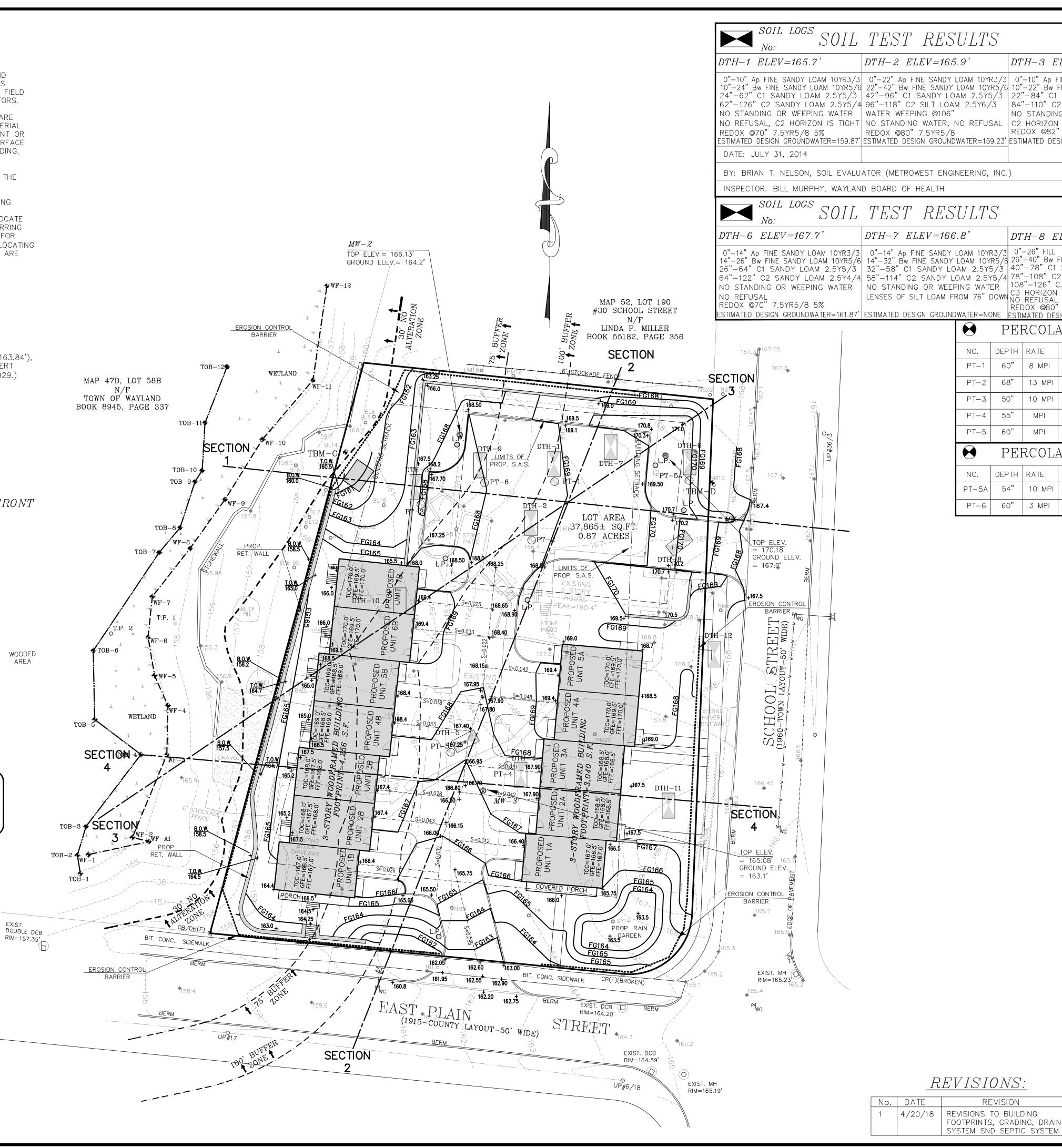
UNDEN	COMMONWERENT NORD FOR SMARE BRO	JOIN 14.0. V.D.
T.B.M.	DESCRIPTION	ELEVATION
С	DHN SET IN 14" BLACK LOCUST	161.89'
D	DHN SET IN 10" NORWAY MAPLE	168.74'

CONTRACTOR TO VERIFY ACTUAL LOCATION OF EXISTING UTILITY SERVICES IN THE FIELD PRIOR TO CONSTRUCTION (WATER, ELECTRICAL, ETC.) CALL DIG-SAFE BEFORE YOU DIG 811.

2) IF §198–702 SHALL REQUIRE A GREATER SETBACK OR PERMIT A LESSER SETBACK, THE PROVISIONS OF SAID §198–702 SHALL PREVAIL OVER THIS TABLE.

3) SIDE YARDS SHALL MEET THE REQUIREMENTS OF \$\$198-702.4 AND 703.2, AND THE REQUIRED MINIMUM SIDE YARD MAY BE REDUCED IN ACCORDANCE WITH PROVISIONS OF \$198-703.2

15) MINIMUM FRONT YARD WIDTH SHALL BE CALCULATED IN ACCORDANCE WITH THE REQUIREMENTS OF §198–705.1 OF THE ZONING BYLAW.



CODE	
BL#	BALCK LOCUST
CA#	CRAB APPLE
HM#	HEMLOCK
LI#	LINDEN
NM#	NORWAY MAPLE
NS#	NORWAY SPRUCE
RM#	red maple
SY#	SYCAMORE

<u>D</u> E	<u>etail</u>
TREE LOCATION	
	TREE DIAMETER
\sim	

LEGEND

DRAIN CATCH BASIN
MANHOLE
WATER GATE
GAS GATE
HYDRANT
UTILITY POST
DRILL HOLE
FOUND
CONCRETE BOUND
STONE BOUND
WETLAND FLAG
ELECTRIC METER
GAS METER
NOW OR FORMERLY
EXISTING SPOT GRADE
EXISTING GRADING
EXISTING OVERHEAD WIRE

SULTS							
65.9'	DTH-3 E	' <i>LEV=161</i>	'.7'	DTH-4	4 ELEV=16	<i>64.1</i> ′	DTH-5 ELEV=162.6'
DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/3 OAM 2.5Y6/3 D6" R, NO REFUSAL 5/8 JNDWATER=159.23'	10"-22" Bw 22"-84" C1 84"-110" C2 NO STANDIN C2 HORIZON REDOX @82'	FINE SANDY SANDY LO 2 SILT LOA IG WATER, I IS DAMP "7.5YR5/8	LOAM 10YR5 AM 2.5Y5/ M 2.5Y6/3 NO REFUSA	5/6 20"-28" 3 28"-40" 40"-86" AL 86"-116 NO REFUSA NO REDO	Ap FINE SANDY Bw FINE SANDY C1 SANDY L "C2 SANDY AL, NO STANDING DX	Y LOAM 10YR5/6 OAM 2.5Y5/4 LOAM 2.5Y4/4 OR WEEPING WATE	WEEPING WATER ©112" R NO REFUSAL REDOX ©72" 7.5YR5/8
NGINEERING, INC.)						
SULTS							
GG.8' DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/3 Y LOAM 2.5Y5/4 EEPING WATER M FROM 76" DOWN UNDWATER=NONE	40"-40 BW 40"-78" C1 78"-108" C 108"-126" (C3 HORIZON NO REFUSAL REDOX @80"	FINE SANDY SANDY LO 2 LOAMY S C3 SILT LO, IS DAMP ; 7.5YR5/8 SIGN GROUND	LOAM 10YR5 AM 2.5Y5/ AND 2.5Y5 AM 2.5Y6/3 10%	0"-16" 6/6 16"-30" 4 30"-46" /3 46"-98" 3 98"-118 WATER S WATER S S S S S S S S S S S S S S	Bw FINE SAND` 'Bc Sandy L 'C1 Sandy L 'C2 Sandy Standing @10 Veeping @88" Seen @62". N	(LOAM 10YR3/3 Y LOAM 10YR5/6 OAM 2.5Y5/4 OAM 2.5Y5/3 LOAM 2.5Y4/4 8" O REFUSAL NDWATER=157.8	6 15"-30" Bw FINE SANDY LOAM 10YR5/6 30"-66" C1 LOAMY SAND 2.5Y5/3 66"-112" C2 SILT LOAM 2.5Y5/4 WATER STANDING @100" WATER WEEPING @98" NO REFUSAL REDOX SEEN @68" 7.5YR5/8 10%
NO. DEF PT-1 60 PT-2 60 PT-3 50 PT-4 50		DATE 07/31/14 07/31/14 07/31/14 07/31/14 07/31/14	B.N. B.M B.N. B.M B.N. B.M	30"-36" 1. 36"-58" 58"-128 1. 58"-128 1. WATER S NO WEEF 1. REDOX S	Ap FINE SANDY Bw FINE SANDY C1 SANDY L "C2 SANDY STANDING @12 PING WATER SEEN @60"7.1	(LOAM 10YR5/6 OAM 2.5Y5/3 LOAM 2.5Y6/3 5 5 SYR5/8 5% IDWATER=161.0'	0"-54" FILL 5 58"-82" C1 SANDY LOAM 2.5Y4/4 6 82"-114" C2 SANDY LOAM 2.5Y5/4 C2 HORIZON HAS LENSES OF SILT LOAM 7 NO STANDING OR WEEPING WATER NO REFUSAL REDOX SEEN @64" 7.5YR5/8 ESTIMATED DESIGN GROUNDWATER=161.0
	PERCOLA	, ,		BY: BRI			ATOR (METROWEST ENGINEERING, INC. Yland board of health
NO. DEF	PTH RATE 4" 10 MPI	DATE 08/21/14	BY INSP B.N. J.J.	<i>F</i>		MATE E LCULATIO	ARTHWORK ONS:
PT-6 6	D" 3 MPI	08/21/14	B.N. J.J.		TOTAL FILL= TOTAL CUT=		
					EXISTING HO DRIVEWAY – PROPOSED S EARTHWORK	USE — 274 CI 740 CUBIC Y SEPTIC SYSTEM <u>ACTIVITIES SU</u>	- 1,380 CUBIC YARDS (FILL) JBIC YARDS (FILL) ARDS (FILL) I – 788 CUBIC YARDS (FILL) <u>BJECT TO BYLAW</u> ,103 CUBIC YARDS (FILL)
					BERT A. G.	<i>emma, p.e.</i> Graphic s	
						1 inch = 20	ft. 40 (FEET) 80 20 (METERS) 30
				PRO		SCHOOL S	ADING PLAN treet
						IN LAND, Lesex (MASS County)
			PREPAR		WINDSOR F 73 PELHAN WAYLAND,	I ISLAND R	OAD
			PROPER		WINDSOR F 73 PELHAM WAYLAND,	I ISLAND R	OAD
<u>EVISION</u>	<u> 75:</u>		ENGINEH SURV	EYORS:	NE	75 FRANK WAYLAND, TEL.: (508	ST ENGINEERING, INC. KLIN STREET MA 01702 8)626–0063 8)875–6440
REVISI REVISIONS TO E			SHE	ET 2	OF 5	I	DATE: SEPTEMBER 6, 2017
FOOTPRINTS, GR SYSTEM SND SE	RADING, DRAII		CALC'D I		FIELD BK: PROJECT:		AD FILE: PROP_SITE_3_R7.dwg WG FILE: SP090617_R1.dwg

DRAFTER: BTN

PROJECT: WY_SCH

DWG FILE: SP090617_R1.dwg

Effective, Affordable, and Sustainable Solutions for Land & Water Environment

February 28, 2018 Revised March 1, 2018 2nd Revision May 7. 2018

Slug Test and Groundwater Mounding Analysis Report 24 School Street, Wayland, MA

A 12-unit 40B residential development is under review with Wayland ZBA and Wayland Conservation Commission. The project will use an on-site wastewater septic system and stormwater subsurface infiltration. The project will generate a daily design flow of 2860 gpd to the septic system under Title 5 310 CMR15.00. The Town expressed concern about the possible mutual impact between the stormwater infiltration system and the septic system. At public hearings and in their staff review comments, Wayland Conservation Commission requested that the applicant provide a detailed groundwater mounding analysis to assess and mitigate the mounding impact if any for septic leaching field and the stormwater subsurface infiltration area. This report provides the mounding analysis and supporting field testing data. Our goals are as follows:

- 1. Analyze the groundwater mounding distribution under both systems using reasonable and conservative parameters based on in-situ hydrogeological evaluation and testing.
- 2. Recommend modifications for the siting of the septic and stormwater systems if needed to avoid any impact to each system and to the environment.

The work includes field evaluation of the underlying aquifer and soil hydraulic conductivity; computer modeling of the groundwater mounding height and distribution in space and in time for design sewage flow and up to 100-year stormwater runoff recharge events. This analysis is updated to address the comments dated March 9, 2018 and to incorporate the recommendations from the working phone conference with the Town Consultant Nover-Armstrong Associates, Inc. (NAA). The results are presented in the following.

Hydrogeological Evaluation

On December 4, 2017, three borings were sunk to monitor the water table and to conduct slug tests to determine the hydraulic conductivity of soil under the proposed septic leaching field and the stormwater infiltration area. On January 10, 2018 staff of Creative Land & Water Engineering, LLC performed slug tests in three monitoring wells, namely MW1 to MW3, to collect hydraulic conductivity data. The drilling and well and soil logs are attached for reference. The locations of drilling and monitoring wells are presented in the attached monitoring well plan.

Technical Drilling Services, Inc. drilled and installed the three wells using hollow stemmed auger mounted on a track ATV. See Figure 1 for location of the wells. In general, the diameter of the boring measures 6 inches, and the wells 2 inches. Bedrock or refusal was encountered from 15 feet to 25 feet. The soils are very sandy outwash material, except at the bottom of MW 3, where finer till material was observed. Details of the well profile are attached to the end of the report¹. The NRCS soil map showed the site has Hinckley loam and Narragansett silt loam soil, which are rated as hydrological group A soils, very permeable soils. This is consistent with our onsite evaluation. See attached NRCS soil report for reference. The water tables in the three monitoring wells was monitored and presented in Table 1. On March 12, 2018, the site had the highest ground water table, which is consistent with soil evaluation information or higher than soil mottling at Well 3. We will use data from this testing for our mounding analysis. Given the topography, the aquifer bottom would be more likely as presented at MW 1. As MW 3 is located in the stormwater infiltration area, the shallower aquifer depth at MW 3 at the limit of drilling is also used for the mounding analysis for stormwater infiltration area as a conservative checking.

						Depth to water from TOW, ft			
Monitoring well	Top of case, ft	Top of well, ft	Bottom of well	Ground elev., ft	12/4/2017	1/10/2018	1/29/2018	2/9/2018	3/12/2018
MW 1	170.18	169.97	142.7	167.7	11.9	14.12	11.81	12.02	9.77
MW 2	166.13	165.69	146.2	164.2	9.57	11.12	9.67	9.8	8.65
MW 3	165.08	164.91	148.1	163.1	6.76	8.85	6.07	6.19	4.77

Table 1. Water Table Monitoring

					Water Table Elev, ft				
Monitoring well	Top of case, ft	Top of well, ft	Bottom of well	Ground elev., ft	12/4/2017	1/10/2018	1/29/2018	2/9/2018	3/12/2018
MW 1	170.18	169.97	142.7	167.7	158.07	155.85	158.16	157.95	160.2
MW 2	166.13	165.69	146.2	164.2	156.12	154.57	156.02	155.89	157.04
MW 3	165.08	164.91	148.1	163.1	158.15	156.06	158.84	158.72	160.14

					Depth to water from GS, ft				
Monitoring well	Top of case, ft	Top of well, ft	Bottom of well	Ground elev., ft	12/4/2017	1/10/2018	1/29/2018	2/9/2018	3/12/2018
MW 1	170.18	169.97	142.7	167.7	9.63	11.85	9.54	9.75	7.5
MW 2	166.13	165.69	146.2	164.2	8.08	9.63	8.18	8.31	7.16
MW 3	165.08	164.91	148.1	163.1	4.95	7.04	4.26	4.38	2.96

The monitored groundwater table is also compared with the soil evaluation results based on soil morphology by Metrowest Engineering (MWE). The comparison is presented in Table 1a, which shows that the water table measured on March 12, 2018 will be more conservative to use for the

¹ Based on the drill log, it appears that some large boulders or refusal were hit at MW 2 and MW 3 prior to each the bedrock.

mounding analysis.

Test Pit	GSE, ft	EHGW	Location	Measured from	MW	Used for Mounding
						Mountaing
DTH-1	165.7	159.87	CN SAS			
				(MW1+		
DTH-2	165.9	159.23	CS SAS	ŴW2)/2	158.62	160
DTH-3	161.7	154.87	CW SAS			
			Center STM			
DTH-4	164.1	<154	Infil			
DTH-5	162.6	156.6	NW STM infil	MW 3	160.14	160.14
DTH-6	167.7	161.87	NE SAS	MW 1	160.2	
DTH-7	166.8	<157.3	NE SAS			
DTH-8	168.2	161.53	SE SAS			
DTH-9	163	157.8	NW SAS	MW 2	157.04	
DTH-10	160.75	155.08	SW off SAS			
DTH-11	166	161	E off STM Infil			
DTH-12	168.2	161	SE off SAS			

Table 1a. Soil Evaluation Estimated High Groundwater - MetroWest v.s. MW measurements

There was no significant precipitation three days prior to the testing of hydraulic conductivity, to allow relative stable water table. A level TROLL was used to log data following standard test method ASTM 4044. In general, the following procedures were followed:

- Measure the initial water table;
- Slowly submerge the level TROLL until at least 1 foot below the water surface;
- Wait 5-10 minutes for the water level to stable; and
- Start logging, quickly drop into the well a metal rod or about 300 ml of water.

The data were then analyzed using the method presented in ASTM D5912 (Bouwer and Rice method). The data and detailed calculation sheets are in the Appendix. Table 2 is a summary of the results.

		Well H	Profile							
	Depth to	Depth to	Depth of	Length of	Slug used	Hydraulic Conductivity				
	bottom	Water	Aquifer	Screen	Sing used	(ft/s)				
	(ft)	Table (ft)	(ft)	(ft)						
MW 1	25	14.12	13.15	20	Metal	3.01×10^{-4}				
<i>MW</i> 2	18	11.12	8.37	15	Metal	3.60×10^{-4}				
MW 3*	15	8.85	7.96	10	Metal	$7.54 \mathrm{x10}^{-5}$				

Table 2. Slug test summary	y
----------------------------	---

Note Only the screened length under water was used for analysis. *MW3 might be impacted by the limited drilling depth.

Soil logs at each monitoring well is presented in the attachment for reference.

Groundwater Mounding Analysis

Given that the onsite septic system has a daily design flow of 2860 gpd, per 310 CMR 15.202 (4) (g) and as required by the Town Board of Health and Conservation Commission, we calculated the groundwater mounding heights for the septic system leaching field (SAS area) in accordance with DEP technical guidance. A Hydrogeocycle Computer model using Hantush (1967) method was used to analyze the ground water mounding height and distribution under the SAS area and stormwater management infiltration area. Given that MA DEP requires 3 day dewatering of stormwater detention and infiltration area, we calculated the maximum and residual groundwater mounding heights 100-year storm events for the stormwater infiltration system. The goals of the analysis are

- 1) to show the bottom of SAS area will have at least 4 feet groundwater separation from the mounded groundwater table;
- 2) to show that the stormwater infiltration system will meet the DEP stormwater guidelines for the hydrogeological requirements under the following conditions:
 - 1. The stormwater infiltration shall have a minimum of 2 ft groundwater separation from the existing high groundwater
 - 2. The system will dewater in less than 72 hours (3 days) for up to 100-year storm events (i.e. the 3-day residual mounding height will be less than 2 ft). The maximum height is only a reference and does not need to be considered as it will be temporally stored in the infiltration chambers.
 - 3. As the 100-year storm is the worst condition, it would be adequate for smaller storm condition if the infiltration storage chambers can be dewatered in less than 3 days for a 100-year storm checked, i.e. below the bottom of the infiltration galley.
 - 4. If the above requirement has been met, the design for stormwater management is considered to satisfy the DEP stormwater management guidelines for the hydrogeological requirements.

The saturated aquifer parameters based on the boring and testing and the results of the analyses are presented in Tables 3 and detailed in the attached printouts. As we also know, the real mounding heights would be even smaller as we used the lowest hydraulic conductivity value tested and assumed that the water table is flat. Under a sloped water table condition, groundwater mounding would be lowered.

The updated groundwater mounding analysis renders the following conclusions:

- 1. The maximum mounding height under the SAS area is 0.27 ft and the extension of impact to the stormwater infiltration area will be about 0.12 ft while the impact of the stormwater infiltration mounding on the SAS will be very little 0.04 ft.
- 2. The stormwater infiltration will be dewatered in 3 days for up to 100year storm. For 2-year storm event, all runoff will be recharged. For 100-year storm, some water will be bypassed through overflow to prevent surcharge breakout.
- **3.** Under 100-year storm condition, groundwater mounding would go above the proposed grade without adequate storage and overflow provided. As the observed high ground water table in this area is at 160.14 ft, therefore, the infiltration system bottom has been raised approximately 3 ft from 159 ft to 162.25 ft and spread over in a larger area to reduce the surcharge. The stormwater infiltration area is revised to 52 ft by 32 ft. The effective mounding height and 3-day residual mounding height was recalculated using the new dimensions as 2.95 ft and 1.75 ft under the worst assumption, respectively.
- **4.** As we discussed above, the aquifer bottom would be likely as at the upgradient monitoring well MW 1. The more conservative shallower aquifer bottom is also used to confirm the mounding impact in the stormwater infiltration area. Both cases showed that the stormwater infiltration area will have 3-day residual mounding height less than 2 ft of the required groundwater separation in the DEP Stormwater Management guidelines for up to a 100-year storm event. Other grading and access way have been revised to reflect the new mounding height. See Table 3 for detailed information.

I able 3.	Summary of Upo		
Parameters	100-yea		Wastewater
Recharge area	Infiltration- Norm	Infiltration- cons	SAS
Dimension, ft	32x52	32x52	86 x 72
Area, sq. ft	1664	1664	6192
Recharge Vol. Cu ft (per day or event)	4344	4344	358.24
Duration, day	1	1	90
Recharge rate, cu ft/day/sq. ft	2.61	2.61	0.0579
Dewater time, day	3	3	90
GW Separation, ft	2.11	2.11	4
Maximum mounding height, ft	5.18	6.17	0.27
Estimated effective Max MH, ft	2.748	2.946	0.31
Impact mounding height by other systems, ft	0.12	0.12	0.04
Combined Mound height, ft	5.3	6.29	0.31
3-day residual height, ft	1.24	1.75	
5-day residual height, ft	0.65	0.93	
Estimated effective 3d MH, ft	1.24	1.75	
Estimated effective 5d MH, ft	0.65	0.93	0.24
Bottom of stones, ft	162.25	162.25	163.25 to 166
Top of stones, ft			
EHGW, ft	160.14	160.14	156.12 to 158.16 160
Bottom aquifer, ft	142.7	148.1	142.7
3 day elevation, ft	158.25	160.22	
Flood routing elev, ft	162.888	163.09	
Top of grade, ft	167	167	
Aquafer depth, ft	17.44	12.04	17.3

 Table 3.
 Summary of Updated Mounding Analysis

Summary and Conclusions

- **1.** Three boring holes were drilled and monitoring wells installed for collection of aquifer and soil data.
- 2. Saturated hydraulic conductivity was tested in each well.
- 3. Using the collected soil and water table data, the groundwater mounding under the SAS area and the infiltration area were analyzed.
- 4. The mounding analysis shows that the SAS area is adequately sized with adequate groundwater separation above the mounded groundwater for proper treatment.
- 5. The stormwater infiltration area was raised about 3 ft with a recharge area of 32 ft wide by 52 ft long. The infiltration area will have a dewatering time less than 72 hours (about 59 hours) that meets the DEP stormwater dewatering requirement of 72 hours.

If you have any questions regarding this study, please feel free to contact us.

Sincerely,

Creative Land & Water Engineering, LLC

Desheng Wang, Ph.D., P.E. Hydrogeological Engineer and, Wetland Scientist

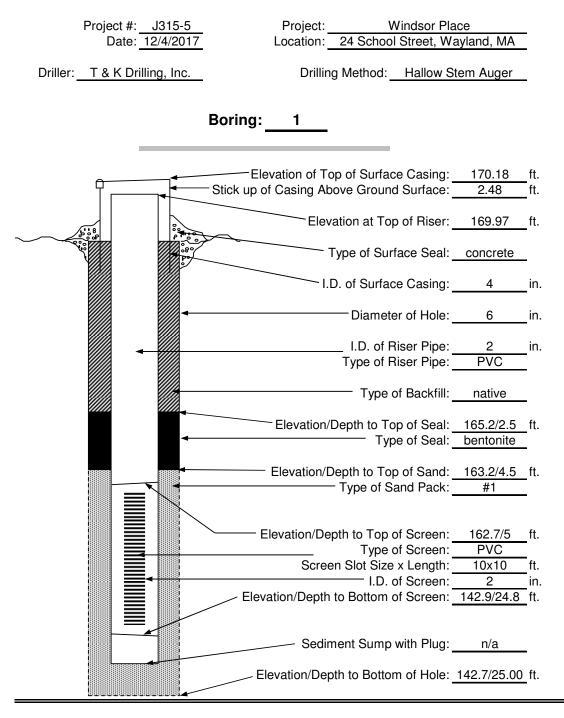
Soil Log

Project #:J315-5Project:Windsor PlaceDate:12/4/2017Location:24 School Street, Wayland, MA

Driller: T & K Drilling, Inc.

Drilling Method: Hallow Stem Auger

	Boring: 1	MW 1	
Depth, ft 0 5	Soil texture gravelly sand	Note	Blow count
7	gravelly Loamy sand		60 for 2"
10 12	f. m. sand		45-28-40-41
15 17	fine m. sand	water at 10'	11-23-31-49
20 22	fine silty sand		12-60/3"
25 25.33	refusal		60/2"

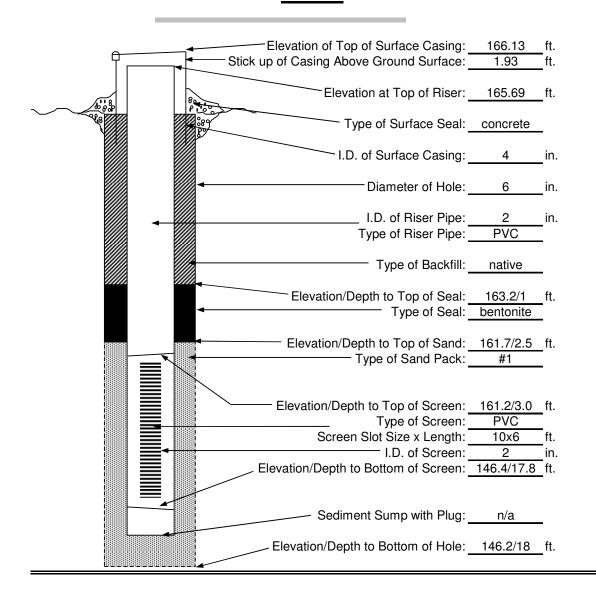

Soil Log

	Project #: <u>J315-5</u> Date: <u>12/4/2017</u>		Vindsor Place I Street, Wayland, MA
Driller:	T & K Drilling, Inc.	Drilling Method	d: Hallow Stem Auger
	Boring	: 2 MW 2	
Depth, ft 0	Soil texture Ioam	Note	Blow count
2 5	m. gr. Sand	water at 8'	
10 12	f. m. sand		18-37-38-42
15 17	fine m. sand fine silty sand		
18	refusal		60/2"

Soil Log

	Project #: <u>J315-5</u> Date: <u>12/4/2017</u>		Project: Location:		'indsor Place Street, Wayland, MA
Driller:	T & K Drilling, Inc.		Dr	rilling Method	Hallow Stem Auger
		Boring:	3	_MW 3	
Depth, ft 0 2	Soil texture Ioam			Note	Blow count
5	fine m sand			water at 5'	
10 12	f. sil sand				29-21-28-27
15	refusal				

MONITORING WELL PROFILE

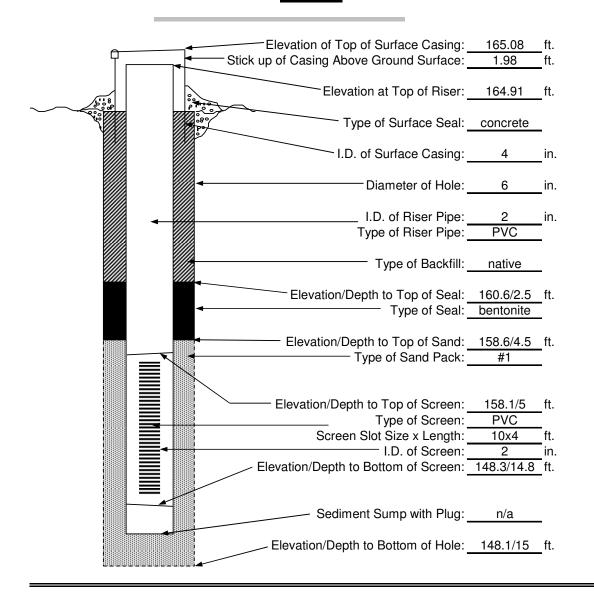

MONITORING WELL PROFILE

Project #: <u>J315-5</u> Date: <u>12/4/2017</u> Project: Windsor Place Location: 24 School Street, Wayland, MA

Driller: T & K Drilling, Inc.

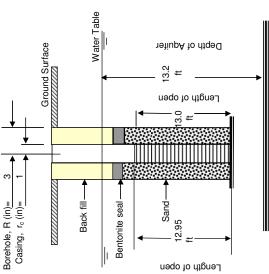
Drilling Method: Hallow Stem Auger

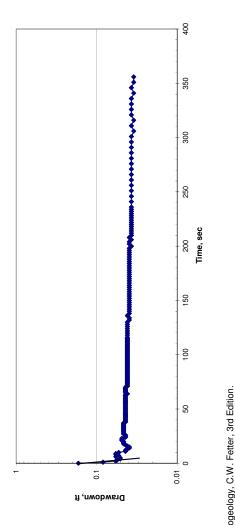
Boring: 2


MONITORING WELL PROFILE

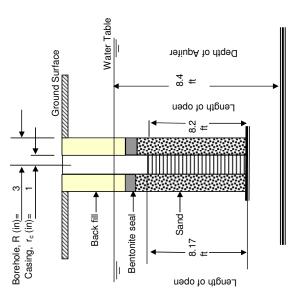
Project #: <u>J315-5</u> Date: <u>12/4/2017</u> Project: Windsor Place Location: 24 School Street, Wayland, MA

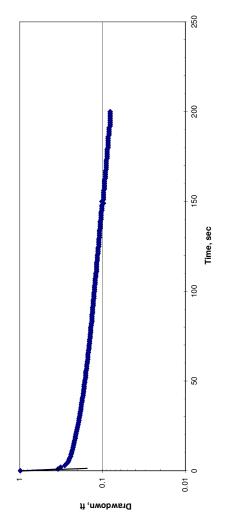
Driller: T & K Drilling, Inc.


Drilling Method: Hallow Stem Auger


Boring: 3

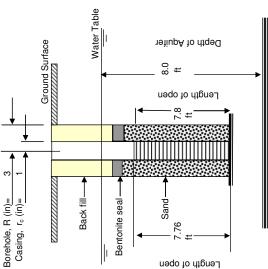
MW 1 (B1) Site: 24 School Street, Wayland, MA Date: 1/10/2018			Boreho Casir
	Checked by: dsw	2/5/2018	
$K = r^2_{c} ln(Re/R)/(2Le)$ (1/t) ln(H0/Ht)			-
$r_{c} = [(1-n)r_{a}^{2} + n R^{2}]^{0.5}$			
where,			
n is the short-term specific yield of the filter pack=		0.2	
r _a is uncorrected well casing radius=		0.083 ft	
R is borehole radius=		0.25 ft	ı
Ls is the total length of well screen =		12.95 ft	Ber
Le is length of open aquifer =		12.95 ft	I
Lw is depth of aquifer=		13.15 ft	
Re is the effective radial distance over which head is dissipated	l is dissipated		
r_c is corrected casing radius =	0.083 ft		uə
Le/R =	51.8		do
*Dimensionless number, C=	2.75		ļο ι
In(Re/R)=(1.1/In(Lw/R)+C/(Le/R)) ⁻¹ =	3.02		վեր
t1=	0 sec		-eu
t2=	3 sec		I
H1=	0.1684 ft		
H2=	0.05537 ft		
$(1/t)\ln(HO/Ht) = (1/(t2-t1)\ln(H1/H2)=$	0.3708		
Hydraulic Conductivity, K=	3.01E-04 ft/s 25.97 ft/day	~	

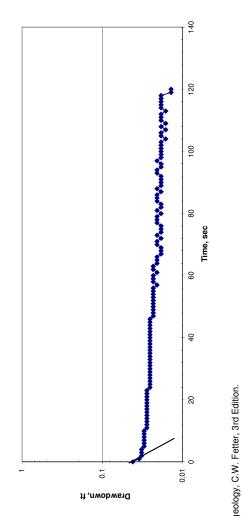

References:


Appleted Hydrogeology, C.W. Fetter, 3rd Edition.
 Appleted Hydrogeology, C.W. Fetter, 3rd Edition.
 ASTM Standard Test Method for (Analytical Procedure) Determining Hydraulic Conductivity of an Unconfined Aquifer by Cverdamped Well Response to Instantaneous Change in Head (Slug), D5912-96
 ASTM Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers, D4044-96

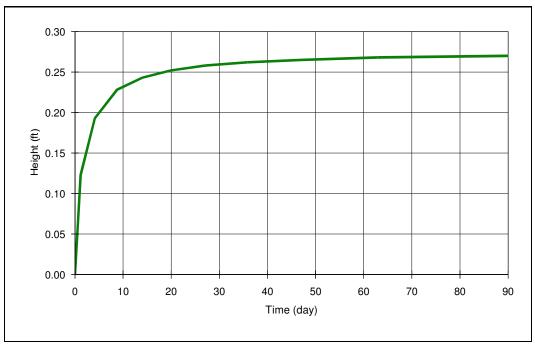
-	
Ñ	
<u> </u>	
Ñ	
≥	
<	
~	

Site: 24 School Street, Wayland, MA	٨	
Date: 1/10/2018		
Performed by: wjc	Checked by: dsw 2/	2/5/2018
K = r ² ,ln(Re/R)/(2Le) (1/t) ln(H0/Ht)		
$r_{c} = [(1-n)r_{a}^{2} + n R^{2}]^{0.5}$		
where,		
n is the short-term specific yield of the filter pack=	ack= 0.2	
r _a is uncorrected well casing radius=	0.083 ft	
R is borehole radius=	0.25 ft	
Ls is the total length of well screen =	8.17 ft	
Le is length of open aquifer =	8.17 ft	
Lw is depth of aquifer=	8.37 ft	
Re is the effective radial distance over which head is dissipated	head is dissipated	
r_c is corrected casing radius =	0.083 ft	
Le/R =	32.68	
*Dimensionless number, C=	2.18	
In(Re/R)=(1.1/In(Lw/R)+C/(Le/R)) ⁻¹ =	2.63	
t1=	0 sec	
t2=	4 sec	
H1=	0.978 ft	
H2=	0.27 ft	
$(1/t)\ln(HO/Ht) = (1/(t2-t1)\ln(H1/H2)=$	0.3218	
Hvdraulic Conductivity, K=	3.60E-04 ft/s	
,	31.09 ft/day	




References:

Applied Hydrogeology, C.W. Fetter, 3rd Edition.
 ASTM Standard Test Method for (Analytical Procedure) Determining Hydraulic Conductivity of an Unconfined Aquifer by Overdamped Well Response to Instantaneous Change in Head (Slug), D5912-96
 ASTM Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers, D4044-96


MW 3 (B3) Site: 24 School Street, Wayland, MA Date: 1/10/2018			Boreho Casin
Performed by: wjc Che	Checked by: dsw	2/5/2018	
K = r ² _c ln(Re/R)/(2Le) (1/t) ln(H0/Ht)			
$r_{c} = [(1-n)r_{a}^{2} + n R^{2}]^{0.5}$			
where,			
n is the short-term specific yield of the filter pack=	1	0.2	
r _a is uncorrected well casing radius=		0.083 ft	
R is borehole radius=		0.25 ft	1
Ls is the total length of well screen =		7.76 ft	Bent
Le is length of open aquifer =		7.76 ft	I
Lw is depth of aquifer=		7.96 ft	
Re is the effective radial distance over which head is dissipated	td is dissipated		
r_c is corrected casing radius =	0.083 ft		uə
Le/R =	31.04		do
*Dimensionless number, C=	2.13		ţ0 I
In(Re/R)=(1.1/In(Lw/R)+C/(Le/R)) ⁻¹ =	2.59		կքն
t1=	0 sec		-eu
t2=	5 sec		1
H1=	0.041526 ft		
H2=	0.02999 ft		
$(1/t)\ln(H0/Ht) = (1/(t2-t1)\ln(H1/H2)) =$	0.0651		
Hydraulic Conductivity, K=	7.54E-05 ft/s 6.51 ft/day		

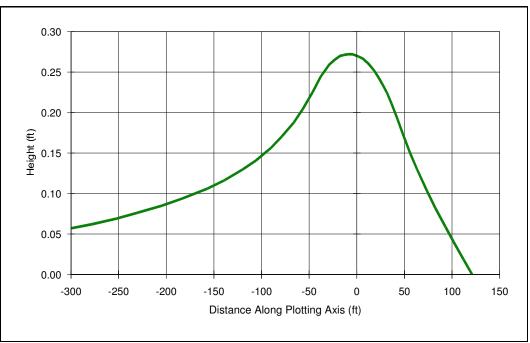
References:

Application Hydrogeology, C.W. Fetter, 3rd Edition.
 Application Hydrogeology, C.W. Fetter, 3rd Edition.
 ASTM Standard Test Method for (Analytical Procedure) Determining Hydraulic Conductivity of an Unconfined Aquifer by Overdamped Well Response to Instantaneous Change in Head (Slug), D5912-96
 ASTM Standard Test Method for (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers, D4044-96

COMPANY: CLAWE

PROJECT: 24 School Street - SAS

ANALYST: Desheng Wang


DATE: 5/6/2018 TIME: 9:52:19 PM

INPUT PARAMETERS

Application rate: 0.0579 c.ft/day/sq. ft Duration of application: 90 day Total simulation time: 90 day Fillable porosity: 0.26 Hydraulic conductivity: 25.97 ft/day Initial saturated thickness: 17.3 ft Length of application area: 86 ft Width of application area: 72 ft Constant head boundary used at: 121 ft Groundwater mounding @ X coordinate: 0 ft Y coordinate: 0 ft Total volume applied: 32266.51 cft

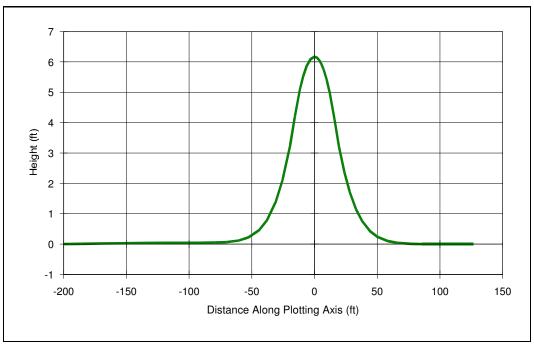
MODEL RESULTS

Time (day)	Mound Height (ft)
0	0
1	0.12
4	0.19
9	0.23
14	0.24
20	0.25
27	0.26
36	0.26
47	0.26
63	0.27
90	0.27

COMPANY: CLAWE

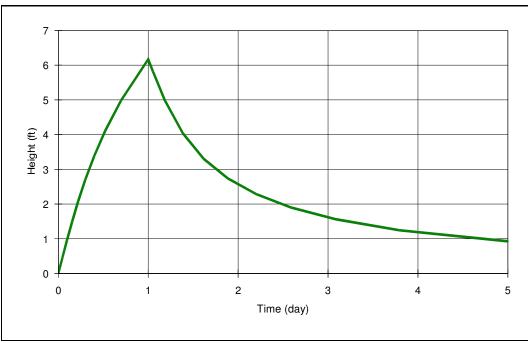
PROJECT:	24 School Street - SAS

ANALYST: Desheng Wang

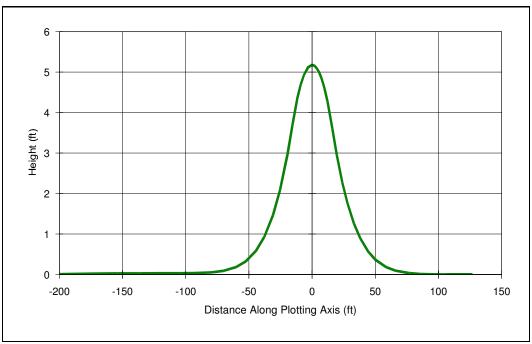

DATE: 5/6/2018 TIME: 9:53:18 PM

INPUT PARAMETERS

Application rate: 0.0579 c.ft/day/sq. ft Duration of application: 90 days Fillable porosity: 0.26 Hydraulic conductivity: 25.97 ft/day Initial saturated thickness: 17.3 ft Length of application area: 86 ft Width of application area: 72 ft Constant head boundary used at: 121 ft Plotting axis from Y-Axis: 0 degrees Edge of recharge area: positive X: 0 ft positive Y: 43 ft Total volume applied: 32266.51 c.ft

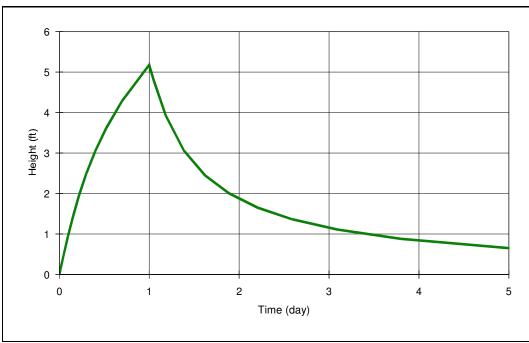

MODEL RESULTS

X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
	-300 -252.3 -204.6 -156.9 -119.4 -90.3 -66.5 -46.5 -29.1 -17.4 -9.4 0 3.8 7 11.7 18.7 26.8 36.4 48.1 63.3 82.5 101.8 121	-300 -252 -205 -157 -119 -90 -67 -46 -29 -17 -9 0 4 7 12 19 27 36 48 63 83 102 121	0.06 0.07 0.08 0.11 0.13 0.16 0.19 0.22 0.26 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.22 0.24 0.21 0.13 0.08 0.04 0

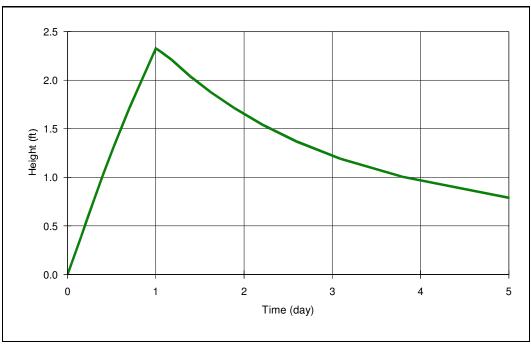


Т

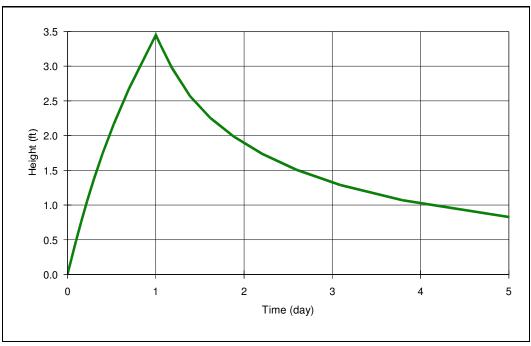
			MODEL RESULTS				
COMPANY: CLAWE					Plot		Mound
PROJECT: 24 School St Wayland- STM 100yr -	rev 2	X (ft)	Y (ft)		Axis (ft)		Height (ft)
ANALYST: Desheng Wang		()	()		(14)		()
		-200	0		-200		0
DATE: 5/6/2018 TIME: 10:04:54 PM		-168.2	0		-168		0.02
		-136.4	0		-136		0.04
INPUT PARAMETERS		-104.6	0		-105		0.04
		-79.6	0		-80		0.05
Application rate: 2.61 c.ft/day/sq. ft		-60.2	0		-60		0.12
Duration of application: 1 days		-44.4 -31	0 0		-44 -31		0.45 1.38
Fillable porosity: 0.26 Hydraulic conductivity: 6.51 ft/day		-19.4	0		-19		3.26
Initial saturated thickness: 12.04 ft		-11.6	0		-12		5.20
Length of application area: 52 ft		-6.3	Ő		-6		5.86
Width of application area: 32 ft		0	Ő		0		6.17
Constant head boundary used at: 126 ft		4	0		4		6.04
Plotting axis from Y-Axis: 90 degrees		7.3	0		7		5.75
Edge of recharge area:		12.2	0		12		4.97
positive X: 16 ft		19.5	0		20		3.22
positive Y: 0 ft		27.9	0		28		1.73
Total volume applied: 4343.04 c.ft		37.9	0		38		0.76
		50.1	0		50		0.24
		65.9	0		66		0.04
		85.9 106	0 0		86 106		0 0
		126	0		106		0
		120	U		120		0



