<u>Revised Hydrologic Analysis:</u> Proposed Site Redevelopment 24 School Street Wayland, MA

Prepared for:	Windsor Place, LLC
	73 Pelham Island Road
	Wayland, MA 01778

Prepared by:MetroWest Engineering, Inc.75 Franklin StreetFramingham, MA 01702(508) 626-0063

Original Submittal: September, 2017 Revised: May 2018

Table of Contents

- Introduction Page 1
- Drainage Approach Page 2
- Hydrologic Analysis Page 2
- Model Results Page 6
- Conclusion Page 8
- Appendix A Hydrologic Assessment
- Appendix B Stormwater Operation and Maintenance Plan
- Appendix C NRCS Soil Survey
- Appendix D Time of Concentration Calculations

Hydrologic Analysis (Revised May 2018) Proposed Site Redevelopment 24 School Street, Wayland MA

Introduction

The project site is located on the northerly side of East Plain Street at the intersection of East Plain Street and School Street. The locus is shown on *Figure One: Locus Map, 24 School Street, Wayland MA*.

The subject parcel (Assessors' Map 52, Lot 189) has an area of 37,865 square feet (0.87 acres). The property is improved with a two-story house, a one-story barn, a detached garage, and a patio. The lot consists of mostly gravel, landscaped and lawn areas with moderate topographic relief across the site. The site slopes from higher elevations near School Street to the southwest with a maximum elevation differential on site of approximately ten-feet. A wetland is located west of the property and a portion of the lot falls within the 100' buffer zone.

According to the NRCS Soil Survey, the southerly portion of the lot consists of Narragansett Silt Loam (415B) soil series and are classified within hydrologic soil group A. Narragansett soils are a well drained glacial till that exhibit moderately high to high infiltration rates when saturated. The northerly portion of the site consists of Hinckley loamy sand soil group (253C). Hinckley soils are a very well-drained soil with good hydraulic conductivity. Runoff curve numbers for Hydrologic Soil Group B were used for the analysis based on soil conditions observed during field testing and the inconsistencies between hydrologic soil group and soil descriptions in the soil survey.

An on-site soil evaluation program consisting of twelve deep test holes was conducted on July 21 and August 21, 2014. DTH-1, 2, 3, 6, 7, 9, and 10 were all conducted on the north side of the lot. Results revealed the A horizon consisting of fine sandy loam at a depth of roughly 12 inches, the B horizon consisting of fine sandy loam to a depth of roughly 24 inches, with C horizons consisting of sandy loam at 60 inches and 120 inches respectively.

DTH-4 and 5 were conducted on the south side of the lot. DTH-4 had the A horizon at 28 inches, with the first 20 inches being fill. The B horizon consisted of fine sandy loam and had a depth of 40 inches. The C horizons consisted of sandy loam and were found at 86 and 116 inches respectively. DTH-5's A horizon consisting of fine sandy loam was found at 16 inches. The B horizon consisting of fine sandy loam was found at 34 inches. The C horizons consisting of sandy loam was found at 84 and 117 inches respectively.

DTH-11 and 12 were conducted on the east side of the lot. DTH-11 has fill to a depth 18 inches, with the A horizon of fine sandy loam at 30 inches, the B horizon of fine sandy loam at 36 inches, and the C horizons of sandy loam at 58 and 128 inches respectively. DTH-12 has fill to a depth of 54 inches, bypassing the A and B horizons, the C horizons of sandy loam were found at 82 and 114 inches respectively.

<u>Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts</u> <u>REVISED, May 2018</u>

No refusal was observed in any of the test pits. Redoximorphic features were found in 10 of the 12 test pits at depths of 5 to 7 feet. The groundwater elevations varied from 155-feet to 162-feet.

The site redevelopment program includes the construction of two new multifamily dwellings, paved parking areas, storm water management system and supporting utilities. See site plans for details regarding the proposed development.

The property presently contains 8,780 square feet of impervious area. Redevelopment of the property will increase the amount of impervious area by adding 11,283 square feet for a total of 20,063 square feet.

Drainage Approach

There are presently no controls in place to manage stormwater runoff rates or volumes. Stormwater runoff drains to the west and south to abutting properties and into East Plain Street. The goal of the proposed stormwater management system is to reduce runoff rates and volumes for all design storms compared to the existing condition and to promote groundwater recharge using a subsurface infiltration system and a rain garden.

The proposed subsurface infiltration system will be located under the parking lot between the two structures. The system will consist of 84 precast concrete infiltration galleys surrounded by two feet of double washed, crushed stone. The infiltration system will collect runoff from Post-Development Basin 4, which consists of the parking area and a portion of the proposed roof structures. The proposed infiltration system is designed to completely contain and recharge runoff from storms up to the 10-year storm. The proposed rain garden will collect and store runoff from Post-Development Basin 3A which consists of the easterly portion of the roof of Building A and the surrounding lawn and landscaped areas. The storm water management system will significantly reduce runoff rates and volumes from the subject parcel for all storm events.

Overall reductions in runoff rates and volumes can be found in the Model Results section of this report and detailed hydrologic analysis and basin models can be found in Appendix A.

Hydrologic Analysis

A hydrologic analysis of the project has been performed to establish pre-development conditions, assess post-development impacts and evaluate the effectiveness of the proposed drainage infiltration systems. The analysis employs an SCS TR-55 hydrologic computer model and analyzes design storms with return periods of 2, 10, 25 and 100-years. An SCS Type 3 24-hour rainfall distribution pattern is used for the theoretical design storm. Time of concentration values were determined by the LAG Method or manually entered at five minutes for watersheds having relatively small areas or hydraulic lengths to allow for the use of a three-minute time interval for all hydrograph computations. Precipitation rates of 3.20, 4.73, 5.95 and 8.45-inches were used for the 2, 10, 25 and 100-year storm events respectively. Runoff curve numbers for Hydrologic Soil Group B were used for the analysis based on soil conditions observed during field

Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts REVISED, May 2018

testing and the inconsistencies between hydrologic soil group and soil descriptions in the soil survey.

Existing Conditions

The existing conditions model analyzes the site as three drainage basins; Existing Conditions Basins One, Two, and Three.

Existing Conditions Basin 1 (E.C.B.-1) has an area of 15,276 square feet and flows in a southwesterly direction to Design Point A located at the west side of the property.

Existing Conditions Basin 2 (E.C.B.-2) has an area of 2,901 square feet and flows in a northeasterly direction to Design Point B located at the northeast side of the property.