		MODEL RESULTS	
COMPANY: CLAWE PROJECT: 24 School St Wayland- STM 100yr - ANALYST: Desheng Wang DATE: 5/6/2018 TIME: 10:10:24 PM	rev 2	Time (day) 0 0	Mound Height (ft) 0 0.13
		0.1 0.2	0.46 0.96 1.51
oplication rate: 2.61 c.ft/day/sq. ft uration of application: 1 day otal simulation time: 5 day llable porosity: 0.26 ydraulic conductivity: 6.51 ft/day itial saturated thickness: 12.04 ft ength of application area: 52 ft 'idth of application area: 32 ft onstant head boundary used at: 126 ft roundwater mounding @ X coordinate: 0 ft		0.2 0.3 0.4 0.5 0.7 1 1.1 1.2 1.4 1.6 1.9 2.2	2.08 2.7 3.37 4.12 4.99 6.17 5.82 5 4.03 3.3 2.74 2.28
Y coordinate: 0 ft Total volume applied: 4343.04 cft		2.2 2.6 3.1 3.8 5	2.20 1.9 1.56 1.25 0.93



Т


	MODEL RESULTS			
COMPANY: CLAWE			Plot	Mound
PROJECT: 24 School St Wayland- STM 100yr -	rev 2 DX	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: Desheng Wang				
DATE: 5/6/2018 TIME: 10:14:43 PM	-200	0	-200	0.01
	-168.2	0	-168	0.02
	-136.4	0	-136	0.03
INPUT PARAMETERS	-104.6 -79.6	0	-105 -80	0.03 0.05
Application rate: 2.61 c.ft/day/sq. ft	-60.2	0	-60	0.18
Duration of application: 1 days	-44.4	0	-44	0.59
Fillable porosity: 0.26	-31	0	-31	1.46
Hydraulic conductivity: 6.51 ft/day	-19.4	0	-19	2.98
Initial saturated thickness: 17.44 ft	-11.6	0	-12	4.37
Length of application area: 52 ft	-6.3	0	-6	4.94
Width of application area: 32 ft	0	0	0	5.18
Constant head boundary used at: 126 ft	4	0	4	5.08
Plotting axis from Y-Axis: 90 degrees	7.3	0	7	4.86
Edge of recharge area:	12.2	0	12	4.27
positive X: 16 ft	19.5	0	20	2.95
positive Y: 0 ft	27.9	0	28	1.76
Total volume applied: 4343.04 c.ft	37.9	0	38	0.9
	50.1 65.9	0	50 66	0.36 0.1
	85.9	0	86	0.01
	106	0	106	0
	126	0	126	0

		MODEL RESULTS	
COMPANY: CLAWE PROJECT: 24 School St Wayland- STM 100yr - ANALYST: Desheng Wang DATE: 5/6/2018 TIME: 10:15:22 PM	rev 2 D	Time (day) 0 0 0	Mound Height (ft) 0 0.13 0.46
INPUT PARAMETERS Application rate: 2.61 c.ft/day/sq. ft Duration of application: 1 day Total simulation time: 5 day Fillable porosity: 0.26 Hydraulic conductivity: 6.51 ft/day Initial saturated thickness: 17.44 ft Length of application area: 52 ft Width of application area: 32 ft Constant head boundary used at: 126 ft Groundwater mounding @ X coordinate: 0 ft Y coordinate: 0 ft Total volume applied: 4343.04 cft		0.1 0.2 0.2 0.3 0.4 0.5 0.7 1 1.1 1.2 1.4 1.6 1.9 2.2 2.6 3.1 3.8 5	0.95 1.45 1.97 2.5 3.04 3.62 4.29 5.18 4.78 3.93 3.05 2.45 2 1.65 1.36 1.11 0.88 0.65

		MODEL RESULTS	
COMPANY: CLAWE PROJECT: 24 School St Wayland- STM 100yr - ANALYST: Desheng Wang DATE: 5/7/2018 TIME: 11:57:08 AM	rev 2	Time (day) 0 0	Mound Height (ft) 0 0.03 0.12
INPUT PARAMETERS Application rate: 2.61 c.ft/day/sq. ft Duration of application: 1 day Total simulation time: 5 day Fillable porosity: 0.26 Hydraulic conductivity: 6.51 ft/day Initial saturated thickness: 12.04 ft Length of application area: 52 ft Width of application area: 32 ft Constant head boundary used at: 126 ft Groundwater mounding @ X coordinate: 15.99 ft at corner Y coordinate: 25.99 ft Total volume applied: 4343.04 cft		0.1 0.2 0.2 0.3 0.4 0.5 0.7 1 1.1 1.2 1.4 1.6 1.9 2.2 2.6 3.1 3.8 5	0.24 0.39 0.57 0.77 1.02 1.31 1.71 2.33 2.3 2.21 2.04 1.88 1.71 1.54 1.37 1.19 1 0.79

COMPANY: CLAWE		MODEL RESULTS	
PROJECT: 24 School St Wayland- STM 100yr	rev 2	Time (day)	Mound Height (ft)
ANALYST: Desheng Wang DATE: 5/7/2018 TIME: 12:09:40 PM		0 0 0	0 0.07 0.23
INPUT PARAMETERS Application rate: 2.61 c.ft/day/sq. ft Duration of application: 1 day		0.1 0.2 0.2 0.3	0.48 0.76 1.05 1.38
Total simulation time: 5 day Fillable porosity: 0.26 Hydraulic conductivity: 6.51 ft/day Initial saturated thickness: 12.04 ft		0.4 0.5 0.7 1	1.74 2.16 2.68 3.45
Length of application area: 52 ft Width of application area: 32 ft Constant head boundary used at: 126 ft		1.1 1.2 1.4	3.31 2.98 2.57
Groundwater mounding @ X coordinate: 0 ft Y coordinate: 25.99 ft Total volume applied: 4343.04 cft	9	1.6 1.9 2.2 2.6	2.25 1.98 1.74 1.51
		2.0 3.1 3.8 5	1.29 1.07 0.83

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Middlesex County, Massachusetts

24 School Street, Wayland, MA

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	10
Map Unit Legend	
Map Unit Descriptions	
Middlesex County, Massachusetts	
51A—Swansea muck, 0 to 1 percent slopes	13
52A—Freetown muck, 0 to 1 percent slopes	
251B—Haven silt loam, 3 to 8 percent slopes	
253C—Hinckley loamy sand, 8 to 15 percent slopes	17
415B—Narragansett silt loam, 3 to 8 percent slopes	19
602—Urban land	
624B—Haven-Urban land complex, 0 to 8 percent slopes	21
References	24

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND)	MAP INFORMATION	
Area of In	terest (AOI)	333	Spoil Area	The soil surveys that comprise your AOI were mapped at	
	Area of Interest (AOI)	٥	Stony Spot	1:25,000.	
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.	
~	Soil Map Unit Lines	\$	Wet Spot	Enlargement of maps beyond the scale of mapping can cause	
	Soil Map Unit Points	\bigtriangleup	Other	misunderstanding of the detail of mapping and accuracy of soil	
_	Point Features	, • * ·	Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed	
ø	Blowout	Water Fea		scale.	
\boxtimes	Borrow Pit	\sim	Streams and Canals		
*	Clay Spot	Transport	tation Rails	Please rely on the bar scale on each map sheet for map measurements.	
0	Closed Depression	++++	Interstate Highways	incasuremento.	
×	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:	
	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)	
0	Landfill	~	Local Roads	Mana from the Web Sail Survey are based on the Web Maraster	
Ă.	Lava Flow	~		Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts	
علام	Marsh or swamp	Backgrou	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more	
~	Mine or Quarry			accurate calculations of distance or area are required.	
Ô	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as	
ő	Perennial Water			of the version date(s) listed below.	
Š	Rock Outcrop				
*	Saline Spot			Soil Survey Area: Middlesex County, Massachusetts Survey Area Data: Version 17, Oct 6, 2017	
+	Sandy Spot				
:: =	Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	
_	Sinkhole				
\$ \				Date(s) aerial images were photographed: Sep 12, 2014—Sep 28, 2014	
	Slide or Slip				
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
51A	Swansea muck, 0 to 1 percent slopes	1.3	25.7%
52A	Freetown muck, 0 to 1 percent slopes	0.1	2.2%
251B	Haven silt loam, 3 to 8 percent slopes	0.1	1.3%
253C	Hinckley loamy sand, 8 to 15 percent slopes	0.9	18.9%
415B	Narragansett silt loam, 3 to 8 percent slopes	2.1	41.6%
602	Urban land	0.2	4.1%
624B	Haven-Urban land complex, 0 to 8 percent slopes	0.3	6.0%
Totals for Area of Interest		5.0	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor

components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Middlesex County, Massachusetts

51A—Swansea muck, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 2trl2 Elevation: 0 to 1,140 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of unique importance

Map Unit Composition

Swansea and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Swansea

Setting

Landform: Bogs, swamps Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Highly decomposed organic material over loose sandy and gravelly glaciofluvial deposits

Typical profile

Oa1 - 0 to 24 inches: muck Oa2 - 24 to 34 inches: muck Cg - 34 to 79 inches: coarse sand

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water storage in profile: Very high (about 16.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Freetown

Percent of map unit: 10 percent Landform: Bogs, swamps Landform position (three-dimensional): Dip *Down-slope shape:* Concave *Across-slope shape:* Concave *Hydric soil rating:* Yes

Whitman

Percent of map unit: 5 percent Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

52A—Freetown muck, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 2t2q9 Elevation: 0 to 1,110 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of unique importance

Map Unit Composition

Freetown and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Freetown

Setting

Landform: Bogs, depressions, depressions, kettles, marshes, swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Highly decomposed organic material

Typical profile

Oe - 0 to 2 inches: mucky peat *Oa - 2 to 79 inches:* muck

Properties and qualities

Slope: 0 to 1 percent
Percent of area covered with surface fragments: 0.0 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: Rare
Frequency of ponding: Frequent
Available water storage in profile: Very high (about 19.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Swansea

Percent of map unit: 5 percent Landform: Bogs, depressions, depressions, kettles, marshes, swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Whitman

Percent of map unit: 5 percent Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent Landform: Depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

251B—Haven silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 990d Elevation: 100 to 1,000 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Haven and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Haven

Setting

Landform: Terraces, plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Friable loamy eolian deposits over loose sandy glaciofluvial deposits

Typical profile

H1 - 0 to 2 inches: silt loam

H2 - 2 to 20 inches: silt loam

- H3 20 to 32 inches: very fine sandy loam
- H4 32 to 65 inches: stratified coarse sand to sand to fine sand

Properties and qualities

- Slope: 3 to 8 percent Depth to restrictive feature: 18 to 36 inches to strongly contrasting textural stratification Natural drainage class: Well drained
- Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

- Frequency of flooding: None
- Frequency of ponding: None

Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 9 percent Landform: Terraces, plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Scio

Percent of map unit: 5 percent Landform: Depressions, terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Unnamed

Percent of map unit: 1 percent

253C—Hinckley loamy sand, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2svm9 Elevation: 0 to 1,480 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hinckley

Setting

Landform: Eskers, kames, kame terraces, outwash plains, outwash terraces, moraines, outwash deltas

Landform position (two-dimensional): Shoulder, toeslope, footslope, backslope Landform position (three-dimensional): Crest, head slope, nose slope, side slope, riser

Down-slope shape: Convex, concave, linear

Across-slope shape: Concave, linear, convex

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 5 percent Landform: Eskers, kames, outwash plains, outwash terraces, moraines Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest, riser Down-slope shape: Convex

Across-slope shape: Convex Hydric soil rating: No

Windsor

Percent of map unit: 5 percent
 Landform: Eskers, kames, kame terraces, outwash plains, outwash terraces, moraines, outwash deltas
 Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope
 Landform position (three-dimensional): Nose slope, side slope, crest, head slope, riser
 Down-slope shape: Convex, concave, linear

Across-slope shape: Concave, linear, convex Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent

Landform: Kame terraces, outwash plains, outwash terraces, moraines, outwash deltas

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Base slope, tread *Down-slope shape:* Concave, linear *Across-slope shape:* Linear, concave *Hydric soil rating:* No

415B—Narragansett silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: vqrp Elevation: 0 to 1,000 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Narragansett and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Narragansett

Setting

Landform: Ground moraines Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Friable loamy eolian deposits and/or friable silty eolian deposits over loose sandy glaciofluvial deposits derived from metamorphic rock and/or friable sandy basal till derived from metamorphic rock

Typical profile

H1 - 0 to 2 inches: slightly decomposed plant material

H2 - 2 to 7 inches: silt loam

H3 - 7 to 35 inches: silt loam

- H4 35 to 60 inches: very gravelly loamy sand
- H5 60 to 65 inches: very gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 18 to 35 inches to strongly contrasting textural stratification
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Canton

Percent of map unit: 10 percent Landform: Hills Landform position (two-dimensional): Backslope, toeslope Landform position (three-dimensional): Side slope, base slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Haven

Percent of map unit: 10 percent Landform: Terraces, plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

602—Urban land

Map Unit Setting

National map unit symbol: 9950 Elevation: 0 to 3,000 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 110 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Urban Land

Setting

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Excavated and filled land

Minor Components

Rock outcrop

Percent of map unit: 5 percent Landform: Ledges Landform position (two-dimensional): Summit Landform position (three-dimensional): Head slope Down-slope shape: Concave Across-slope shape: Concave

Udorthents, wet substratum

Percent of map unit: 5 percent Hydric soil rating: No

Udorthents, loamy

Percent of map unit: 5 percent Hydric soil rating: No

624B—Haven-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9956 Elevation: 0 to 1,000 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Haven and similar soils: 40 percent Urban land: 40 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Haven

Setting

Landform: Terraces, plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Friable loamy eolian deposits over loose sandy glaciofluvial deposits

Typical profile

H1 - 0 to 2 inches: silt loam
H2 - 2 to 20 inches: silt loam
H3 - 20 to 32 inches: very fine sandy loam
H4 - 32 to 65 inches: stratified coarse sand to sand to fine sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 18 to 36 inches to strongly contrasting textural stratification
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: A Hydric soil rating: No

Description of Urban Land

Setting

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Excavated and filled land

Minor Components

Tisbury

Percent of map unit: 10 percent Landform: Terraces, plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Hinckley

Percent of map unit: 5 percent Landform: Eskers, ridges, terraces Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Hydric soil rating: No

Merrimac

Percent of map unit: 5 percent Landform: Terraces, plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No Custom Soil Resource Report

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

<u>Revised Hydrologic Analysis:</u> Proposed Site Redevelopment 24 School Street Wayland, MA

Prepared for:	Windsor Place, LLC
	73 Pelham Island Road
	Wayland, MA 01778

Prepared by:	MetroWest Engineering, Inc.
	75 Franklin Street
	Framingham, MA 01702
	(508) 626-0063

Original Submittal: September, 2017 Revised: May 2018

Table of Contents

- Introduction Page 1
- Drainage Approach Page 2
- Hydrologic Analysis Page 2
- Model Results Page 6
- Conclusion Page 8
- Appendix A Hydrologic Assessment
- Appendix B Stormwater Operation and Maintenance Plan
- Appendix C NRCS Soil Survey
- Appendix D Time of Concentration Calculations

Hydrologic Analysis (Revised May 2018) Proposed Site Redevelopment 24 School Street, Wayland MA

Introduction

The project site is located on the northerly side of East Plain Street at the intersection of East Plain Street and School Street. The locus is shown on *Figure One: Locus Map, 24 School Street, Wayland MA.*

The subject parcel (Assessors' Map 52, Lot 189) has an area of 37,865 square feet (0.87 acres). The property is improved with a two-story house, a one-story barn, a detached garage, and a patio. The lot consists of mostly gravel, landscaped and lawn areas with moderate topographic relief across the site. The site slopes from higher elevations near School Street to the southwest with a maximum elevation differential on site of approximately ten-feet. A wetland is located west of the property and a portion of the lot falls within the 100' buffer zone.

According to the NRCS Soil Survey, the southerly portion of the lot consists of Narragansett Silt Loam (415B) soil series and are classified within hydrologic soil group A. Narragansett soils are a well drained glacial till that exhibit moderately high to high infiltration rates when saturated. The northerly portion of the site consists of Hinckley loamy sand soil group (253C). Hinckley soils are a very well-drained soil with good hydraulic conductivity. Runoff curve numbers for Hydrologic Soil Group B were used for the analysis based on soil conditions observed during field testing and the inconsistencies between hydrologic soil group and soil descriptions in the soil survey.

An on-site soil evaluation program consisting of twelve deep test holes was conducted on July 21 and August 21, 2014. DTH-1, 2, 3, 6, 7, 9, and 10 were all conducted on the north side of the lot. Results revealed the A horizon consisting of fine sandy loam at a depth of roughly 12 inches, the B horizon consisting of fine sandy loam to a depth of roughly 24 inches, with C horizons consisting of sandy loam at 60 inches and 120 inches respectively.

DTH-4 and 5 were conducted on the south side of the lot. DTH-4 had the A horizon at 28 inches, with the first 20 inches being fill. The B horizon consisted of fine sandy loam and had a depth of 40 inches. The C horizons consisted of sandy loam and were found at 86 and 116 inches respectively. DTH-5's A horizon consisting of fine sandy loam was found at 16 inches. The B horizon consisting of fine sandy loam was found at 34 inches. The C horizons consisting of sandy loam was found at 34 inches. The C horizons consisting of sandy loam were found at 84 and 117 inches respectively.

DTH-11 and 12 were conducted on the east side of the lot. DTH-11 has fill to a depth 18 inches, with the A horizon of fine sandy loam at 30 inches, the B horizon of fine sandy loam at 36 inches, and the C horizons of sandy loam at 58 and 128 inches respectively. DTH-12 has fill to a depth of 54 inches, bypassing the A and B horizons, the C horizons of sandy loam were found at 82 and 114 inches respectively.

Hydrologic Assessment for Site Redevelopment 24 School Street, Wavland, Massachusetts REVISED, May 2018

No refusal was observed in any of the test pits. Redoximorphic features were found in 10 of the 12 test pits at depths of 5 to 7 feet. The groundwater elevations varied from 155-feet to 162-feet.

The site redevelopment program includes the construction of two new multifamily dwellings, paved parking areas, storm water management system and supporting utilities. See site plans for details regarding the proposed development.

The property presently contains 8,780 square feet of impervious area. Redevelopment of the property will increase the amount of impervious area by adding 11,283 square feet for a total of 20,063 square feet.

Drainage Approach

There are presently no controls in place to manage stormwater runoff rates or volumes. Stormwater runoff drains to the west and south to abutting properties and into East Plain Street. The goal of the proposed stormwater management system is to reduce runoff rates and volumes for all design storms compared to the existing condition and to promote groundwater recharge using a subsurface infiltration system and a rain garden.

The proposed subsurface infiltration system will be located under the parking lot between the two structures. The system will consist of 84 precast concrete infiltration galleys surrounded by two feet of double washed, crushed stone. The infiltration system will collect runoff from Post-Development Basin 4, which consists of the parking area and a portion of the proposed roof structures. The proposed infiltration system is designed to completely contain and recharge runoff from storms up to the 10-year storm. The proposed rain garden will collect and store runoff from Post-Development Basin 3A which consists of the easterly portion of the roof of Building A and the surrounding lawn and landscaped areas. The storm water management system will significantly reduce runoff rates and volumes from the subject parcel for all storm events.

Overall reductions in runoff rates and volumes can be found in the Model Results section of this report and detailed hydrologic analysis and basin models can be found in Appendix A.

Hydrologic Analysis

A hydrologic analysis of the project has been performed to establish pre-development conditions, assess post-development impacts and evaluate the effectiveness of the proposed drainage infiltration systems. The analysis employs an SCS TR-55 hydrologic computer model and analyzes design storms with return periods of 2, 10, 25 and 100-years. An SCS Type 3 24-hour rainfall distribution pattern is used for the theoretical design storm. Time of concentration values were determined by the LAG Method or manually entered at five minutes for watersheds having relatively small areas or hydraulic lengths to allow for the use of a three-minute time interval for all hydrograph computations. Precipitation rates of 3.20, 4.73, 5.95 and 8.45-inches were used for the 2, 10, 25 and 100-year storm events respectively. Runoff curve numbers for Hydrologic Soil Group B were used for the analysis based on soil conditions observed during field

Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts REVISED, May 2018

testing and the inconsistencies between hydrologic soil group and soil descriptions in the soil survey.

Existing Conditions

The existing conditions model analyzes the site as three drainage basins; Existing Conditions Basins One, Two, and Three.

Existing Conditions Basin 1 (E.C.B.-1) has an area of 15,276 square feet and flows in a southwesterly direction to Design Point A located at the west side of the property.

Existing Conditions Basin 2 (E.C.B.-2) has an area of 2,901 square feet and flows in a northeasterly direction to Design Point B located at the northeast side of the property.

Existing Conditions Basin 3 (E.C.B.-3) has an area of 19,688 square feet and flows in a southwesterly direction to Design Point C located at the southwest corner of the property.

The Existing Conditions Basins are shown on Figure Two, <u>Existing Conditions</u> <u>Watershed Delineation Plan</u> and information for all Existing Conditions Basins is listed on the plan and below.

Existing Conditions Basin 1 (E.C.B.-1)

Area = 15,276 square feet Impervious Area = 2,205 square feet, curve number = 98.0 Lawn area (good condition) = 13,071 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 66.4 Basin slope = 5.2% Hydraulic length = 189 feet Time of concentration = 5.4 minutes (LAG Method)

Existing Conditions Basin 2 (E.C.B.-2)

Area = 2,901 square feet Impervious Area = 1,460 square feet, curve number = 98.0 Lawn area (good condition) = 1,440 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 79.8 Basin slope = 1.9% Hydraulic length = 68 feet Time of concentration = 5 minutes (Manually Entered)

Existing Conditions Basin 3 (E.C.B.-3)

Area = 19,688 square feet Impervious Area = 5,115 square feet, curve number = 98.0 Lawn area (good condition) = 14,573 square feet, curve number = 61.0

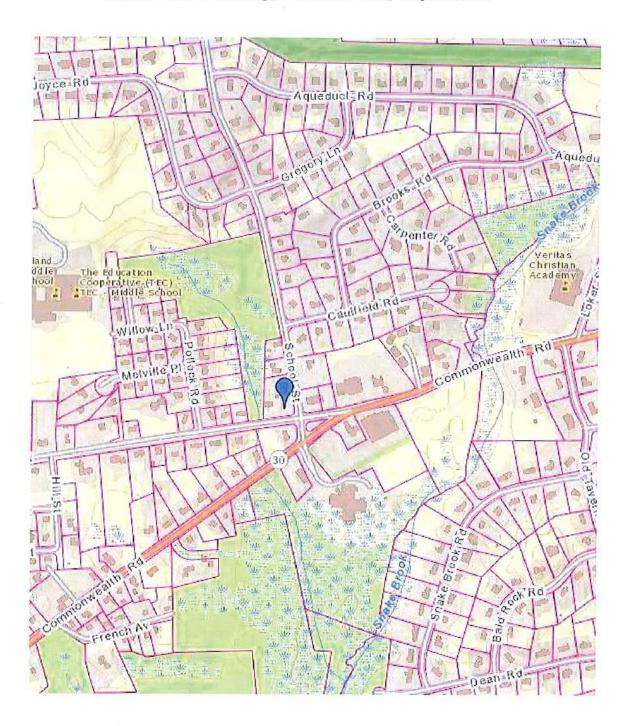
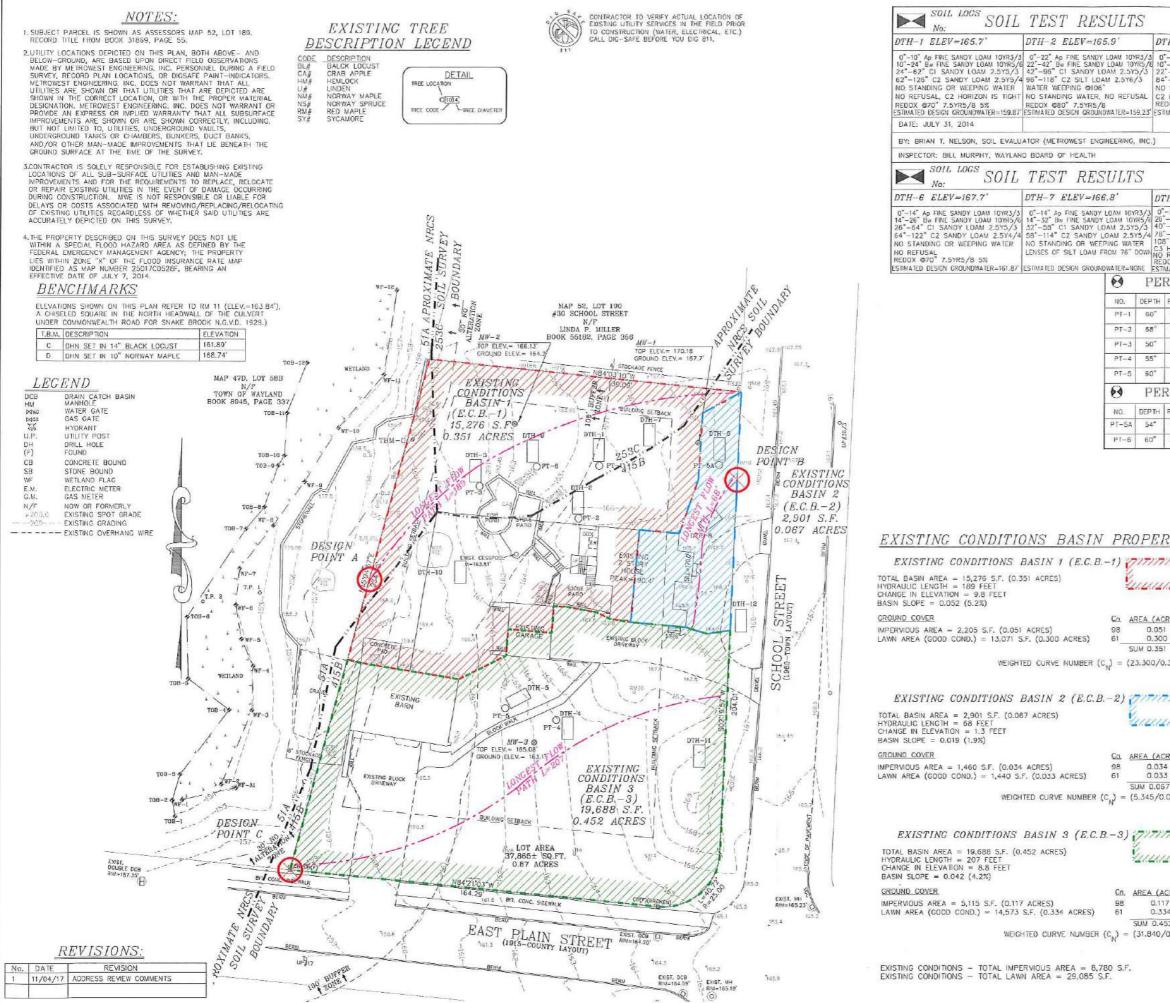



Figure One: Locus Map, 24 School Street, Wayland MA

H-3 ELEV=16	1.7'		DTH-4 ELEV=	164.1'	DTH-5 ELEV	=162.6'
"-110" C2 SILT LOAM 2.5Y6/3 STANDING WATER, NO REFUSAL HORIZON IS DAMP DOX 6082" 7.5YR5/8			0"-20" FILL 520"-28" Ap FINE SANDY LOAM 10783/3 28"-40" BW FINE SANDY LOAM 10785/6 40"-88" C1 SANDY LOAM 2:575/4 86"-116" C2 SANDY LOAM 2:574/4 NO REFUSAL NO STANDING OR WEEPING WATER NO REDOX		0"-16" Ap FINE SANDY LOAM 10YR3/3 16"-34" Bw FINE SANDY LOAM 10YR5/6 34"-84" CI SANDY LOAM 25Y5/4 84"-118" CZ SANDY LOAM 2.5Y4/3 WEEPING WATER 0112"	
1						
		-				
1-8 ELEV=168			DTH-9 ELEV=1		DTH-10 ELEV	
EFUSAL X 680 7.5YR5/8	10%	61.53'	0°-16" AD FINE SANG 16°-30" BW FINE SAN 30°-46" BC SANDY 46°-98" CI SANDY 98°-118" C2 SANDY 98°-118" C2 SANDY WATER STANDING 088 REDOX SEEN 062", SSIMATED DESICH CROC DTH-11 ELEV=1	NO REFUSAL	0 -15 Ap FINE SI 15'-30' BW FINE S 30"-66" C1 LOAN 66"-112" C2 SILT WATER STANDING WATER WEEPING G NO REFUSAL REDOX SEEN 608 ESTIMATED DESIGN GI DT'H-12 ELEV	@100" 998" " 7.5YR5/8 10% ROUNDWATER=155.08"
	av li				and the second sec	1000 CO. C.
ATE DATE 8 MPI 07/31/14		NSP. B.M.	0"-18" FILL 18"-30" Ap FINE SANE 30"-36" Bw FINE SANE 36"-58" C1 SANDY	Y LOAM 10YR5/3 Y LOAM 10YR5/6 LOAM 2.5Y5/3	58"-82" C1 SAND 82"-114" C2 SAN C2 HORIZON HAS LE	Y LOAM 2.5Y4/4 DY LOAM 2.5Y5/4 WSES OF SILT LOAM
13 MPI 07/31/14	B.N. 1	B.M.	36"-58" C1 SANDY 58"-128" C2 SANDY WATER STANDING 01 NO WEEPING WATER	LOAM 2.5Y6/3	NO STANDING OR	and a second second second second
0 MPI 07/31/14		B.M.	REDOX SEEN 660" 7 STIMATED DESIGN GROU	.5YR5/8 5%	NO REFUSAL REDOX SEEN @64" ESTIMATED DESIGN CE	7.5YR5/8 OUNDWATER=161.0
MPI 07/31/14 MPI 07/31/14		D 14 1	DATE: AUGUST 21, 3			
COLATION	23A. 1	-	BY: BRIAN T. NELSO			
	ny l	-	INSPECTOR: JULIA J	UNGHANNS, WAY	LAND BOARD OF H	LALIH
ATE DATE 0 MPI 08/21/14		J.J.	USDA S	SOIL CI	LASSIFI	CATION
MP 08/21/14	B.N.	J.J.				HYDROLOGIC
			SOIL NUMBER	SOIL SERIE	S	SOIL GROUP
			51A	SWANSEA	MUCK	B/D
			253C	100000000000000000000000000000000000000	LOAMY SAND	A
			415B	NARRAGAN	SETT	B
TIES:			HYDROLOCIC SOILS ON SITE AR	SILT LOAM S'OIL CROU E SANDY LOAM	P B USED F TEXTURES AND	
ES) PRODUCT 5.000 18.300 SUM 23.300			SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENGINEE CMMA, P.E.(C	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. IVIL) # 31967 P.L.S. # 37046 ALE	OR ANALSYIS DATE
ES) PRODUCT 5.000 18.300 SUM 23.300		20	SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENCINEE EMMA, P.E.(C F	P B USED F TEXTURES AND DIL GROUP B. RING, INC. IVIL) # 31967 P.L.S. # 37046	OR ANALSYIS DATE
ES) PRODUCT 5.000 18.300 SUM 23.300		22	SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENCINEE EMMA, P.E.(C F	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. IVIL) # 31967 P.L.S. # 37046 ALE	DATE
		20	SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENCINEE EMMA, P.E.(C F	P B USED F TEXTURES AND OIL GROUP B. RING, INC. IVIL) # 31967 P.L.S. # 37046 ALE (FEE	DATE
ES) PRODUCT 5.000 18.300 SUM 23.300 (51) = 66.4	–	25	SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENGINEE CMMA, P.E.(C I inch = 20 ft 20 ft	Р В USED F TEXTURES AND OIL GROUP B. RING, INC. IVIL) # 31967 P.L.S. # 37046 ALE (РЕВ (МЕТЕ ТWO	DATE
ES) PRODUCT 5.000 18.300 5UN 23.300 51) = 66.4 ES) PRODUCT 3.332 2.013	W	AT	FOR METROWE ROBERT A. GE FIGU	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENGINEE MAIA, P.E. (C F RAPHIC SCA 1 inch = 20 R 1 inch = 20 R JRE G CON	P B USED F TEXTURES AND OIL GROUP B. RING, INC. (VIL) # 31967 S.L.S. # 37046 ALE (PER TWO DITIONS (EATION)	DATE
PRODUCT 5.000 18.300 SUM 23.300 51) = 66.4 51) = 66.4 1 53) PRODUCT 3.332 2.013 SUM 5.345	W.	20 AT	FOR METROWE ROBERT A. GE FIGU	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENCINEE MANA, P.E.(C I inch = 20 ft T T T T T T T T T T T T T T T T T T T	P B USED F TEXTURES AND OIL GROUP B. RINC, INC. IVIL) # 31967 P.L.S. # 37046 ALE (PER TWO DITIONS DITIONS TEATION REET	DATE
(1) (3) (3) (3) (3) (3) (3) (3) (4) (5) (5) (5) (6) (4) (5) (5) (6) (4) (5) (6) (4) (5) (6) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6		AT	FOR METROWE ROBERT A. GE G FIGU EXISTIN ERSHED #24 S WAYI	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENCINEE ST E	P B USED F TEXTURES AND OIL GROUP B. RING, INC. (VIL) # 31967 S.L.S. # 37046 ALE (PER TWO DITIONS (EATION)	DATE
(3) PRODUCT 5.000 18.300 SUM 23.300 51) = 66.4 (3) PRODUCT 3.332 2.013 SUM 5.345			FOR METROWE ROBERT A. GE FOR METROWE ROBERT A. GE FIGU EXISTIN ERSHED #24 S WAYI	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENCINEE MMA, P.E.(C F RAPHIC SCA I inch = 20 R P CAND DELIN SCHOOL ST IN LAND, HOMES M ISLAND RO.	P B USED F TEXTURES AND OIL GROUP B. RING, INC. (VIL) # 31967 D.L.S. # 37046 ALE (PER TWO DITIONS (EATION REET MASS	DATE
ES) PRODUCT 5.000 18.300 SUM 23.300 SUM 23.45 SOM 23.45	PREP		SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE G FIGU EXISTIN ERSHED #24 S WAYI "OR: CHADWICK 73 PLEMAN WAYLAND,	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENCINEE MMA, P.E.(C F RAPHIC SCA 1 inch = 20 ft 1 inch = 20 ft C CON DELIN SCHOOL ST IN LAND, HOMES M ISLAND RO. MA 01778 VOIVLES & DCE STREET	P B USED F TEXTURES AND OIL GROUP B. RING, INC. (VIL) # 31967 D.L.S. # 37046 ALE (PER TWO DITIONS (EATION REET MASS	DATE
ES) PRODUCT 5.000 18.300 SUM 23.300 (51) = 66.4 ES) PRODUCT 3.332 2.013	PREP	ARED F	SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE G FIGU EXISTIN ERSHED #24 S WAYI VAYLAND, A K	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENCINEE MMA, P.E.(C I inch = 20 ft P RAPHIC SCL I inch = 20 ft P CAPHIC SCL I I inch = 20 ft P CAPHIC SCL I I I I I I I I I I I I I	P B USED F TEXTURES AND OIL GROUP B. RING, INC. (VIL) # 31967 P.L.S. # 37046 ALE (FEE TWO TOITIONS IEATION REET MASS AD C ENGINEERING, IN STREET M. MA OTTOZ 626-0063	OR ANALSYIS
ES) PRODUCT 5.000 18.300 SUM 23.300 SUM 23.302 SUM 5.345 SUM 5.345 SUM 23.300 SUM 23.300 SUM 23.302 SUM 3.345 SUM 3.345 SUM 23.374 SUM 3.345 SUM 23.374 SUM 3.345 SUM 23.374 SUM 3.345 SUM 23.374 SUM 33.374 SUM 33.37	PREP	ERTY C	SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE G FIGU EXISTIN ERSHED #24 S WAYI SOR: CHADWICK 73 PLEAND, WAYLAND, A K SC CARY W. RI CARY W.	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC S ST ENGINEE CALL, P.E. (C FRAMIC, P.E. (C I inch = 20 ft P CAPHIC SC/ I inch = 20 ft P CON DELIN SCHOOL ST IN LAND, HOMES MA 01778 METROWEST 75 FRANKL FRAMINGHA TEL: (508) FAX: (508)	P B USED F TEXTURES AND OIL GROUP B. RING, INC. (VIL) # 31967 P.L.S. # 37046 ALE (FEE TWO TOITIONS IEATION REET MASS AD C ENGINEERING, IN STREET M. MA OTTOZ 626-0063	OR ANALSYIN DATE T) PLAN

Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts REVISED, May 2018

Hydrologic soil group B Weighted Curve Number = 70.4 Basin slope = 4.2% Hydraulic length = 207 feet Time of concentration = 5.8 minutes (LAG Method)

Proposed Conditions

The proposed condition model analyzes the site as five Post-Development drainage basins, Post-Development Basins One through Four (including Basin 3A).

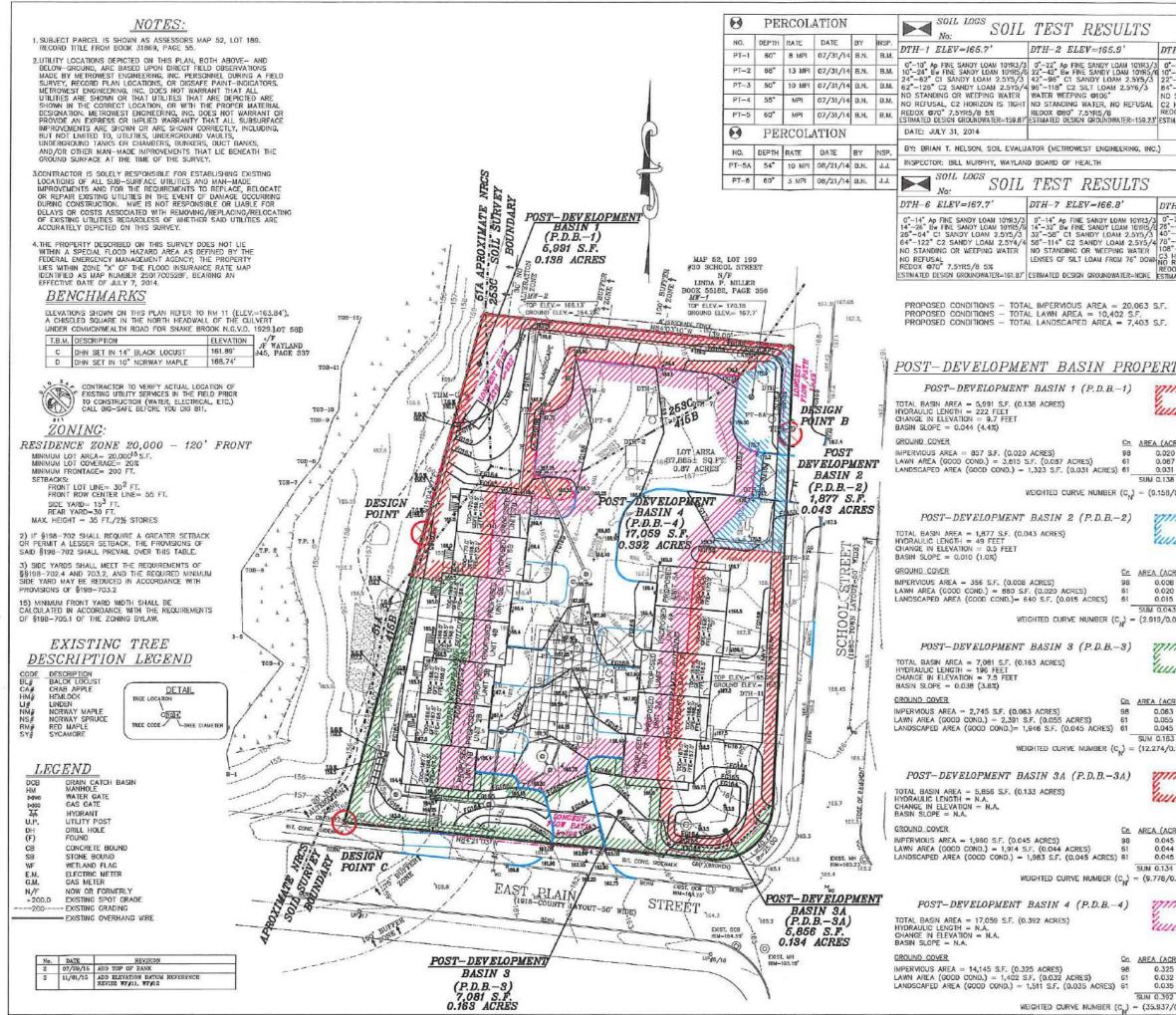
Post-Development Basin 1 (P.D.B.-1) has an area of 5,991 square feet and flows west to Design Point A located at the west of the property.

Post-Development Basin 2 (P.D.B.-2) has an area of 1,877 square feet and flows north to Design Point B located at the northeastern side of the property.

Post-Development Basin 3 (P.D.B.-3) has an area of 7,081 square feet and flows west to design point C located at the southwest corner of the property.

Post-Development Basin 3A (P.D.B.-3A) has an area of 5,856 square feet and flows into the proposed stone trench on the easterly side of Building A.

Post-Development Basin 4 (P.D.B.-4) has an area of 17,059 square feet and flows to the Proposed Infiltration System located at the center of the property.


The Proposed Conditions Basins are shown on Figure Three, <u>The Post Development</u> <u>Watershed Delineation Plan</u> and information for all Post Development Basins is listed on the plan and shown below.

Post-Development Basin 1 (P.D.B.-1)

Area = 5,991 square feet Impervious area = 857 square feet; curve number = 98.0 Lawn area (good condition) = 3,815 square feet, curve number = 61.0 Landscaped area (good condition) = 1,323 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 66.4 Basin slope = 4.4% Hydraulic length = 222 feet Time of concentration = 6.7 minutes (LAG Method)

Post-Development Basin 2 (P.D.B.-2)

Area = 1,877 square feet Impervious area = 356 square feet; curve number = 98.0 Lawn area (good condition) = 880 square feet, curve number = 61.0 Landscaped area (good condition) = 640 square feet, curve number = 61.0

		and the second se		
2 FIFU-404 C'	DTU A DI DU	1811	DPU 5 BLE	-100 0'
-3 ELEV=161.7' 0' AP FINE SANDY LOAM 10' 2' BY FINE SANDY LOAM 10' 84" CI SANDY LOAM 2.5Y6 110° C2 SILT LOAM 2.5Y6 TANDING WATER, NO REFL ORIZON IS DAMP X 682" 7.5Y85/8 TED DESIGN CROUNDWATER=1	5/3 40 -86 CI SANDY	DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/4 / LOAM 2.5Y4/4 G OR WEEPING WATER	NO REFUSAL	ANDY LOAM 10YR3/3 ANDY LOAM 10YR5/4 DY LOAM 2.5Y5/4 IDY LOAM 2.5Y4/3 0112" IR5/8
-				
-8 ELEV=168.2'	DTH-9 ELEV=1	and state and a second s	DTH-10 ELEV	
5° FILL 0° BW FINE SANDY LOAM 10' 18° CI SANDY LOAM 2.5Y 08° C2 LOAMY SAND 2.5 128° C3 SUIT LOAM 2.5YI 17120N IS DAMP FUSAL 6 620° 7.5YR5/8 10% 60 DESIGN GROUNDWATER=16		LOAM 2.5Y5/3 'LOAM 2.5Y4/4 D8" NO REFUSAL JNDWATER=157.8'	15"-30" BW FINE S 30"-66" C1 LOAM 66"-112" C2 SILT WATER STANDING WATER WEEPING (NO REFUSAL REDOX SEEN @68 ESTIMATED DESIGN G	'LOAM 2.5Y5/4 @100" 998" * 7.5YR5/8 10% ROUNDWATER=155.08"
	DTH-11 ELEV=1	(1)40,200,000 (c)	DTH-12 ELEV	CALCOLOGICAL CONTRACTOR
TIES:	0"-16" FILL 16"-30" B# FINE SANE 30"-36" B# FINE SANE 36"-58" C1 SANDY 58"-128" C2 SANDY WATER STANDING BU NO WEEPING WATER REDOX SEEN 660"7 ESTIMATED DESICH CROU DATE: AUGUST 21, 2	LOAN 2.5Y5/3 LOAN 2.5Y6/3 25" .5YR5/8 5% NDWATER=161.0'	58-82 CI SANE 82-114 C2 SAN C2 HORIZON HAS LE NO STANDING OR NO REFUSAL REDOX SEEN 664 STIMATED DESIGN GF	NSES OF SILT LOAM WEEPING WATER 7.5YR5/8
mmm	BY: BRIAN T. NELSO	N, SOIL EVALUAT	FOR (METROWEST I	ENGINEERING, INC.)
3	INSPECTOR: JULIA J	UNGHANNS, WAYL	AND BOARD OF H	EALTH
LIJILIJA	UCDA		100101	a Imrost
ES) PRODUCT	USDAS	SUIL CI	ASSIFI	SATION
1.960 5.307	SOIL NUMBER	SOIL SERIES	S	HYDROLOGIC SOIL GROUP
1.891 SUM 9.158		- and a second second second	NUMBER OF A	JUL GROUP
	51A	SWANSEA N	MUCK	B/D
	253C	and the second second	LOAMY SAND	B/D A
0.138) = 66.4	Succession of the	and the second second	OAMY SAND	100
.136) = 66.4	253C	HINCKLEY L NARRAGAN SILT LOAM	LOAMY SAND SETT	A B
1.138) = 66.4 ES) <u>PRODUCT</u> 0.784 1.220	253C 415B	HINCKLEY L NARRAGAN SILT LOAM SOIL GROUL SANDY LOAM	DAMY SAND SETT P B USED F TEXTURES AND	A B
ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9	253C 415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. C	HINCKLEY L NARRAGAN: SILT LOAM SOIL CROUL E SANDY LOAM HYDROLOGIC SC EST ENCINER EMMA, P.E.(C	DAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. ERING, INC. IVIL) # 31967 P.L.S. # 37040	A B OR ANALSYI
2.138) = 66.4 ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9	253C 415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. C	HINCKLEY L NARRAGAN: SILT LOAM SOIL CROUL E SANDY LOAM HYDROLOGIC SC EST ENCINER EMMA, P.E.(C	DAMY SAND SETT P B USED F TEXTURES AND ML GROUP B. SRING, INC. SIVIL) # 31967 P.L.S. # 37040 ALE	A B OR ANALSYL DATE
ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9	253C 415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. C	HINCKLEY L NARRAGAN: SILT LOAM SOIL CROUL E SANDY LOAM HYDROLOGIC SC EST ENCINEN EMMA, P.E.(C GRAPHIC SC, L Inch = 20 ft	DAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. SRING, INC. (IVIL) # 31967 P.L.S. # 37040 ALE	A B OR ANALSYL DATE
L138) = 66.4 ES) PRODUCI 0.784 1.220 0.915 SUM 2.919 43) = 67.9 COMPARIANCE SUM 2.919 43) = 67.9 COMPARIANCE SUM 2.919 43) = 67.9 COMPARIANCE SUM 2.919 43) = 2745 SUM 12.274	253C 415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN ROBERT A. C. FIGU	HINCKLEY L NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINER EMMA, P.E.(C GRAPHIC SC, 1 Inch = 20 ft T	DAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. SRINC, INC. SVIL) # 31967 P.L.S. # 37040 ALE (MET CHRE	A B $OR ANALSYIS$ T $DATE$ $ST) = 0$ $ST) = 0$ $ST) = 0$
A138) = 66.4 ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9 COMPARING SUM 2.919 SUM 2.918 SUM 2.918 SU	253C 415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN ROBERT A. C. FIGU	HINCKLEY L NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINEN EMMA, P.E.(C GRAPHIC SC L Inch - 20 ft T SC BRAPHIC SC DEVEL	DAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. SRING, INC. (IVIL) # 31967 P.L.S. # 37040 ALE	A B OR ANALSYIS DATE S S S S S S S S S S S S S S S S S S S
2.138) = 66.4 ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9 CS) PRODUCT 6.174 3.355 2.745 SUM 12.274 163) = 75.3 W	253C 415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. C FIGUI POST- ATERSHED #24 S	HINCKLEY L NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINEN EMMA, P.E.(C GRAPHIC SC. GRAPHIC SC. DEVEL DEVEL DELIN SCHOOL ST IN	DAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. ERING, INC. IVIL) # 31967 P.L.S. # 37040 ALE (MBT CHRE CHRE OPMENT EATION REET	A B OR ANALSYIS DATE S S S S S S S S S S S S S S S S S S S
A138) = 66.4 ES) PRODUCI 0.784 1.220 0.915 SUM 2.919 43) = 67.9 ES) PRODUCI 6.174 3.355 2.745 SUM 12.274 63) = 75.3 W	253C 415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW ROBERT A. C FIGUE FIGUE POST- ATERSHED #24 S WAYI VIEND FOR:	HINCKLEY L NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINEN EMMA, P.E.(C GRAPHIC SC, 1 Inch = 20 ft GRAPHIC SC, 1 Inch = 20 ft DELIN SCHOOL ST, IN LAND,	DAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. SERING, INC. STVIL) # 37040 ALE (MET CHRE OPMEN' EATION	A B OR ANALSYIS DATE S S S S S S S S S S S S S S S S S S S
L138) = 66.4 ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9 CONTRACTOR 6.174 3.355 SUM 12.274 6.3) = 75.3 W PREPA	253C 415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW ROBERT A. C FOR METROW ROBERT A. C FIGU FIGU POST- ATERSHED #24 S WAYI WEED FOR: WINDSOR J	HINCKLEY L NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINEN EMMA, P.E.(C GRAPHIC SC, Inch - 20 M GRAPHIC SC, DEVEL DELIN SCHOOL ST IN LAND, PLACE LLC M ISLAND ROA	LOAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. STINC, INC. STVIL) # 37040 ALE (MET CHRE CHRE OPMENT EATION REET MASS	A B OR ANALSYIS DATE S S S S S S S S S S S S S S S S S S S
A138) = 66.4 ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9 CS) PRODUCT 6.174 3.355 2.745 SUM 12.274 6.3) = 75.3 W PREPA ES) PRODUCT 4.410 2.684 SUM 9.778 PROPE	253C 415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW. ROBERT A. C FOR METROW. ROBERT A. C FIGU POST- ATERSHED #24 S WAYI WAYLAND, WAYLAND, ERTY OF: WINDSOR J	HINCKLEY I NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINEN EMMA, P.E.(C GRAPHIC SC. GRAPHIC SC. GRAPHIC SC. DEVEL DELIN SCHOOL ST IN LAND, PLACE LLC W ISLAND ROA PLACE LLC W ISLAND ROA	DAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. SRINC, INC. (IVIL) # 31967 P.L.S. # 37040 ALE (NET CHRE CHRE CHRE CHRE CATION REET MASS	A B OR ANALSYIS DATE S S S S S S S S S S S S S S S S S S S
2.138) = 66.4 ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9 PRODUCT 6.174 3.355 2.745 SUM 12.274 163) = 75.3 W_ ES) PRODUCT 6.174 3.355 2.745 SUM 12.274 FS) PRODUCT 4.410 2.684 SUM 9.778 PROPE 133) = 73.5 ENCING	253C 415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. C FOR METROW, ROBERT A. C FIGU POST- ATERSHED #24 S WAYI WRED FOR: WINDSOR J 73 PELHAJ WINDSOR J 73 PELHAJ	HINCKLEY I NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINER EMMA, P.E.(C GRAPHIC SC. 1 Inch = 20 ft GRAPHIC SC. 1 Inch = 20 ft DELIN SCHOOL ST IN DELIN SCHOOL ST IN LAND, PLACE LIC M ISLAND ROA MA 01778 PLACE LIC M ISLAND ROA MA 01778	LOAMY SAND SETT P B USED F TEXTURES AND ALL GROUP B. SERING, INC. SERING, INC. S	A B OR ANALSYIS DATE DATE SERS) \$1 E PLAN
A138) = 66.4 ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9 2.745 SUM 12.274 63) = 75.3 W ES) PRODUCT 4.410 2.684 SUM 9.778 PROPUCT 4.410 2.684 SUM 9.778 PROPUCT 4.410 2.684 SUM 9.778 PROPUCT 50 PRODUCT 31.850	253C 415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW. ROBERT A. C FOR METROW. ROBERT A. C FIGU: FIGU: POST- ATERSHED #24 S WAYI VINDSOR J 73 PELHAJ WAYLAND, EERS & WINDSOR J 73 PELHAJ WAYLAND, EERS &	HINCKLEY I NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINEN EMMA, P.E.(C GRAPHIC SC, I Inch = 20 M GRAPHIC SC, I Inch = 20 M GR	LOAMY SAND SETT P B USED F TEXTURES AND NL GROUP B. SRINC, INC. (IVIL) # 31967 P.L.S. # 37040 ALE (NET CHRE CHRE CHRE MASS ID ENCINEERING, 10	A B OR ANALSYIS DATE DATE S BRB) \$ E E PLAN
L138) = 66.4 ES) PRODUCT 0.784 1.220 0.915 SUM 2.919 43) = 67.9 ES) PRODUCT 6.174 3.355 SUM 12.274 5.17	253C 415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW. ROBERT A. C FOR METROW. ROBERT A. C FIGU: FIGU: POST- ATERSHED #24 S WAYI VINDSOR J 73 PELHAJ WAYLAND, EERS & WINDSOR J 73 PELHAJ WAYLAND, EERS &	HINCKLEY I NARRAGAN: SILT LOAM SOIL CROUD E SANDY LOAM HYDROLOGIC SC EST ENCINEN EMMA, P.E.(C GRAPHIC SC. I Inch - 20 ft GRAPHIC SC. I Inch - 20 ft DEVEL DEVEL DEVEL DELIN SCHOOL ST IN LAND, PLACE LIC M ISLAND ROA MA 01778 PLACE LIC M ISLAND ROA MA 01778 METROWEST 75 FRANKLI WAYLAND, M TEL: (508)E FAX: (508)E	LOAMY SAND SETT P B USED F TEXTURES AND ALL GROUP B. SERING, INC. SERING, INC. S	A B OR ANALSYI DATE DATE SERS) * E PLAN INC. 2018

Hydrologic soil group B Weighted Curve Number = 67.9 Basin slope = 1.0% Hydraulic length = 49 feet Time of concentration = 5.0 minutes (Manually Entered)

Post-Development Basin 3 (P.D.B.-3)

Area = 7,081 square feet Impervious area = 2,745 square feet; curve number = 98.0 Lawn area (good condition) = 2,391 square feet, curve number = 61.0 Landscaped area (good condition) = 1,946 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 75.3 Basin slope = 3.8% Hydraulic length = 196 feet Time of concentration = 5.0 minutes (Manually Entered)

Post-Development Basin 3A (P.D.B.-3A)

Area = 5,856 square feet Impervious area = 2,745 square feet; curve number = 98.0 Lawn area (good condition) = 1,914 square feet, curve number = 61.0 Landscaped area (good condition) = 1,983 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 73.5 Basin slope = n.a. Hydraulic length = n.a. Time of concentration = 5.0 minutes (Manually Entered)

Post-Development Basin 4 (P.D.B.-4)

Area = 17,059 square feet Impervious area = 14,145 square feet; curve number = 98.0 Lawn area (good condition) = 1,402 square feet, curve number = 61.0 Landscaped area (good condition) = 1,511 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 91.7 Basin slope = n.a. Hydraulic length = n.a. Time of concentration = 5.0 minutes (Manually Entered)

Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts REVISED, May 2018

Drain Infiltration Systems

Proposed Infiltration System 1

Basic geometry:	32.0 feet wide by 52.0 feet long
System type:	Shea Leaching Galleys; 360 gallons each
	Use 84 Galleys; 4-feet long by 4.5-feet wide by 3.0-feet high
	Surrounded by two feet of double washed, crushed stone
Infiltration rate:	1.02 inches per hour over 1,664 square foot bed

Proposed Rain Garden

Basic geometry:	Irregular shaped basin
System type:	Constructed basin approximately 1.5-feet deep
	Total Storage approximately 742 cubic feet
Infiltration rate:	1.02 inches per hour over 450 square foot bed area

The proposed condition model analyzes the infiltration system using a reservoir-analysis method. Consistent with DEP stormwater management standards, design infiltration rates are based on the Rawls table for soils with sandy loam and loamy sand textures.

Model Results

The model results for the design points A, B and C are shown in Tables one through ten below:

Table 1: Comparison of Pre and Post-Development Peak Runoff Rates at Design Point A

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B1	0.19 c.f.s.	0.54 c.f.s.	0.86 c.f.s.	1.59 c.f.s.
P.D.B1	0.08 c.f.s.	0.21 c.f.s.	0.34 c.f.s.	0.63 c.f.s.
Difference	-0.11 c.f.s.	-0.33 c.f.s.	-0.52 c.f.s.	-0.96 c.f.s.

Table 2: Comparison of Pre and Post-Development Runoff Volumes

at Design Point A					
Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm	
E.C.B1	789 c.f.	1,881 c.f.	2,913 c.f.	5,287 c.f.	
P.D.B1	310 c.f.	740 c.f.	1,145 c.f.	2,079 c.f.	
Difference	-479 c.f.	-1,141 c.f.	-1,768 c.f.	-3,208 c.f.	

Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts REVISED, May 2018

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B2	0.09 c.f.s.	0.18 c.f.s.	0.25 c.f.s.	0.40 c.f.s.
P.D.B2	0.03 c.f.s.	0.07 c.f.s.	0.11 c.f.s.	0.20 c.f.s.
Difference	-0.06 c.f.s.	-0.11 c.f.s.	-0.14 c.f.s.	-0.20 c.f.s.

Table 3: Comparison of Pre and Post Development Peak Runoff Ratesat Design Point B

Table 4: Comparison of Pre and Post-Development Runoff Volumesat Design Point B

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B2	317 c.f.	602 c.f.	847 c.f.	1,374 c.f.
P.D.B2	107 c.f.	246 c.f.	377 c.f.	674 c.f.
Difference	-210 c.f.	-356 c.f.	-470 c.f.	-700 c.f.

Table 5: Comparison of Pre and Post Development Peak Runoff Rates at Design Point C

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B3	0.35 c.f.s.	0.85 c.f.s.	1.29 c.f.s.	2.26 c.f.s.
P.D.B3 + overflow	0.18 c.f.s.	0.59 c.f.s.	1.13 c.f.s.	2.97 c.f.s.
Difference	-0.17 c.f.s.	-0.27 c.f.s.	-0.16 c.f.s.	0.71 c.f.s.

Table 6: Comparison of Pre and Post-Development Runoff Volumesat Design Point C

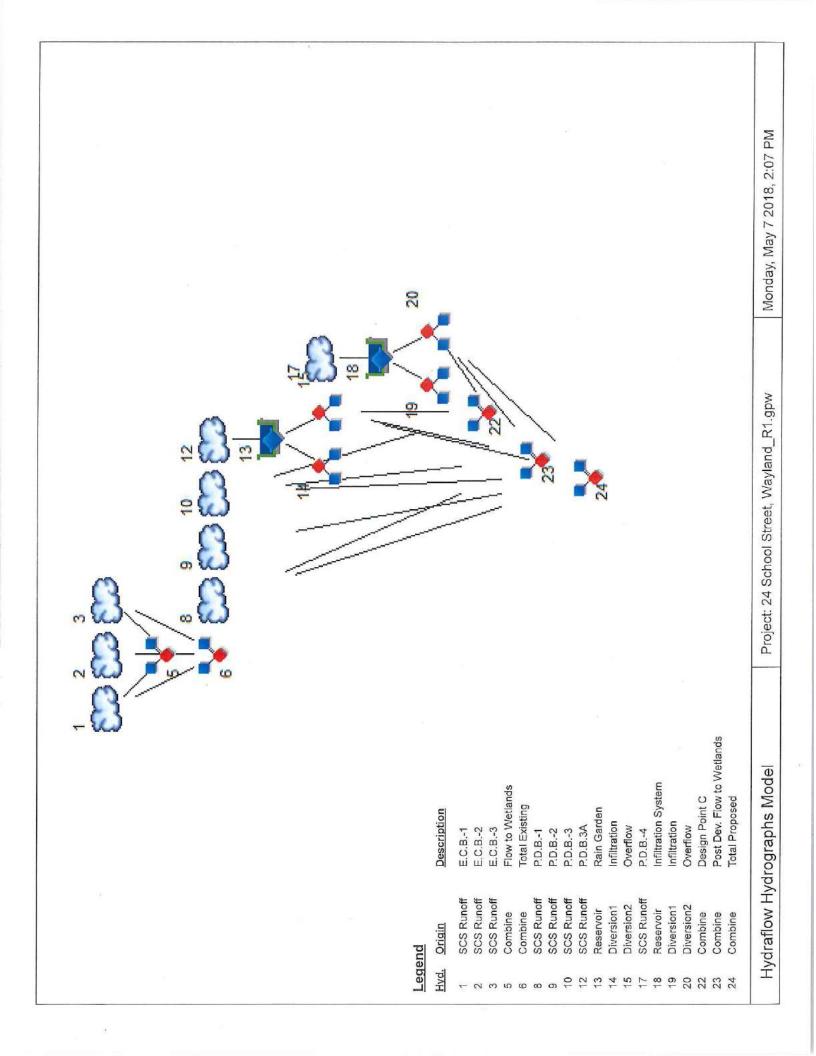
Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B3	1,304 c.f.	2,875 c.f.	4,311 c.f.	7,539 c.f.
P.D.B3 + overflow	672 c.f.	2,761 c.f.	4,916 c.f.	9,778 c.f.
Difference	-632 c.f.	-114 c.f.	605 c.f.	2,239 c.f.

Table 7: Comparison of Total Pre and Post Development Peak Runoff Rates Leaving the Project Site

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
Total Existing	0.64 c.f.s.	1.57 c.f.s.	2.41 c.f.s.	4.26 c.f.s.
Total Proposed	0.28 c.f.s.	0.74 c.f.s.	1.50 c.f.s.	3.79 c.f.s.
Difference	-0.36 c.f.s.	-0.83 c.f.s.	-0.91 c.f.s.	-0.47 c.f.s.

Table 8: Comparison of Total Pre and Post-Development Runoff Volumes Leaving the Project Site

Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts <u>REVISED, May 2018</u>


Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
Total Existing	2,410 c.f.	5,358 c.f.	8,071 c.f.	14,200 c.f.
Total Proposed	1,088 c.f.	3,747 c.f.	6,438 c.f.	12,531 c.f.
Difference	-1,322 c.f.	-1,611 c.f.	-1,633 c.f.	-1,669 c.f.

Conclusion

The results provided in Tables One through Eight demonstrate that the project, with the stormwater controls in place, will result in an overall decrease both in peak runoff rates and total runoff volume discharged from the project site. The project will impact neither the municipal stormwater drainage system or abutting properties.

Additionally, a portion of the proposed roof and the majority of driveway surfaces will be collected and recharged. The stormwater management system as designed is consistent with MADEP Stormwater Management Policy and accepted design practice.

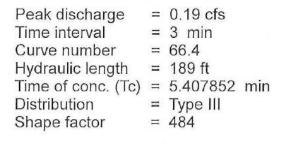
Appendix A: Hydrologic Assessment

2-Year Storm, Pre and Post-Development

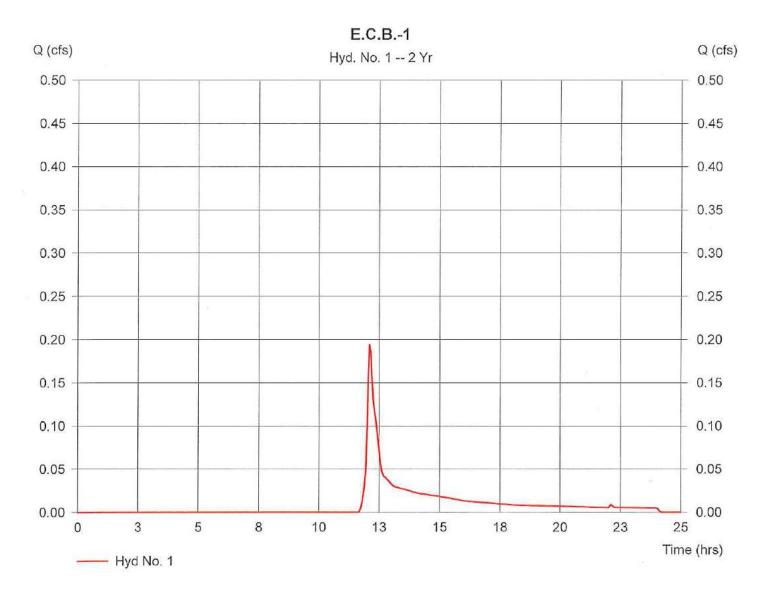
·

Hydrograph Summary Report

Hyd. No.	Hydrograph type (orlgin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	0,19	3	726	789				E.C.B1
2	SCS Runoff	0.09	3	726	317				E.C.B2
3	SCS Runoff	0.35	3	726	1,304				E.C.B3
5	Combine	0.55	3	726	2,093	1, 3,			Flow to Wetlands
6	Combine	0.64	3	726	2,410	1, 2, 3,			Total Existing
8	SCS Runoff	0.08	3	726	310		<i></i>		P.D.B1
9	SCS Runoff	0.03	3	726	107			a	P.D.82
10	SCS Runoff	0,18	3	726	616				P,D,B,-3
12	SCS Runoff	0.13	3	726	457				P.D.B.3A
13	Reservoir	0.01	3	843	443	12	164.12	209	Rain Garden
14	Diversion1	0.01	3	843	443	13			Infiltration
15	Diversion2	0.00	3	1221	D	13			Overflow
17	SCS Runoff	0.91	3	726	3,098				P.D.B4
18	Reservoir	0.0 6	3	843	3,094	17	163.81	1,657	Infiltration System
19	Diversion1	0.05	3	843	3,039	18			Infiltration .
20	Diversion2	0.01	3	843	55	18			Overflow
22	Combine	0,18	3	726	672	10, 15, 20,			Design Point C
23	Combine	0,25	3	726	982	8, 10, 15, 2	0,		Post Dev. Flow to Wetlands
24	Combine	0,28	3	726	1,088	8, 9, 10, 15	, 20,		Total Proposed
24 S	ichool Stre	et, Way	/land_F	1. g pw	Return	Period: 2	Year	Friday, Ma	ay 4 2018, 2:09 PM


Hydraflow Hydrographs by Intelisolve

Hydraflow Hydrographs by Intelisolve

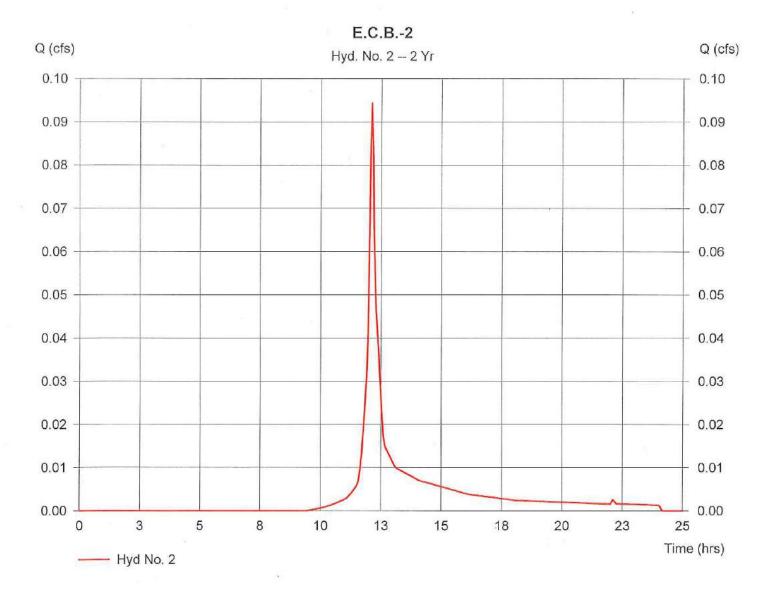

Hyd. No. 1

E.C.B.-1

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.35 ac
Basin Slope	= 5.2 %
Tc method	= LAG
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Hydrograph Volume = 789 cuft

Hydraflow Hydrographs by Intelisolve

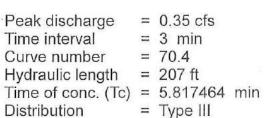

Hyd. No. 2

E.C.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.07 ac
Basin Slope	= 1.9 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Peak discharge= 0.09 cfsTime interval= 3 minCurve number= 79.8Hydraulic length= 68 ftTime of conc. (Tc)= 5 minDistribution= Type IIIShape factor= 484

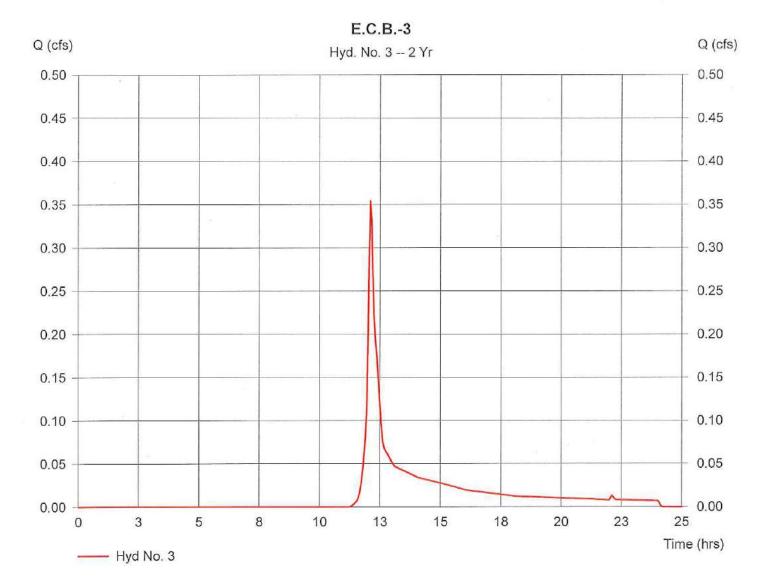
Hydrograph Volume = 317 cuft



Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

E.C.B.-3


Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.45 ac
Basin Slope	= 4.2 %
Tc method	= LAG
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Shape factor

Hydrograph Volume = 1,304 cuft

= 484

Hydraflow Hydrographs by Intelisolve

Hyd. No. 5

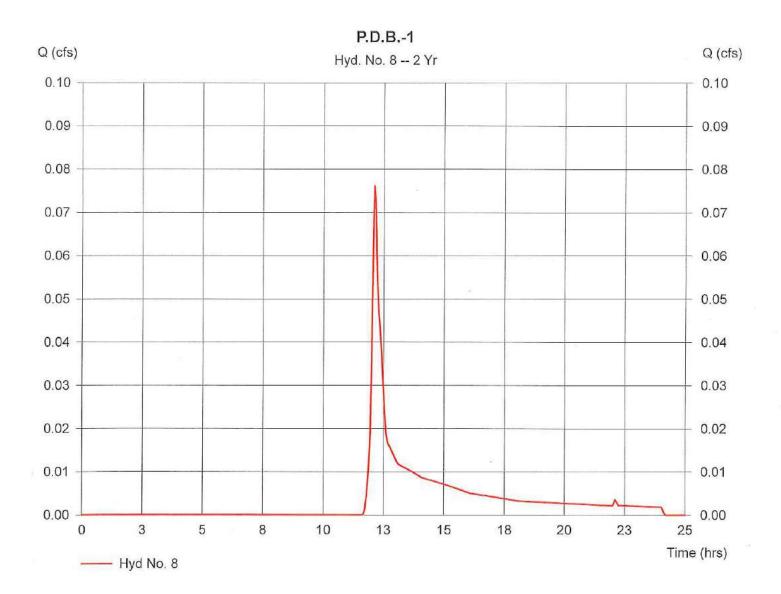
Flow to Wetlands

Hydrograph type	=	Combine
Storm frequency	. =	2 yrs
Inflow hyds.	Ξ	1, 3

Peak discharge = 0.55 cfs Time interval = 3 min

Hydrograph Volume = 2,093 cuft

- Hyd No. 6


- Hyd No. 1

Hydraflow Hydrographs by Intelisolve Monday, May 7 2018, 8:27 PM Hyd. No. 6 Total Existing Hydrograph type Peak discharge = Combine $= 0.64 \, \text{cfs}$ Storm frequency = 2 yrsTime interval = 3 min Inflow hyds. = 1, 2, 3 Hydrograph Volume = 2,410 cuft **Total Existing** Q (cfs) Q (cfs) Hyd. No. 6 -- 2 Yr 1.00 1.00 0.90 0.90 0.80 0.80 0.70 0.70 0.60 0.60 0.50 0.50 0.40 0.40 0.30 0.30 0.20 0.20 0.10 0.10 0.00 0.00 5 8 3 10 13 15 18 20 0 23 25 Time (hrs)

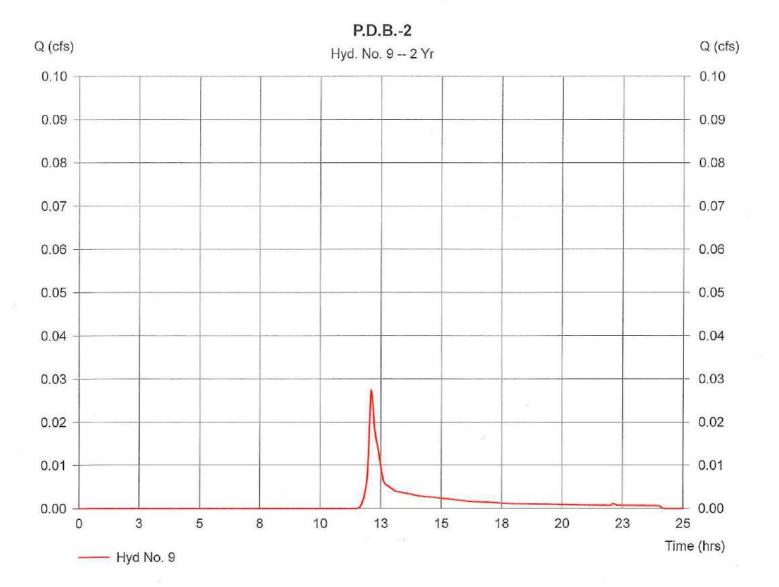
- Hyd No. 2

- Hyd No. 3

Hydraflow Hydrographs by Intelisolve		Monday, May 7 2018, 8:27 PM		
Hyd. No. 8				
P.D.B1				
Hydrograph type Storm frequency Drainage area Basin Slope Tc method Total precip. Storm duration	 SCS Runoff 2 yrs 0.14 ac 4.4 % LAG 3.20 in 24 hrs 	Peak discharge Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 0.08 cfs = 3 min = 66.4 = 222 ft = 6.686719 min = Type III = 484	

Hydraflow Hydrographs by Intelisolve

Hyd. No. 9


P.D.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.04 ac
Basin Slope	= 1.0 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

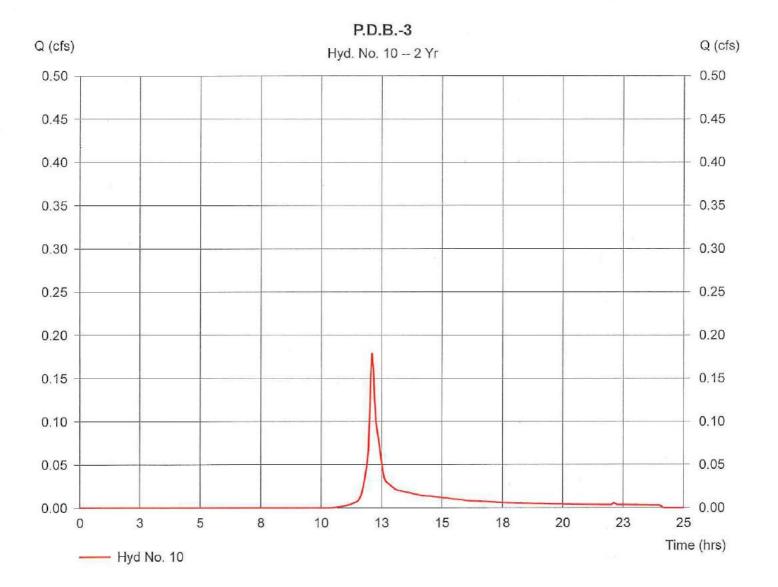
Peak discharge	=	0.03 cfs
Time interval	=	3 min
Curve number	=	67.9
Hydraulic length	Ξ	49 ft
Time of conc. (Tc)	=	5 min
Distribution	=	Type III
Shape factor	Ξ	484

Hydrograph Volume = 107 cuft

Monday, May 7 2018, 8:27 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 10


P.D.B.-3

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.16 ac
Basin Slope	= 3.8 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Monday, May 7 2018, 8:27 PM

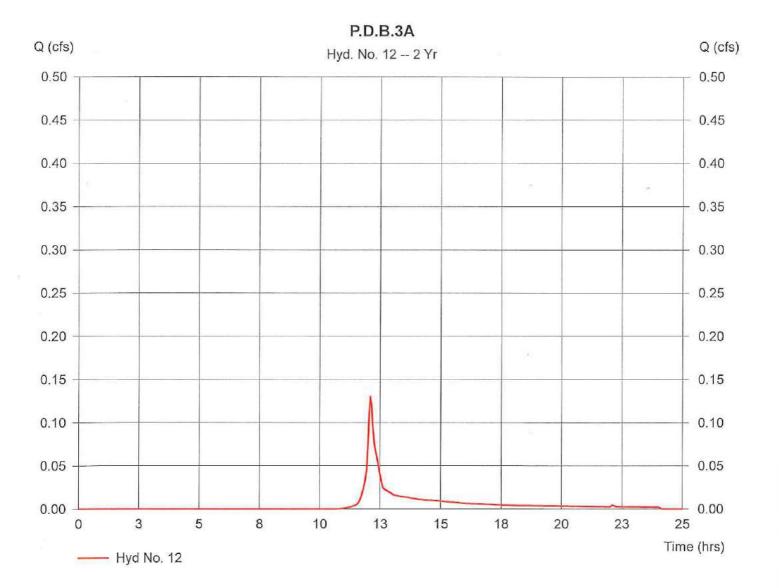
Peak discharge	Π	0.18 cfs
Time interval	Ξ	3 min
Curve number	Ξ	75.3
Hydraulic length	Ξ	196 ft
Time of conc. (Tc)	=	5 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 616 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 12

P.D.B.3A


Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.13 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Peak discharge= 0.13 cfsTime interval= 3 minCurve number= 73.5Hydraulic length= 100 ftTime of conc. (Tc)= 5 min

Distribution = Type III Shape factor = 484

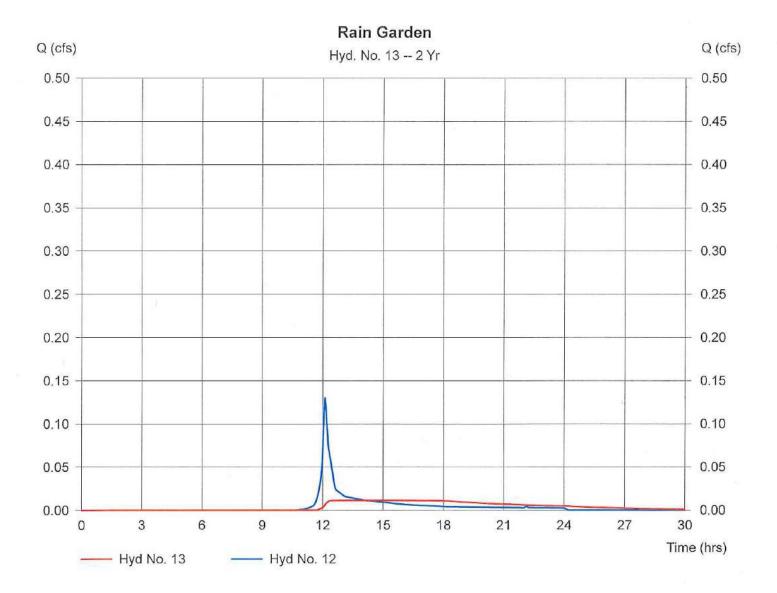
Hydrograph Volume = 457 cuft

Monday, May 7 2018, 8:27 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 13

Rain Garden


Hydrograph type	= F	Reservoir	F
Storm frequency	= 2	2 yrs	1
Inflow hyd. No.	= 1	2	ľ
Reservoir name	= F	Rain Garden	Γ

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	= 0.01 cfs
Time interval	= 3 min
Max. Elevation	= 164.12 ft
Max. Storage	= 209 cuft

Hydrograph Volume = 443 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Rain Garden

Pond Data

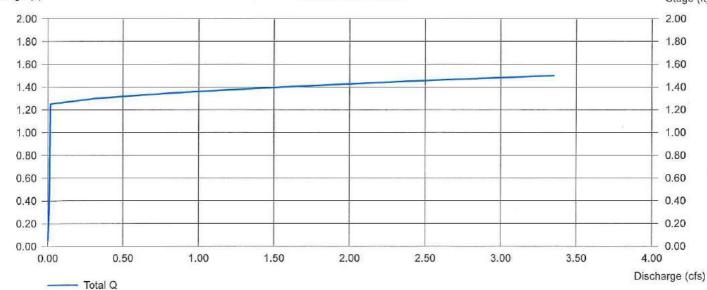
Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	163.50	140	0	0	
0.00 0.50	164.00	448	147	147	
1.00	164.50	591	260	407	
1.50	165.00	748	335	742	

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 164.75	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect	5.75		
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
N-Value	= .000	.000	.000	.000					
Orif. Coeff.	= 0.00	0.00	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (Cor	ntour) Tai	water Elev	h = 0.00 ft

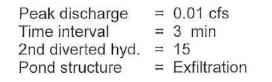

Weir Structures

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

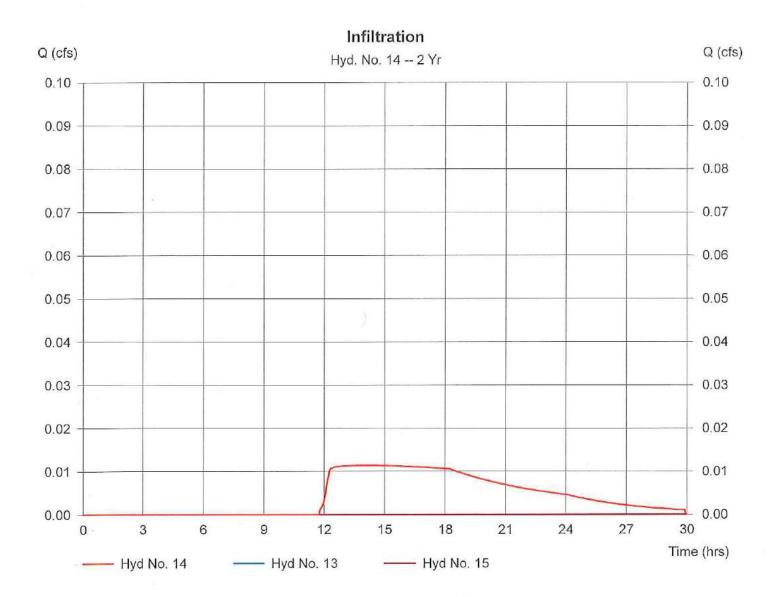
Stage (ft)

Stage / Discharge

Stage (ft)



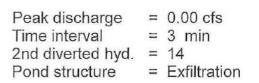
Hydraflow Hydrographs by Intelisolve


Hyd. No. 14

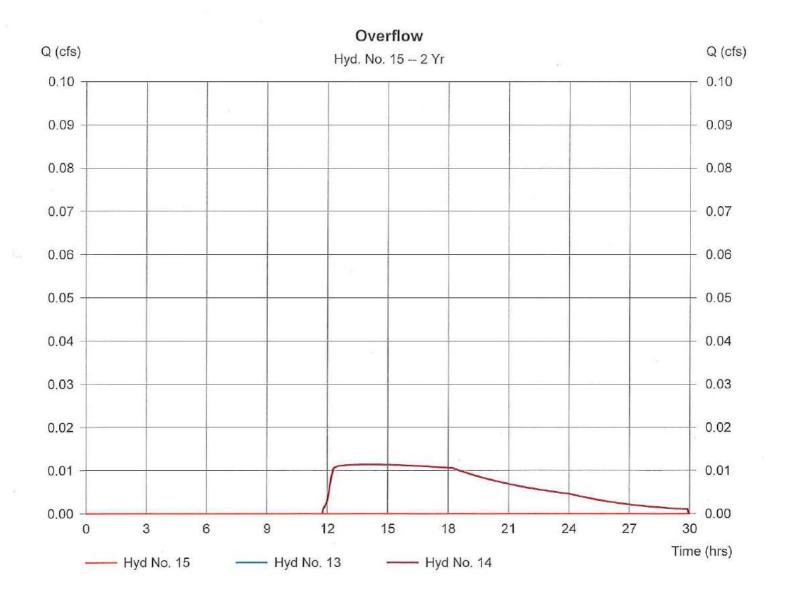
Infiltration

Hydrograph type	Ξ	Diversion1
Storm frequency	\equiv	2 yrs
Inflow hydrograph	=	13
Diversion method	Ξ	Pond - Rain Garden

Hydrograph Volume = 443 cuft



Hydraflow Hydrographs by Intelisolve


Hyd. No. 15

Overflow

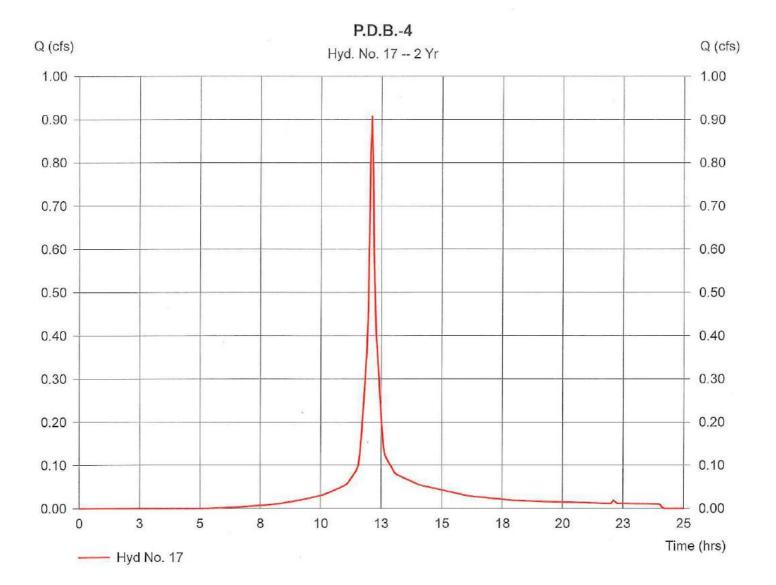
Hydrograph type	Ξ	Diversion2
Storm frequency	\blacksquare	2 yrs
Inflow hydrograph	=	13
Diversion method	Ξ	Pond - Rain Garden

Hydrograph Volume = 0 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 17

P.D.B.-4

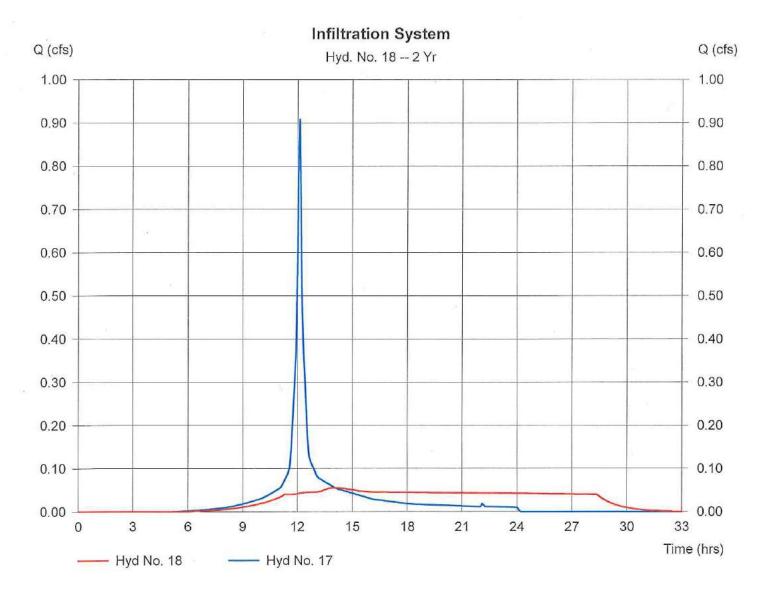

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.39 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Monday, May 7 2018, 8:27 PM

Peak discharge	=	0.91 cfs
Time interval	=	3 min
Curve number	=	91.7
Hydraulic length	=	100 ft
Time of conc. (Tc)	=	5 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 3,098 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 18

Infiltration System

in
81 ft
7 cuft

Storage Indication method used.

Hydrograph Volume = 3,094 cuft

15

Monday, May 7 2018, 8:27 PM

.