Existing Conditions Basin 3 (E.C.B.-3) has an area of 19,688 square feet and flows in a southwesterly direction to Design Point C located at the southwest corner of the property.

The Existing Conditions Basins are shown on Figure Two, <u>Existing Conditions</u> <u>Watershed Delineation Plan</u> and information for all Existing Conditions Basins is listed on the plan and below.

Existing Conditions Basin 1 (E.C.B.-1)

Area = 15,276 square feet Impervious Area = 2,205 square feet, curve number = 98.0 Lawn area (good condition) = 13,071 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 66.4 Basin slope = 5.2% Hydraulic length = 189 feet Time of concentration = 5.4 minutes (LAG Method)

Existing Conditions Basin 2 (E.C.B.-2)

Area = 2,901 square feet Impervious Area = 1,460 square feet, curve number = 98.0 Lawn area (good condition) = 1,440 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 79.8 Basin slope = 1.9% Hydraulic length = 68 feet Time of concentration = 5 minutes (Manually Entered)

Existing Conditions Basin 3 (E.C.B.-3)

Area = 19,688 square feet Impervious Area = 5,115 square feet, curve number = 98.0 Lawn area (good condition) = 14,573 square feet, curve number = 61.0

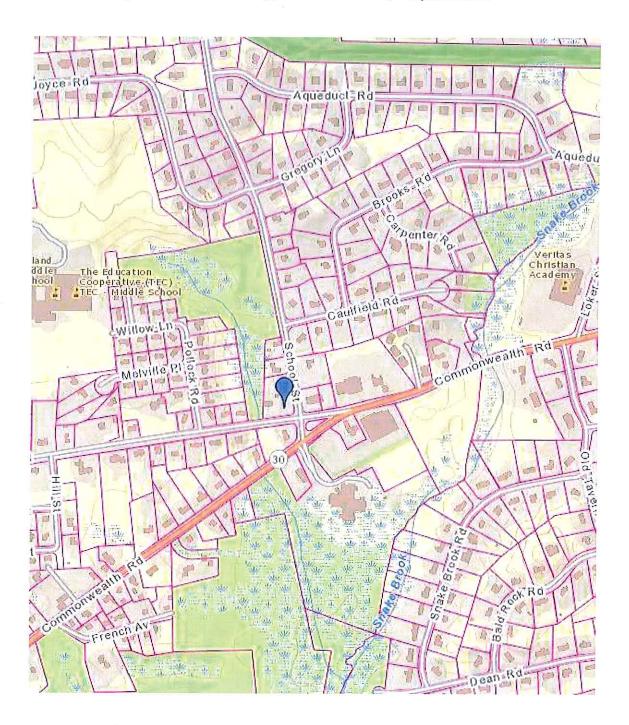
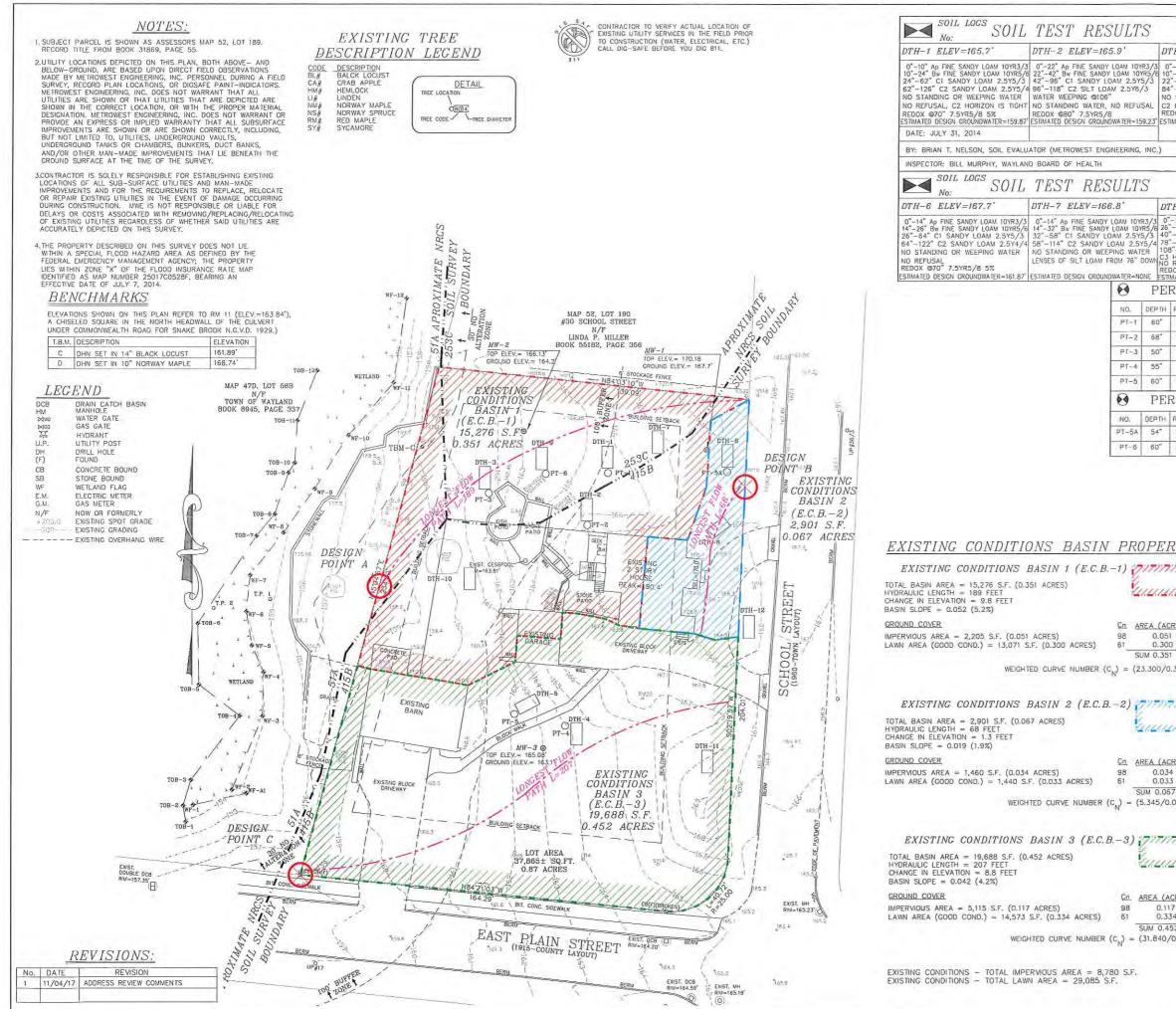