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Infiltration System

Pond Data

Bottom LxW = 52.0×32.0 ft Side slope = 0.0:1 Bottom elev. = 162.25 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)*	Total storage (cuft)*	(*64.00% voids applied)
0.00	162.25	1,664	0	0	
0.15	162.40	1,664	160	160	
0.30	162.55	1,664	160	319	
0.45	162.70	1,664	160	479	
0.60	162.85	1,664	160	639	
0.75	163.00	1,664	160	799	
0.90	163.15	1,664	160	958	
1.05	163.30	1,664	160	1,118	
1.20	163.45	1,664	160	1,278	
1.35	163.60	1,664	160	1,438	
1.50	163.75	1,664	160	1,597	
1.65	163.90	1,664	160	1,757	
1.80	164.05	1,664	160	1,917	
1.95	164.20	1,664	160	2,077	
2.10	164.35	1,664	160	2,236	
2.25	164.50	1,664	160	2,396	
2.40	164.65	1,664	160	2,556	
2.55	164.80	1,664	160	2,716	
2.70	164.95	1,664	160	2,875	
2.85	165.10	1,664	160	3,035	
3.00	165.25	1,664	160	3,195	

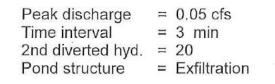
Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 6.00	6.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 6.00	6.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 163.75	164.50	0.00	0.00	Weir Type	=			
Length (ft)	= 50.00	50.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	2.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (We	et area) Ta	ailwater Ele	ev. = 0.00 ft

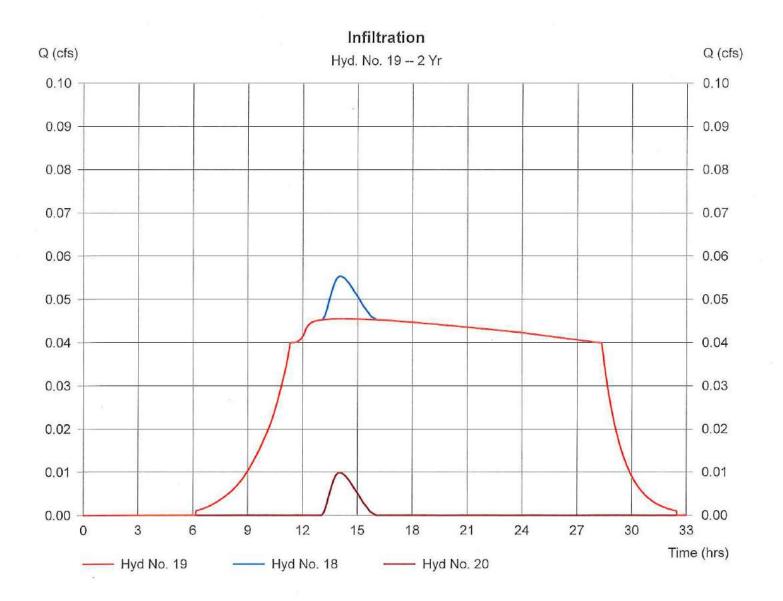
Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Monday, May 7 2018, 8:27 PM

Depth = 3.00 ft


Weir Structures

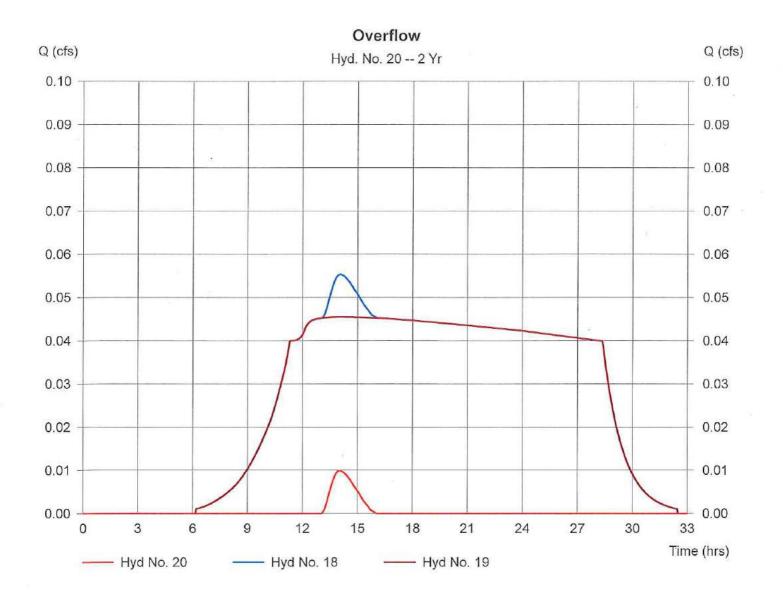
Hydraflow Hydrographs by Intelisolve


Hyd. No. 19

Infiltration

Hydrograph type		Diversion1
Storm frequency	=	2 yrs
Inflow hydrograph	Ξ	18
Diversion method	Ξ	Pond - Infiltration System

Hydrograph Volume = 3,039 cuft


Hydraflow Hydrographs by Intelisolve

Hyd. No. 20

Overflow

Hydrograph type	=	Diversion2
Storm frequency	=	2 yrs
Inflow hydrograph	Ξ	18
Diversion method	=	Pond - Infiltration System

Hydrograph Volume = 55 cuft

Peak discharge = 0.01 cfs Time interval = 3 min 2nd diverted hyd. = 19 Pond structure = Exfiltration

0.15

0.10

0.05

0.00

0

3

- Hyd No. 22

5

8

-

10

— Hyd No. 10

13

-

15

— Hyd No. 15

18

20

23

– Hyd No. 20

lydraflow Hydrographs	by Intelisolve			īv	londay, May 7 2018, 8:27 PM
Hyd. No. 22					
Design Point C					
Hydrograph type = Combine Storm frequency = 2 yrs Inflow hyds. = 10, 15, 20			Peak discharge Time interval	= 0.18 cfs = 3 min	
				н	ydrograph Volume = 672 cuft
		г	esian Point C		
(cfs)			esign Point C yd. No. 22 2 Yr		Q (cf
			-		Q (cf
.50	3		-		
).50			yd. No. 22 2 Yr		0.50
).45			-		0.50
0.50			yd. No. 22 2 Yr		0.50
0.45			yd. No. 22 2 Yr		0.50
(cfs) 0.50 0.45 0.40 0.35 0.30			yd. No. 22 2 Yr		0.50

0.15

- 0.10

0.05

- 0.00

25 Time (hrs)

- Hyd No. 23

- Hyd No. 8

- Hyd No. 20

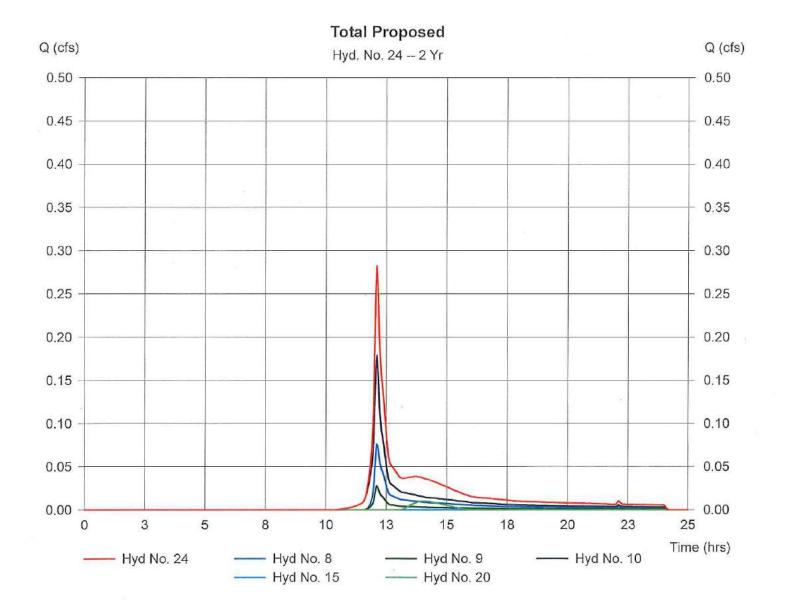
Hydraflow Hydrographs by Intelisolve Monday, May 7 2018, 8:27 PM Hyd. No. 23 Post Dev. Flow to Wetlands Peak discharge Hydrograph type = Combine = 0.25 cfs Storm frequency Time interval $= 3 \min$ = 2 yrsInflow hyds. = 8, 10, 15, 20 Hydrograph Volume = 982 cuft Post Dev. Flow to Wetlands Q (cfs) Q (cfs) Hyd. No. 23 - 2 Yr 0.50 0.50 0.45 0.45 0.40 0.40 0.35 0.35 0.30 0.30 0.25 0.25 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0 3 5 8 10 13 15 18 20 23 25

------ Hyd No. 10

Time (hrs)

- Hyd No. 15

Hydraflow Hydrographs by Intelisolve


Hyd. No. 24

Total Proposed

Hydrograph type	= Combine	
Storm frequency	= 2 yrs	
Inflow hyds.	= 8, 9, 10, 15, 20)

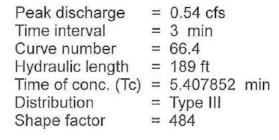
Peak discharge = 0.28 cfs Time interval = 3 min

Hydrograph Volume = 1,088 cuft

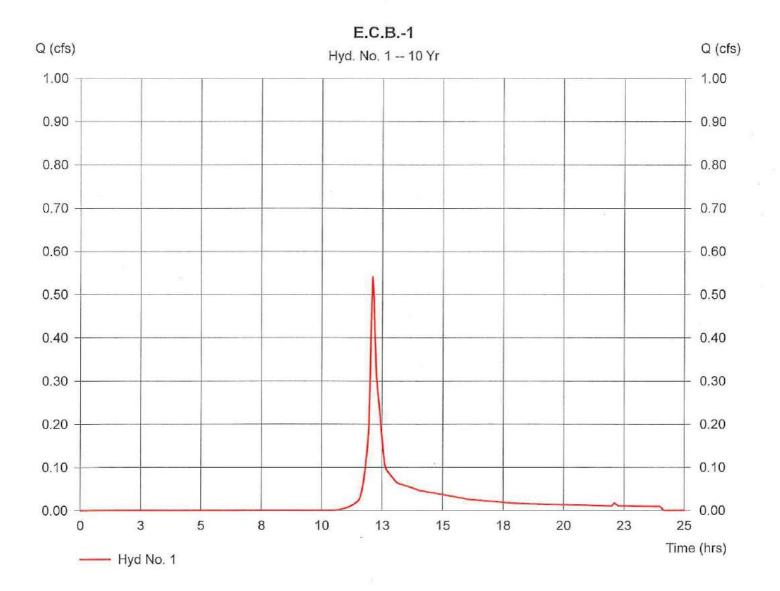
10-Year Storm, Pre and Post-Development

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	0.54	3	726	1 ,88 1				E.C.B1
2	SCS Runoff	0.18	3	726	602				E.C.B2
3	SCS Runoff	0.85	3	726	2,875				E.C.B.~3
5	Combine	1.39	3	726	4,756	1, 3,			Flow to Wetlands
6	Combine	1.57	3	726	5,358	1, 2, 3,			Total Existing
8	SCS Runoff	0.21	3	726	740				P.D.B1
9	SCS Runoff	0.07	3	726	246		777607		P.D.B2
10	SCS Runoff	0.38	3	726	1,252				P.D.B3
12	SCS Runoff	0.29	3	7 2 6	955				P.D.B.3A
13	Reservoir	0.02	3	915	941	12	164.70	542	Rain Garden
14	Diversion1	0.02	3	915	941	13		H outu	Infiltration
15	Diversion2	0.00	3	915	0	13			Overflow
17	SCS Runoff	1.45	3	726	5,061				P.D.B4
18	Reservoir	0.49	3	744	5,057	17	164.21	2,089	Infiltration System
19	Diversion1	0.05	3	744	3,548	18		and a state of the	Infiltration
20	Diversion2	0.44	3	744	1,510	18			Overflow
22	Combine	0.59	3	741	2,761	10, 15, 20,			Design Point C
23	Combine	0.70	3	738	3,501	8, 10, 15, 2	0,		Post Dev. Flow to Wetlands
24	Combine	0.74	3	738	3,747	8, 9, 10, 15	, 20,		Total Proposed
								-	
24 S	chool Stree	et, Way	land_R	1.gpw	Return	Period: 1() Year	Friday, Ma	ay 4 2018, 2:09 PM


Hydraflow Hydrographs by Intelisolve

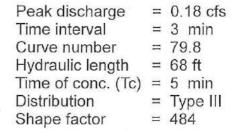
Hydraflow Hydrographs by Intelisolve


Hyd. No. 1

E.C.B.-1

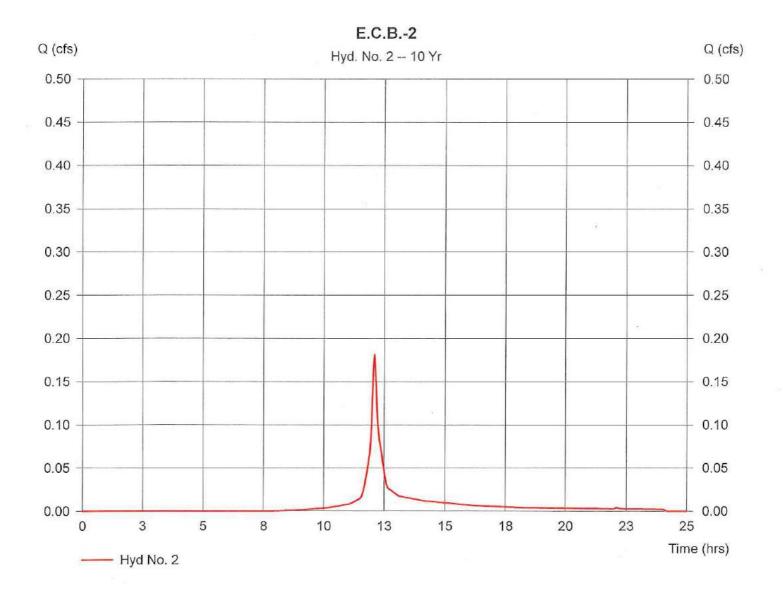
10 100
10 yrs
0.35 ac
5.2 %
LAG
4.73 in
24 hrs

Hydrograph Volume = 1,881 cuft



Hydraflow Hydrographs by Intelisolve

Hyd. No. 2


E.C.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.07 ac
Basin Slope	= 1.9 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs

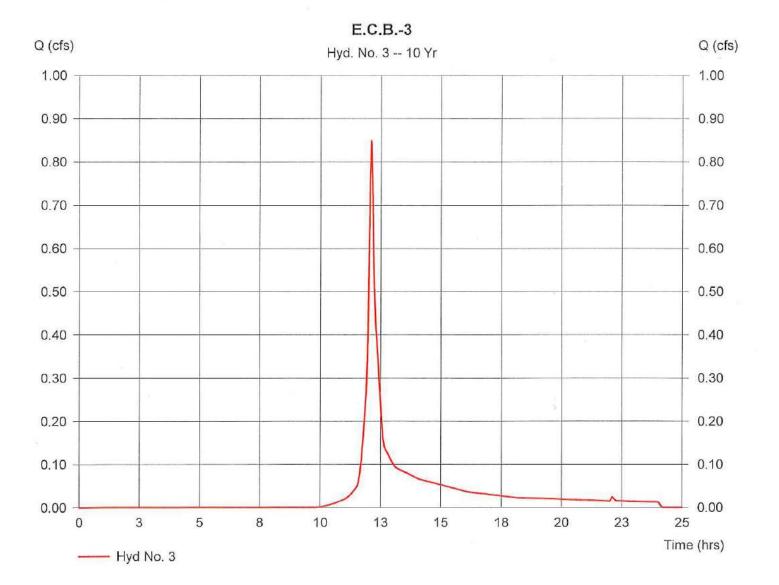
Hydrograph Volume = 602 cuft

Monday, May 7 2018, 8:27 PM



Hydraflow Hydrographs by Intelisolve

Hyd. No. 3


E.C.B.-3

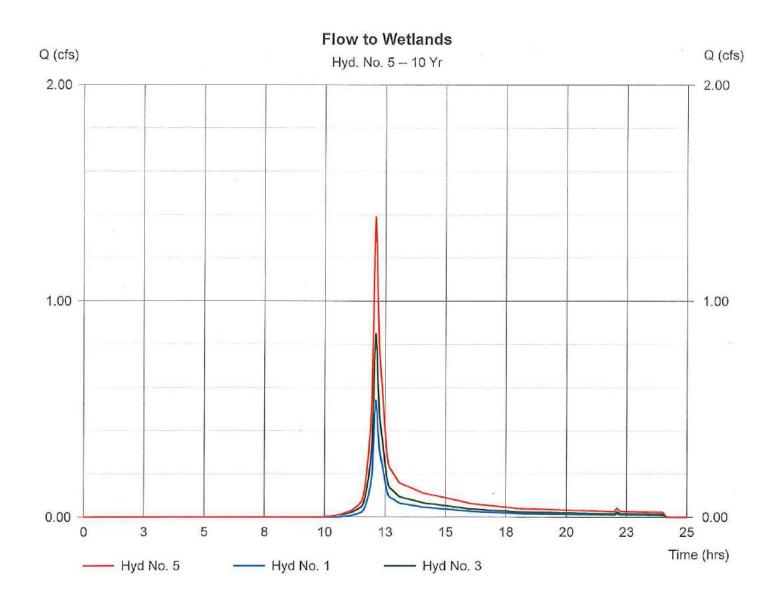
Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.45 ac
Basin Slope	= 4.2 %
Tc method	= LAG
Total precip.	= 4.73 in
Storm duration	= 24 hrs

Time of conc. (Tc)	= 5.817464 min
Distribution	= Type III
Shape factor	= 484

Hydrograph Volume = 2,875 cuft

24

Hydraflow Hydrographs by Intelisolve


Hyd. No. 5

Flow to Wetlands

Hydrograph type	=	Combine
Storm frequency	Ξ	10 yrs
Inflow hyds.	П	1, 3

Peak discharge = 1.39 cfs Time interval = 3 min

Hydrograph Volume = 4,756 cuft

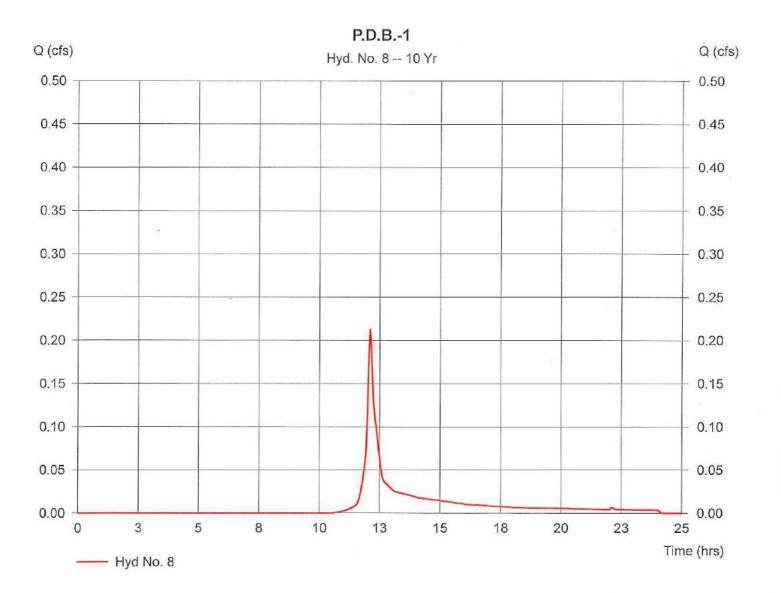
Hydraflow Hydrographs by Intelisolve Monday, May 7 2018, 8:27 PM Hyd. No. 6 Total Existing Hydrograph type = Combine Peak discharge = 1.57 cfs Storm frequency = 10 yrs Time interval $= 3 \min$ Inflow hyds. = 1, 2, 3 Hydrograph Volume = 5,358 cuft **Total Existing** Q (cfs) Q (cfs) Hyd. No. 6 -- 10 Yr 2.00 2.00 1.00 1.00 0.00 0.00 0 3 5 8 10 13 15 18 20 23 25 Time (hrs) - Hyd No. 6

- Hyd No. 2

- Hyd No. 3

- Hyd No. 1

Hydraflow Hydrographs by Intelisolve


Hyd. No. 8

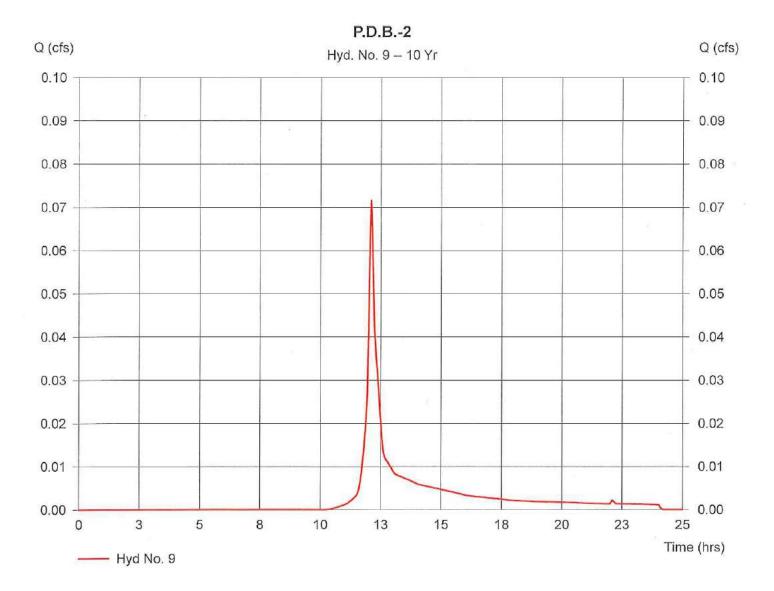
P.D.B.-1

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.14 ac
Basin Slope	= 4.4 %
Tc method	= LAG
Total precip.	= 4.73 in
Storm duration	= 24 hrs

Peak discharge=0.21 cfsTime interval=3 minCurve number=66.4Hydraulic length=222 ftTime of conc. (Tc)=6.686719 minDistribution=Type IIIShape factor=484

Hydrograph Volume = 740 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 9

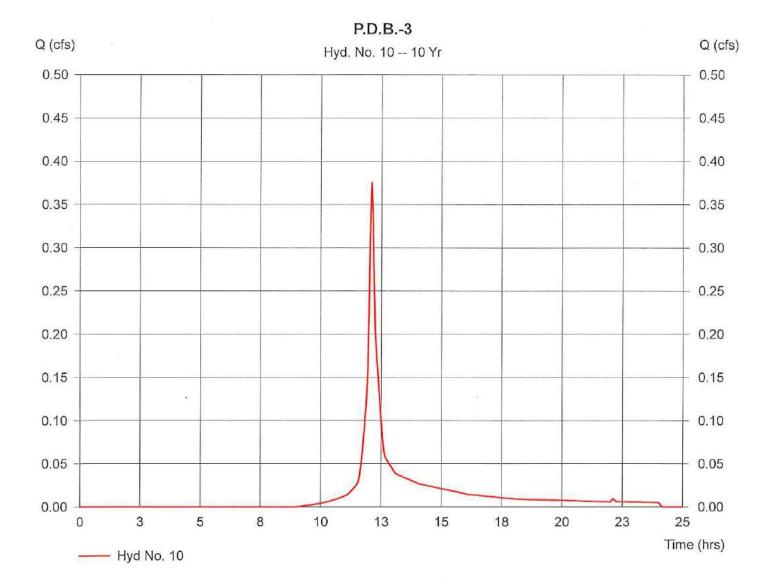
P.D.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.04 ac
Basin Slope	= 1.0 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs
	x

Peak discharge= 0.07 cfsTime interval= 3 minCurve number= 67.9Hydraulic length= 49 ftTime of conc. (Tc)= 5 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 246 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 10

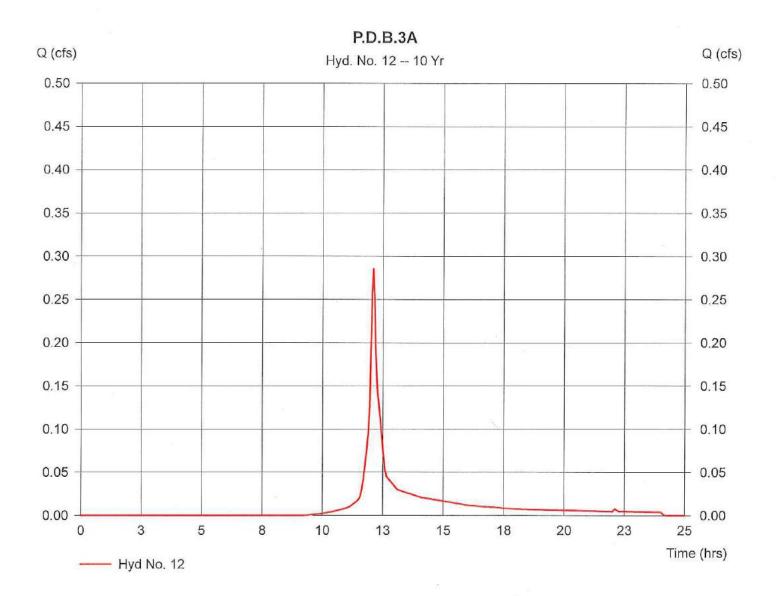
P.D.B.-3

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.16 ac
Basin Slope	= 3.8 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs

=	0.38 cfs
=	3 min
=	75.3
Π	196 ft
=	5 min
	Type III
	484

Hydrograph Volume = 1,252 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 12

P.D.B.3A

Hydrograph type Storm frequency Drainage area	= SCS Runoff = 10 yrs = 0.13 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs

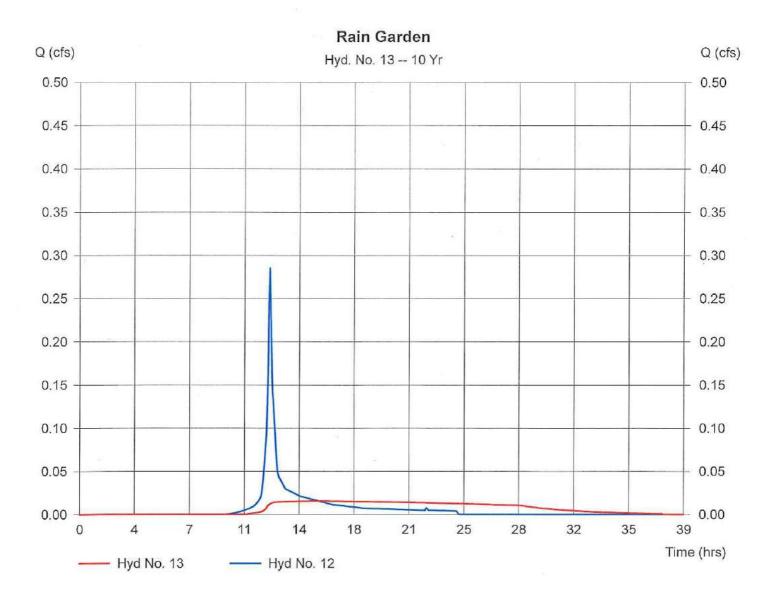
Peak discharge= 0.29 cfsTime interval= 3 minCurve number= 73.5Hydraulic length= 100 ftTime of conc. (Tc)= 5 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 955 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 13

Rain Garden


= Reservoir	
= 10 yrs	
= 12	
= Rain Garden	
	= 10 yrs = 12

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	= 0.02 cfs	
Time interval	= 3 min	
Max. Elevation	= 164.70 ft	ŝ
Max. Storage	= 542 cuft	

Hydrograph Volume = 941 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Rain Garden

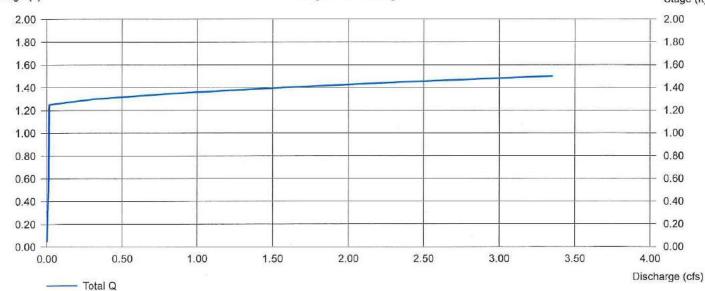
Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
163.50	140	0	0	
164.00	448	147	147	
164.50	591	260	407	
165.00	748	335	742	
847	748	water water water water		
	163.50 164.00 164.50	163.50 140 164.00 448 164.50 591 165.00 748	163.50 140 0 164.00 448 147 164.50 591 260 165.00 748 335	163.50 140 0 0 164.00 448 147 147 164.50 591 260 407 165.00 748 335 742

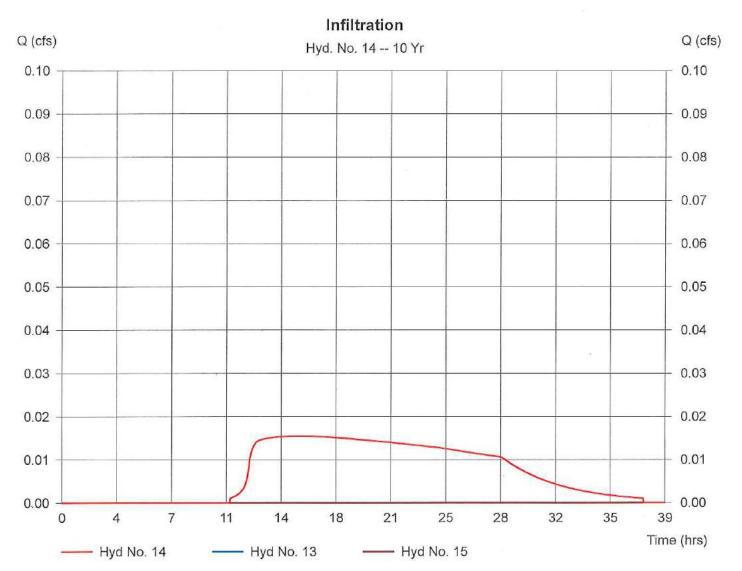
Culvert / Orifice Structures


	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 164.75	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect	(a) (a)	-	-
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
N-Value	= .000	.000	.000	.000					
Orif. Coeff.	= 0.00	0.00	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (Cor	ntour) Tai	water Elev	<i>i.</i> = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Stage / Discharge

Hydraflow Hydrographs by Intelisolve


Hyd. No. 14

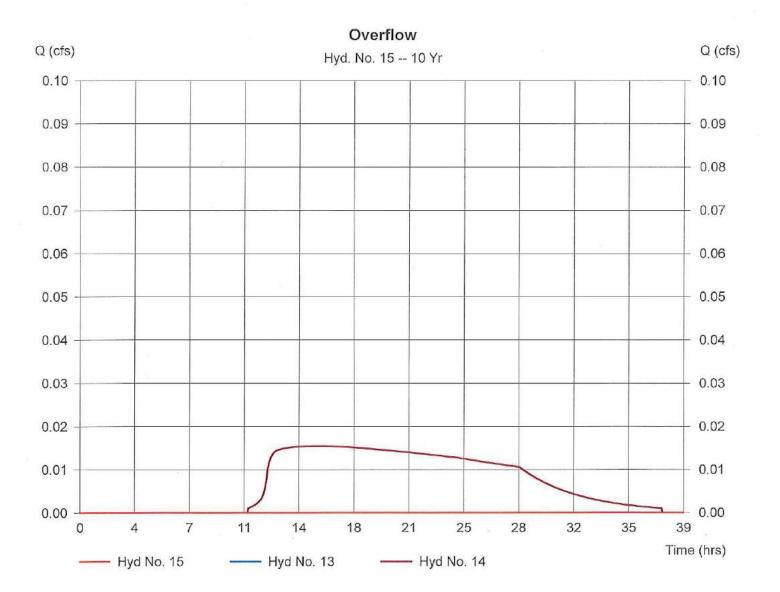
Infiltration

Hydrograph type	=	Diversion1
Storm frequency	=	10 yrs
Inflow hydrograph		13
Diversion method	=	Pond - Rain Garden

Peak discharge	= 0.02 cfs	
Time interval	= 3 min	
2nd diverted hyd.	= 15	
Pond structure	= Exfiltration	

Hydrograph Volume = 941 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 15

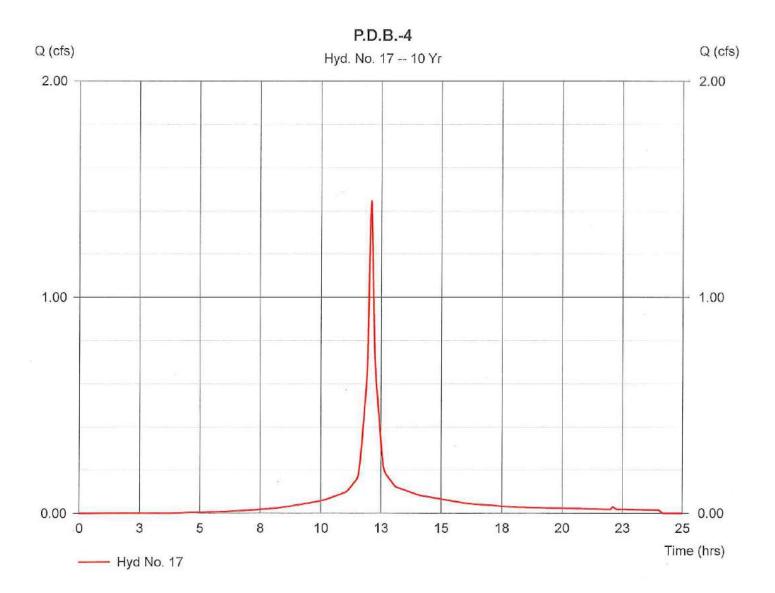
Overflow

Hydrograph type	=	Diversion2
Storm frequency	=	10 yrs
Inflow hydrograph	Π	13
Diversion method	Ξ	Pond - Rain Garden

Peak discharge= 0.00 cfsTime interval= 3 min2nd diverted hyd.= 14Pond structure= Exfiltration

Hydrograph Volume = 0 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 17

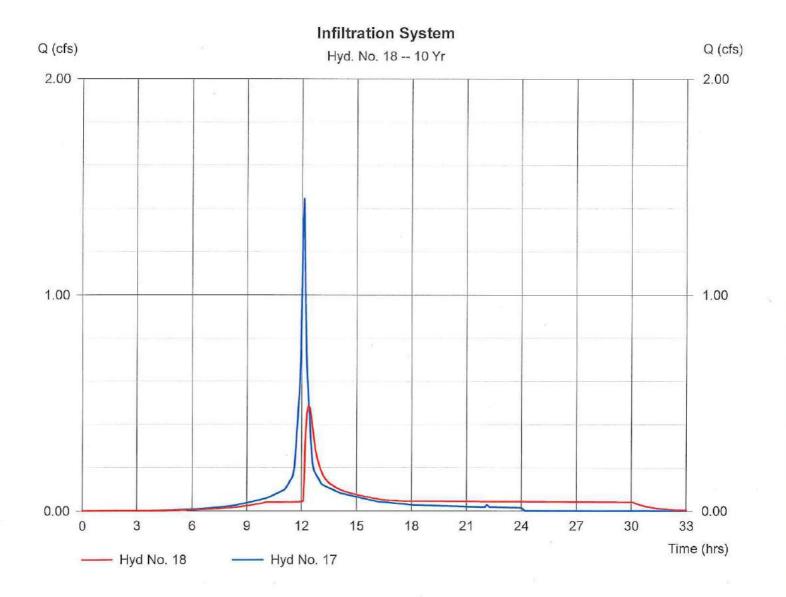
P.D.B.-4

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.39 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs

Peak discharge= 1.45 cfsTime interval= 3 minCurve number= 91.7Hydraulic length= 100 ftTime of conc. (Tc)= 5 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 5,061 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 18

Infiltration System

Hydrograph type	= Reservoir	Peak discharge	= 0.49 cfs
Storm frequency	= 10 yrs	Time interval	= 3 min
Inflow hyd. No.	= 17	Max. Elevation	= 164.21 ft
Reservoir name	= Infiltration System	Max. Storage	= 2,089 cuft

Storage Indication method used.

Hydrograph Volume = 5,057 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

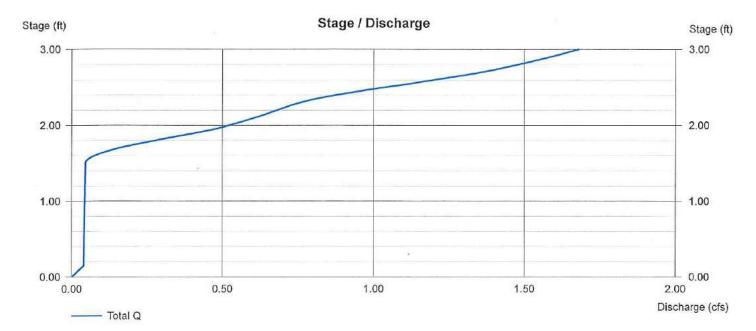
Pond No. 1 - Infiltration System

Pond Data

Bottom LxW = 52.0×32.0 ft Side slope = 0.0:1

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)*	Total storage (cuft)*	(*64.00% voids applied)
0.00	162.25	1,664	. 0	0	
0.15	162.40	1,664	160	160	
0.30	162.55	1,664	160	319	
0.45	162.70	1,664	160	479	
0.60	162.85	1,664	160	639	
0.75	163.00	1,664	160	799	
0.90	163.15	1,664	160	958	
1.05	163.30	1,664	160	1,118	
1.20	163.45	1,664	160	1,278	
1.35	163.60	1,664	160	1,438	
1.50	163.75	1,664	160	1,597	
1.65	163.90	1,664	160	1,757	
1.80	164.05	1,664	160	1,917	
1.95	164.20	1,664	160	2,077	
2.10	164.35	1,664	160	2,236	
2.25	164.50	1,664	160	2,396	
2.40	164.65	1,664	160	2,556	
2.55	164.80	1,664	160	2,716	
2.70	164.95	1,664	160	2,875	
2.85	165.10	1,664	160	3,035	
3.00	165.25	1,664	160	3,195	


Weir Structures

Bottom elev. = 162.25 ft

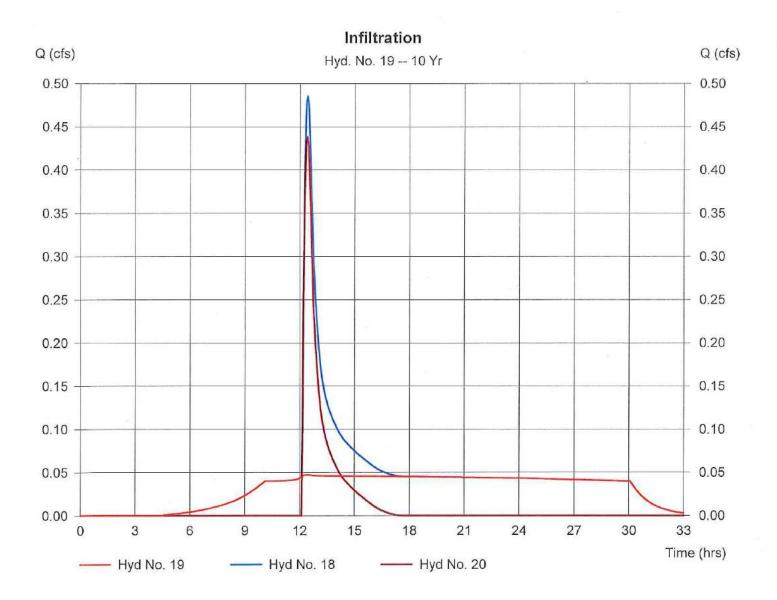
Culvert / Orifice Structures

	[A] [В]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 6.00	6.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 6.00	6.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 163.	75 164.50	0.00	0.00	Weir Type	=			
Length (ft)	= 50.0	0 50.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	2.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (We	et area) Ta	ilwater Ele	ev. = 0.0

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Monday, May 7 2018, 8:27 PM

Depth = 3.00 ft


Hydraflow Hydrographs by Intelisolve

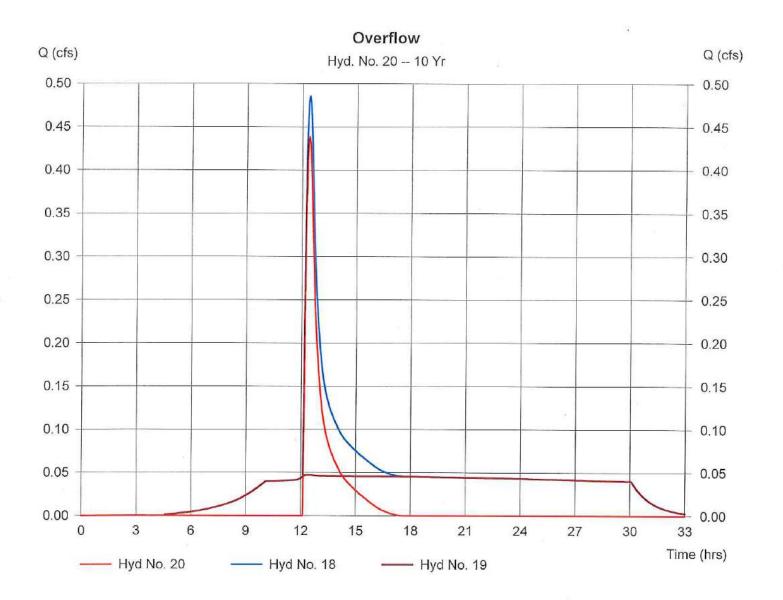
Hyd. No. 19

Infiltration

Hydrograph type	= Diversion1	Peak discharge	= 0.05 cfs
Storm frequency	= 10 yrs	Time interval	= 3 min
Inflow hydrograph	= 18	2nd diverted hyd.	= 20
Diversion method	= Pond - Infiltration System	Pond structure	= Exfiltration

Hydrograph Volume = 3,548 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 20

Overflow

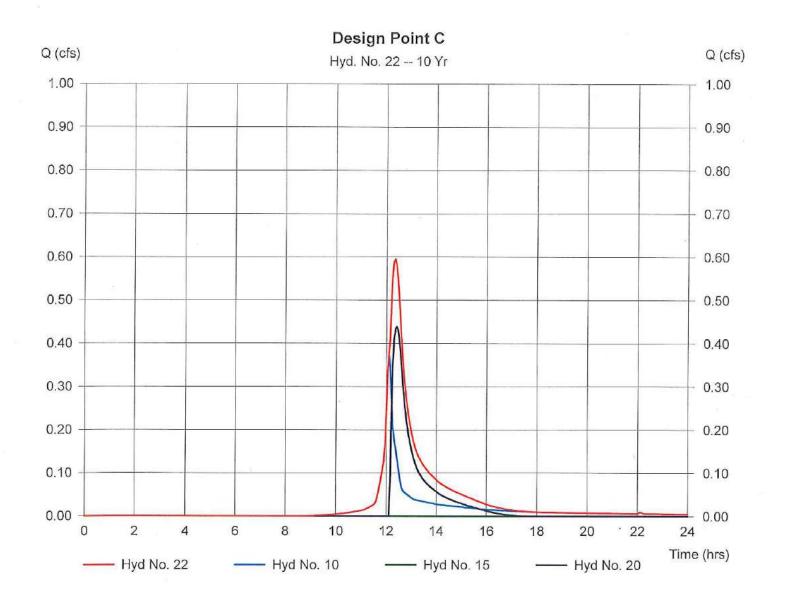
Hydrograph type	Ξ	Diversion2
Storm frequency	=	10 yrs
Inflow hydrograph	=	18
Diversion method	Ξ	Pond - Infiltration System

Peak discharge= 0.44 cfsTime interval= 3 min2nd diverted hyd.= 19Pond structure= Exfiltration

Hydrograph Volume = 1,510 cuft

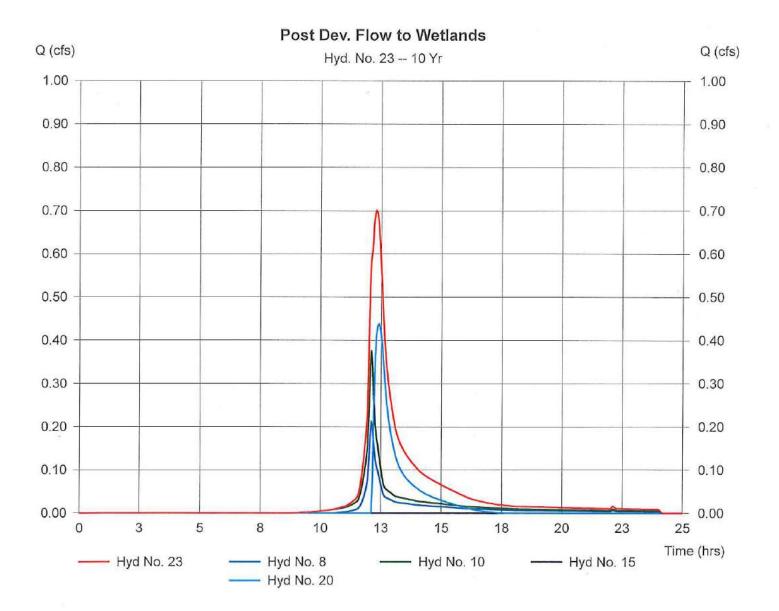
Hydraflow Hydrographs by Intelisolve

Hyd. No. 22


Design Point C

Hydrograph type	=	Combine
Storm frequency	=	10 yrs
Inflow hyds.	Ξ	10, 15, 20

Monday, May 7 2018, 8:27 PM

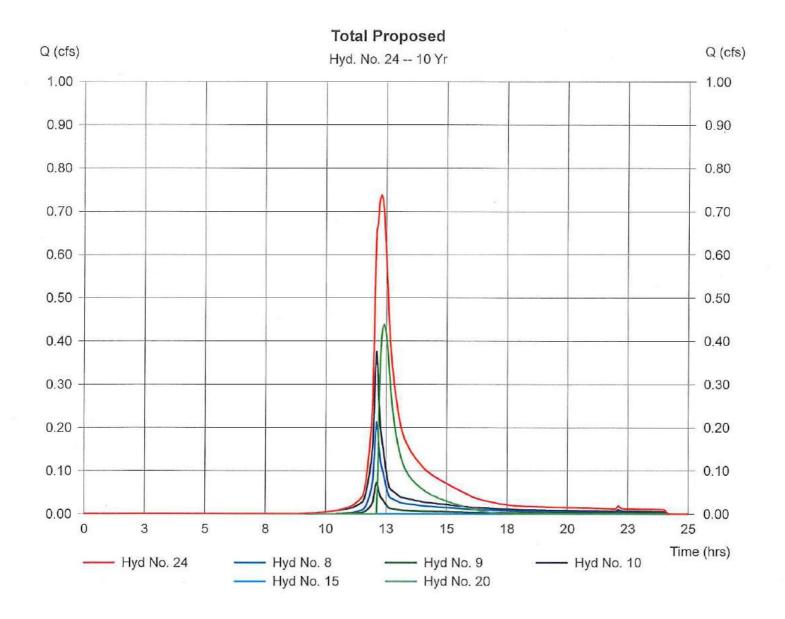

Peak discharge = 0.59 cfs Time interval = 3 min

Hydrograph Volume = 2,761 cuft

40

Hydraflow Hydrographs by	Hydraflow Hydrographs by Intelisolve			onday, May 7 2018, 8:27 PM
Hyd. No. 23				
Post Dev. Flow to	Wetlands			
Hydrograph type Storm frequency Inflow hyds.	= Combine = 10 yrs = 8, 10, 15, 20		Peak discharge Time interval	= 0.70 cfs = 3 min
			Hydr	ograph Volume = 3,501 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 24

Total Proposed

Hydrograph type	= Combine
Storm frequency	= 10 yrs
Inflow hyds.	= 8, 9, 10, 15, 20

Peak discharge = 0.74 cfs Time interval = 3 min

Hydrograph Volume = 3,747 cuft

25-Year Storm, Pre and Post-Development

.