Figure One: Locus Map, 24 School Street, Wayland MA

"-110" C2 SILT LOAM 2.5Y6/3 STANDING WATER, NO REFUSAL HORIZON IS DAMP DOX @82" 7.5YR5/8			-	DTH-4 ELEV=	164.1'	DTH-5 ELEV	=162.6'
			10YR5/0 .5Y5/3 1Y6/3 EFUSAL	40°-86° C1 SANDY LOAM 2.5Y5/4 86°-116° C2 SANDY LOAM 2.5Y4/4 NO REFUSAL, NO STANDING OR WEEPING WATER NO REDOX		0"-16" Ap FINE SANDY LOAM 10YR3/ 16"-34" Bw FINE SANDY LOAM 10YR3/ 34"-84" CT SANDY LOAM 2.5Y5/4 84"-118" C2 SANDY LOAM 2.5Y4/3 WEEPING WATER ©112"	
		-					
H-8 I	ELEV=16	8.2'		DTH-9 ELEV=1		DTH-10 ELEV	=160.75'
-108" CI -108" C HORIZON REFUSAL OX @80 ATED DE	C3 SILT LO N IS DAMP 7.5YR5/8 SIGN GROUND	SAND 2 SAND 2 SAND 2.5	5Y5/4 2.5Y5/3 5Y6/3	30-46 BC SANDY 98"-98" C1 SANDY 98"-118" C2 SANDY WATER STANDING @1 WATER WEEPING @88 REDOX SEEN @62", ESTIMATED DESIGN CROL	LOAM 2.5Y5/3 LOAM 2.5Y4/4 08" NO REFUSAL INDWATER=157.8'	66 -112 C2 SILT WATER STANDING WATER WEEPING @ NO REFUSAL REDOX SEEN @68 ESTIMATED DESIGN GF	LOAM 2.5Y5/4 @100" 988" ' 7.5YR5/8 10% ROUNDWATER=155.08'
	ATION	-	hurs	DTH-11 ELEV=1	196 M	DTH-12 ELEV 0"-54" FILL	
B MPI	DATE 07/31/14	BY B.N.	B.M.	0"-18" FILL 18"-30" Ap FINE SAND 30"-36" Bw FINE SAND 36"-58" C1 SANDY	10AM 2 5Y5/3	58"-82" C1 SAND 82"-114" C2 SAND C2 HORIZON HAS LE	Y LOAM 2.5Y4/4 DY LOAM 2.5Y5/4 NSES OF SILT LOAM
13 MPI	07/31/14	B.N.	B.M.	58"-128" C2 SANDY WATER STANDING @1 NO WEEPING WATER	10AM 2 5YS /3	NO STANDING OR NO REFUSAL	
10 MPI	07/31/14	-	B.M.	REDOX SEEN @60" 7 ESTIMATED DESIGN GROU	.5YR5/8 5% NDWATER=161.0	REDOX SEEN 664"	
MPI	07/31/14	B.N. B.N.	B.M. B.M.	DATE: AUGUST 21, 2			NONEEDING
COL	ATION		-	BY: BRIAN T. NELSO INSPECTOR: JULIA JI			
RATE	DATE	BY	INSP.	Castan 7 1	. Ashira		Contraction of the last
10 MPI	08/21/14	B.N.	J.J.	USDA S	SOIL CI	LASSIFI	CATION
3 MPI	08/21/14	B.N.	J.J.	SOIL NUMBER	SOIL SERIE	s	HYDROLOGIC SOIL GROUP
				_ 51A	SWANSEA	MUCK	B/D
				253C	HINCKLEY	LOAMY SAND	A
							-
TIE	'S:			415 B HYDROLOGIC		P B USED F	B OR ANALSYI
2/12/ RES) PR				HYDROLOGIC SOLS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE	SILT LOAM SOIL CROU SANDY LOAM HYDROLOGIC SI ST ENCINEE	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. (VIL) # 31967 2.L.S. # 37046 ALE	
RES) PR	RODUCT 5.000 18.300 23.300		20	HYDROLOGIC SOLS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SI ST ENGINEE MMA, P.E.(C. F RAPHIC SCA	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. (VIL) # 31967 2.L.S. # 37046 ALE	OR ANALSYI DATE
RES) PR	RODUCT 5.000 18.300 23.300		20	HYDROLOGIC SOLS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SI ST ENGINEE MMA, P.E.(C. F RAPHIC SCA	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. (VIL) # 31967 P.L.S. # 37046 ALE	DATE
SUM 2 351) =	<u>eopuci</u> 5.000 23.300 66.4 <u>eopuci</u> 3.332 2.013 1 5.345			HYDROLOGIC Soils on site ari classified within FOR METROWE ROBERT A. CE G FIGU EXISTIN 'ERSHED #24 S WAYI	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SI ST ENGINEE ST ENGINEE ST ENGINEE F RAPHIC SCA 1 inch = 20 ft. 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. (VIL) # 31967 P.L.S. # 37046 ALE (PEE 25 (METE TWO DITIONS EATION	DATE
RES) PR SUM 2 3551) =	<u>eopuci</u> 5.000 23.300 66.4 <u>eopuci</u> 3.332 2.013 1 5.345		epared 20	HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE G FIGU EXISTIN 'ERSHED #24 S WAYI FOR: CHADWICK	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SI ST ENCINEE MMA, P.E.(C. F RAPHIC SCA 1 inch = 20 ft. T CAND CON DELIN SCHOOL ST IN LAND, HOMES M ISLAND ROA	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. (VIL) # 31967 P.L.S. # 37046 ALE (PEE 25 (METE DITIONS EATION REET MASS	DATE
(7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	CODUCT 5.000 18.300 23.300 66.4 CODUCT 3.332 2.013 15.345 79.8 CODUCT CODUCT	PRE		HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE G FIGU EXISTIN 'ERSHED #24 S WAYI FOR: CHADWICK 73 PELHAN WAYLAND,	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SI ST ENCINEE MMA, P.E.(C. F RAPHIC SCA 1 inch = 20 ft. P CAND SCHOOL ST IN LAND, HOMES WOWLES & DCE STREET	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. (VIL) # 31967 P.L.S. # 37046 ALE (PEE 25 (METE DITIONS EATION REET MASS	DATE
(7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	CODUCI 5.000 23.300 66.4 CODUCI 3.332 2.013 1 5.345 79.8	PRE	EPARED	HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE G FIGU EXISTIN 'ERSHED #24 S WAYI FOR: CHADWICK 73 PELHAI WAYLAND, A	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SI ST ENGINEE MMA, P.E.(C, F RAPHIC SCA 1 inch = 20 ft 1 inch = 20 ft T RAPHIC SCA I inch = 20 ft I C C C C C C C C C C C C C	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. (VIL) # 31967 P.L.S. # 37046 ALE (FEE DITIONS EATION REET MASS AD C ENGINEERING, IN STREET M. MA OITOZ 628-0063	OR ANALSYI
(7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	CODUCI 5.000 23.300 66.4 CODUCI 3.332 2.013 1 5.345 79.8 CODUCI 11.466 20.374 M 31.840	PRE	EPARED OPERTY DINEERS	HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROWE ROBERT A. GE G FIGG EXISTIN 'ERSHED #24 S WAYI FOR: CHADWICK 73 PELHAI WAYLAND, OF: LINDA C. KI CARY W. RI 24 SCHOOL WAYLAND, A	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SI ST ENCINEE MMA, P.E.(C. F RAPHIC SC/ 1 inch = 20 ft. P CAPHIC SC/ 1 inch = 20 ft. P CAPHIC SC/ 1 inch = 20 ft. P CAPHIC SC/ I inch = 20 ft. P CON DELIN SCHOOL ST IN LAND, HOMES STREET (A 01778 METROWEST 75 FRANKL FRANKINGHA TEL: (508) FAX: (508)	P B USED F TEXTURES AND DIL GROUP B. RINC, INC. (VIL) # 31967 P.L.S. # 37046 ALE (FEE DITIONS EATION REET MASS AD C ENGINEERING, IN STREET M. MA OITOZ 628-0063	OR ANALSYI