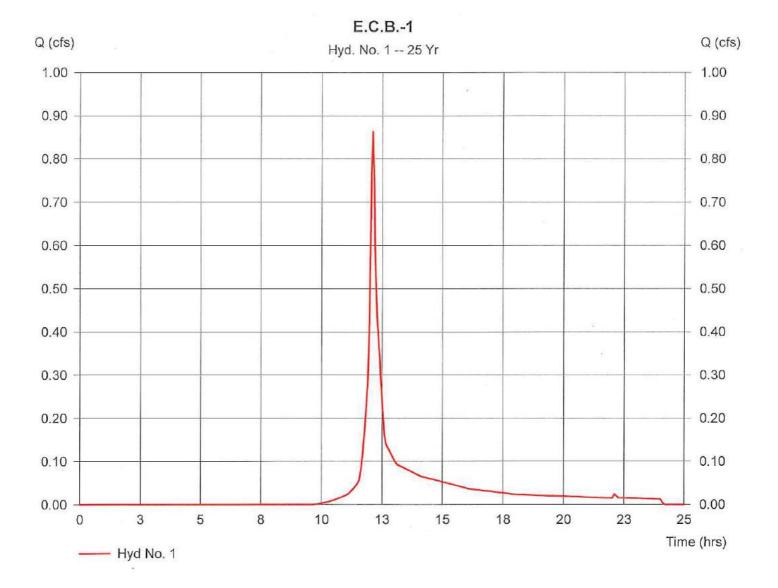
Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time Intervai (min)	Time to peak (min)	Volume (cuft)	Inflow hyđ(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	0.86	3	726	2,913			and the second se	E.C.B1
2	SCS Runoff	0.25	3	726	847				E.C.B2
3	SCS Runoff	1.29	3	726	4,311				E.C.B3
5	Combine	2.16	3	726	7,224	1, 3,			Flow to Wetlands
5	Combine	2,41	3	726	8,071	1, 2, 3,			Total Existing
3	SCS Runoff	0.34	3	726	1,145				P,Ð,B1
,	SCS Runoff	0.11	3	726	377				P.D.82
0	SCS Runoff	0.55	3	726	1,813				P.D.B3
2	SCS Runoff	0.42	3	726	1 ,401				P.D.B.3A
3	Reservoir	0.17	3	741	1, 387	12	164.78	591	Rain Garden
4	Diversion1	0.02	3	741	1,075	13			Infiltration
5	Diversion2	0.15	3	741	312	13			Overflow
7	SCS Runoff	1.87	3	726	6,652				P.D.B4
8	Reservoir	0.81	3	738	6,648	17	164.60	2,505	Infiltration System
9	Diversion1	0.05	3	738	3,857	18	BUBLLY		Infiltration
0	Diversion2	0.77	3	738	2,791	18	ENGLI		Overflow
2	Combine	1.13	3	741	4,916	10, 15, 20,	2 800 V L		Design Point C
3	Combine	1.40	3	729	6,061	8, 10, 15, 2	0,		Post Dev. Flow to Wetlands
4	Combine	1.50	3	729	6,438	8, 9, 10, 15	, 20,		Total Proposed
24 S	chool Stree	et, Way	land_R	1.gpw	Return	Period: 25	5 Үеаг	Friday, Ma	ay 4 2018, 2:09 PM

Hydrafiow Hydrographs by Intelisolve

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1


E.C.B.-1

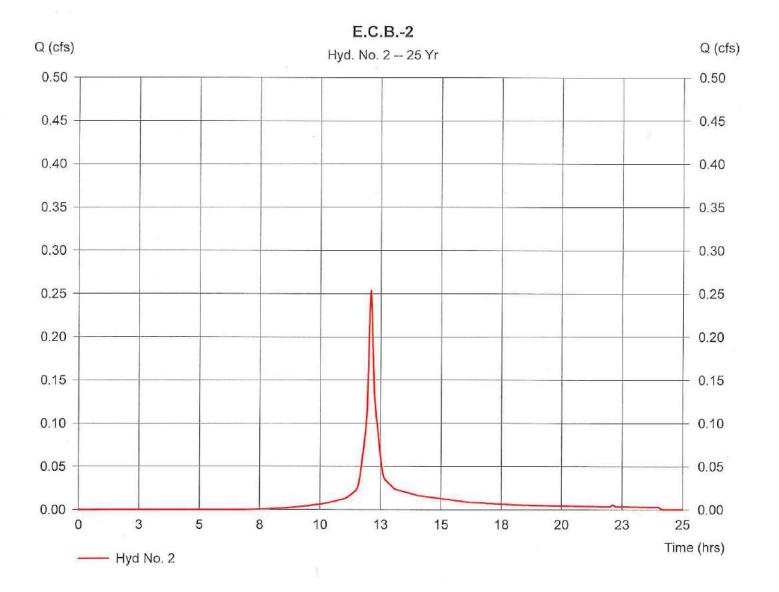
Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.35 ac
Basin Slope	= 5.2 %
Tc method	= LAG
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Monday, May 7 2018, 8:27 PM

Peak discharge	=	0.86 cfs
Time interval	=	3 min
Curve number		66.4
Hydraulic length	=	189 ft
Time of conc. (Tc)	=	5.407852 min
Distribution	Ξ	Type III
Shape factor	Ξ	484

Hydrograph Volume = 2,913 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 2

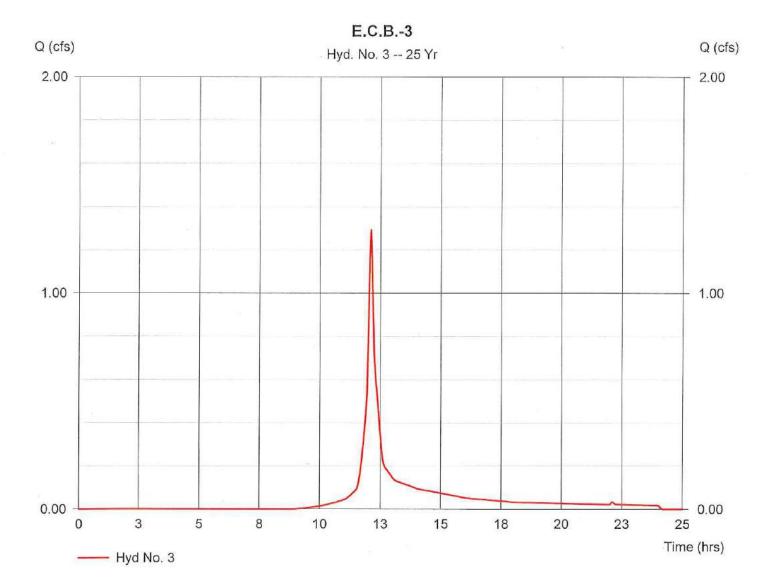
E.C.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.07 ac
Basin Slope	= 1.9 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Peak discharge= 0.25 cfsTime interval= 3 minCurve number= 79.8Hydraulic length= 68 ftTime of conc. (Tc)= 5 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 847 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 3

E.C.B.-3

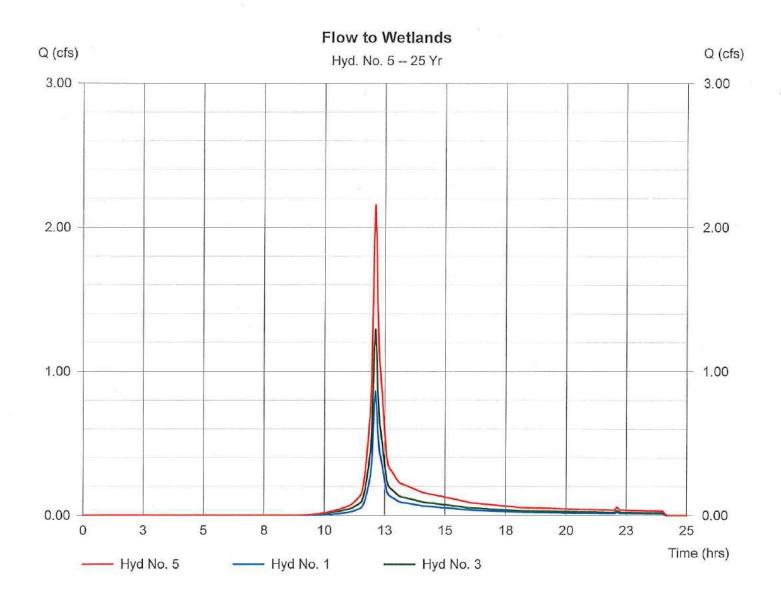
Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.45 ac
Basin Slope	= 4.2 %
Tc method	= LAG
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Peak discharge= 1.29 cfsTime interval= 3 minCurve number= 70.4Hydraulic length= 207 ftTime of conc. (Tc)= 5.817464 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 4,311 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 5


Flow to Wetlands

Hydrograph type	= Combine	
Storm frequency	= 25 yrs	
Inflow hyds.	= 1, 3	

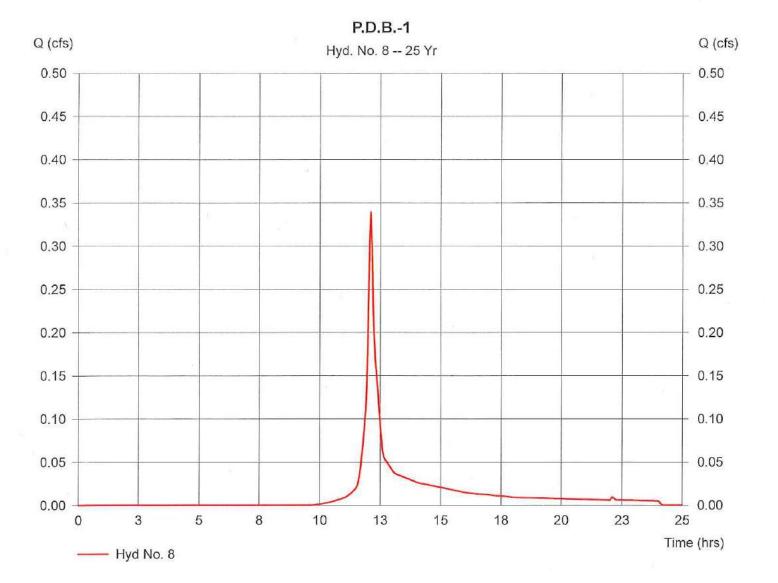
Monday, May 7 2018, 8:27 PM

Peak discharge = 2.16 cfs Time interval = 3 min

Hydrograph Volume = 7,224 cuft

Hydraflow Hydrographs by Intelisolve Monday, May 7 2018, 8:27 PM Hyd. No. 6 Total Existing Hydrograph type = Combine Peak discharge = 2.41 cfs Storm frequency = 25 yrs Time interval $= 3 \min$ Inflow hyds. = 1, 2, 3 Hydrograph Volume = 8,071 cuft **Total Existing** Q (cfs) Q (cfs) Hyd. No. 6 -- 25 Yr 3.00 3.00 2.00 2.00 1.00 - 1.00 0.00 0.00 3 5 8 10 13 15 18 20 23 25 0 Time (hrs) - Hyd No. 6 - Hyd No. 1 ------ Hyd No. 2 - Hyd No. 3

Hydraflow Hydrographs by Intelisolve


Hyd. No. 8

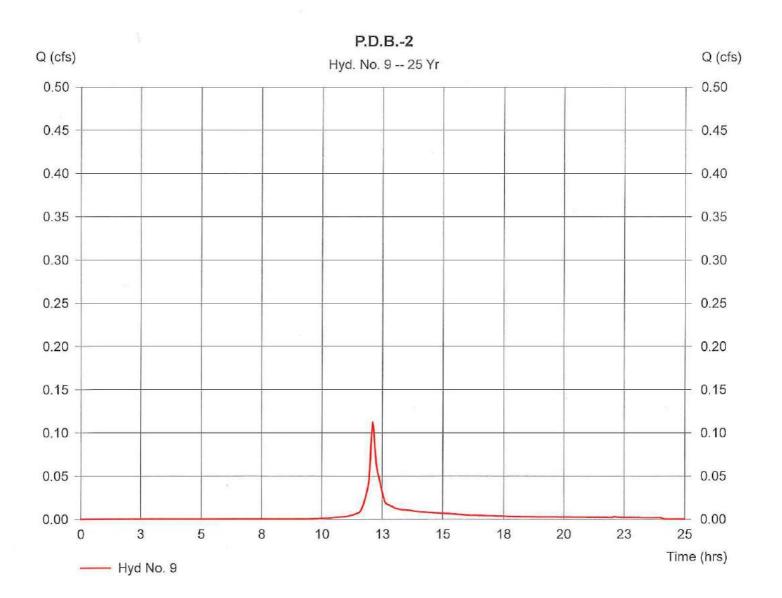
P.D.B.-1

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.14 ac
Basin Slope	= 4.4 %
Tc method	= LAG
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Peak discharge=0.34 cfsTime interval=3 minCurve number=66.4Hydraulic length=222 ftTime of conc. (Tc)=6.686719 minDistribution=Type IIIShape factor=484

Hydrograph Volume = 1,145 cuft

Hydraflow Hydrographs by Intelisolve

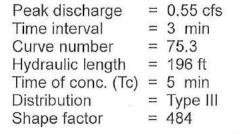

Hyd. No. 9

P.D.B.-2

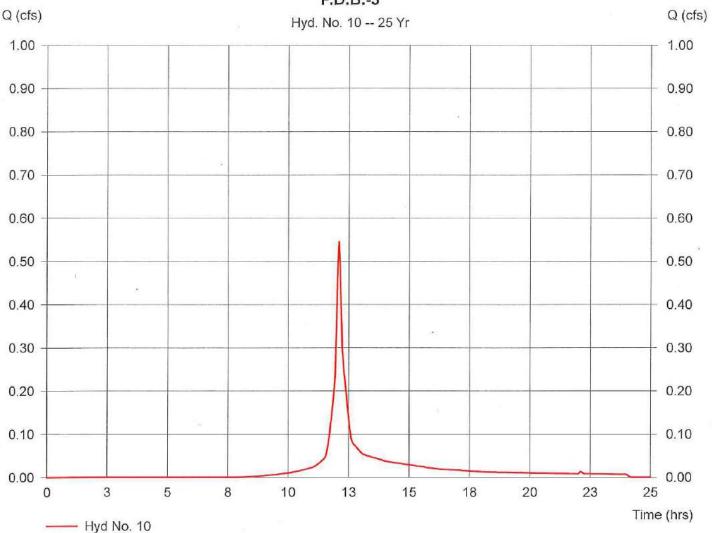
Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.04 ac
Basin Slope	= 1.0 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Peak discharge=0.11 cfsTime interval=3 minCurve number=67.9Hydraulic length=49 ftTime of conc. (Tc)=5 minDistribution=Type IIIShape factor=484

Hydrograph Volume = 377 cuft



Hydraflow Hydrographs by Intelisolve


Hyd. No. 10

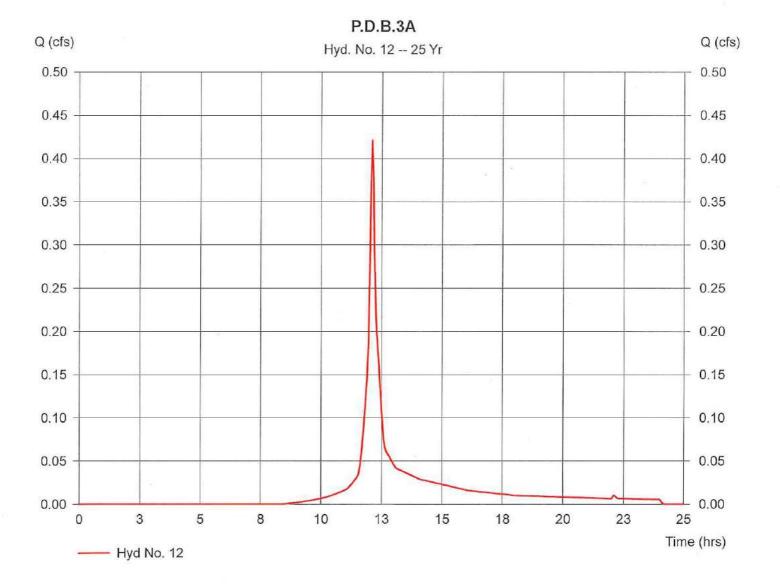
P.D.B.-3

= SCS Runoff
= 25 yrs
= 0.16 ac
= 3.8 %
= USER
= 5.95 in
= 24 hrs

Hydrograph Volume = 1,813 cuft

P.D.B.-3

Hydraflow Hydrographs by Intelisolve


Hyd. No. 12

P.D.B.3A

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.13 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

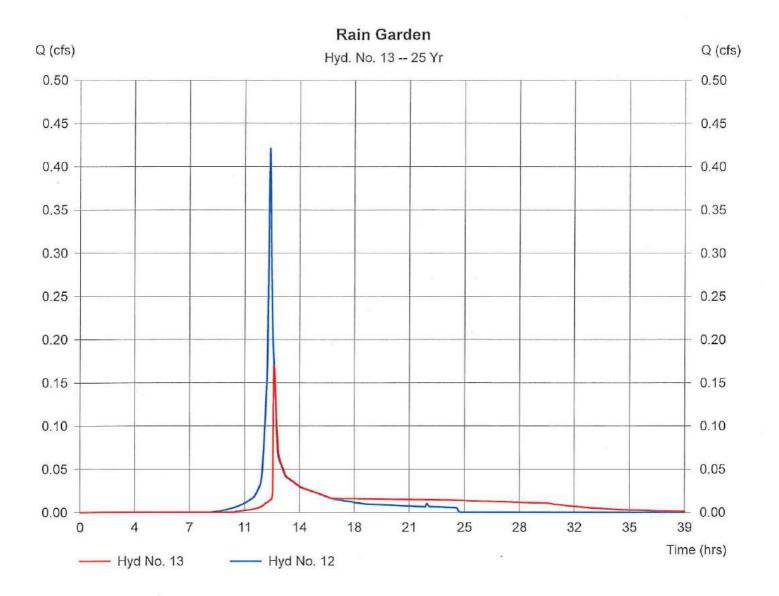
Peak discharge= 0.42 cfsTime interval= 3 minCurve number= 73.5Hydraulic length= 100 ftTime of conc. (Tc)= 5 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 1,401 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 13

Rain Garden


= Reservoir
= 25 yrs
= 12
= Rain Garden

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	= 0.17 cfs
Time interval	= 3 min
Max. Elevation	= 164.78 ft
Max. Storage	= 591 cuft

Hydrograph Volume = 1,387 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Rain Garden

Pond Data

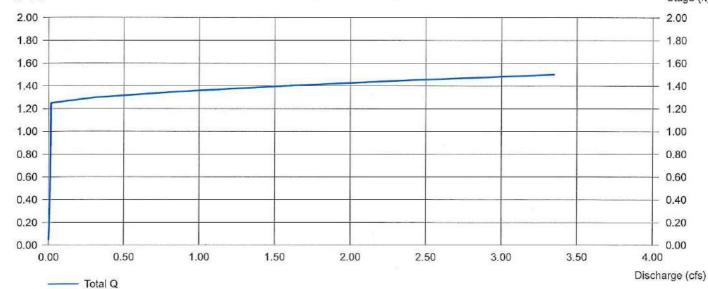
Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	163.50	140	0	0
0.50	164.00	448	147	147
1.00	164.50	591	260	407
1.50	165.00	748	335	742

Weir Structures

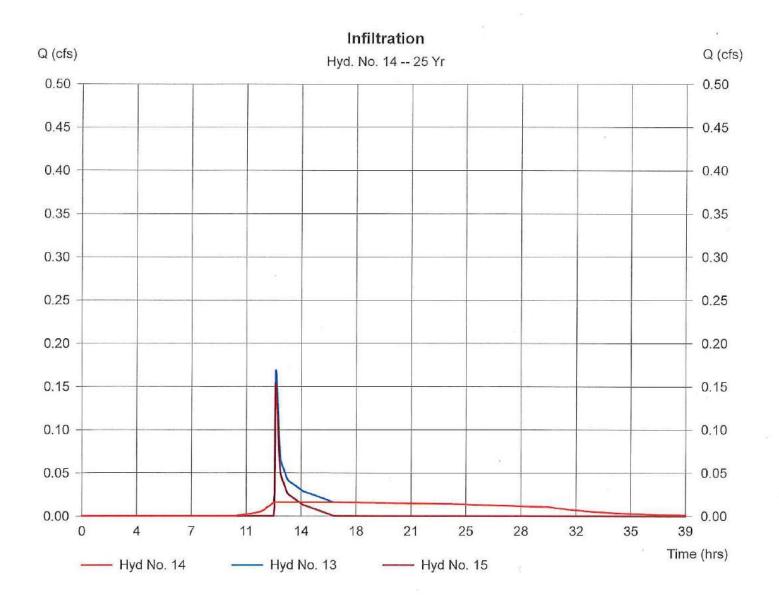
Culvert / Orifice Structures


	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 164.75	0.00	0.00	0.00
lo. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
nvert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect			1222
ength (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
I-Value	= .000	.000	.000	.000					
Drif. Coeff.	= 0.00	0.00	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (Cor	ntour) Tai	water Elev	h = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Stage / Discharge

Hydraflow Hydrographs by Intelisolve


Hyd. No. 14

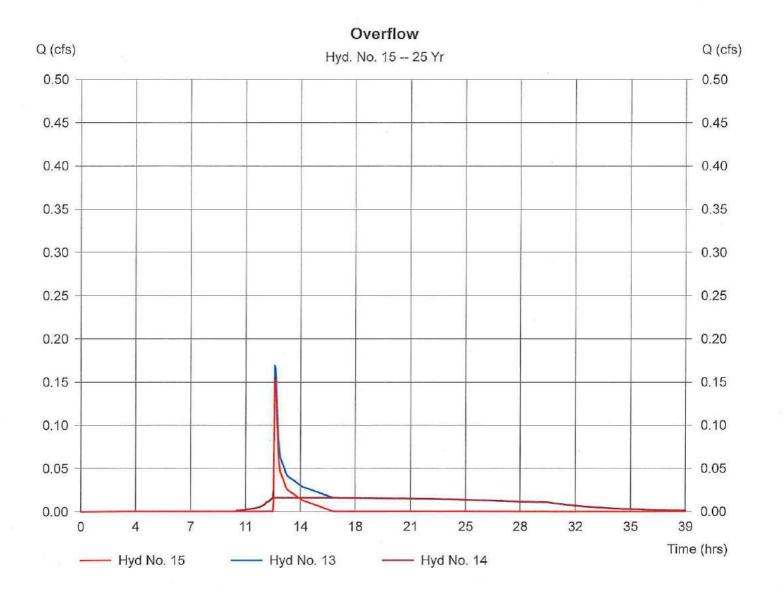
Infiltration

Hydrograph type	Ξ	Diversion1
Storm frequency	=	25 yrs
Inflow hydrograph	=	13
Diversion method		Pond - Rain Garden

Peak discharge	= 0.02 cfs
Time interval	= 3 min
2nd diverted hyd.	= 15
Pond structure	= Exfiltration

Hydrograph Volume = 1,075 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 15

Overflow

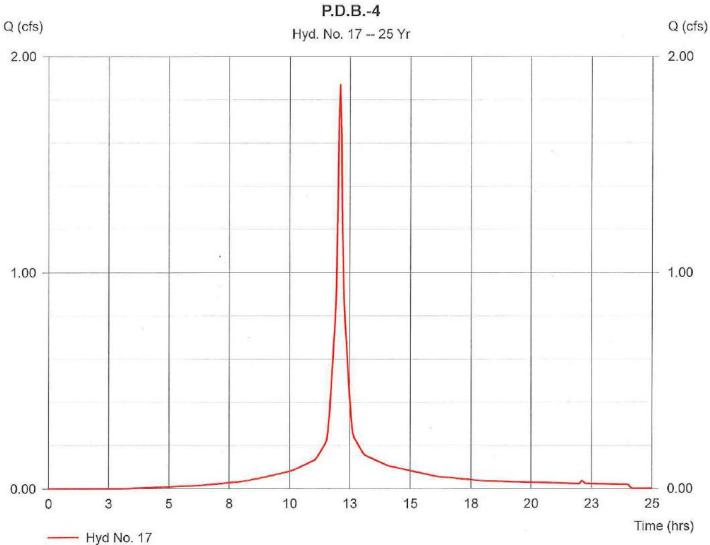
en

Peak discharge	Ξ	0.15 cfs
Time interval	Ξ	3 min
2nd diverted hyd.	Ξ	14
Pond structure	=	Exfiltration

Hydrograph Volume = 312 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 17


P.D.B.-4

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.39 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

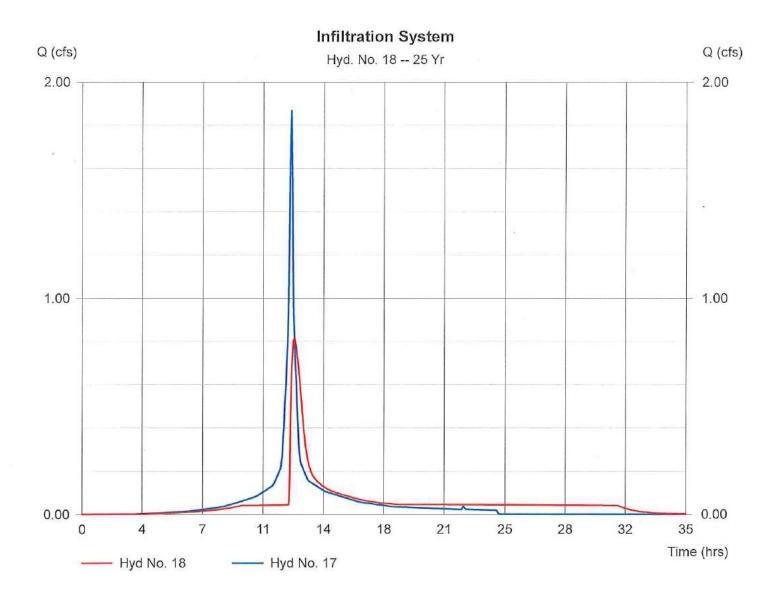
Peak discharge = 1.87 cfs

Time interval	=	3 min
Curve number	Ξ	91.7
Hydraulic length	=	100 ft
Time of conc. (Tc)	Ξ	5 min
Distribution	Ξ	Type III
Shape factor	=	484

Hydrograph Volume = 6,652 cuft

56

Hydraflow Hydrographs by Intelisolve


Hyd. No. 18

Infiltration System

Hydrograph type	= Reservoir	Peak discharge	= 0.81 cfs
Storm frequency	= 25 yrs	Time interval	= 3 min
Inflow hyd. No.	= 17	Max. Elevation	= 164.60 ft
Reservoir name	= Infiltration System	Max. Storage	= 2,505 cuft

Storage Indication method used.

Hydrograph Volume = 6,648 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

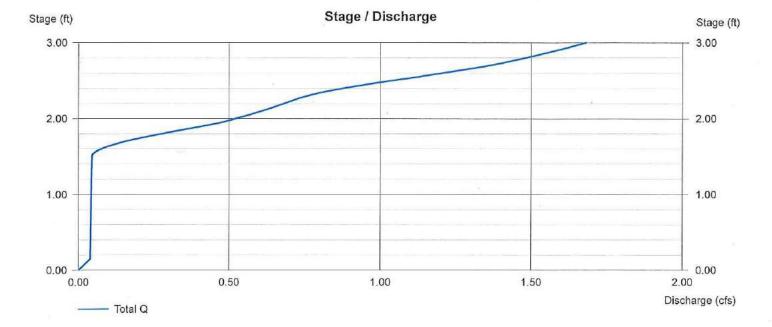
Pond No. 1 - Infiltration System

Pond Data

Bottom LxW = $52.0 \times 32.0 \text{ ft}$ Side slope = 0.0:1

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)*	Total storage (cuft)*	(*64.00% voids applied)
0.00	162.25	1,664	0	0	
0.15	162.40	1,664	160	160	
0.30	162.55	1,664	160	319	
0.45	162.70	1,664	160	479	
0.60	162.85	1,664	160	639	
0.75	163.00	1,664	160	799	
0.90	163.15	1,664	160	958	
1.05	163.30	1,664	160	1,118	
1.20	163.45	1,664	160	1,278	
1.35	163.60	1,664	160	1,438	
1.50	163.75	1,664	160	1,597	
1.65	163.90	1,664	160	1,757	
1.80	164.05	1,664	160	1,917	
1.95	164.20	1,664	160	2,077	
2.10	164.35	1,664	160	2,236	
2.25	164.50	1,664	160	2,396	
2.40	164.65	1,664	160	2,556	
2.55	164.80	1,664	160	2,716	
2.70	164.95	1,664	160	2,875	
2.85	165.10	1,664	160	3,035	
3.00	165.25	1,664	160	3,195	


Weir Structures

Bottom elev. = 162.25 ft

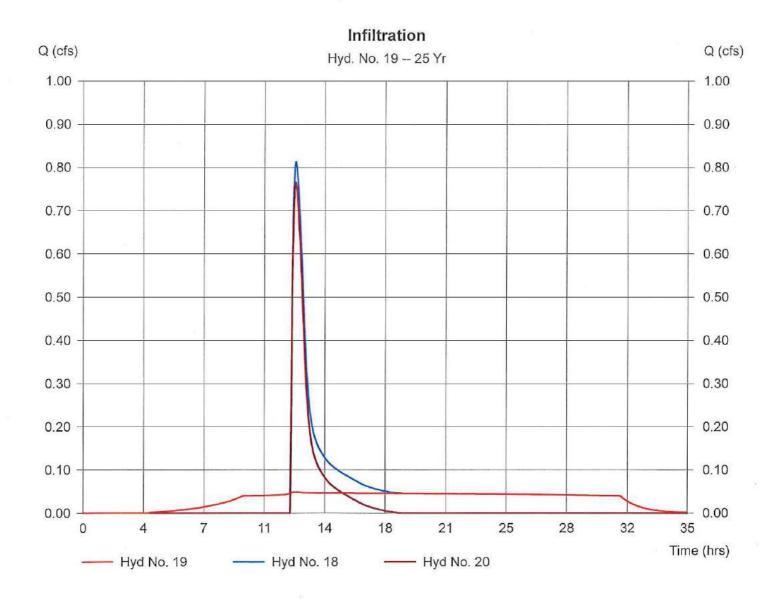
Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 6.00	6.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 6.00	6.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 163.75	164.50	0.00	0.00	Weir Type	=			00000
Length (ft)	= 50.00	50.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	2.00	0.00	0.00	1000 1000 1000 1000 1000				
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (We	et area) Ta	ilwater Ele	ev. = 0.00

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Monday, May 7 2018, 8:27 PM

Depth = 3.00 ft

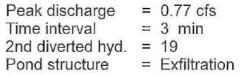

Hydraflow Hydrographs by Intelisolve

Hyd. No. 19

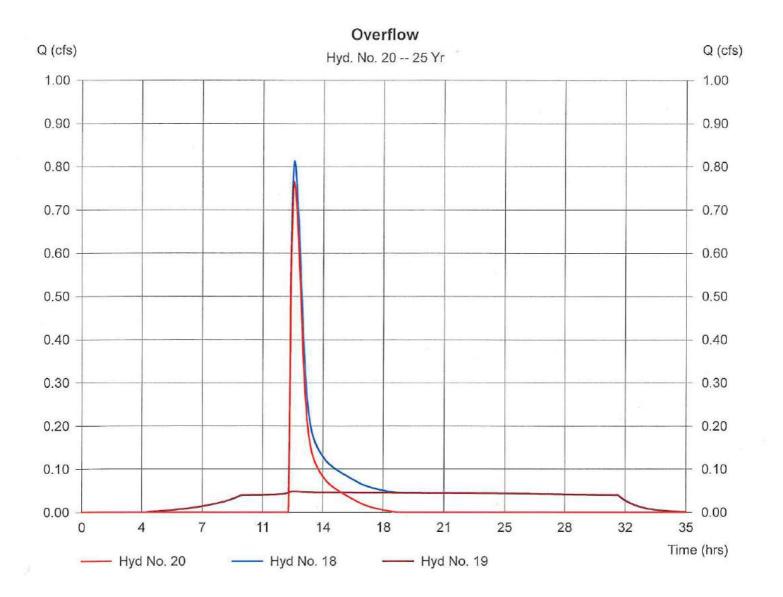
Infiltration

Hydrograph type	= Diversion1	Peak discharge	= 0.05 cfs
Storm frequency	= 25 yrs	Time interval	= 3 min
Inflow hydrograph	= 18	2nd diverted hyd.	= 20
Diversion method	= Pond - Infiltration System	Pond structure	= Exfiltration

Hydrograph Volume = 3,857 cuft



Hydraflow Hydrographs by Intelisolve

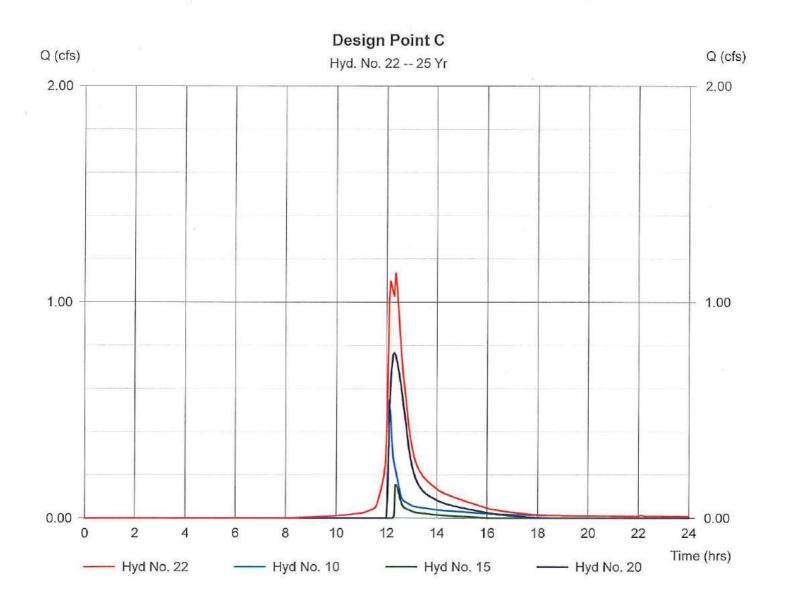

Hyd. No. 20

Overflow

Ξ	Diversion2	Peak
Ξ	25 yrs	Time i
=	18	2nd di
=	Pond - Infiltration System	Pond s
	пп	 Diversion2 25 yrs 18 Pond - Infiltration System

Hydrograph Volume = 2,791 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 22

Design Point C

Hydrograph type	= Combine
Storm frequency	= 25 yrs
Inflow hyds.	= 10, 15, 20

Peak discharge	= 1.13 cfs
Time interval	= 3 min

Hydrograph Volume = 4,916 cuft

2

- Hyd No. 23

0

4

6

8

- Hyd No. 8

- Hyd No. 20

10

12

16

14

- Hyd No. 10

20

- Hyd No. 15

18

22

24

Time (hrs)

Hydraflow Hydrographs by Intelisolve Monday, May 7 2018, 8:27 PM Hyd. No. 23 Post Dev. Flow to Wetlands Hydrograph type = Combine Peak discharge $= 1.40 \, \text{cfs}$ Storm frequency = 25 yrs Time interval = 3 min = 8, 10, 15, 20 Inflow hyds. Hydrograph Volume = 6,061 cuft Post Dev. Flow to Wetlands Q (cfs) Q (cfs) Hyd. No. 23 -- 25 Yr 2.00 2.00 1.00 1.00 -0.00 0.00

draflow Hydrographs by Intelisolve		Mo	onday, May 7 2018, 8:27 PM
yd. No. 24			<i>*</i>
otal Proposed			
ydrograph type = Combine orm frequency = 25 yrs flow hyds. = 8, 9, 10, 15, 20		Peak discharge Time interval	= 1.50 cfs = 3 min
		Hydr	ograph Volume = 6,438 cuft
2			
(- f -)	Total Proposed		0./-6
(cfs)	Hyd. No. 24 25 Yr		Q (cfs
.00			2.00
	4		
	1		
.00			1.00
	٨		
00			0.00
0 3 5 8	10 13 15	18 20	23 25

100-Year Storm, Pre and Post-Development

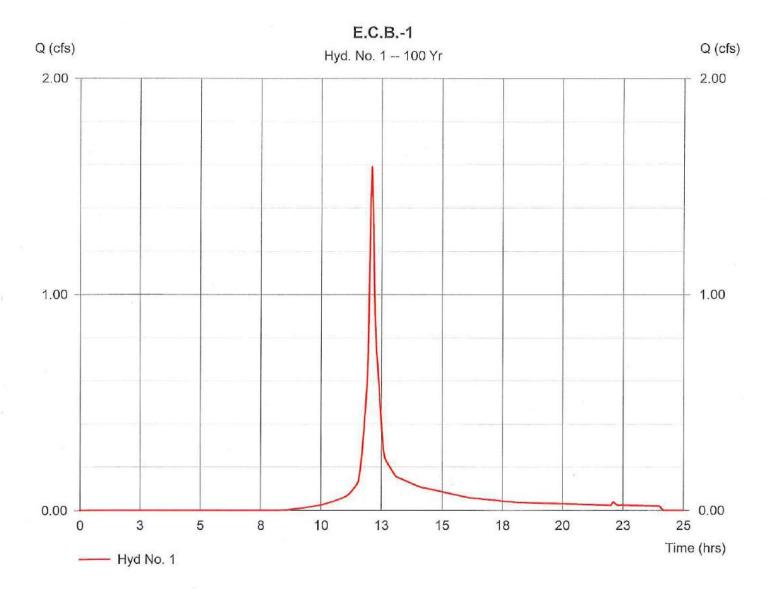
Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	1,59	3	726	5,2 87		2 		E,C,B,-1
2	SCS Runoff	0.40	3	726	1,374				E.C.B2
3	SCS Runoff	2.26	3	726	7,539				E.C.B3
5	Combine	3.85	3	726	12,826	1, 3,			Flow to Wetlands
5	Combine	4.26	3	726	14,200	1, 2, 3,			Total Existing
8	SCS Runoff	0.63	3	726	2,079				P.D.B1
9	SCS Runoff	0.20	3	726	674				P.D.B2
10	SCS Runoff	0.91	3	726	3,043			*****	P.D.B3
12	SCS Runoff	0.71	3	726	2,385				P.D.B.3A
13	Reservoir	0.73	3	726	2,372	12	164.84	633	Rain Garden
14	Diversion1	0.02	3	726	1,231	· 13			Infiltration
15	Diversion2	0.71	3	726	1,141	13			Overflow
7	SCS Runoff	2.73	3	726	9,943				P.D.B4
18	Reservoir	1.65	3	732	9,939	17	165.22	3,163	Infiltration System
19	Diversion1	0.05	3	732	4,344	18			Infiltration
20	Diversion2	1.60	3	732	5,595	18			Overflow
22	Combine	2.97	3	726	9,778	10, 15, 20,	644-	<u> </u>	Design Point C
23	Combine	3.59	3	726	11,857	8, 10, 15, 2	0,		Post Dev. Flow to Wetlands
24	Combine	3.79	3	726	12,531	8, 9, 10, 15	, 20,		Total Proposed
 24 S	chool Stre	et, Way	/land_R	1.gpw	Return	Period: 10	00 Year	Friday, Ma	ay 4 2018, 2:09 PM

Hydraflow Hydrographs by Intelisoive

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1


E.C.B.-1

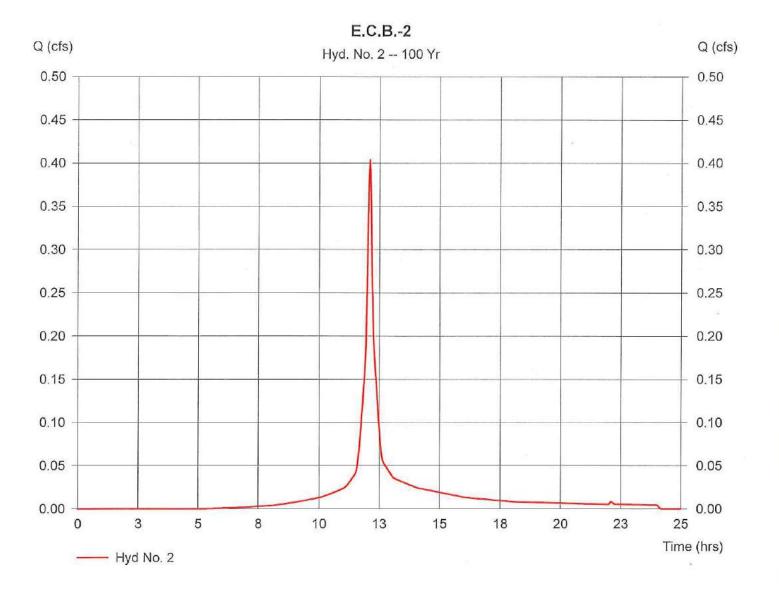
Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.35 ac
Basin Slope	= 5.2 %
Tc method	= LAG
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Monday, May 7 2018, 8:27 PM

Peak discharge	=	1.59 cfs
Time interval	Ξ	3 min
Curve number	=	66.4
Hydraulic length	=	189 ft
Time of conc. (Tc)	=	5.407852 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 5,287 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 2

E.C.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.07 ac
Basin Slope	= 1.9 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Peak discharge= 0.40 cfsTime interval= 3 minCurve number= 79.8Hydraulic length= 68 ftTime of conc. (Tc)= 5 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 1,374 cuft

Monday, May 7 2018, 8:27 PM

65

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

E.C.B.-3

= SCS Runoff
= 100 yrs
= 0.45 ac
= 4.2 %
= LAG
= 8.45 in
= 24 hrs

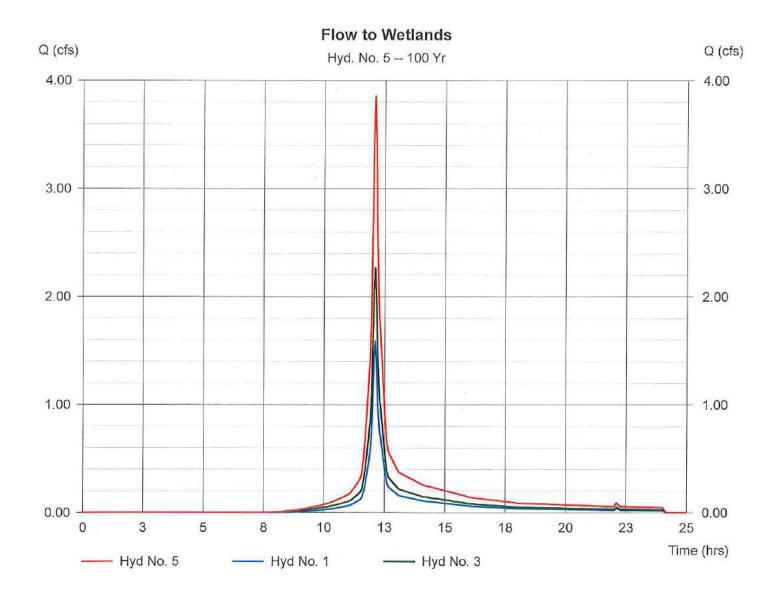
Peak discharge	=	2.26 cfs	
Time interval	=	3 min	
Curve number	=	70.4	
Hydraulic length	=	207 ft	
Time of conc. (Tc)	=	5.817464	min
Distribution	=	Type III	
Shape factor	=	484	

Hydrograph Volume = 7,539 cuft

66

Hydraflow Hydrographs by Intelisolve

Hyd. No. 5


Flow to Wetlands

Hydrograph type	=	Combine
Storm frequency	Ξ	100 yrs
Inflow hyds.	=	1, 3

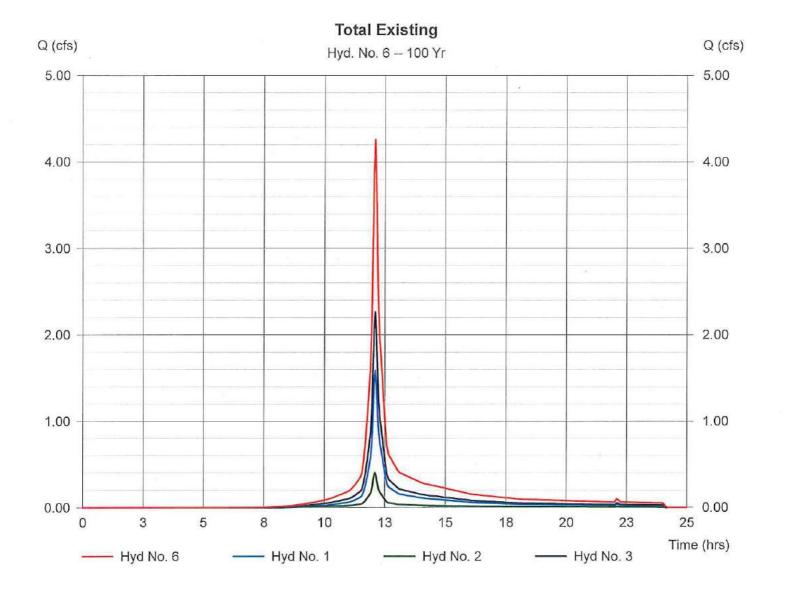
Monday, May 7 2018, 8:27 PM

Peak discharge = 3.85 cfs Time interval = 3 min

Hydrograph Volume = 12,826 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 6


Total Existing

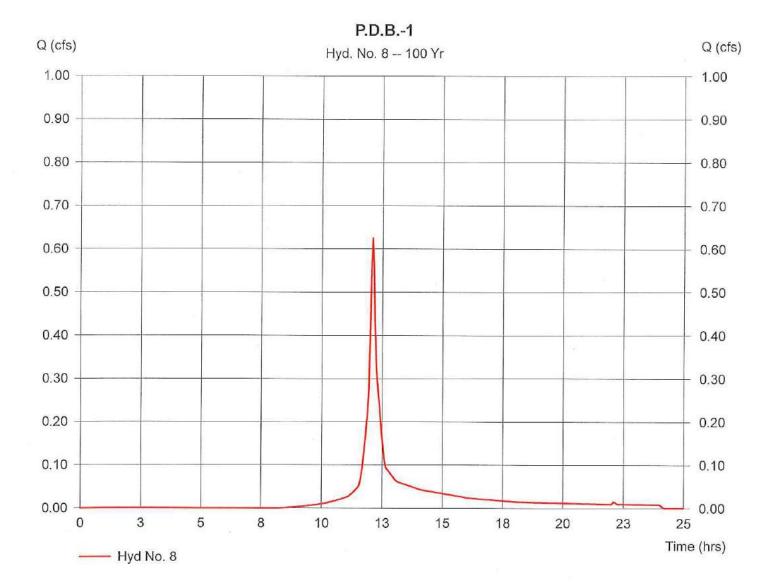
Hydrograph type	=	Combine
Storm frequency	=	100 yrs
Inflow hyds.	=	1, 2, 3

Monday, May 7 2018, 8:27 PM

Peak discharge = 4.26 cfs Time interval = 3 min

Hydrograph Volume = 14,200 cuft

Hydraflow Hydrographs by Intelisolve

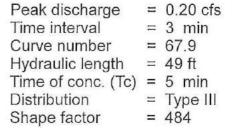

Hyd. No. 8

P.D.B.-1

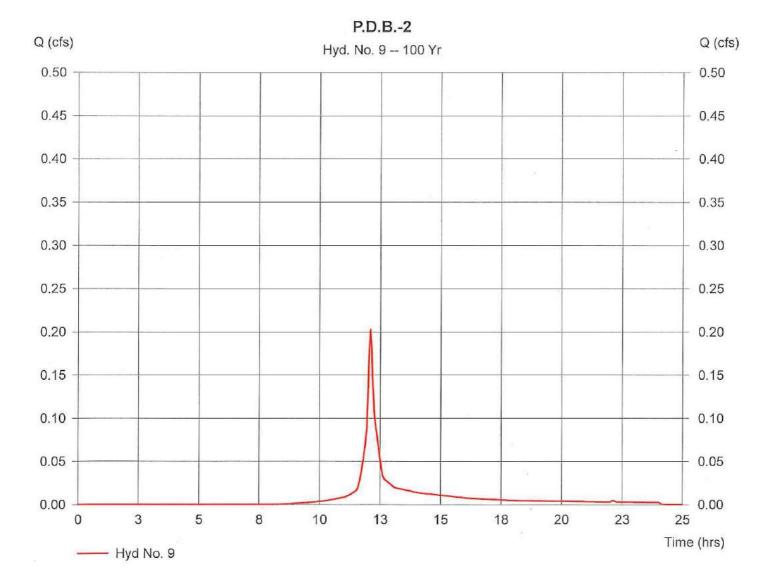
Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.14 ac
Basin Slope	= 4.4 %
Tc method	= LAG
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Peak discharge= 0.63 cfsTime interval= 3 minCurve number= 66.4Hydraulic length= 222 ftTime of conc. (Tc)= 6.686719 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 2,079 cuft



Hydraflow Hydrographs by Intelisolve


Hyd. No. 9

P.D.B.-2

= SCS Runoff
= 100 yrs
= 0.04 ac
= 1.0 %
= USER
= 8.45 in
= 24 hrs

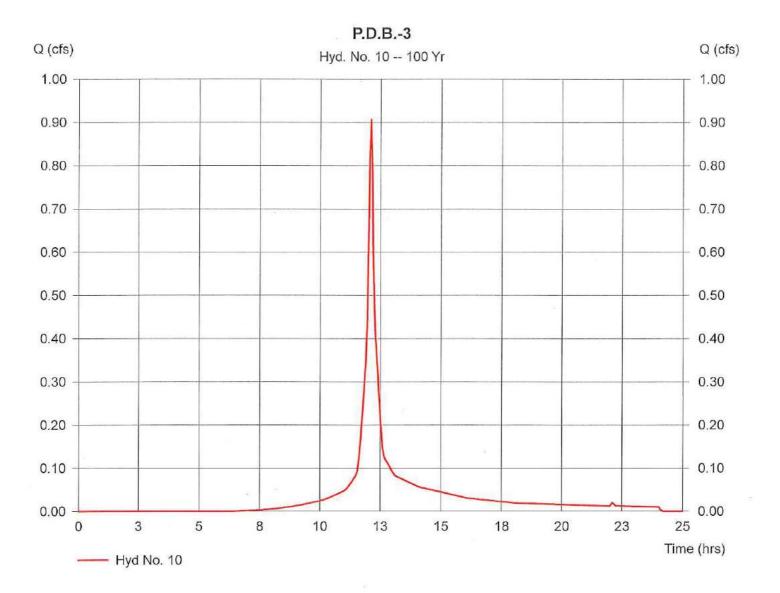
Hydrograph Volume = 674 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 10

P.D.B.-3

. .


Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.16 ac
Basin Slope	= 3.8 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

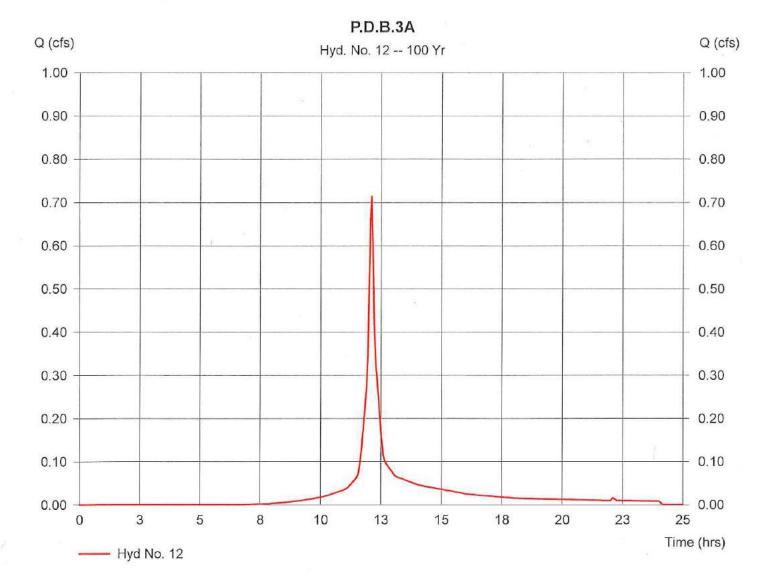
Peak discharge = 0.91 cfs Time interval $= 3 \min$ Curve number = 75.3 Hydraulic length = 196 ft Time of conc. (Tc) = 5 min Distribution = Type III

Shape factor

Hydrograph Volume = 3,043 cuft

= 484

Hydraflow Hydrographs by Intelisolve


Hyd. No. 12

P.D.B.3A

Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.13 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Peak discharge	=	0.71 CTS
Time interval	=	3 min
Curve number	=	73.5
Hydraulic length	Ξ	100 ft
Time of conc. (Tc)	Ξ	5 min
Distribution	\equiv	Type III
Shape factor	Ξ	484

Hydrograph Volume = 2,385 cuft

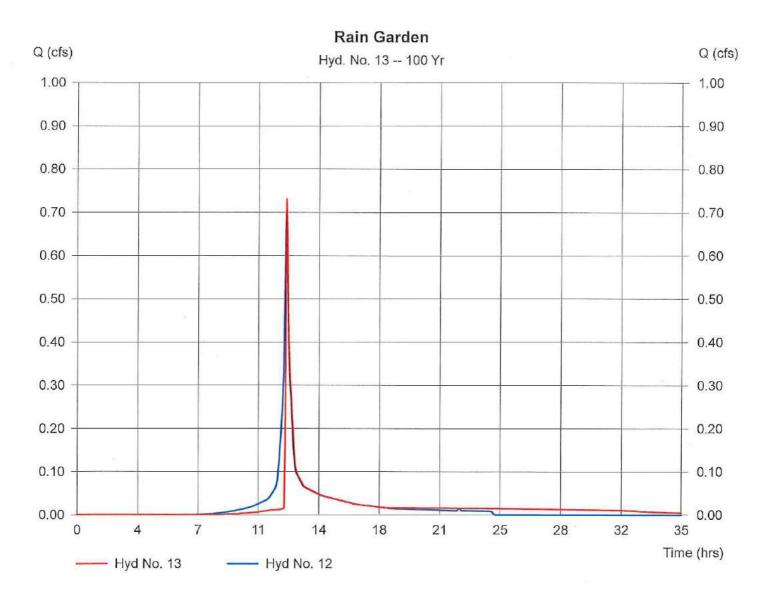
Monday, May 7 2018, 8:27 PM

72

Hydraflow Hydrographs by Intelisolve

Hyd. No. 13

Rain Garden


= Reservoir
= 100 yrs
= 12
= Rain Garden

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discha	arge =	0.73 cfs
Time interva	al =	3 min
Max. Elevat	ion =	164.84 ft
Max. Storag	e =	633 cuft

Hydrograph Volume = 2,372 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Rain Garden

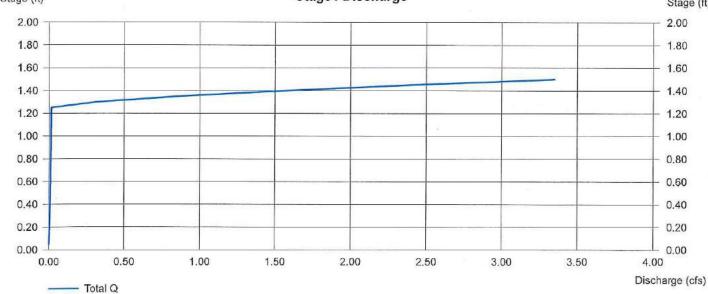
Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	163.50	140	0	0	
0.50	164.00	448	147	147	
1.00	164.50	591	260	407	
1.50	165.00	748	• 335	742	

Weir Structures

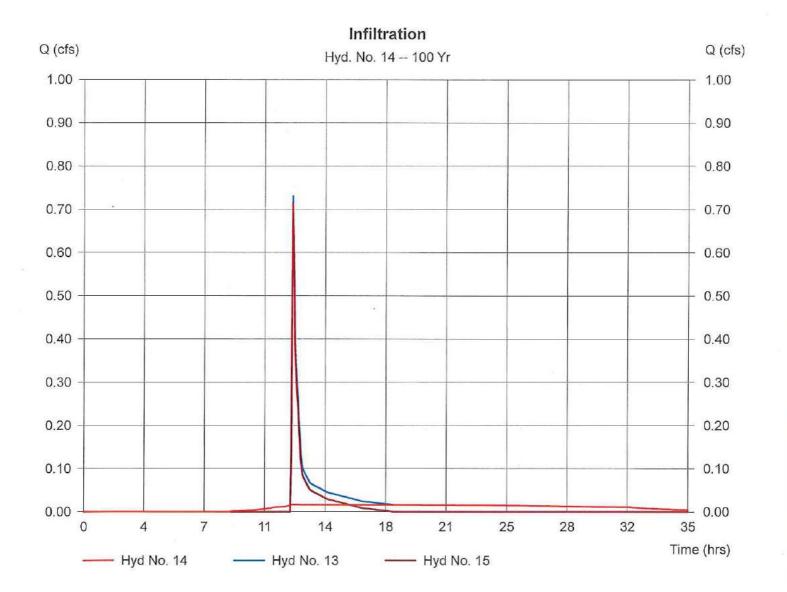

Culvert / Orifice Structures

		-							
	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 164.75	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
N-Value	= .000	.000	.000	.000					
Orif. Coeff.	= 0.00	0.00	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (Cor	ntour) Tail	water Elev	t = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Stage / Discharge

Hydraflow Hydrographs by Intelisolve


Hyd. No. 14

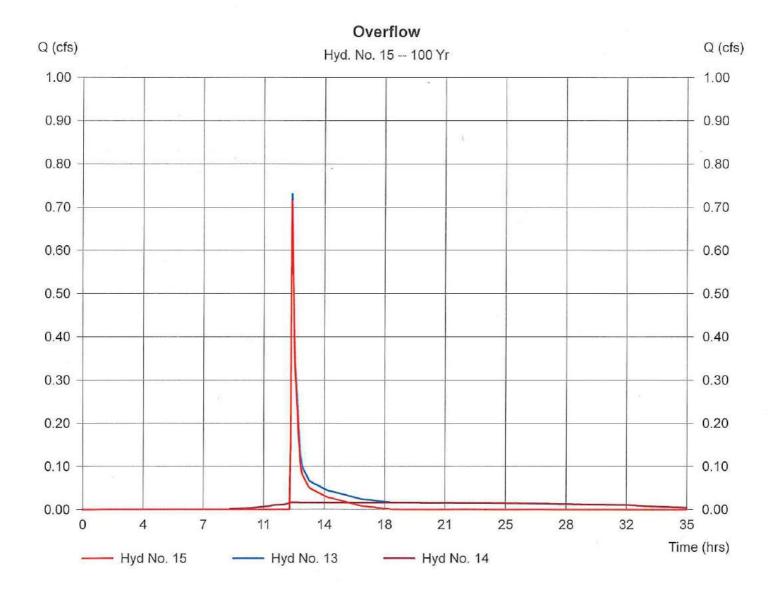
Infiltration

Π	Diversion1
=	100 yrs
Ξ	13
	Pond - Rain Garden
	н н

Peak discharge= 0.02 cfsTime interval= 3 min2nd diverted hyd.= 15Pond structure= Exfiltration

Hydrograph Volume = 1,231 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 15

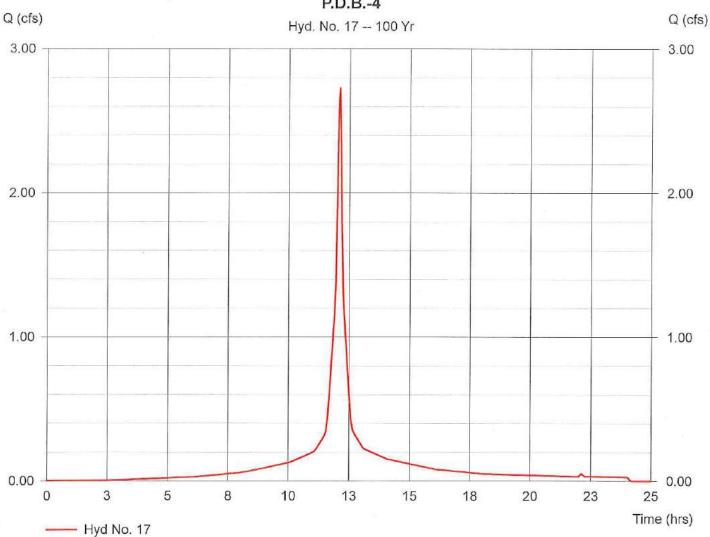
Overflow

Hydrograph type	=	Diversion2
Storm frequency	=	100 yrs
Inflow hydrograph	\blacksquare	13
Diversion method	Ξ	Pond - Rain Garden

Peak discharge= 0.71 cfsTime interval= 3 min2nd diverted hyd.= 14Pond structure= Exfiltration

Hydrograph Volume = 1,141 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 17

P.D.B.-4

Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.39 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

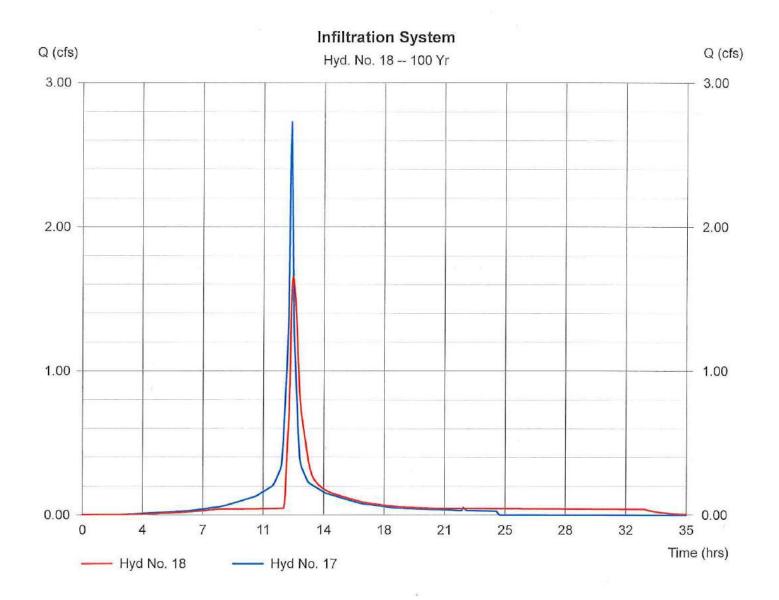
Peak discharge	= 2.73 cfs
Time interval	= 3 min
Curve number	= 91.7
Hydraulic length	= 100 ft
Time of conc. (Tc)	= 5 min
Distribution	= Type III
Shape factor	= 484

Hydrograph Volume = 9,943 cuft

P.D.B.-4

.

Hydraflow Hydrographs by Intelisolve


Hyd. No. 18

Infiltration System

Hydrograph type	= Reservoir	Peak discharge	= 1.65 cfs
Storm frequency	= 100 yrs	Time interval	= 3 min
Inflow hyd. No.	= 17	Max. Elevation	= 165.22 ft
Reservoir name	= Infiltration System	Max. Storage	= 3,163 cuft

Storage Indication method used.

Hydrograph Volume = 9,939 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

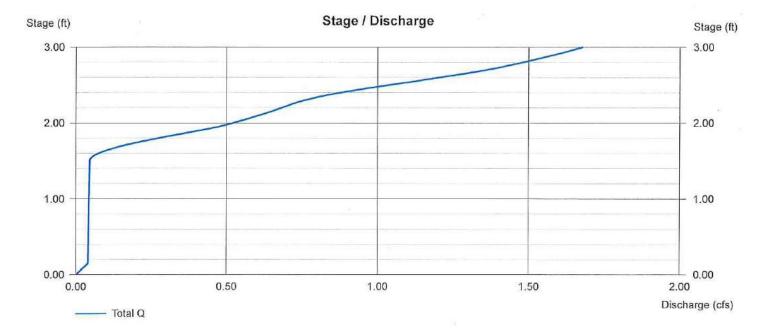
Pond No. 1 - Infiltration System

Pond Data

Bottom LxW = 52.0 x 32.0 ft S

Side slope = 0.0:1 Bottom elev. = 162.25 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)*	Total storage (cuft)*	(*64.00% voids applied)
0.00	162.25	1,664	0	0	
0.15	162.40	1,664	160	160	
0.30	162.55	1,664	160	319	
0.45	162.70	1,664	160	479	
0.60	162.85	1,664	160	639	
0.75	163.00	1,664	160	799	
0.90	163.15	1,664	160	958	
1.05	163.30	1,664	160	1,118	
1.20	163.45	1,664	160	1,278	
1.35	163.60	1,664	160	1,438	
1.50	163.75	1,664	160	1,597	
1.65	163.90	1,664	160	1,757	
1.80	164.05	1,664	160	1,917	
1.95	164.20	1,664	160	2,077	
2.10	164.35	1,664	160	2,236	
2.25	164.50	1,664	160	2,396	
2.40	164.65	1,664	160	2,556	
2.55	164.80	1,664	160	2,716	
2.70	164.95	1,664	160	2,875	
2.85	165.10	1,664	160	3,035	
3.00	165.25	1,664	160	3,195	

Weir Structures

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 6.00	6.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 6.00	6.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 163.75	164.50	0.00	0.00	Weir Type	=		355	2000
Length (ft)	= 50.00	50.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	2.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (We	et area) Ta	ailwater Ele	ev. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Monday, May 7 2018, 8:27 PM

Depth = 3.00 ft

0.00

0

4

- Hyd No. 19

7

11

14

- Hyd No. 18

18

21

- Hyd No. 20

25

28

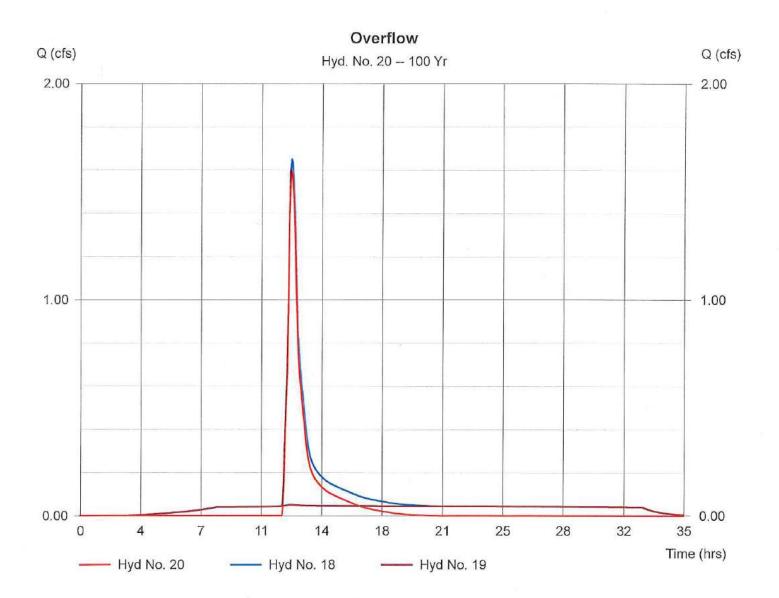
32

Hydraflow Hydrographs by Intelisolve Monday, May 7 2018, 8:27 PM Hyd. No. 19 Infiltration Hydrograph type = Diversion1 Peak discharge $= 0.05 \, cfs$ Storm frequency = 100 yrs Time interval $= 3 \min$ Inflow hydrograph = 182nd diverted hyd. = 20Diversion method = Pond - Infiltration System Pond structure = Exfiltration Hydrograph Volume = 4,344 cuft Infiltration Q (cfs) Q (cfs) Hyd. No. 19 -- 100 Yr 2.00 2.00 1.00 1.00

0.00

35 Time (hrs)

Hydraflow Hydrographs by Intelisolve


Hyd. No. 20

Overflow

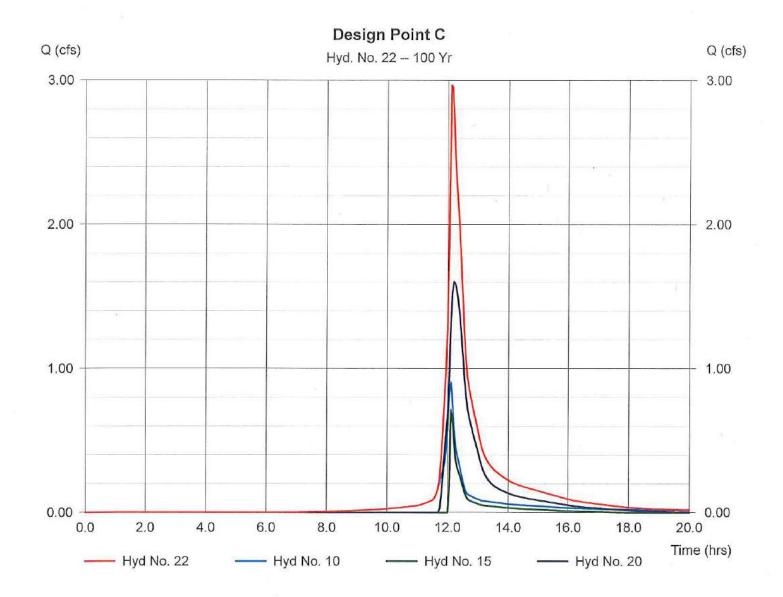
Hydrograph type	=	Diversion2
Storm frequency	Π	100 yrs
Inflow hydrograph	=	18
Diversion method	11	Pond - Infiltration System

Peak discharge= 1.60 cfsTime interval= 3 min2nd diverted hyd.= 19Pond structure= Exfiltration

Hydrograph Volume = 5,595 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 22


Design Point C

Hydrograph type	=	Combine
Storm frequency	Ξ	100 yrs
Inflow hyds.		10, 15, 20

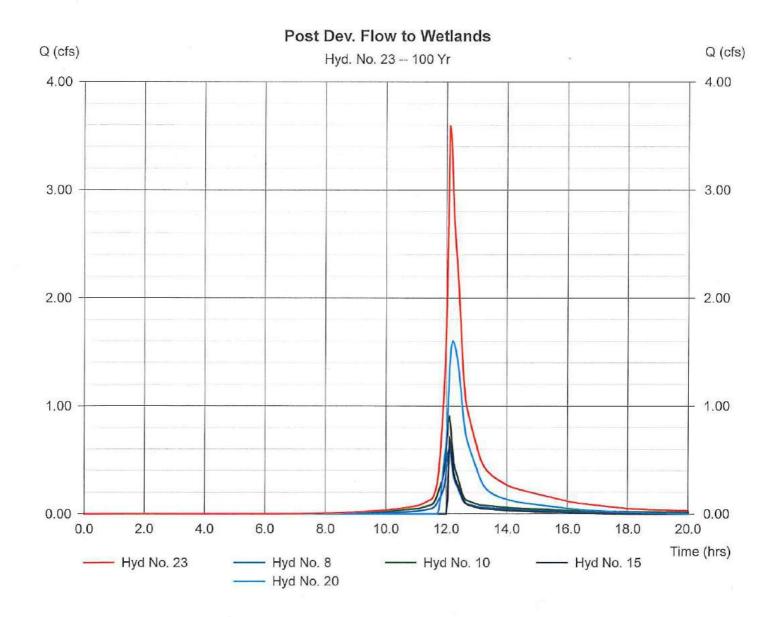
Monday, May 7 2018, 8:27 PM

Peak discharge = 2.97 cfs Time interval = 3 min

Hydrograph Volume = 9,778 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 23


Post Dev. Flow to Wetlands

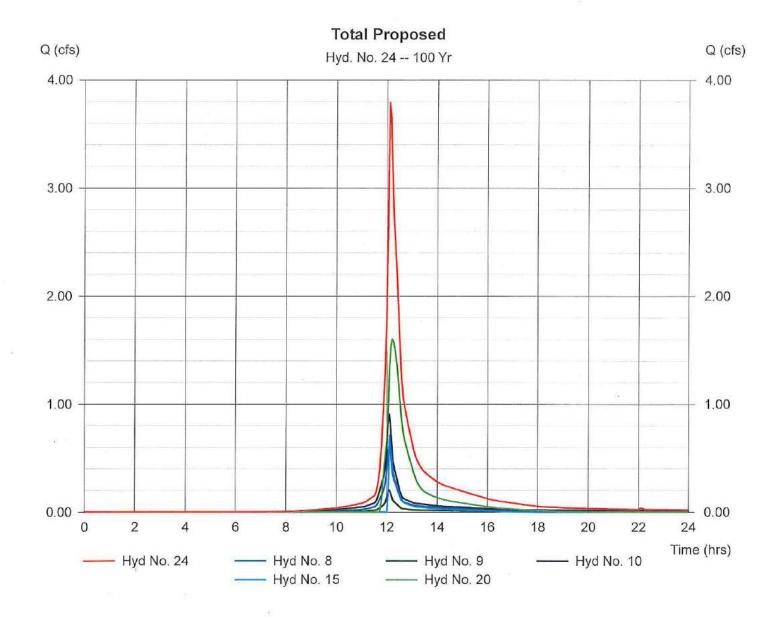
Hydrograph type	Ξ	Combine
Storm frequency	=	100 yrs
Inflow hyds.	=	8, 10, 15, 20

Monday, May 7 2018, 8:27 PM

Peak discharge = 3.59 cfs Time interval = 3 min

Hydrograph Volume = 11,857 cuft

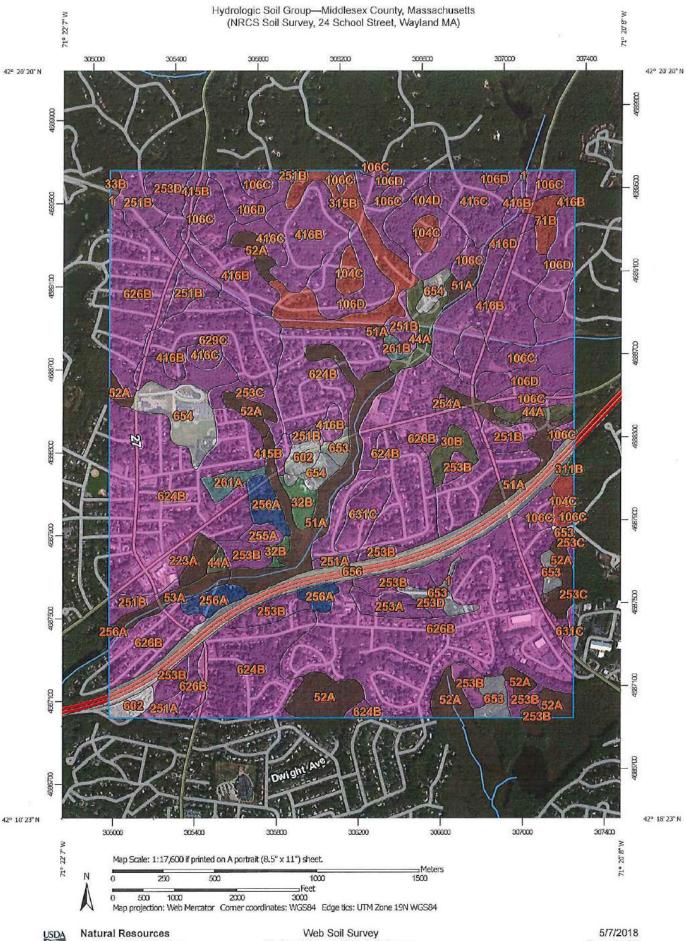
Hydraflow Hydrographs by Intelisolve


Hyd. No. 24

Total Proposed

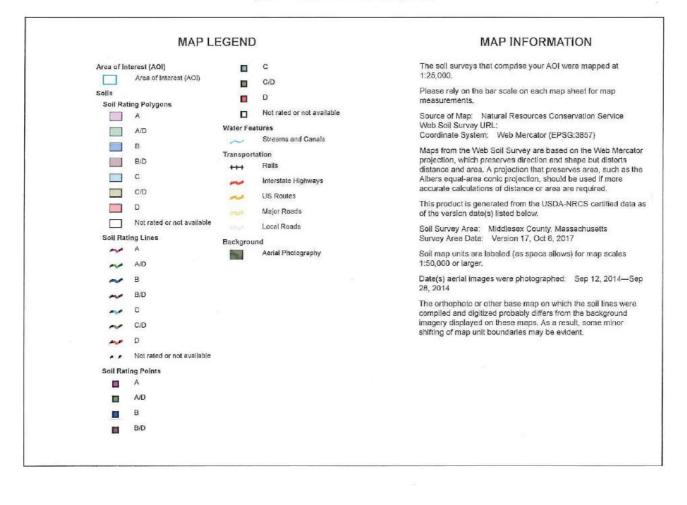
Hydrograph type	= Combine
Storm frequency	= 100 yrs
Inflow hyds.	= 8, 9, 10, 15, 20

Peak discharge	=	3.79 cfs
Time interval	=	3 min


Hydrograph Volume = 12,531 cuft

Appendix B: Stormwater Operation and Maintenance Plan

See Chapter 11 in Stormwater Report For Operation and Maintenace Plan Proposed Site Redevelopment 24 School Street Wayland MA 01778


Appendix C: NRCS Soil Survey

Conservation Service

Web Soil Survey National Cooperative Soil Survey

5/7/2018 Page 1 of 5 Hydrologic Soil Group-Middlesex County, Massachusetts (NRCS Soil Survey, 24 School Street, Wayland MA)

USDA

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 5/7/2018 Page 2 of 5

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		1.8	0.1%
30B	Raynham silt loam, 0 to 5 percent slopes	C/D	8.0	0.5%
32B	Wareham loamy fine sand, 0 to 5 percent slopes	A/D	8.0	0.5%
33B	Raypol silt loam, 0 to 5 percent slopes	B/D	1.6	0.1%
44A	Birdsall mucky silt loam, 0 to 1 percent slopes	Ç/D	17.0	1.1%
51A	Swansea muck, 0 to 1 percent slopes	B/D	63.9	4.3%
52A	Freetown muck, 0 to 1 percent slopes	B/D	55,0	3.7%
53A	Freetown muck, ponded, 0 to 1 percent slopes	B/D	8.9	0.6%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D .	7.8	0.5%
104C	Hollis-Rock outcrop- Charlton complex, 0 to 15 percent slopes	D	16.0	1.1%
104D	Hollis-Rock outcrop- Charlton complex, 15 to 25 percent slopes	A	22.5	1.5%
106C	Narragansett-Hollis- Rock outcrop complex, 3 to 15 percent slopes	A	93.7	6.3%
106D	Narragansett-Hollis- Rock outcrop complex, 15 to 25 percent slopes	A	73.0	4.9%
223A	Scio very fine sandy loam, 0 to 3 percent slopes	B/D	6.1	0.4%
251A	Haven sitt loam, 0 to 3 percent slopes	A	6.2	0.4%
251B	Haven sitt loam, 3 to 8 percent slopes	A	40,8	2.7%
253A	Hinckley loarny sand, 0 to 3 percent slopes	A	7.2	0.5%

.

Map unit symbol	Map unit name	Rating	Acres In AOI	Percent of AOI
253B	Hinckley loamy sand, 3 to 8 percent slopes	A	43.4	2.9%
253C	Hinckley loamy sand, 8 to 15 percent slopes	A	8.8	0.6%
253D	Hinckley Joamy sand, 15 to 25 percent slopes	A	13.5	0.9%
254A	Merrimac fine sandy toam, 0 to 3 percent slopes	A	1.5	0.1%
255A	Windsor loamy sand, 0 to 3 percent slopes	A	4,2	0.3%
256A	Deerfield loamy sand, 0 to 3 percent slopes	В	21,3	1.4%
261A	Tisbury silt loarn, 0 to 3 percent slopes	С	5.7	0.4%
261B	Tisbury silt loam, 3 to 8 percent slopes	C	2.7	0.2%
3118	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	C/D	1.0	0.1%
315 B	Scituale fine sandy Ioam, 3 to 8 percent slopes	D	37.3	2.5%
415B	Narragansett silt loarn, 3 to 8 percent slopes	A	6.7	0,5%
416B	Narragansett silt loam, 3 to 8 percent slopes, very stony	A	116.6	7.9%
416C	Narragansett silt loam, 8 to 15 percent slopes, very stony	A	35.9	2.4%
416D	Narragansett silt loam, 15 to 25 percent slopes, very stony	A	9.0	0.6%
602	Urban land	¢,	10.5	0.7%
62 4 B	Haven-Urban land complex, 0 to 8 percent slopes	A	257.7	17.4%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	307.8	20.7%
629C	Canton-Charlton-Urban land complex, 3 to 15 percent slopes	A	43.0	2.9%
631C	Charlton-Urban land- Hollis complex, 3 to 15 percent slopes, rocky	A	15.2	1.0%
653	Udorthents, sandy		20.5	1.4%
654	Udorthents, loamy		32.7	2,2%

 \sim

en e			the second state of the second	
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AO
656	Udorthents-Urban land complex		51.2	3.5%
Totals for Area of Intere	st		1,483.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

JSD/

Appendix D: Time of Concentration Calculations

Time of Concentration Calculations		
	· · · · · · · · · · · · · · · · · · ·	·····
24 School Street, Wayland MA		
Prepared For: Windsor Place, LLC		
Existing Conditions Watersheds		
<u>E.C.B1</u>		
Longest Flow Path (ft.)	189	
L^0.8 (ft.)	66.25	
Runoff Curve Number	66.4	
Maximum Retention (S)	5.06	
(S+1)^0.7	3.53	
Basin Slope (%)	5.2	
Lag Time (Hours)	0.05	
Lag Time (Minutes)	3.24	
Time of Concentration (Tc) (minutes)	5.4	······································
Time of concentration (TC) (ninutes)	5,4	
E.C.B2		
Time of Concentration (Tc) (minutes)	5.0	
· · · · · · · · · · · · · · · · · · ·	ally Entered	· ·
<u>E.C.B3</u>		
Longest Flow Path (ft.)	207	
L^0.8 (ft.)	71.25	
Runoff Curve Number	70.4	
Maximum Retention (S)	4.20	
(S+1)^0.7	3.17	
Basin Slope (%)	4,2	
Lag Time (Hours)	0,06	
Lag Time (Minutes)	3.48	
Time of Concentration (Tc) (minutes)	5.8	
	0.0	
		· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		
	······································	· · · · · · · · · · · · · · · · · · ·

Time of Concentration Calculations	3
24 School Street, Wayland MA	
Prepared For: Windsor Place, LLC	
Proposed Conditions Watersheds	
P.D.B1	
	222
Longest Flow Path (ft.)	75.35
L^0.8 (ft.)	75.35
Runoff Curve Number	66.4
Maximum Retention (S)	5.06
(S+1)^0.7	3.53
Basin Slope (%)	4.4
<u> </u>	
Lag Time (Hours)	0.07
Lag Time (Minutes)	4.00
Time of Concentration (Tc) (minutes)	6.7
P.D.B2	
Time of Concentration (Tc) (minutes)	5.0
	ually Entered
<u>P.D.B3</u>	
Longest Flow Path (ft.)	196
L^0.8 (ft.)	68.20
	-
Runoff Curve Number	75.3
Maximum Retention (S)	3.28
(S+1)^0.7	2.77
Basin Slope (%)	4
Lag Time (Hours)	0.05
Lag Time (Minutes)	2.98
Time of Concentration (Tc) (minutes)	5.0
Manually Entered a	t 5.0 Minutes
Manually Entered a	t 5.0 Minutes
Manually Entered a	t 5.0 Minutes
	t 5.0 Minutes 5.0
P.D.B3A Time of Concentration (Tc) (minutes)	
P.D.B3A Time of Concentration (Tc) (minutes)	5.0
P.D.B3A Time of Concentration (Tc) (minutes)	5.0
P.D.B3A Time of Concentration (Tc) (minutes) Man	5.0

NOTES:

- 1. SUBJECT PARCEL IS SHOWN AS ASSESSORS MAP 52, LOT 189. RECORD TITLE FROM BOOK 69050, PAGE 394.
- 2. UTILITY LOCATIONS DEPICTED ON THIS PLAN, BOTH ABOVE AND BELOW-GROUND, ARE BASED UPON DIRECT FIELD OBSERVATIONS MADE BY METROWEST ENGINEERING, INC. PERSONNEL DURING A FIELD SURVEY, RECORD PLAN LOCATIONS, OR DIGSAFE PAINT-INDICATORS. METROWEST ENGINEERING, INC. DOES NOT WARRANT THAT ALL UTILITIES ARE SHOWN OR THAT UTILITIES THAT ARE DEPICTED ARE SHOWN IN THE CORRECT LOCATION, OR WITH THE PROPER MATERIAL DESIGNATION. METROWEST ENGINEERING, INC. DOES NOT WARRANT OR PROVIDE AN EXPRESS OR IMPLIED WARRANTY THAT ALL SUBSURFACE IMPROVEMENTS ARE SHOWN OR ARE SHOWN CORRECTLY, INCLUDING, BUT NOT LIMITED TO, UTILITIES, UNDERGROUND VAULTS, UNDERGROUND TANKS OR CHAMBERS, BUNKERS, DUCT BANKS, AND/OR OTHER MAN-MADE IMPROVEMENTS THAT LIE BENEATH THE GROUND SURFACE AT THE TIME OF THE SURVEY.
- 3.CONTRACTOR IS SOLELY RESPONSIBLE FOR ESTABLISHING EXISTING LOCATIONS OF ALL SUB-SURFACE UTILITIES AND MAN-MADE IMPROVEMENTS AND FOR THE REQUIREMENTS TO REPLACE, RELOCATE OR REPAIR EXISTING UTILITIES IN THE EVENT OF DAMAGE OCCURRING DURING CONSTRUCTION. MWE IS NOT RESPONSIBLE OR LIABLE FOR DELAYS OR COSTS ASSOCIATED WITH REMOVING/REPLACING/RELOCATING OF EXISTING UTILITIES REGARDLESS OF WHETHER SAID UTILITIES ARE ACCURATELY DEPICTED ON THIS SURVEY.
- 4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014.

BENCHMARKS

ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.=163.84'), A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CULVERT UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1929.)

ĺ	UNDEN	COMMONWEALTH ROAD FOR SHARE DRO	JON 11.0. V.D. 1525
	T.B.M.	DESCRIPTION	ELEVATION
	С	DHN SET IN 14" BLACK LOCUST	161.89'
	D	DHN SET IN 10" NORWAY MAPLE	168.74'

G S A A CONTRACTOR TO VERIFY ACTUAL LOCATION OF EXISTING UTILITY SERVICES IN THE FIELD PRIOR TO CONSTRUCTION (WATER, ELECTRICAL, ETC.) CALL DIG-SAFE BEFORE YOU DIG 811.

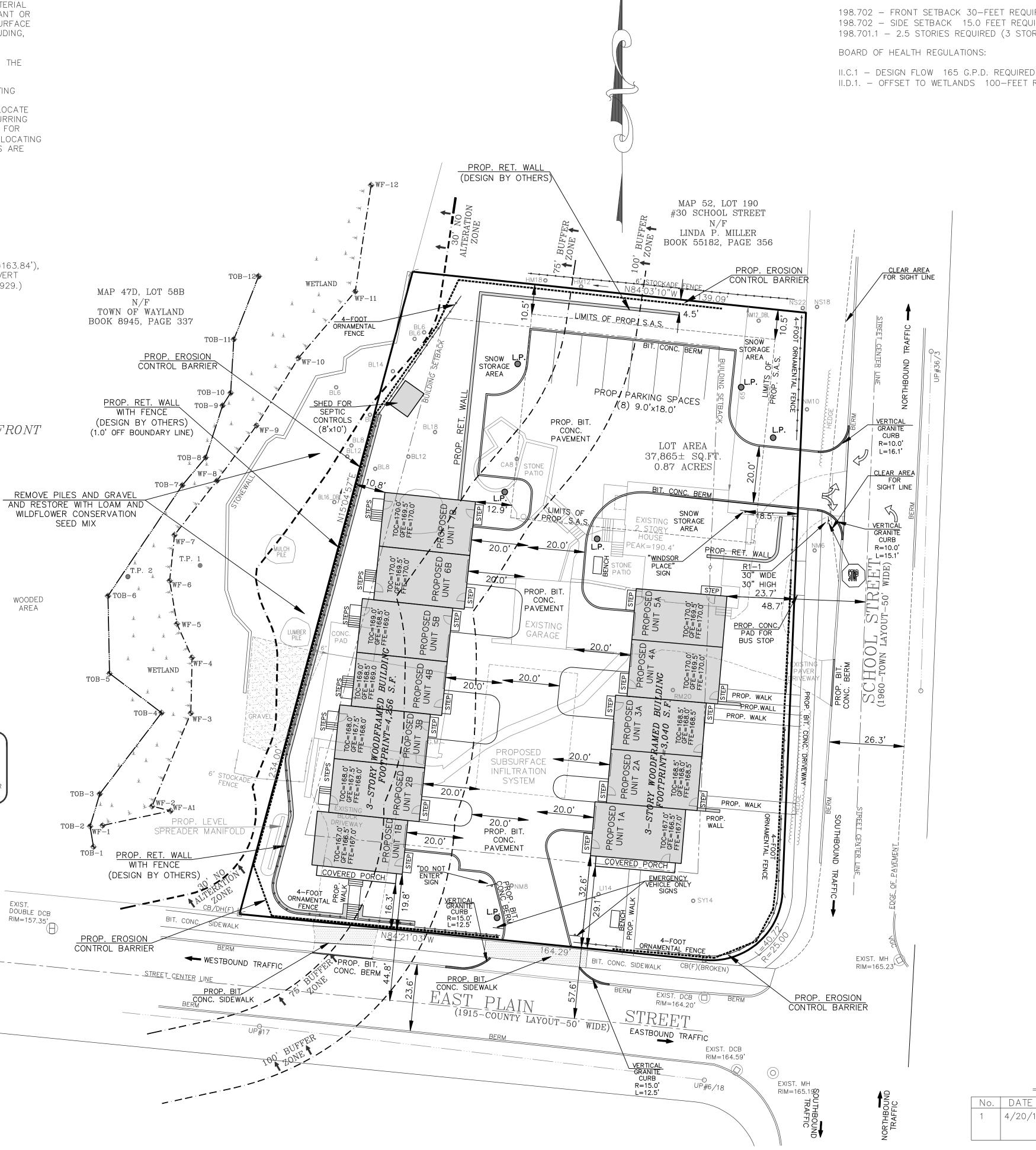
ZONING:

RESIDENCE ZONE 20,000 - 120' FRONT MINIMUM LOT AREA= 20,000¹⁵ S.F. MINIMUM LOT COVERAGE= 20% MINIMUM FRONTAGE= 200 FT. SETBACKS: FRONT LOT LINE = 30^2 FT. FRONT ROW CENTER LINE= 55 FT. SIDE YARD= 15^3 FT. REAR YARD=30 FT. MAX. HEIGHT = $35 \text{ FT.}/2\frac{1}{2}$ STORIES

2) IF §198-702 SHALL REQUIRE A GREATER SETBACK OR PERMIT A LESSER SETBACK, THE PROVISIONS OF SAID §198-702 SHALL PREVAIL OVER THIS TABLE.