<u>Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts</u> <u>REVISED, May 2018</u>

Hydrologic soil group B Weighted Curve Number = 70.4 Basin slope = 4.2% Hydraulic length = 207 feet Time of concentration = 5.8 minutes (LAG Method)

Proposed Conditions

The proposed condition model analyzes the site as five Post-Development drainage basins, Post-Development Basins One through Four (including Basin 3A).

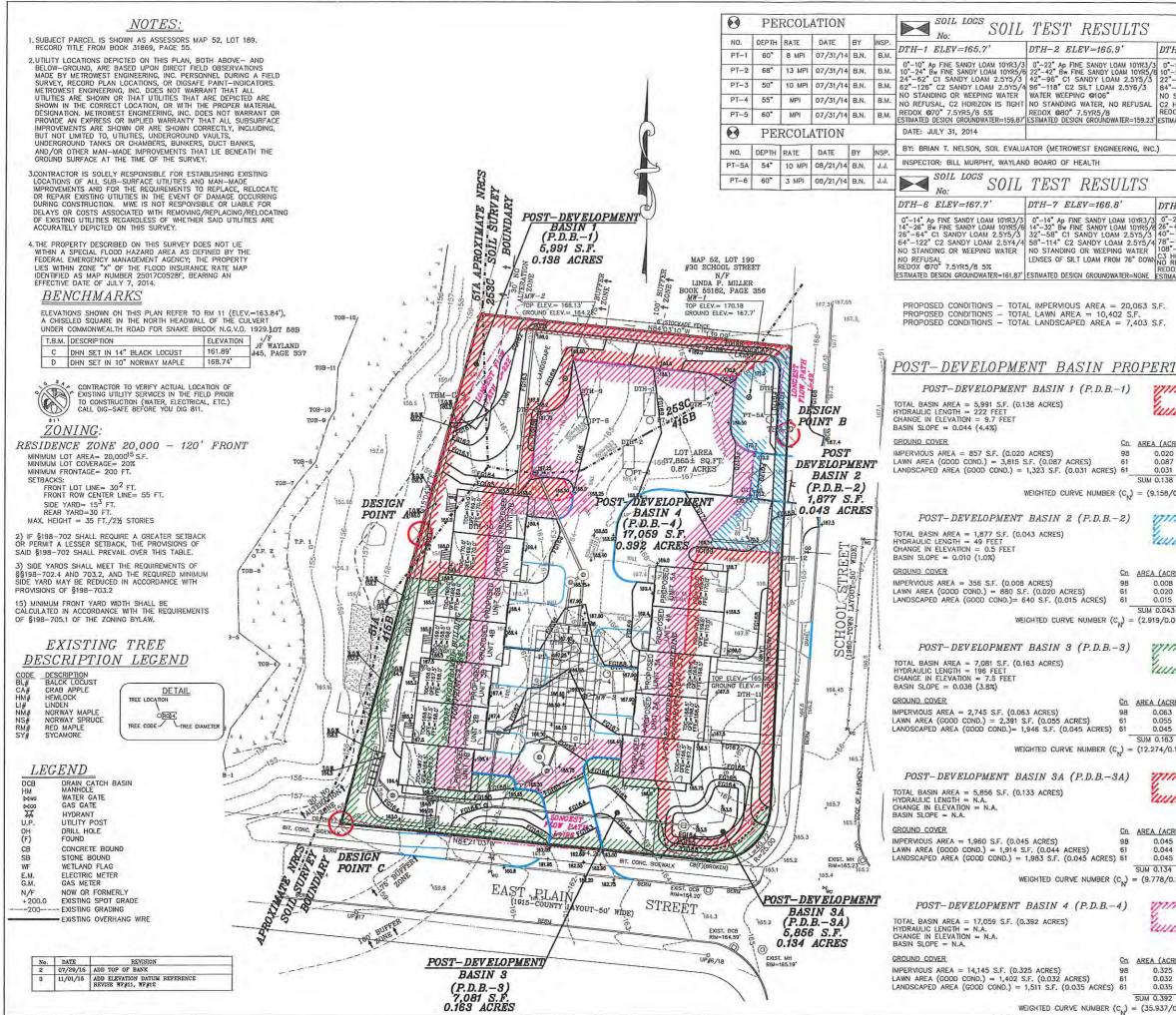
Post-Development Basin 1 (P.D.B.-1) has an area of 5,991 square feet and flows west to Design Point A located at the west of the property.

Post-Development Basin 2 (P.D.B.-2) has an area of 1,877 square feet and flows north to Design Point B located at the northeastern side of the property.

Post-Development Basin 3 (P.D.B.-3) has an area of 7,081 square feet and flows west to design point C located at the southwest corner of the property.

Post-Development Basin 3A (P.D.B.-3A) has an area of 5,856 square feet and flows into the proposed stone trench on the easterly side of Building A.