3) SIDE YARDS SHALL MEET THE REQUIREMENTS OF \$\$198-702.4 AND 703.2, AND THE REQUIRED MINIMUM SIDE YARD MAY BE REDUCED IN ACCORDANCE WITH PROVISIONS OF §198-703.2

15) MINIMUM FRONT YARD WIDTH SHALL BE CALCULATED IN ACCORDANCE WITH THE REQUIREMENTS OF §198-705.1 OF THE ZONING BYLAW.

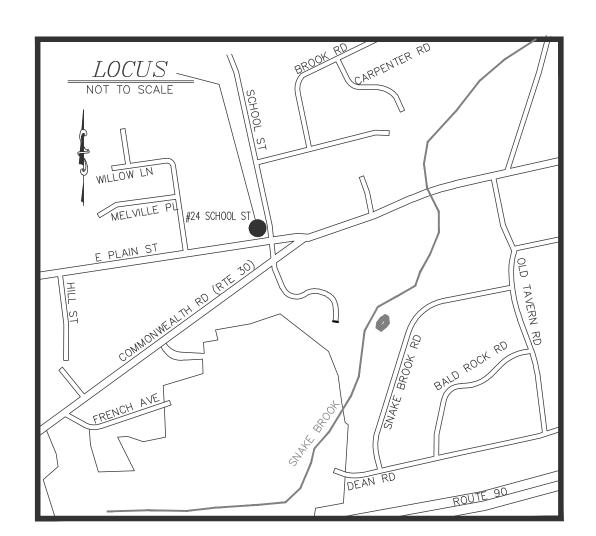


<u>CODE</u> BL#	DESCRIPTION BALCK LOCUST
CA#	CRAB APPLE
HM#	HEMLOCK
LI#	LINDEN
NM#	NORWAY MAPLE
NS#	NORWAY SPRUCE
RM#	red maple
SY#	SYCAMORE

	TAIL
TREE LOCATION	
	TREE DIAMETER

LEGEND

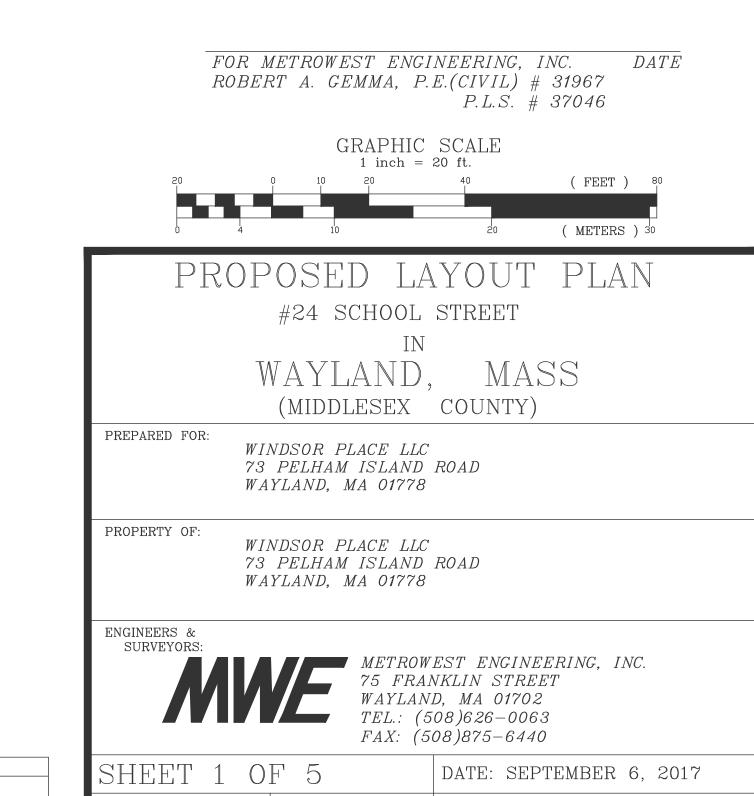
DCB HM	DRAIN CATCH BASIN MANHOLE WATER GATE
⊠wg ⊠gg	GAS GATE
	HYDRANT
U.P.	UTILITY POST
DH	DRILL HOLE
(F)	FOUND
СВ	CONCRETE BOUND
SB	STONE BOUND
WF	WETLAND FLAG
E.M.	ELECTRIC METER
G.M.	GAS METER
N/F	NOW OR FORMERLY
+200.0	EXISTING SPOT GRADE
200	EXISTING GRADING
	EXISTING OVERHEAD WIRE


LOCAL WAIVERS REQUESTED:

198–504 – EARTH MOVEMENT – 500 CUBIC YARDS MAXIMUM ALLOWED (106 CUBIC YARDS CUT, 4,571 CUBIC YARDS FILL REQUESTED)

198.702 - FRONT SETBACK 30-FEET REQUIRED (16.3 AND 23.7-FEET REQUESTED) 198.702 – SIDE SETBACK 15.0 FEET REQUIRED (10.8-FEET REQUESTED) 198.701.1 – 2.5 STORIES REQUIRED (3 STORIES REQUESTED)

II.C.1 – DESIGN FLOW 165 G.P.D. REQUIRED (110 G.P.D REQUESTED) II.D.1. – OFFSET TO WETLANDS 100-FEET REQUIRED (54.6-FEET REQUESTED)



ZONING TABLE						
RESIDENCE	RESIDENCE ZONE, 20,000 SQUARE FEET					
	REQUIRED	EXISTING	PROPOSED			
AREA	20,000 S.F.	37,865 S.F.	37,865 S.F.			
FRONTAGE	120 FEET	204.01 FEET	204.01 FEET			
SETBACKS: FRONT YARD	30 FEET*	17.5 FEET	19.8 FEET			
SIDE YARD	15 FEET	N.A.	N.A.			
REAR YARD	30 FEET	6.2 FEET	10.8 FEET			
BUILDING COVERAGE	20% MAXIMUM	0.092 (9.2%)	0.199 (19.9%)			
LOT COVERAGE	20% MAXIMUM	0.092 (9.2%)	0.199 (19.9%)			
IMPERVIOUS AREA	N.A.	8,908 S.F. (23.5%)	<u>19,956 S.F. (52.7%)</u>			
BUILDING COVERAGE	7,573 S.F.	3,493 S.F. (9.2%)	7,572 S.F. (19.9%)			
OTHER IMPERV. AREA	N.A.	5,415 S.F. (14.3%)	<u>12,384 S.F. (32.7%)</u>			
OPEN SPACE	N.A.	28,957 S.F. (76.5%)	17,909 S.F. (47.3%)			
BUILDING HEIGHT	35 FEET	28± FEET	35.5 FEET			
NUMBER OF STORIES	2.5 STORIES	2 STORIES	3 STORIES			
BUILDING TYPE	N.A.	2-STORY W.F.	3-STORY W.F.			
FLOOR AREA RATIO	N.A.	0.090 (9.0%±)	0.52 (52.0%±)			
NUMBER OF BEDROOMS	N.A.	4 BEDROOMS	26 BÉDROOMS			
UNITS PER ACRE	N.A.	0.9	13.8			
UNITS PER BUILDABLE ACRE	Ν.Α.	0.9	13.9			
# PARKING SPACES PER UNIT	N.A.	4	2.5			
# PARKING SPACES PER SQUARE FOOT	N.A.	N.A.	0.002			
# PARKING SPACES	N.A.	4	30*			

* – INCLUDES GARAGE PARKING

CALC'D BY: BTN

DRAFTER: BTN

FIELD BK: 621

PROJECT: WY_SCH

CAD FILE: PROP_SITE_3_R7.dwg

DWG FILE: SP090617_R1.dwg

REVISIONS:

REVISION 4/20/18 REVISIONS TO BUILDING FOOTPRINTS, GRADING, DRAINAGE SYSTEM SND SEPTIC SYSTEM

NOTES:

- 1. SUBJECT PARCEL IS SHOWN AS ASSESSORS MAP 52, LOT 189. RECORD TITLE FROM BOOK 69050, PAGE 394.
- 2. UTILITY LOCATIONS DEPICTED ON THIS PLAN, BOTH ABOVE- AND BELOW-GROUND, ARE BASED UPON DIRECT FIELD OBSERVATIONS MADE BY METROWEST ENGINEERING, INC. PERSONNEL DURING A FIELD SURVEY, RECORD PLAN LOCATIONS, OR DIGSAFE PAINT-INDICATORS. METROWEST ENGINEERING, INC. DOES NOT WARRANT THAT ALL UTILITIES ARE SHOWN OR THAT UTILITIES THAT ARE DEPICTED ARE SHOWN IN THE CORRECT LOCATION, OR WITH THE PROPER MATERIAL DESIGNATION. METROWEST ENGINEERING, INC. DOES NOT WARRANT OR PROVIDE AN EXPRESS OR IMPLIED WARRANTY THAT ALL SUBSURFACE IMPROVEMENTS ARE SHOWN OR ARE SHOWN CORRECTLY, INCLUDING, BUT NOT LIMITED TO, UTILITIES, UNDERGROUND VAULTS, UNDERGROUND TANKS OR CHAMBERS, BUNKERS, DUCT BANKS, AND/OR OTHER MAN-MADE IMPROVEMENTS THAT LIE BENEATH THE GROUND SURFACE AT THE TIME OF THE SURVEY.
- 3.CONTRACTOR IS SOLELY RESPONSIBLE FOR ESTABLISHING EXISTING LOCATIONS OF ALL SUB-SURFACE UTILITIES AND MAN-MADE IMPROVEMENTS AND FOR THE REQUIREMENTS TO REPLACE, RELOCATE OR REPAIR EXISTING UTILITIES IN THE EVENT OF DAMAGE OCCURRING DURING CONSTRUCTION. MWE IS NOT RESPONSIBLE OR LIABLE FOR DELAYS OR COSTS ASSOCIATED WITH REMOVING/REPLACING/RELOCATING OF EXISTING UTILITIES REGARDLESS OF WHETHER SAID UTILITIES ARE ACCURATELY DEPICTED ON THIS SURVEY.
- 4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014.

BENCHMARKS

ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.=163.84'), A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CULVERT UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1929.)

UNDEN	COMMONWERENT NORD FOR SMARE BRO	JOIN 11.0. V.D.
T.B.M.	DESCRIPTION	ELEVATION
С	DHN SET IN 14" BLACK LOCUST	161.89'
D	DHN SET IN 10" NORWAY MAPLE	168.74'

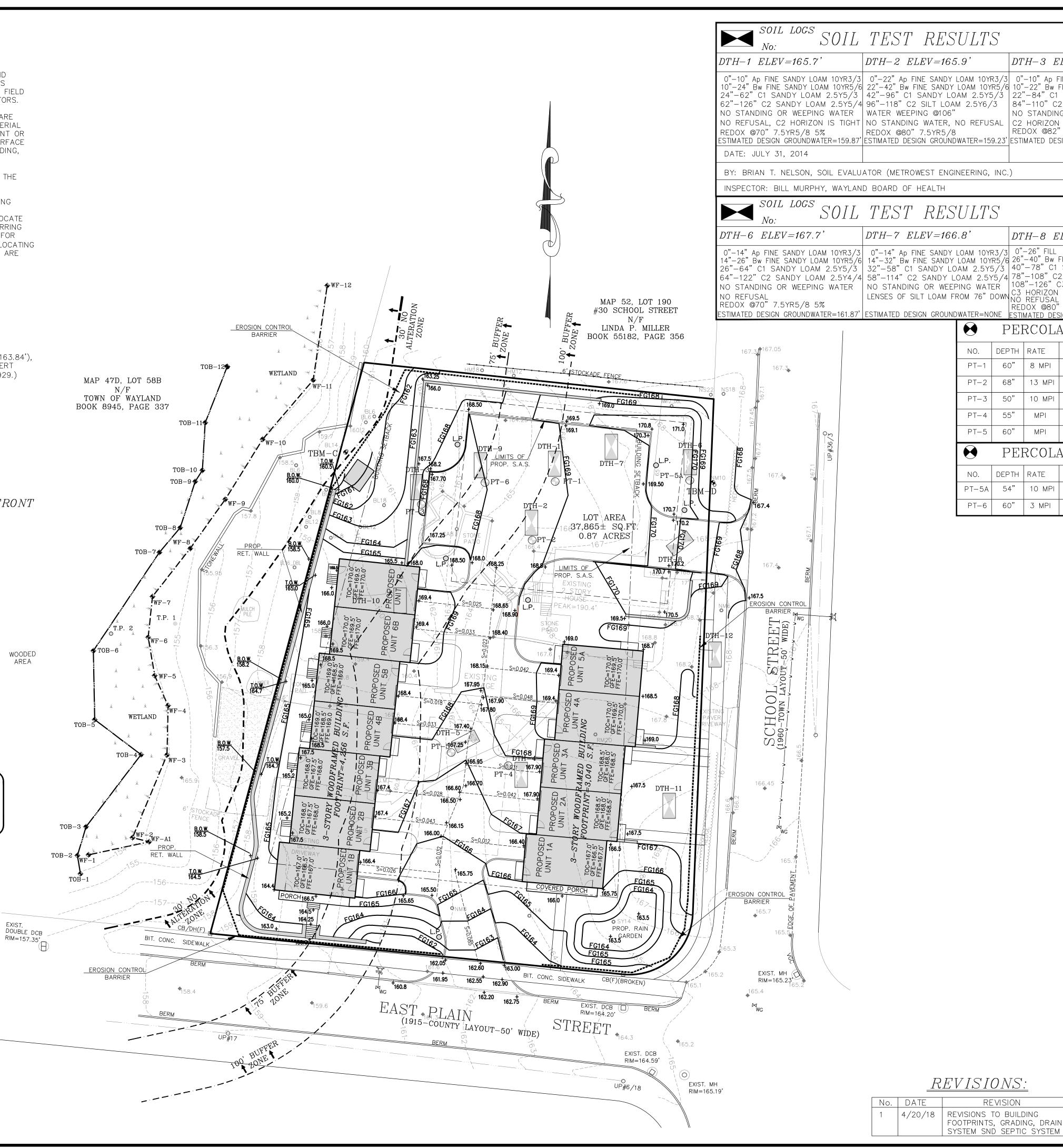
CONTRACTOR TO VERIFY ACTUAL LOCATION OF EXISTING UTILITY SERVICES IN THE FIELD PRIOR TO CONSTRUCTION (WATER, ELECTRICAL, ETC.) CALL DIG-SAFE BEFORE YOU DIG 811.

<u>ZONING</u>: RESIDENCE ZONE 20,000 - 120' FRONT MINIMUM LOT AREA= 20,000¹⁵ S.F. MINIMUM LOT COVERAGE= 20% MINIMUM FRONTAGE= 200 FT. SETBACKS: FRONT LOT LINE= 30² FT. FRONT ROW CENTER LINE= 55 FT. SIDE YARD= 15³ FT. REAR YARD=30 FT. MAX. HEIGHT = 35 FT./2½ STORIES

2) IF §198–702 SHALL REQUIRE A GREATER SETBACK OR PERMIT A LESSER SETBACK, THE PROVISIONS OF SAID §198–702 SHALL PREVAIL OVER THIS TABLE.

3) SIDE YARDS SHALL MEET THE REQUIREMENTS OF \$\$198-702.4 AND 703.2, AND THE REQUIRED MINIMUM SIDE YARD MAY BE REDUCED IN ACCORDANCE WITH PROVISIONS OF \$198-703.2

15) MINIMUM FRONT YARD WIDTH SHALL BE CALCULATED IN ACCORDANCE WITH THE REQUIREMENTS OF §198–705.1 OF THE ZONING BYLAW.



CODE	
BL#	BALCK LOCUST
CA#	CRAB APPLE
HM#	HEMLOCK
LI#	LINDEN
NM#	NORWAY MAPLE
NS#	NORWAY SPRUCE
RM#	red maple
SY#	SYCAMORE

<u>D</u>	etail
TREE LOCATION	
ORO	14
TREE CODE	

LEGEND

DCB	DRAIN CATCH BASIN
НМ	MANHOLE
⊠WG	WATER GATE
⊠GG	GAS GATE
ж.	HYDRANT
U.P.	UTILITY POST
DH	DRILL HOLE
(F)	FOUND
СВ	CONCRETE BOUND
SB	STONE BOUND
WF	WETLAND FLAG
E.M.	ELECTRIC METER
G.M.	GAS METER
N/F	NOW OR FORMERLY
+ 200.0	EXISTING SPOT GRADE
200	EXISTING GRADING
	EXISTING OVERHEAD WIRE

SULTS							
65.9'	DTH-3 E	LEV=161	.7'	DTH-4	ELEV=16	34.1'	DTH-5 ELEV=162.6'
DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/3 OAM 2.5Y6/3 D6" R, NO REFUSAL 5/8 JNDWATER=159.23'	LOAM 10YR5/6 AM 2.5Y5/3 M 2.5Y6/3 NO REFUSAL	20"-28" 28"-40" 40"-86" 86"-116' NO REFUSA NO REDC	Ap FINE SANDY Bw FINE SANDY C1 SANDY L C2 SANDY I L, NO STANDING X	' LOAM 10YR5/6 OAM 2.5Y5/4 _OAM 2.5Y4/4 OR WEEPING WATE	WEEPING WATER ©112" R NO REFUSAL REDOX ©72" 7.5YR5/8		
NGINEERING, INC	.)						
SULTS							
66.8' DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/3 Y LOAM 2.5Y5/4 EEPING WATER M FROM 76" DOWN UNDWATER=NONE	40"-40 BW 40"-78" C1 78"-108" C 108"-126" (C3 HORIZON NO REFUSAL REDOX @80"	FINE SANDY SANDY LO 2 LOAMY S 23 SILT LO, IS DAMP 5 7.5YR5/8 SIGN GROUND	LOAM 10YR5/6 AM 2.5Y5/4 AND 2.5Y5/3 AM 2.5Y6/3 10% WATER=161.53'	0"-16" 16"-30" 30"-46" 98"-118 WATER S WATER W REDOX S ESTIMATED	BW FINE SANDY BC SANDY L C1 SANDY L C2 SANDY TANDING @10 ÆEPING @88" EEN @62". N	LOAM 10YR3/3 (LOAM 10YR5/4 OAM 2.5Y5/4 OAM 2.5Y5/3 LOAM 2.5Y4/4 8" O REFUSAL IDWATER=157.8	5 15"-30" Bw FINE SANDY LOAM 10YR5/6 30"-66" C1 LOAMY SAND 2.5Y5/3 66"-112" C2 SILT LOAM 2.5Y5/4 WATER STANDING @100" WATER WEEPING @98" NO REFUSAL REDOX SEEN @68" 7.5YR5/8 10%
NO. DEF PT-1 6 PT-2 6 PT-3 5 PT-4 5	PTH RATE 0" 8 MPI 8" 13 MPI 0" 10 MPI 5" MPI 0" MPI	DATE 07/31/14 07/31/14 07/31/14 07/31/14 07/31/14	B.N. B.M. B.N. B.M. B.N. B.M.	30"–36" 36"–58" 58"–128 WATER S NO WEEF REDOX S ESTIMATED	Ap FINE SANDY Bw FINE SANDY C1 SANDY Lu C2 SANDY TANDING @12 VING WATER EEN @60"7.5	(LOAM 10YR5/6 OAM 2.5Y5/3 LOAM 2.5Y6/3 5 5 DWATER=161.0	0"-54" FILL 58"-82" C1 SANDY LOAM 2.5Y4/4 82"-114" C2 SANDY LOAM 2.5Y5/4 C2 HORIZON HAS LENSES OF SILT LOAM NO STANDING OR WEEPING WATER NO REFUSAL REDOX SEEN @64" 7.5YR5/8 ESTIMATED DESIGN GROUNDWATER=161.0'
	PERCOLA	, ,	D.IN. D.M.				ATOR (METROWEST ENGINEERING, INC. Yland board of health
NO. DEPTH RATE DATE BY INSP. PT-5A 54" 10 MPI 08/21/14 B.N. J.J.				L.		MATE E LCULATIO	ARTHWORK ONS:
PT-6 60" 3 MPI 08/21/14 B.N. J.J.				TOTAL FILL= $4,571$ C.Y. TOTAL CUT= 106 C.Y.			
					EXISTING HO DRIVEWAY – PROPOSED S EARTHWORK	USE – 274 CI 740 CUBIC Y SEPTIC SYSTEM <u>ACTIVITIES SU</u>	- 1,380 CUBIC YARDS (FILL) JBIC YARDS (FILL) ARDS (FILL) I – 788 CUBIC YARDS (FILL) <u>BJECT TO BYLAW</u> ,103 CUBIC YARDS (FILL)
			T		BERT A. G.	EMMA, P.E. $ERAPHIC S$ $1 inch = 20$ 20	ft. 40 (FEET) 80 20 (METERS) 30
				² KOI	#24 S	SCHOOL S IN	
			PREPARED		(MIDD)	LAND, Lesex (MASS County)
					WINDSOR F 73 PELHAN WAYLAND,	I ISLAND R	OAD
			PROPERTY		WINDSOR F 73 PELHAM WAYLAND,	I ISLAND R	OAD
<u>evision</u>	<u> /S:</u>		ENGINEERS SURVEY	ORS:	NE	75 FRANK WAYLAND, TEL.: (508	ST ENGINEERING, INC. (LIN STREET MA 01702 8)626–0063 3)875–6440
REVIS REVISIONS TO E	ION		SHEE	Τ2	OF 5		DATE: SEPTEMBER 6, 2017
FOOTPRINTS, GE SYSTEM SND SE	RADING, DRAII		CALC'D BY: DRAFTER: 1		FIELD BK: PROJECT:		AD FILE: PROP_SITE_3_R7.dwg WG FILE: SP090617_R1.dwg

DRAFTER: BTN

PROJECT: WY_SCH

DWG FILE: SP090617_R1.dwg

NOTES.

- 1. SUBJECT PARCEL IS SHOWN AS ASSESSORS MAP 52, LOT 189. RECORD TITLE FROM BOOK 69050, PAGE 394.
- 2. UTILITY LOCATIONS DEPICTED ON THIS PLAN, BOTH ABOVE- AND BELOW-GROUND, ARE BASED UPON DIRECT FIELD OBSERVATIONS MADE BY METROWEST ENGINEERING, INC. PERSONNEL DURING A FIEL SURVEY, RECORD PLAN LOCATIONS, OR DIGSAFE PAINT-INDICATORS. METROWEST ENGINEERING, INC. DOES NOT WARRANT THAT ALL UTILITIES ARE SHOWN OR THAT UTILITIES THAT ARE DEPICTED ARE SHOWN IN THE CORRECT LOCATION, OR WITH THE PROPER MATERIAL DESIGNATION. METROWEST ENGINEERING, INC. DOES NOT WARRANT C PROVIDE AN EXPRESS OR IMPLIED WARRANTY THAT ALL SUBSURFAC IMPROVEMENTS ARE SHOWN OR ARE SHOWN CORRECTLY, INCLUDING, BUT NOT LIMITED TO, UTILITIES, UNDERGROUND VAULTS, UNDERGROUND TANKS OR CHAMBERS, BUNKERS, DUCT BANKS, AND/OR OTHER MAN-MADE IMPROVEMENTS THAT LIE BENEATH THE GROUND SURFACE AT THE TIME OF THE SURVEY.
- 3.CONTRACTOR IS SOLELY RESPONSIBLE FOR ESTABLISHING EXISTING LOCATIONS OF ALL SUB-SURFACE UTILITIES AND MAN-MADE IMPROVEMENTS AND FOR THE REQUIREMENTS TO REPLACE, RELOCAT OR REPAIR EXISTING UTILITIES IN THE EVENT OF DAMAGE OCCURRING DURING CONSTRUCTION. MWE IS NOT RESPONSIBLE OR LIABLE FOR DELAYS OR COSTS ASSOCIATED WITH REMOVING/REPLACING/RELOCA OF EXISTING UTILITIES REGARDLESS OF WHETHER SAID UTILITIES ARE ACCURATELY DEPICTED ON THIS SURVEY.
- 4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014.

BENCHMARKS

811

ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.=163.8 A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CULVERT UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1929.)

T.B.M.	DESCRIPTION	ELEVATION
С	DHN SET IN 14" BLACK LOCUST	161.89'
D	DHN SET IN 10" NORWAY MAPLE	168.74'

CONTRACTOR TO VERIFY ACTUAL LOCATION OF EXISTING UTILITY SERVICES IN THE FIELD PRIOR TO CONSTRUCTION (WATER, ELECTRICAL, ETC.) CALL DIG-SAFE BEFORE YOU DIG 811.

ZONING:

RESIDENCE ZONE 20,000 - 120' FRO MINIMUM LOT AREA = $20,000^{15}$ S.F. PROP. INFILTRATION MINIMUM LOT COVERAGE 20% 84 SHEA LOW F MINIMUM FRONTAGE= 200 FT. GALLEYS (4'x4'x3 SETBACKS: TOP ELEV.=16 FRONT LOT LINE = 30^2 FT. INV.S IN=162.50' FRONT ROW CENTER LINE= 55 FT. INV.S IN=163.5' SIDE YARD= 15^3 FT. 6" INV. OUT=1 REAR YARD=30 FT. 6" INV. OUT=10 MAX. HEIGHT = $35 \text{ FT.}/2\frac{1}{2}$ STORIES BOTTOM ELEV.=

2) IF §198-702 SHALL REQUIRE A GREATER SETBACK OR PERMIT A LESSER SETBACK, THE PROVISIONS OF SAID \$198-702 SHALL PREVAIL OVER THIS TABLE.

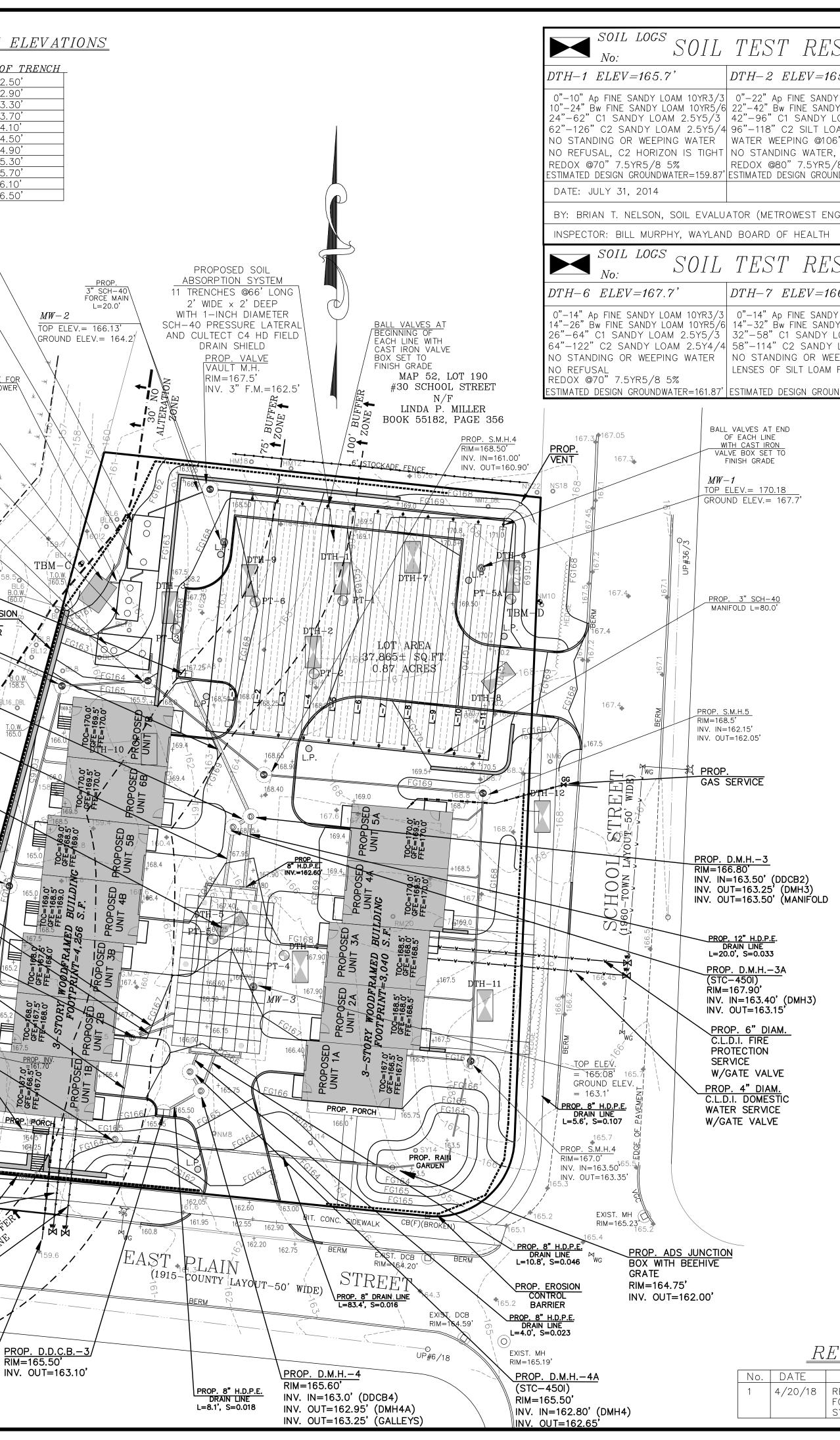
3) SIDE YARDS SHALL MEET THE REQUIREMENTS OF \$\$198-702.4 AND 703.2, AND THE REQUIRED MINIMUM SIDE YARD MAY BE REDUCED IN ACCORDANCE WITH PROVISIONS OF §198-703.2

15) MINIMUM FRONT YARD WIDTH SHALL BE CÁLCULATED IN ACCORDANCE WITH THE REQUIREMENTS 6" IN OF §198-705.1 OF THE ZONING BYLAW.

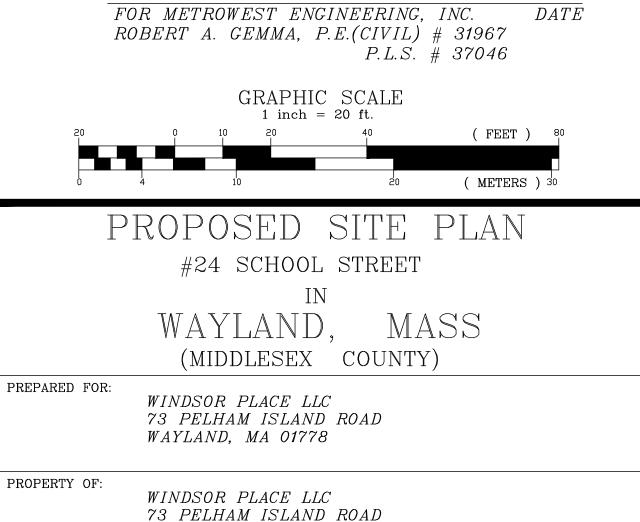
EXISTING TREE *DESCRIPTION LEGEND*

<u>CODE</u> BL#	DESCRIPTION BALCK LOCUST	
CA#	CRAB APPLE	DETAIL
HM#	HEMLOCK	TREE LOCATION
LI#	LINDEN	
NM#	NORWAY MAPLE	
NS#	NORWAY SPRUCE	
RM#	RED MAPLE	TREE CODE
SY#	SYCAMORE	

LEGEND


DRAIN CATCH BASIN MANHOLE
WATER GATE
GAS GATE
HYDRANT
UTILITY POST
DRILL HOLE
FOUND
CONCRETE BOUND
STONE BOUND
WETLAND FLAG
ELECTRIC METER
GAS METER
NOW OR FORMERLY
EXISTING SPOT GRADE
EXISTING GRADING
EXISTING OVERHEAD WIRE

<u>PR0P</u>	<u>osed sc</u>	<u>oil absoi</u>	RPTION SY	<u>STEM ELEVA</u>
	LOCATION	BEG. LINE		OTTOM OF TRENCH
ND	LINE 1 LINE 2	<u> </u>	<u> 164.50' </u>	<u> </u>
NS A FIELD	LINE 3	165.30'	165.30'	163.30'
TORS.	LINE 4 LINE 5	<u>165.70'</u> 166.10'	165.70' 166.10'	<u> </u>
ARE	LINE 6	166.50'	166.50'	<u> </u>
TERIAL ANT OR	LINE 7 LINE 8	<u> </u>	166.90' 167.30'	165.30'
JRFACE	LINE 9 LINE 10	<u> </u>	<u> 167.70' </u>	<u> </u>
iding,	LINE 10 LINE 11	168.50'	168.50'	166.50'
THE			ELECTRIC COND FOR PUMP CONT	UIT ROLS
ING			P. 5,000 GALLON	
OCATE			P CHAMBER ` 5 IN=159.00'	
JRRING			OUT=159.00'	
FOR LOCATING				
S ARE	CONT	<u>) FOR SEPTIC S</u> TROLS, PUMP A		MW-
	AND	FAST BLOWER		
		P. 2,500 GALLC I TREATMENT T		
	(2 C	OMPARTMENT)		VENT LINE FOR
		5 IN=159.20' OUT=159.10'		FAST BLOWER
	IIN V.	001-139.10		
	PROP SEPTI	<u>. 10,000 GALLC</u> C TANK		
163.84'),	INV.S	IN=159.65'		
/ERT 929.)		OUT=159.40'	TOB-12	
/		, LOT 58B /F	\bigwedge	
	TOWN OF	WAYLAND	/	
	воок 8945	, PAGE 337		
		<u>D.D.C.B.</u> _2	$\Gamma OB - 11 \left(\frac{PROP. S.M.H.}{RIM = 164.0'} \right)$	\searrow / \searrow
		67.25')UT=164.25'	INV.s IN=159 INV. OUT=15	
				TBM- 158.5
		12" H.D.P.E. AIN LINE	B−10	158.5 BL6 B.0.W./
	L=44.6	5' S=0.017 TOP	3-0/* /	160.0
FRONT		_		
	DRAI	2 [°] H.D.P.E.	PROP. \$5	BARRIER
ATION SYSTEM 1 _OW PROFILE	L=4.0, P <u>ROP. 12[°]</u> H.D.P	S=0.025 .E. TOB-8	RIM=165. INV. IN=1	2' / BL12
¥x4'x3' HIGH) V.=165.25'	DRAIN LINE L=16.0', S=0	0.034	INV. OUT	<u>B.O.W.</u>
2.50' (SOUTH)		TOB-7		
3.5' (NORTH) 0UT=163.75'		<u> </u>	/ 1 55.95	BL16_DBL
UT=164.50'				<u>T.O.W.</u>
LEV.=162.25'				
	į	T.P. 1	200	
	T.H	P. 2 →		
			•156.3	
	TOB-6	i l	1,00.5 1, 1, <u>B.0.</u> 1, 158.2	N 19 1165
PROP. D.M.H5	PROP. RIM=16	5.0' *		<u>T.O.W.</u> 164.7
RIM=167.00' 6" INV. IN=164.00		=161.05' \\ JT=161.00' -\\	156,9	T.O.W 165.0
6" INV. IN=163.40)' <u> </u>	× *	50	164.7 P
INV. OUT=161.80'	*		ROP. 8" DRAIN LINE =13.1', S=0.027	
	тов-5	<u><u></u></u>	ROP. 8" DRAIN LINE	
PROP. D.M.H.	<u>-6</u>		<u>B.O.W.</u>	
RIM=164.00' INV. IN=160.	70' (DMH5) T	0B-4	152.5	168.5 167.5
INV. IN=160. INV. OUT=16	70 (R.G.)		<u>P. 8" DRAIN LINE</u> 27.6', S=0.040	
	ى		165.9	
PROP. D.M.H RIM=164.2'		× × / / ``		
INV. IN=159 INV. OUT=15	v	× /		2000 1162 116 116
K	B-3	· /	B.O.W.	1657 1665 1665 1665 1665 1665 1665 1665
			158.5	201 167.5
TOB-	2 (1 1	PROP. 8" D L=36.5', 2 PROP. 8" DRA		PROP. INV. =161.70
100		<u>PROP. 8" DRA</u> 55 L=9.3', S=C		66.67
	TOB-1		<u>1.0.W.</u> 164.5	
			NON	(PPOD) met.
		157		© 1645+ 6767 1645+ 16425
EXIST.			ния 10 ^{м1} ,58 12 /DH(F) _159	6 1 164 25 163.0 + / 164
DOUBLE DCB RIM=157.35'		BIT. CONC.	B/DH(F)	
\oplus	Ì		SIDEWALK	
PROP. LEVEL			BERM	
SPREADER M INV. IN=158.	IANIFOLD, L=2 5'	20.0 [°] <u>PROP. (</u> C.L.D.I.		ON BURFER IN
INV. @ENDS=			TION PROP. EROS	ION BUTTE
		₩ W/GATE	VALVE	75 201 159.6
		BERM		
			UP#17	
				BUFFER
		PROP. 4" DIA C.L.D.I. DOME		BUFF
			SHL 1	



W/GATE VALVE ----

PROP. GAS SERVICE

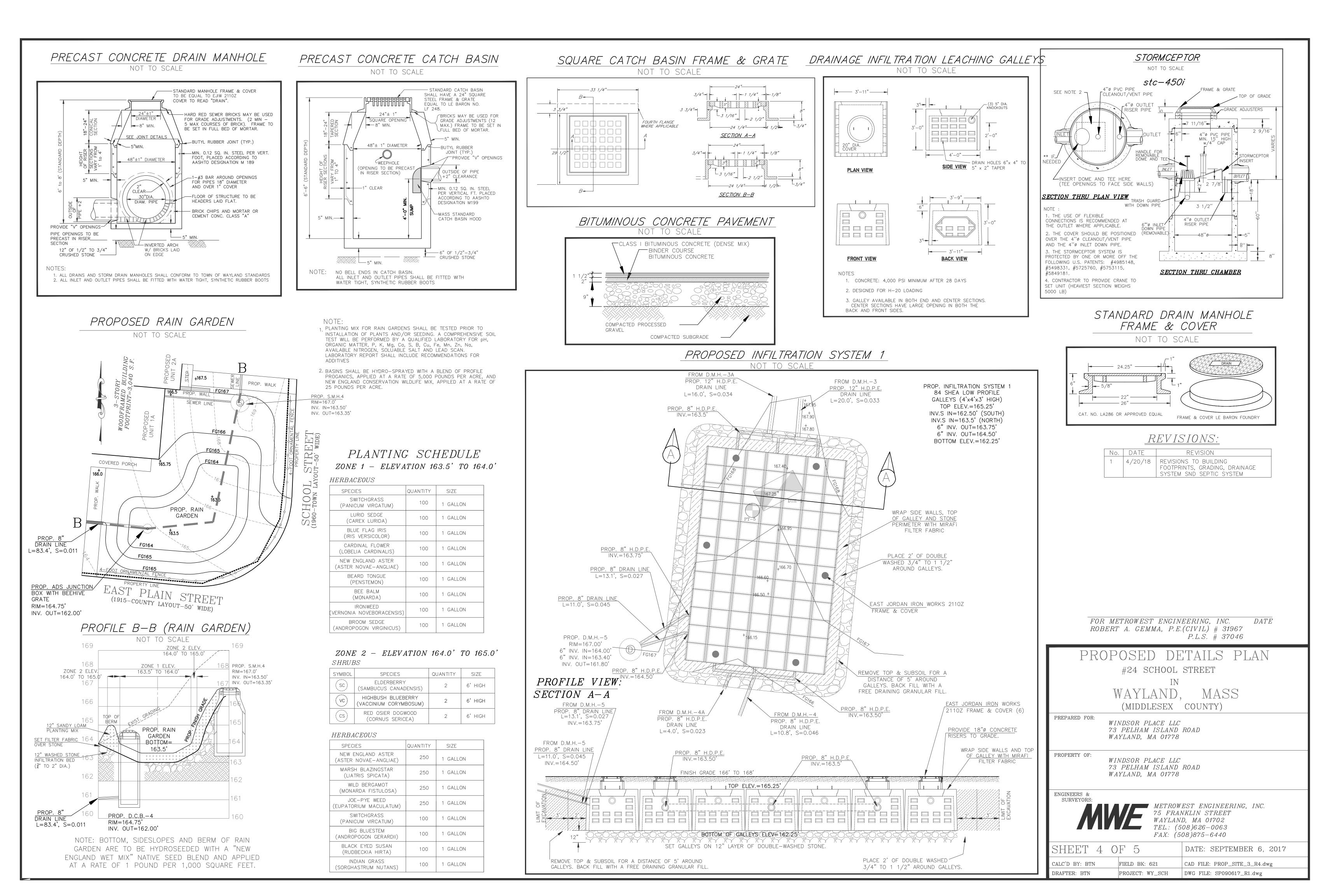
S	ULT	5									
65	.9'	DT	'H-3 E	<i>ELEV=161</i>	'.7'		DTH-4	ELEV=164.1'	DTH-5 ELEV=162.6'		
				0YR5/6 5Y5/3 6/3 FUSAL	20"-28" Ap 28"-40" By 40"-86" (86"-116" NO REFUSAL, NO REDOX	D FINE SANDY LOAM 10YR3/3 V FINE SANDY LOAM 10YR5/6 C1 SANDY LOAM 2.5Y5/4 C2 SANDY LOAM 2.5Y4/4 NO STANDING OR WEEPING WATEF	6 34"—84" C1 SANDY LOAM 2.5Y5/4 84"—118" C2 SANDY LOAM 2.5Y4/3 WEEPING WATER @112"				
NGIN	NEERING,	INC.)							_I		
		,									
'S	ULT	S									
66	.8'	DT	'H-8 E	ELEV=168	3. <i>2</i> '		DTH-9	ELEV=163.0'	DTH-10 ELEV=160.75'		
DY LO. / L(EEP 1 FR	AM 2.5Y5 DAM 2.5Y	R5/6 26, 5/3 40' 5/4 78' 5/4 78' ER C3 00WN NO REI	-40 Bw '-78"C1 '-108"C '-126"(HORIZON REFUSAL)0X @80'	SANDY LO SANDY LO 2 LOAMY S C3 SILT LO I IS DAMP 7 7.5YR5/8	AM 2.5 AND 2 AM 2.5 10%	6Y5/4 .5Y5/3 Y6/3	16"-30" B 30"-46" E 46"-98" (98"-118" WATER ST WATER WE REDOX SE	v FINF SANDY LOAM 10YR5/6	0"-15" Ap FINE SANDY LOAM 10YR3/3 15"-30" Bw FINE SANDY LOAM 10YR5/6 30"-66" C1 LOAMY SAND 2.5Y5/3 66"-112" C2 SILT LOAM 2.5Y5/4 WATER STANDING @100" WATER WEEPING @98" NO REFUSAL REDOX SEEN @68" 7.5YR5/8 10% ESTIMATED DESIGN GROUNDWATER=155.08'		
	\bigotimes	PEI	RCOL	ATION			DTH-11	<i>ELEV=166.0</i> '	DTH-12 ELEV=168.2'		
-	NO.	DEPTH	RATE	DATE	BY	INSP.	0"–18" FIL 18"–30" Ap	L FINE SANDY LOAM 10YR3/3	0"-54" FILL 58"-82" C1 SANDY LOAM 2.5Y4/4 82"-114" C2 SANDY LOAM 2.5Y5/4		
	PT-1	60"	8 MPI	07/31/14	B.N.	B.M.	30"-36" Bw FINE SANDY LOAM 10YR5/6 B.M. 36"-58" C1 SANDY LOAM 2.5Y5/3 58"-128" C2 SANDY LOAM 2.5Y6/3 B.M. WATER STANDING @125"		82"-114" C2 SANDY LOAM 2.5Y5, C2 HORIZON HAS LENSES OF SILT LO		
	PT-2	68"	13 MPI	07/31/14	B.N.	B.M.	58°-128° WATER STA NO WEEPIN	C2 SANDY LOAM 2.5Y6/3 Anding @125" Jg water	NO STANDING OR WEEPING WATER		
	PT-3	50"	10 MPI	07/31/14	B.N.	B.M.	REDOX SEI	EN @60"7.5YR5/85% DESIGN GROUNDWATER=161.0	REDOX SEEN @64" 7.5YR5/8 ESTIMATED DESIGN GROUNDWATER=161.0'		
	PT-4	55"	MPI	07/31/14		B.M.		GUST 21, 2014			
PT-5 60" MPI 07/31/14 B.N. B.M.					B.N.	B.M.	BY: BRIAN	I T. NELSON, SOIL EVALUA	ATOR (METROWEST ENGINEERING, INC.)		
	\bigotimes	PEI	RCOL	ATION			INSPECTOR	R: JULIA JUNGHANNS, WAN	YLAND BOARD OF HEALTH		
	NO.	DEPTH	RATE	DATE	ΒY	INSP.					
ľ	PT-5A	54"	10 MPI	08/21/14	B.N.	J.J.					
	PT-6	60"	3 MPI	08/21/14	B.N.	J.J.					