Post-Development Basin 4 (P.D.B.-4) has an area of 17,059 square feet and flows to the Proposed Infiltration System located at the center of the property.


The Proposed Conditions Basins are shown on Figure Three, <u>The Post Development</u> <u>Watershed Delineation Plan</u> and information for all Post Development Basins is listed on the plan and shown below.

Post-Development Basin 1 (P.D.B.-1)

Area = 5,991 square feet Impervious area = 857 square feet; curve number = 98.0 Lawn area (good condition) = 3,815 square feet, curve number = 61.0 Landscaped area (good condition) = 1,323 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 66.4 Basin slope = 4.4% Hydraulic length = 222 feet Time of concentration = 6.7 minutes (LAG Method)

Post-Development Basin 2 (P.D.B.-2)

Area = 1,877 square feet Impervious area = 356 square feet; curve number = 98.0 Lawn area (good condition) = 880 square feet, curve number = 61.0 Landscaped area (good condition) = 640 square feet, curve number = 61.0

3 ELEV=161.7'	DTH-4 ELEV=	164.1'	DTH-5 ELEV	=162.6'
Ap FINE SANDY LOAM 10YR3/3 Bw FINE SANDY LOAM 10YR5/6 " CI SANDY LOAM 2.5Y5/3 " C2 SILT LOAM 2.5Y5/3 NDING WATER, NO REFUSAL IZON IS DAMP @62" 7.5YR5/8	3 0"-20" FILL 620"-28" Ap FINE SANDY LOAM 10YR3/3 28"-40" BW FINE SANDY LOAM 10YR5/6 40"-86" C1 SANDY LOAM 2:5Y5/4 86"-116" C2 SANDY LOAM 2:5Y4/4 NO REFUSAL NO STANDING OR WEEPING WATER NO REDOX		0"-16" Ap FINE SANDY LOAM 10YR3/3 16"-34" BW FINE SANDY LOAM 10YR5/6 34"-84" C1 SANDY LOAM 2.5Y5/4 84"-118" C2 SANDY LOAM 2.5Y4/3 WEEPING WATER @112"	
				t inconst
8 ELEV=168.2' FIL BW FINE SANDY LOAM 10YR5/6 "C1 SANDY LOAM 2.5Y5/4 3" C2 LOAMY SAND 2.5Y5/3 15" C3 SILT LOAM 2.5Y6/3 120N IS DAMP JSAL 880" 7.5YR5/8 10% 0 DESIGN GROUNDWATER=161.53'	98"-98" C1 SANDY 98"-118" C2 SANDY WATER STANDING ®1 WATER WEEPING @8E REDOX SEEN @62", ESTIMATED DESIGN GROU DTH-11 ELEV=1	Y LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/4 LOAM 2.5Y5/3 · COAM 2.5Y4/4 .08" NO REFUSAL INDWATER=157.8' /66.0'	66°-112° C2 SILT WATER STANDING WATER WEEPING (NO REFUSAL REDOX SEEN (688 ESTIMATED DESIGN (61 DTH-12 ELEV)	ANDY LOAM 10783/3 ANDY LOAM 10785/6 IY SAND 2.5Y5/3 LOAM 2.5Y5/4 @100 * 7.5YR5/8 10% ROUNDWATER=155.08 * 7=168.2*
<u>ES:</u>	0"-18" FILL 18"-30" AP FINE SANE 30"-36" BW FINE SANE 36"-58" C1 SANDY 58"-128" C2 SANDY WATER STANDING @0 NO WEEPING WATER REDOX SEEN @60" 7 ESTIMATED DESIGN GROU DATE: AUGUST 21, 2	LOAM 2.5Y5/3 LOAM 2.5Y6/3 25" .5YR5/8 5% NDWATER=161.0	0"-54" FILL 58"-82" C1 SANE 82"-114" C2 SAN C2 HORIZON HAS LE NO STANDING OR NO REFUSAL REDOX SEEN @64" STIMATED DESIGN GE	7.5YR5/8
unin .	BY: BRIAN T. NELSO INSPECTOR: JULIA JU			
	USDA S	SOIL CI	ASSIFI	<u>CATION</u>
5) PRODUCT 1.960 5.307 1.891 SUM 9.158	SOIL NUMBER SOIL SERIES		Table As	HYDROLOGIC SOIL GROUP B/D
(38) = 66.4	253C		OAMY SAND	A
	1100	NARRAGANSETT		
2	415B HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN	SILT LOAM SOIL GROU. E SANDY LOAM	P B USED F TEXTURES AND	B FOR ANALSYIS
5) <u>PRODUCT</u> 0.784 1.220 0.915 SUM 2.919 3) = 67.9 77777777 6) <u>PRODUCT</u> 6.174 3.355 7.725	HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. G.	SILT LOAM SOIL GROU. E SANDY LOAM HYDROLOGIC SC	P B USED F TEXTURES AND DIL GROUP B. ERING, INC. CIVIL) # 31967 P.L.S. # 37046 ALE	DATE
S) PRODUCT 0.784 1.220 0.915 SUM 2.919 3) = 67.9 CONTRACTOR 6,174 3.355 2.745 SUM 12.274 3) = 75.3	HYDROLOGIC Soils on site are classified within FOR METROW, ROBERT A. G. FIGUI POST- ERSHED	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SC EST ENGINEI EMMA, P.E.(C GRAPHIC SC 1 inch = 20 f T T C RE DEVEL	P B USED F TEXTURES AND DIL GROUP B. (IVIL) # 31967 P.L.S. # 37040 ALE (FE CHRE OPMENT EATION REET	DATE DATE S ERB) \$ ERB) \$
S) PRODUCT 0,784 1,220 0,915 SUM 2,919 3) = 67.9 0,015 0,915 SUM 2,919 0,015 0,017 0,015	HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. G. FOR METROW, ROBERT A. G. FIGUI POST- ERSHED #24 S WAYI FOR: WINDSOR I	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SC EST ENGINEN EMMA, P.E.(C GRAPHIC SC 1 inch = 20 f C GRAPHIC SC 1 inch = 20 f DEVEL DELIN SCHOOL ST IN LAND, PLACE LLC MISLAND ROA	P B USED F TEXTURES AND DIL GROUP B. ERING, INC. (IVIL) # 31967 P.L.S. # 37046 ALE (MAT CHRE OPMENT EATION REET MASS	DATE DATE S ERB) \$ ERB) \$
5) PRODUCT 0.784 1.220 0.915 SUM 2.919 3) = 67.9 7777777 6.174 3.355 2.745 SUM 12.274 3) = 75.3 WAT S) PRODUCT 4.410	HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. G. FOR METROW, ROBERT A. G. WINDSOR I 73 PELHAN WAYLAND, OF: WINDSOR I	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SC EST ENCINEI EMMA, P.E.(C GRAPHIC SC I inch = 20 f T T DEVEL DELIN SCHOOL ST IN JAND, PLACE LIC H ISLAND ROA PLACE LIC H ISLAND ROA	P B USED F TEXTURES AND DIL GROUP B. ERING, INC. EVIL) # 31967 P.L.S. # 37040 ALE (FE (MASS MASS MASS	DATE DATE S ERB) \$ ERB) \$
S) PRODUCT 0,784 1,220 0,915 SUM 2,919 3) = 67.9 0,015 SUM 2,919 3) = 67.9 0,017 6,174 3,355 SUM 12,274 3) = 75.3 WAT PREPARED 1 4,410 2,684 2,684 2,684 SUM 9,778 SURVEYO S) PRODUCT 4,410 2,684	HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. G. FOR METROW, ROBERT A. G. FIGUI POST- ERSHED #24 S WAYI FOR: WINDSOR F 73 PELHAA WAYLAND, OF: WINDSOR F 73 PELHAA WAYLAND,	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SC EST ENGINEI EMMA, P.E.(C GRAPHIC SC 1 inch = 20 f T T C C C C C C C C C C C C C	P B USED F TEXTURES AND DIL GROUP B. ERING, INC. STVIL) # 31967 P.L.S. # 37046 ALE (MAT CHRE MASS AD ENGINEERING, IN STREET IA 07702 E826-0063	DATE DATE DATE ERB) 50 ERB) 50 ERB) 50 ERB) 50 ERB) 50 ERB) 50
S) PRODUCT 0.784 1.220 0.915 SUM 2.919 3) = 67.9 PRODUCT 6.174 3.355 2.745 SUM 12.274 3) = 75.3 WAT S) PRODUCT 4.10 2.684 2.3) = 73.5	HYDROLOGIC SOILS ON SITE ARI CLASSIFIED WITHIN FOR METROW, ROBERT A. G. FOR METROW, ROBERT A. G. FIGUI POST- 'ERSHED #24 S WAYI FOR: WINDSOR H 73 PELHAN WAYLAND, OF: WINDSOR H 73 PELHAN WAYLAND,	SILT LOAM SOIL CROU E SANDY LOAM HYDROLOGIC SC EEST ENGINET EMMA, P.E.(C GRAPHIC SC 1 inch = 20 ft SC CL inch = 20 ft SC CL inch = 20 ft SC CL INC CL IN	P B USED F TEXTURES AND DIL GROUP B. ERING, INC. STVIL) # 31967 P.L.S. # 37046 ALE (MAT CHRE MASS AD ENGINEERING, IN STREET IA 07702 E826-0063	DATE DATE DATE ERB) * TE PLAN