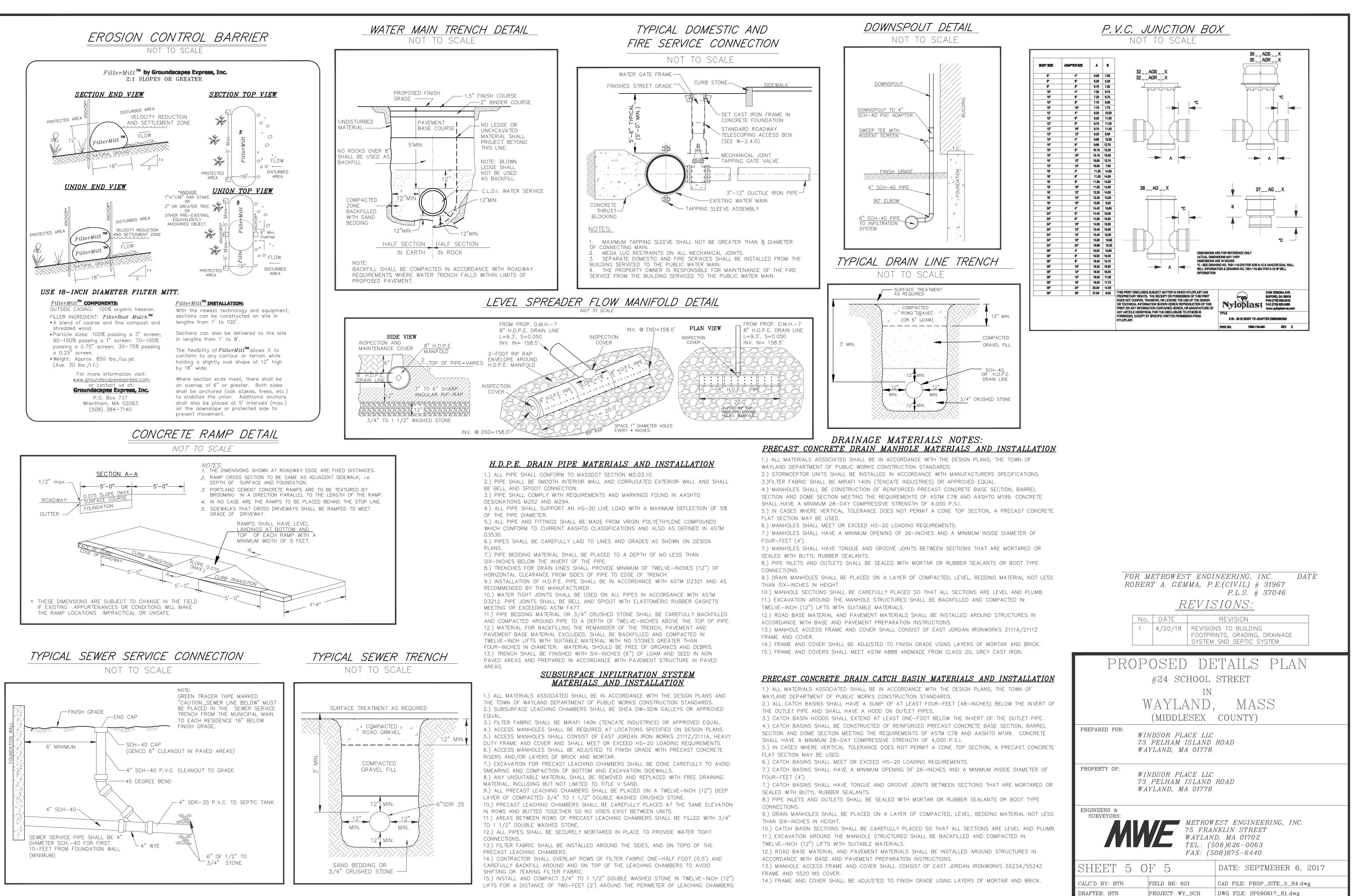
REVISIONS:

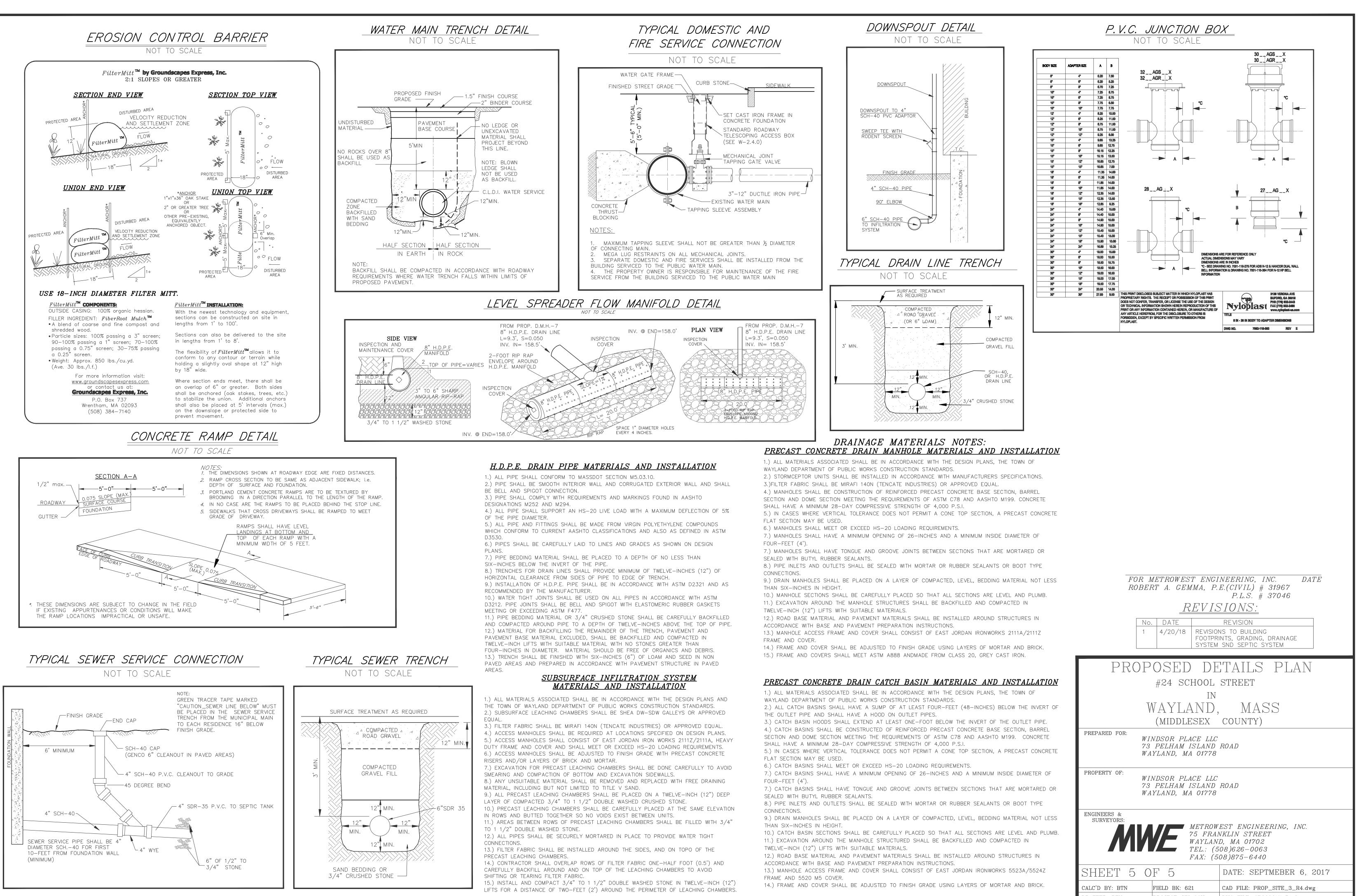
REVISION 1 4/20/18 REVISIONS TO BUILDING FOOTPRINTS, GRADING, DRAINAGE SYSTEM SND SEPTIC SYSTEM

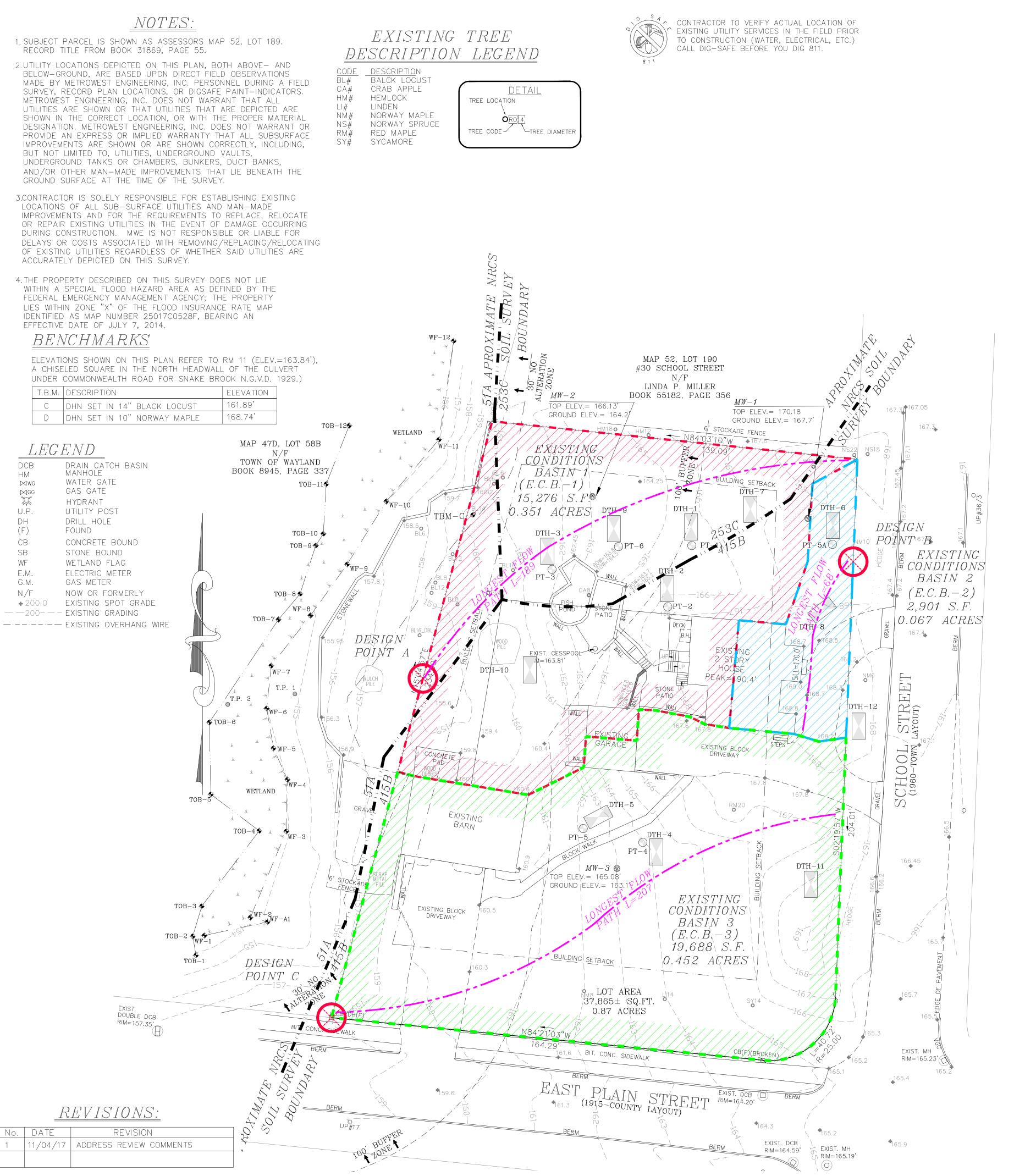
FAX: (508)875–6440 SHEET 3 OF 5 DATE: SEPTEMBER 6, 2017 CALC'D BY: BTN FIELD BK: 621 CAD FILE: PROP_SITE_3_R4.dwg DRAFTER: BTN PROJECT: WY_SCH DWG FILE: SP090617_R1.dwg

METROWEST ENGINEERING, INC.


75 FRANKLIN STREET WAYLAND, MA 01702


TEL: (508)626-0063


WAYLAND, MA 01778


ENGINEERS &

SURVEYORS:

SOIL LOGS SOIL TES	T RESULTS									
NO:	<i>ELEV=165.9</i> '	DTH-3 ELEV=161.	7'	DTH-4 ELEV=	164.1'	DTH-5 ELEV=1	162.6 [°]			
10"-24" Bw FINE SANDY LOAM 10YR5/6 22"-42" E 24"-62" C1 SANDY LOAM 2.5Y5/3 42"-96" 62"-126" C2 SANDY LOAM 2.5Y5/4 96"-118" NO STANDING OR WEEPING WATER WATER WA NO REFUSAL, C2 HORIZON IS TIGHT NO STAND	C1 SANDY LOAM 2.5Y5/3 C2 SILT LOAM 2.5Y6/3 EEPING @106" DING WATER, NO REFUSAL 80" 7.5YR5/8	10"-22" BW FINE SANDY L 22"-84" C1 SANDY LOA 84"-110" C2 SILT LOAN NO STANDING WATER, N C2 HORIZON IS DAMP REDOX @82" 7.5YR5/8	.0AM 10YR5/6 AM 2.5Y5/3 1 2.5Y6/3 IO REFUSAL	20"–28" Ap FINE SAN 28"–40" Bw FINE SAN 40"–86" C1 SANDY 86"–116" C2 SANDY NO REFUSAL, NO STANDIN NO REDOX	DY LOAM 10YR5/6 LOAM 2.5Y5/4 ′LOAM 2.5Y4/4 G OR WEEPING WATER	34"-84" C1 SANDY 84"-118" C2 SANDY WEEPING WATER @1	DY LOAM 10YR5/6 LOAM 2.5Y5/4 7 LOAM 2.5Y4/3 12" 5/8			
BY: BRIAN T. NELSON, SOIL EVALUATOR (METROWEST ENGINEERING, INC.) INSPECTOR: BILL MURPHY, WAYLAND BOARD OF HEALTH										
Soil logs Soil TEST RESULTS										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{ELEV=166.8'}$	DTH-8 ELEV=168	. 2'	DTH-9 ELEV=1	163.0'	DTH-10 ELEV=	160.75'			
64"-122" C2 SANDY LOAM 2.5Y4/4 58"-114" No standing or weeping water no stan	C1 SANDY LOAM 2.5Y5/3 C2 SANDY LOAM 2.5Y5/4 DING OR WEEPING WATER F SILT LOAM FROM 76"DOWN	40 – 78 C1 SANDY LOA 78"–108" C2 LOAMY SA 108"–126" C3 SILT LOA	M 2.5Y5/4 ND 2.5Y5/3 M 2.5Y6/3 10%	30 - 46 BC SANDY 46"-98" C1 SANDY 98"-118" C2 SAND WATER STANDING @ WATER WEEPING @88 REDOX SEEN @62",	DY LOAM 10YR5/6 LOAM 2.5Y5/4 LOAM 2.5Y5/3 Y LOAM 2.5Y4/4 108" 8" NO REFUSAL	0"-15" Ap FINE SAN 15"-30" Bw FINE SAN 30"-66" C1 LOAMY 66"-112" C2 SILT L WATER STANDING @ WATER WEEPING @9 NO REFUSAL REDOX SEEN @68" ESTIMATED DESIGN GRO	DY LOAM 10YR5/6 SAND 2.5Y5/3 OAM 2.5Y5/4 100" B" 7.5YR5/8 10%			
	F F	PERCOLATION		DTH-11 ELEV =	166.0'	DTH-12 ELEV =	168.2'			
	PT-1 60 PT-2 68 PT-3 50 PT-4 55	O" 8 MPI 07/31/14 B" 13 MPI 07/31/14 O" 10 MPI 07/31/14 5" MPI 07/31/14	B.N. B.M. B.N. B.M. B.N. B.M. B.N. B.M.	0"–18" FILL 18"–30" Ap FINE SANI 30"–36" Bw FINE SAN 36"–58" C1 SANDY 58"–128" C2 SANDY WATER STANDING @ NO WEEPING WATER REDOX SEEN @60" ESTIMATED DESIGN GROU DATE: AUGUST 21,	LOAM 2.5Y5/3 (LOAM 2.5Y6/3 125" 7.5YR5/8 5% JNDWATER=161.0'	0"-54" FILL 58"-82" C1 SANDY 82"-114" C2 SANDY C2 HORIZON HAS LENS NO STANDING OR WE NO REFUSAL REDOX SEEN @64" ESTIMATED DESIGN GROU	SES OF SILT LOAM EEPING WATER 7.5YR5/8			
	PT-5 60	D" MPI 07/31/14 PERCOLATION		BY: BRIAN T. NELS		× ×	/ /			
			BY INSP.	INSPECTOR: JULIA J	JUNGHANNS, WAYI	LAND BOARD OF HE	AL I H			
	PT-5A 5- PT-6 60	, ,		USDA	<u>SOIL CI</u>	LASSIFIC	HYDROLOGIC			
				SOIL NUMBER 51A	SOIL SERIE SWANSEA	S	SOIL GROUP B/D			
				253C 415B	HINCKLEY NARRAGAN SILT LOAM		A B			
EXISTING CONDITIONS	BASIN PROP	<u>ERTIES:</u>		SOILS ON SITE AF	RE SANDY LOAM		R ANALSYIS			
<i>EXISTING CONDITIONS BASIN</i> TOTAL BASIN AREA = 15,276 S.F. (0.351 ACRES HYDRAULIC LENGTH = 189 FEET CHANGE IN ELEVATION = 9.8 FEET BASIN SLOPE = 0.052 (5.2%)				CLASSIFIED WITHIN			DATE			
<u>GROUND COVER</u> IMPERVIOUS AREA = 2,205 S.F. (0.051 ACRES) LAWN AREA (GOOD COND.) = 13,071 S.F. (0.30	98 ((ACRES) <u>PRODUCT</u> 0.051 5.000 0.300 18.300			F	IVIL) # 31967 P.L.S. # 37046				
WEIGHTED CURV	SUM ('E NUMBER (C _N) = (23.30	0.351 SUM 23.300 00/0.351) = 66.4	20	0 10	$\begin{array}{rcl} \text{GRAPHIC} & \text{SCA} \\ 1 & \text{inch} = 20 & \text{ft} \\ 20 & & 40 \end{array}$) 80			
	IN		0	4 10		20 (METER	5) 30			
<i>EXISTING CONDITIONS BASIN</i> TOTAL BASIN AREA = 2,901 S.F. (0.067 ACRES HYDRAULIC LENGTH = 68 FEET CHANGE IN ELEVATION = 1.3 FEET	Z/.				URE					
BASIN SLOPE = 0.019 (1.9%) <u>GROUND COVER</u> IMPERVIOUS AREA = 1,460 S.F. (0.034 ACRES) LAWN AREA (GOOD COND.) = 1,440 S.F. (0.033	98 (6 ACRES) 61 (<u>(ACRES)</u> <u>PRODUCT</u> 0.034 3.332 0.033 2.013 0.067 SUM 5.345	WAT	ERSHED		IDITIONS IEATION TREET	PLAN			
WEIGHTED CUR	VE NUMBER (C _N) = (5.34)			WAY	LAND,	MASS				
EXISTING CONDITIONS BASIN	I 3 (E.C.B.−3)		PREPARED	CHADWICK 73 PELHA	K HOMES AM ISLAND RO MA 01778	AD				
TOTAL BASIN AREA = 19,688 S.F. (0.452 ACR) HYDRAULIC LENGTH = 207 FEET CHANGE IN ELEVATION = 8.8 FEET BASIN SLOPE = 0.042 (4.2%) GROUND COVER		A (ACRES) PRODUCT	PROPERTY	OF:	KNOWLES & NDGE STREET					
$\frac{1}{10000000000000000000000000000000000$	98	0.11711.4660.33420.374	ENGINEERS SURVEY(&						
$\frac{10.004 \times 1000}{\text{SUM } 0.452 \times 1000} = \frac{10.004 \times 1000}{\text{SUM } 0.452 \times 1000} = \frac{10.004 \times 1000}{\text{SUM } 0.452 \times 1000} = 70.4$ $\frac{10.004 \times 1000}{\text{SURVEYORS:}}$ $10.004 \times$										
EXISTING CONDITIONS - TOTAL IMPERVIOUS EXISTING CONDITIONS - TOTAL LAWN AREA	,		SHEE	T 1 OF 1		ATE: DECEMBER	19, 2016			
			CALC'D BY: DRAFTER:			D FILE: EC_HYDRO_R G FILE: SK121916_R1				

NOTES:

- 1. SUBJECT PARCEL IS SHOWN AS ASSESSORS MAP 52, LOT 189. RECORD TITLE FROM BOOK 31869, PAGE 55.
- 2. UTILITY LOCATIONS DEPICTED ON THIS PLAN, BOTH ABOVE AND BELOW-GROUND, ARE BASED UPON DIRECT FIELD OBSERVATIONS MADE BY METROWEST ENGINEERING, INC. PERSONNEL DURING A FIELD SURVEY, RECORD PLAN LOCATIONS, OR DIGSAFE PAINT-INDICATORS. METROWEST ENGINEERING, INC. DOES NOT WARRANT THAT ALL UTILITIES ARE SHOWN OR THAT UTILITIES THAT ARE DEPICTED ARE SHOWN IN THE CORRECT LOCATION, OR WITH THE PROPER MATERIAL DESIGNATION. METROWEST ENGINEERING, INC. DOES NOT WARRANT OR PROVIDE AN EXPRESS OR IMPLIED WARRANTY THAT ALL SUBSURFACE IMPROVEMENTS ARE SHOWN OR ARE SHOWN CORRECTLY, INCLUDING. BUT NOT LIMITED TO, UTILITIES, UNDERGROUND VAULTS, UNDERGROUND TANKS OR CHAMBERS, BUNKERS, DUCT BANKS, AND/OR OTHER MAN-MADE IMPROVEMENTS THAT LIE BENEATH THE GROUND SURFACE AT THE TIME OF THE SURVEY.

3.CONTRACTOR IS SOLELY RESPONSIBLE FOR ESTABLISHING EXISTING LOCATIONS OF ALL SUB-SURFACE UTILITIES AND MAN-MADE IMPROVEMENTS AND FOR THE REQUIREMENTS TO REPLACE, RELOCATE OR REPAIR EXISTING UTILITIES IN THE EVENT OF DAMAGE OCCURRING DURING CONSTRUCTION. MWE IS NOT RESPONSIBLE OR LIABLE FOR DELAYS OR COSTS ASSOCIATED WITH REMOVING/REPLACING/RELOCATING OF EXISTING UTILITIES REGARDLESS OF WHETHER SAID UTILITIES ARE ACCURATELY DEPICTED ON THIS SURVEY.

4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014.

BENCHMARKS

ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.=163.84'), A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CULVERT UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1929.LOT 58B

T.B.M.	DESCRIPTION	ELEVATION	↓/F ↓F WAYLAND
С	DHN SET IN 14" BLACK LOCUST	161.89'	945, PAGE 337
D	DHN SET IN 10" NORWAY MAPLE	168.74'	

DETAIL

└─TREE DIAMETE

OR014

∕o^{T.P.} 2

1

×

*

TOB-

×

TOB-6

CONTRACTOR TO VERIFY ACTUAL LOCATION OF EXISTING UTILITY SERVICES IN THE FIELD PRIOR TO CONSTRUCTION (WATER, ELECTRICAL, ETC.) CALL DIG-SAFE BEFORE YOU DIG 811.

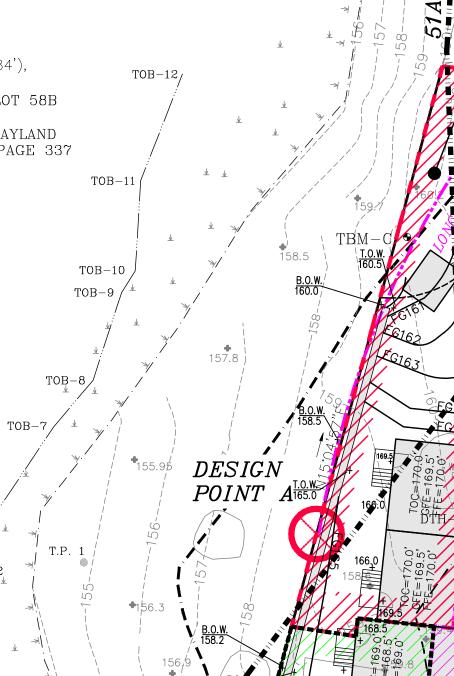
ZONING.

RESIDENCE ZONE 20,000 - 120' FRONT MINIMUM LOT AREA = $20,000^{15}$ S.F. MINIMUM LOT COVERAGE = 20%MINIMUM FRONTAGE= 200 FT. SETBACKS: FRONT LOT LINE= 30^2 FT. FRONT ROW CENTER LINE= 55 FT. SIDE YARD= 15^3 FT. RFAR YARD=30 FT. MAX. HEIGHT = 35 FT. $/2\frac{1}{2}$ STORIES

2) IF §198–702 SHALL REQUIRE A GREATER SETBACK OR PERMIT A LESSER SETBACK. THE PROVISIONS OF SAID §198-702 SHALL PREVAIL OVER THIS TABLE.

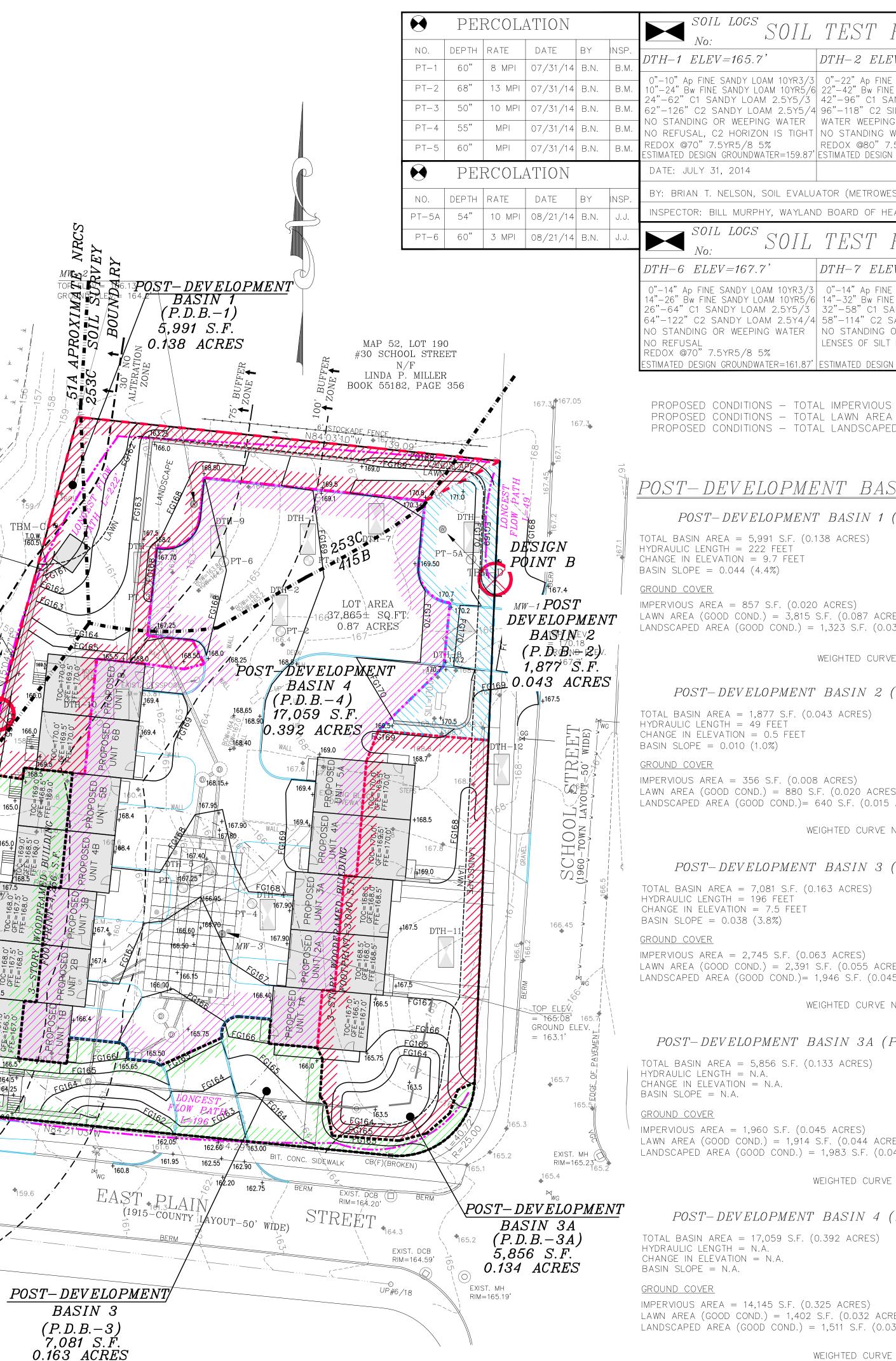
3) SIDE YARDS SHALL MEET THE REQUIREMENTS OF \$\$198-702.4 AND 703.2, AND THE REQUIRED MINIMUM SIDE YARD MAY BE REDUCED IN ACCORDANCE WITH PROVISIONS OF §198-703.2

15) MINIMUM FRONT YARD WIDTH SHALL BE CÁLCULATED IN ACCORDANCE WITH THE REQUIREMENTS OF §198-705.1 OF THE ZONING BYLAW.


EXISTING TREE *DESCRIPTION LEGEND*

CODE	DESCRIPTION	
BL#	BALCK LOCUST	
CA#	CRAB APPLE	DE
HM#	HEMLOCK	TREE LOCATION
LI# NIM //	linden Norway Maple	
NM# NS#	NORWAY SPRUCE	O RO14
RM#	RED MAPLE	TREE CODE -
SY#	SYCAMORE	

LEGEND


DCB	DRAIN CATCH BASIN
НМ	MANHOLE
₩G	WATER GATE
⊠GG	GAS GATE
у с	HYDRANT
U.P.	UTILITY POST
DH	DRILL HOLE
(F)	FOUND
СВ	CONCRETE BOUND
SB	STONE BOUND
WF	WETLAND FLAG
E.M.	ELECTRIC METER
G.M.	GAS METER
N/F	NOW OR FORMERLY
+200.0	EXISTING SPOT GRADE
200	EXISTING GRADING
	• EXISTING OVERHANG WIRE

No.	DATE	REVISION
2	07/29/15	ADD TOP OF BANK
3	11/01/15	ADD ELEVATION DATUM REFERENCE REVISE WF#11, WF#12

DESIGN

POINT C

RESULTS					
IE SANDY LOAM 10YR3/3 0"- NE SANDY LOAM 10YR5/6 10"- SANDY LOAM 2.5Y5/3 22" SILT LOAM 2.5Y6/3 84"- NG @106" NO WATER, NO REFUSAL C2 7.5YR5/8 RED	H-3 ELEV=161.7' -10" Ap FINE SANDY LOAM 10YR3/3 -22" Bw FINE SANDY LOAM 10YR5/ -84" C1 SANDY LOAM 2.5Y5/3 -110" C2 SILT LOAM 2.5Y6/3 STANDING WATER, NO REFUSAL HORIZON IS DAMP 00X @82" 7.5YR5/8	40"-86" C1 SANDY 86"-116" C2 SANDY NO REFUSAL, NO STANDING NO REDOX	DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/4 CLOAM 2.5Y4/4 G OR WEEPING WATE	84"–118" C2 SAN WEEPING WATER © R NO REFUSAL REDOX @72" 7.5Y	NDY LOAM 10YR3/3 ANDY LOAM 10YR5/6 Y LOAM 2.5Y5/4 DY LOAM 2.5Y4/3 M12" R5/8
	MATED DESIGN GROUNDWATER=154.87	'ESTIMATED DESIGN GROU	JNDWATER=NONE	ESTIMATED DESIGN GF	COUNDWATER=156.6'
RESULTS					
•	H-8 ELEV=168.2'	DTH-9 ELEV=1	63.0'	DTH-10 ELEV	=160.75'
NE SANDY LOAM 10YR5/6 26"- SANDY LOAM 2.5Y5/3 40"- SANDY LOAM 2.5Y5/4 78"- OR WEEPING WATER 108 T LOAM FROM 76" DOWN NO RED	-26" FILL -40" Bw FINE SANDY LOAM 10YR5/ -78" C1 SANDY LOAM 2.5Y5/4 -108" C2 LOAMY SAND 2.5Y5/3 "-126" C3 SILT LOAM 2.5Y6/3 HORIZON IS DAMP REFUSAL OX @80" 7.5YR5/8 10% MATED DESIGN GROUNDWATER=161.53	30"-46" Bc SANDY 46"-98" C1 SANDY 98"-118" C2 SANDY WATER STANDING @1 WATER WEEPING @88 REDOX SEEN @62", ESTIMATED DESIGN GROU	DY LOAM 10YR5/4 LOAM 2.5Y5/4 / LOAM 2.5Y5/3 / LOAM 2.5Y4/4 108" 3" NO REFUSAL JNDWATER=157.8'	6 15"-30" Bw FINE SA 30"-66" C1 LOAM 66"-112" C2 SILT 4 WATER STANDING WATER WEEPING @ NO REFUSAL REDOX SEEN @68' ESTIMATED DESIGN GF	Y SAND 2.5Y5/3 LOAM 2.5Y5/4 @100" 98" 7.5YR5/8 10% OUNDWATER=155.08
S AREA = 20,063 S.F. A = 10,402 S.F. ED AREA = 7,403 S.F.		DTH-11 ELEV=2 0"-18" FILL 18"-30" Ap FINE SANE 30"-36" Bw FINE SANE 36"-58" C1 SANDY 58"-128" C2 SANDY WATER STANDING @1 NO WEEPING WATER REDOX SEEN @60" 7 ESTIMATED DESIGN GROU	DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/3 LOAM 2.5Y6/3 25" 7.5YR5/8 5%	C2 HORIZON HAS LE NO STANDING OR NO REFUSAL REDOX SEEN @64"	Y LOAM 2.5Y4/4 DY LOAM 2.5Y5/4 NSES OF SILT LOAM WEEPING WATER 7.5YR5/8
<u>SIN PROPER</u>	<u>TIES:</u>	DATE: AUGUST 21,	2014		
(P.D.B1)		BY: BRIAN T. NELSO		×	· · · · ·
		USDA .	SOIL C	LASSIFI	CATION
98 0.02 RES) 61 0.08 031 ACRES) 61 0.03	5.307	SOIL NUMBER		ES	HYDROLOGIC Soil group B/D
ve number (c _N) = (9.158,	/0.138) = 66.4	2520			
(e a a a a a a a a a a a a a a a a a a a		253C 415B	HINCKLEY NARRAGA	LOAMY SAND NSETT	A B
98 0.00 ES) 61 0.02 5 ACRES) 61 0.015 SUM 0.04	CRES) PRODUCT 8 0.784 0 1.220 5 0.915 43 SUM 2.919	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B.	B OR ANALSYI
$ \frac{Cn}{98} = 0.007 $ ES) 61 0.027 5 ACRES) 61 0.015 SUM 0.04 NUMBER (C _N) = (2.919/0	CRES) PRODUCT 8 0.784 0 1.220 5 0.915 43 SUM 2.919	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B.	$\frac{B}{DATE}$
$ \frac{Cn}{98} = 0.007 $ ES) 61 0.027 5 ACRES) 61 0.015 SUM 0.04 NUMBER (C _N) = (2.919/0	CRES) PRODUCT 8 0.784 0 1.220 5 0.915 43 SUM 2.919	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B. EERING, INC. (CIVIL) # 31967 P.L.S. # 37040 SCALE ft. 40 (FE	$\frac{B}{DATE}$
$\frac{Cn}{98} = \frac{AREA}{0.00}$ ES) 61 0.02 5 ACRES) 61 0.01 SUM 0.04 NUMBER (C _N) = (2.919/0 (P. D. B 3) (P. D. B 3) Cn AREA (AC 98 0.06 RES) 61 0.05 45 ACRES) 61 0.04 SUM 0.16	$\frac{CRES)}{8} \frac{PRODUCT}{8} 0.784 \\ 0 1.220 \\ 5 0.915 \\ 43 SUM 2.919 \\ 0.043) = 67.9$ $\frac{CRES)}{10} \frac{PRODUCT}{3} 6.174 \\ 5 3.355 \\ 5 2.745 \\ 53 SUM 12.274$	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW ROBERT A. C	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC CEST ENGINA CEMMA, P.E. GRAPHIC S 1 inch = 20 20 REF	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B. EERING, INC. (CIVIL) # 31967 P.L.S. # 37040 SCALE ft. 40 (FE 20 (MET 20 (MET	B $DATE$ $DATE$ B $DATE$ B $DATE$ $DATE$ $DATE$ $DATE$ $DATE$ $DATE$
$\frac{Cn}{98} = \frac{AREA}{0.00}$ $\frac{(AC}{98} = 0.00)$ $\frac{Cn}{5} = \frac{AREA}{0.015}$ $\frac{Cn}{5} = \frac{(2.919/0)}{(2.919/0)}$ $\frac{Cn}{(P. D. B 3)}$ $\frac{Cn}{98} = \frac{AREA}{0.05}$ $\frac{Cn}{45} = \frac{AREA}{0.05}$ $\frac{Cn}{45} = \frac{AREA}{0.05}$ $\frac{Cn}{45} = \frac{AREA}{0.05}$ $\frac{Cn}{50} = \frac{AREA}{0.05}$	$\frac{CRES)}{8} \frac{PRODUCT}{8} 0.784 \\ 0 1.220 \\ 5 0.915 \\ 43 SUM 2.919 \\ 0.043) = 67.9$ $\frac{CRES)}{10} \frac{PRODUCT}{3} 6.174 \\ 5 3.355 \\ 5 2.745 \\ 53 SUM 12.274$	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW ROBERT A. C FIGU FIGU POST- FERSHED #24	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC CEST ENGINA EMMA, P.E. GRAPHIC S 1 inch = 20 20 C BRHIC S 1 inch = 20 20	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B. EERING, INC. (CIVIL) # 31967 P.L.S. # 37040 SCALE ft. 40 (FE 20 (MET 20 (MET	B $DATE$ $DATE$ B $DATE$ B $DATE$
$\frac{Cn}{98} = \frac{AREA}{0.00}$ $\frac{Cn}{98} = \frac{0.00}{0.02}$ $\frac{Cn}{5} = \frac{AREA}{0.015}$ $\frac{Cn}{5} = (2.919/0)$ $(P. D. B 3)$ $\frac{Cn}{98} = \frac{AREA}{0.06}$ $\frac{Cn}{98} = \frac{AREA}{0.06}$ $\frac{Cn}{5} = \frac{AREA}{0.04}$ $\frac{Cn}{5} = (12.274/2)$ $\frac{Cn}{P. D. B 3A}$ $\frac{Cn}{98} = \frac{AREA}{0.04}$ $\frac{Cn}{98} = 0.04$	$\frac{CRES}{PRODUCT} = 0.784 \\ 0 & 1.220 \\ 5 & 0.915 \\ 43 & SUM 2.919 \\ 0.043) = 67.9$ $\frac{CRES}{PRODUCT} = 67.9$ $\frac{CRES}{2.745} = 0.174 \\ 5 & 3.355 \\ 5 & 2.745 \\ 63 & SUM 12.274 \\ 70.163) = 75.3$ WA^{T} $\frac{CRES}{2.745} = 0.0000000000000000000000000000000000$	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW ROBERT A. C FOR GU POST- FIGU FORSHED #24 WAY FOR: WINDSOR 73 PELHA	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC CEST ENGINA EMMA, P.E. GRAPHIC S 1 inch = 20 20 C BRHIC S 1 inch = 20 20	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B. EERING, INC. (CIVIL) # 31967 P.L.S. # 37040 SCALE ft. 40 (FE 20 (MET 20 (MET)	B $DATE$ $DATE$ B $DATE$ B $DATE$ $DATE$ $DATE$ $DATE$ $DATE$ $DATE$
$\frac{Cn}{98} = \frac{AREA}{(AC)}$ $\frac{S}{98} = \frac{O}{0.00}$ $\frac{S}{5} = \frac{O}{1} = \frac{O}{0.015}$ $\frac{SUM}{0.04}$ $\frac{SUM}{0.04}$ $\frac{Cn}{(P. D. B 3)}$ $\frac{Cn}{98} = \frac{AREA}{0.05}$ $\frac{Cn}{45} = \frac{AREA}{(AC)}$ $\frac{Cn}{SUM} = \frac{AREA}{(AC)}$ $\frac{Cn}{98} = \frac{AREA}{(AC)}$ $\frac{Cn}{98} = \frac{AREA}{(AC)}$ $\frac{Cn}{98} = \frac{AREA}{(AC)}$ $\frac{Cn}{98} = \frac{AREA}{(AC)}$ $\frac{Cn}{SUM} = \frac{Cn}{SUM}$ $\frac{Cn}{SUM} = \frac{AREA}{(AC)}$ $\frac{Cn}{SUM} = \frac{A}{(AC)}$ $\frac{Cn}{SUM} = \frac{A}{(AC)}$ $\frac{Cn}{SU} = \frac{A}{($	$\frac{CRES}{2} \frac{PRODUCT}{8} 0.784 \\ 0 1.220 \\ 5 0.915 \\ 43 SUM 2.919 \\ 0.043) = 67.9$ $\frac{CRES}{2} \frac{PRODUCT}{3} 6.174 \\ 5 3.355 \\ 5 2.745 \\ 33 SUM 12.274 \\ (0.163) = 75.3$ WA^{T} $\frac{CRES}{2} \frac{PRODUCT}{1} \\ 15 4.410 \\ 14 2.684 \\ 15 2.684 \\ 1$	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW ROBERT A. G FOR GU POST- FIGU POST- FERSHED #24 WAY WAYLAND, TOF: WINDSOR 73 PELHA	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC CEST ENGINA EEMMA, P.E. GRAPHIC S 1 inch = 20 20 CRE SCHOOL S IN LAND, PLACE LLC M ISLAND R	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B. EERING, INC. (CIVIL) # 31967 P.L.S. # 37040 SCALE ft. 40 (FE 20 (MET 20 (MET	B $DATE$ $DATE$ B $DATE$ B $DATE$ $DATE$ $DATE$ $DATE$ $DATE$ $DATE$
$\frac{Cn}{98} = \frac{AREA}{0.00}$ $ES) = 61 = 0.013$ $SUM = 0.04$ $NUMBER (C_N) = (2.919/0)$ $(P. D. B 3)$ $\frac{Cn}{98} = 0.063$ $(P. D. B 3)$ $\frac{Cn}{98} = 0.063$ $SUM = 0.043$ $SUM = 0$	$\frac{CRES)}{S} \frac{PRODUCT}{8} = 0.784 \\ 0 = 1.220 \\ 5 = 0.915 \\ 43 = SUM 2.919 \\ 0.043) = 67.9$ $\frac{CRES)}{10} \frac{PRODUCT}{13} = 61.74 \\ 5 = 3.355 \\ 5 = 2.745 \\ 33 = 75.3$ WA^{T} $\frac{CRES)}{10} \frac{PRODUCT}{15} \\ 10.163) = 75.3$ WA^{T} $\frac{CRES)}{10} \frac{PRODUCT}{15} \\ 10.163) = 73.5$ $\frac{CRES}{10} \frac{PRODUCT}{10} \\ 10.133) = 73.5$ $\frac{CRES}{10} \frac{PRODUCT}{10} \\ 10.133 = 73.5$	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW ROBERT A. G D FOR METROW ROBERT A. G D FOR METROW ROBERT A. G D FOR METROW ROBERT A. G MAT POST- FOR: WINDSOR 73 PELHA WAYLAND, S &	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B. EERING, INC. (CIVIL) # 31967 P.L.S. # 37040 SCALE ft. 40 (FE 20 (MET 20 (MET	B OR ANALSYI DATE DATE S PERS) 30 PLAN
$\frac{Cn}{98} = \frac{AREA}{0.02} (AC)^{98} = \frac{0.00}{0.02} = \frac{0.00}{0.015} = \frac{0.015}{0.015} = \frac{0.015}{0.04} = \frac{0.015}{0.04} = \frac{0.015}{0.05} = \frac{0.015}{0.04} = \frac{0.015}{0.04} = \frac{0.015}{0.04} = \frac{0.016}{0.04} = $	$\frac{CRES}{2} \frac{PRODUCT}{8} = 0.784 \\ 0 = 1.220 \\ 5 = 0.915 \\ 43 = 0.79 \\ 0.043) = 67.9 \\ 0.043) = 67.9 \\ 0.043) = 67.9 \\ 0.043) = 67.9 \\ 0.043) = 75.3 \\ WA \\ 0.163) = 73.5 \\ CRES) \frac{PRODUCT}{2} \\ 0.133) = 73.5 \\ ENGINEER \\ SURVEY \\ SU$	415B HYDROLOGIC SOILS ON SITE AR CLASSIFIED WITHIN FOR METROW ROBERT A. G D FOR METROW ROBERT A. G POST- FIGU POST- FOR: WINDSOR 73 PELHA WAYLAND, S & CORS: MINDSOR	NARRAGA SILT LOAN SOIL GROU E SANDY LOAN HYDROLOGIC CEST ENGIN GRAPHIC S 1 inch = 20 20 CRE DELI SCHOOL S IN LAND, PLACE LLC M ISLAND R MA 01778 PLACE LLC M ISLAND R MA 01778	NSETT M UP B USED F M TEXTURES AND SOIL GROUP B. EERING, INC. (CIVIL) # 31962 P.L.S. # 37040 SCALE ft. 40 (FE 20 (MET 20 (MET	B OR ANALSYI DATE DATE B ET) ⁸⁰ FRS) ³⁰ PLAN