Hydrologic soil group B Weighted Curve Number = 67.9 Basin slope = 1.0% Hydraulic length = 49 feet Time of concentration = 5.0 minutes (Manually Entered)

Post-Development Basin 3 (P.D.B.-3)

Area = 7,081 square fect Impervious area = 2,745 square feet; curve number = 98.0 Lawn area (good condition) = 2,391 square feet, curve number = 61.0 Landscaped area (good condition) = 1,946 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 75.3 Basin slope = 3.8% Hydraulic length = 196 feet Time of concentration = 5.0 minutes (Manually Entered)

Post-Development Basin 3A (P.D.B.-3A)

Area = 5,856 square feet Impervious area = 2,745 square feet; curve number = 98.0 Lawn area (good condition) = 1,914 square feet, curve number = 61.0 Landscaped area (good condition) = 1,983 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 73.5 Basin slope = n.a. Hydraulic length = n.a. Time of concentration = 5.0 minutes (Manually Entered)

Post-Development Basin 4 (P.D.B.-4)

Area = 17,059 square feet Impervious area = 14,145 square feet; curve number = 98.0 Lawn area (good condition) = 1,402 square feet, curve number = 61.0 Landscaped area (good condition) = 1,511 square feet, curve number = 61.0 Hydrologic soil group B Weighted Curve Number = 91.7 Basin slope = n.a. Hydraulic length = n.a. Time of concentration = 5.0 minutes (Manually Entered)

Drain Infiltration Systems

Proposed Infiltration System 1

Basic geometry:	32.0 feet wide by 52.0 feet long
System type:	Shea Leaching Galleys; 360 gallons cach
	Use 84 Galleys; 4-feet long by 4.5-feet wide by 3.0-feet high
	Surrounded by two feet of double washed, crushed stone
Infiltration rate:	1.02 inches per hour over 1,664 square foot bed

Proposed Rain Garden

Basic geometry:	Irregular shaped basin
System type:	Constructed basin approximately 1.5-feet deep
	Total Storage approximately 742 cubic feet
Infiltration rate:	1.02 inches per hour over 450 square foot bed area

The proposed condition model analyzes the infiltration system using a reservoir-analysis method. Consistent with DEP stormwater management standards, design infiltration rates are based on the Rawls table for soils with sandy loam and loamy sand textures.

Model Results

The model results for the design points A, B and C are shown in Tables one through ten below:

Table 1: Comparison of Pre and Post-Development Peak Runoff Ratesat Design Point A

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B1	0.19 c.f.s.	0.54 c.f.s.	0.86 c.f.s.	1.59 c.f.s.
P.D.B1	0.08 c.f.s.	0.21 c.f.s.	0.34 c.f.s.	0.63 c.f.s.
Difference	-0.11 c.f.s.	-0.33 c.f.s.	-0.52 c.f.s.	-0.96 c.f.s.

Table 2: Comparison of Pre and Post-Development Runoff Volumes

at Design Point A					
Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm	
E.C.B1	789 c.f.	1,881 c.f.	2,913 c.f.	5,287 c.f.	
P.D.B1	310 c.f.	740 c.f.	1,145 c.f.	2,079 c.f.	
Difference	-479 c.f.	-1,141 c.f.	-1,768 c.f.	-3,208 c.f.	

<u>Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts</u> <u>REVISED, May 2018</u>

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B2	0.09 c.f.s.	0.18 c.f.s.	0.25 c.f.s.	0.40 c.f.s.
P.D.B2	0.03 c.f.s.	0.07 c.f.s.	0.11 c.f.s.	0.20 c.f.s.
Difference	-0.06 c.f.s.	-0.11 c.f.s.	-0.14 c.f.s.	-0.20 c.f.s.

Table 3: Comparison of Pre and Post Development Peak Runoff Ratesat Design Point B

Table 4: Comparison of Pre and Post-Development Runoff Volumesat Design Point B

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B2	317 c.f.	602 c.f.	847 c.f.	1,374 c.f.
P.D.B2	107 c.f.	246 c.f.	377 c.f.	674 c.f.
Difference	-210 c.f.	-356 c.f.	-470 c.f.	-700 c.f.

Table 5: Comparison of Pre and Post Development Peak Runoff Ratesat Design Point C

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B3	0.35 c.f.s.	0.85 c.f.s.	1.29 c.f.s.	2.26 c.f.s.
P.D.B3 + overflow	0.18 c.f.s.	0.59 c.f.s.	1.13 c.f.s.	2.97 c.f.s.
Difference	-0.17 c.f.s.	-0.27 c.f.s.	-0.16 c.f.s.	0.71 c.f.s.

Table 6: Comparison of Pre and Post-Development Runoff Volumesat Design Point C

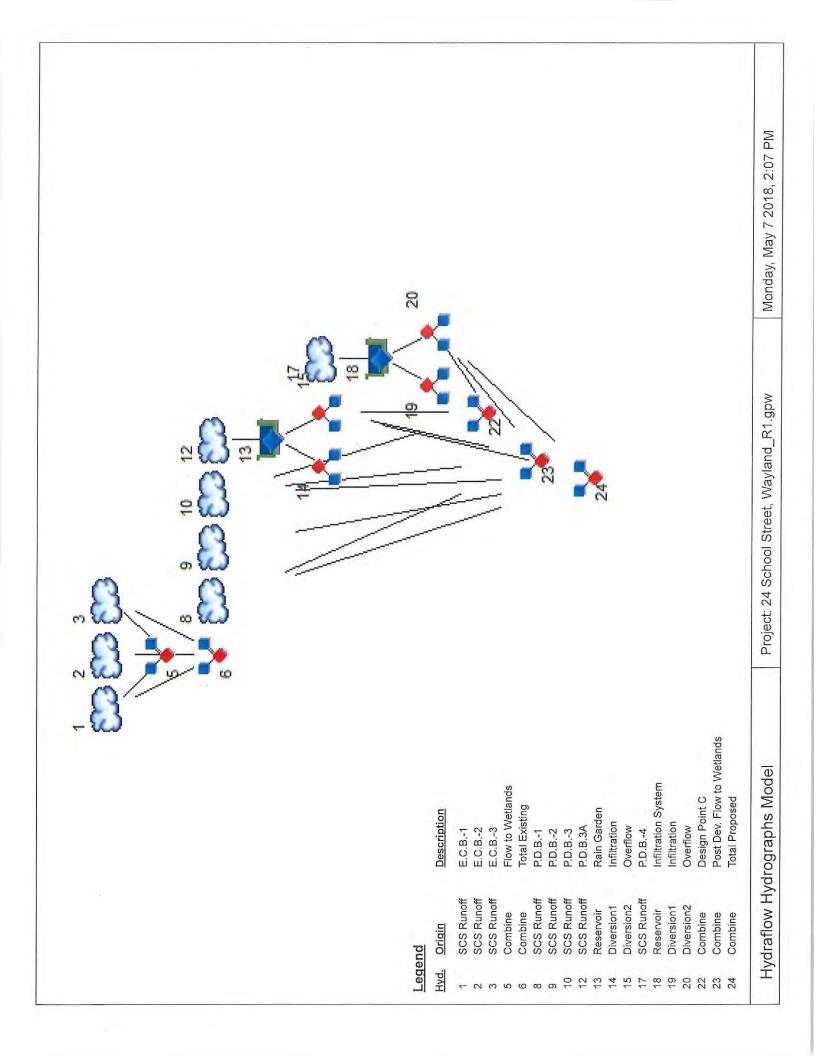
Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
E.C.B3	1,304 c.f.	2,875 c.f.	4,311 c.f.	7,539 c.f.
P.D.B3 + overflow	672 c.f.	2,761 c.f.	4,916 c.f.	9,778 c.f.
Difference	-632 c.f.	-114 c.f.	605 c.f.	2,239 c.f.

Table 7: Comparison of Total Pre and Post Development Peak Runoff RatesLeaving the Project Site

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
Total Existing	0.64 c.f.s.	1.57 c.f.s.	2.41 c.f.s.	4.26 c.f.s.
Total Proposed	0.28 c.f.s.	0.74 c.f.s.	1.50 c.f.s.	3.79 c.f.s.
Difference	-0.36 c.f.s.	-0.83 c.f.s.	-0.91 c.f.s.	-0.47 c.f.s.

Table 8: Comparison of Total Pre and Post-Development Runoff VolumesLeaving the Project Site

Hydrologic Assessment for Site Redevelopment 24 School Street, Wayland, Massachusetts REVISED, May 2018

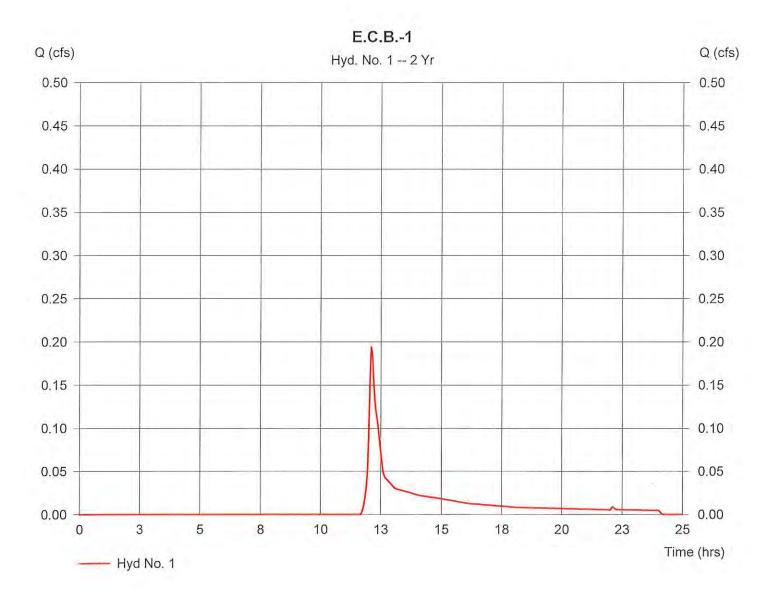

Drainage Basin	2-year storm	10-year storm	25-year storm	100-year storm
Total Existing	2,410 c.f.	5,358 c.f.	8,071 c.f.	14,200 c.f.
Total Proposed	1,088 c.f.	3,747 c.f.	6,438 c.f.	12,531 c.f.
Difference	-1,322 c.f.	-1,611 c.f.	-1,633 c.f.	-1,669 c.f.

Conclusion

The results provided in Tables One through Eight demonstrate that the project, with the stormwater controls in place, will result in an overall decrease both in peak runoff rates and total runoff volume discharged from the project site. The project will impact neither the municipal stormwater drainage system or abutting properties.

Additionally, a portion of the proposed roof and the majority of driveway surfaces will be collected and recharged. The stormwater management system as designed is consistent with MADEP Stormwater Management Policy and accepted design practice.

Appendix A: Hydrologic Assessment

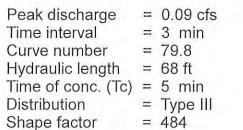

2-Year Storm, Pre and Post-Development

Hydrograph Summary Report

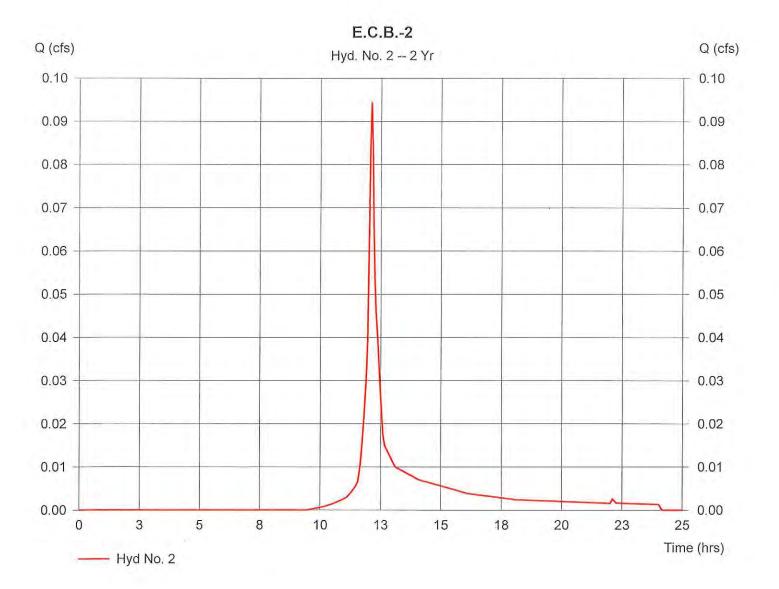
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	0.19	3	726	789				E.C.B1
2	SCS Runoff	0.09	3	726	317				E.C.B2
3	SCS Runoff	0.35	3	726	1,304				E.C.B3
5	Combine	0.55	3	726	2,093	1, 3,			Flow to Wetlands
6	Combine	0.64	3	726	2,410	1, 2, 3,			Total Existing
8	SCS Runoff	0.08	3	726	310				P.D.B1
9	SCS Runoff	0.03	3	726	107				P.D.B 2
10	SCS Runoff	0.18	3	726	616				P.D.B3
12	SCS Runoff	0.13	3	726	457				P.D.B.3A
13	Reservoir	0.01	3	843	443	12	164.12	209	Rain Garden
14	Diversion1	0.01	3	843	443	13			Infiltration
15	Diversion2	0.00	3	1221	0	13			Overflow
17	SCS Runoff	0.91	3	726	3,098				P.D.B4
18	Reservoir	0.06	3	843	3,094	17	163.81	1,657	Infiltration System
19	Diversion1	0.05	3	843	3,039	18			Infiltration
20	Diversion2	0.01	3	843	55	18			Overflow
22	Combine	0.18	3	726	672	10, 15, 20,			Design Point C
23	Combine	0.25	3	726	982	8, 10, 15, 2	0,		Post Dev. Flow to Wetlands
24	Combine	0.28	3	726	1,088	8, 9, 10, 15	, 20,		Total Proposed
 24 S	School Stre	et, Way	/land_R	1.gpw	Return	Period: 2	Year	Friday, Ma	ay 4 2018, 2:09 PM

Hydraflow Hydrographs by Intelisolve

Hydraflow Hydrographs by	Intelisolve	Mor	nday, May 7 2018, 8:27 PM
Hyd. No. 1 E.C.B1			
Hydrograph type Storm frequency Drainage area Basin Slope Tc method Total precip. Storm duration	 SCS Runoff 2 yrs 0.35 ac 5.2 % LAG 3.20 in 24 hrs 	Peak discharge Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 0.19 cfs = 3 min = 66.4 = 189 ft = 5.407852 min = Type III = 484
		Hyd	rograph Volume = 789 c



Hydraflow Hydrographs by Intelisolve

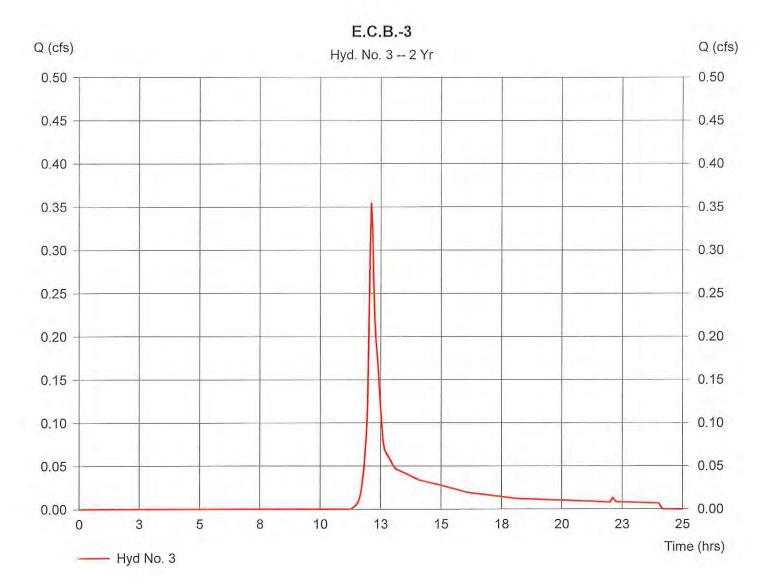

Hyd. No. 2

E.C.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.07 ac
Basin Slope	= 1.9 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Hydrograph Volume = 317 cuft

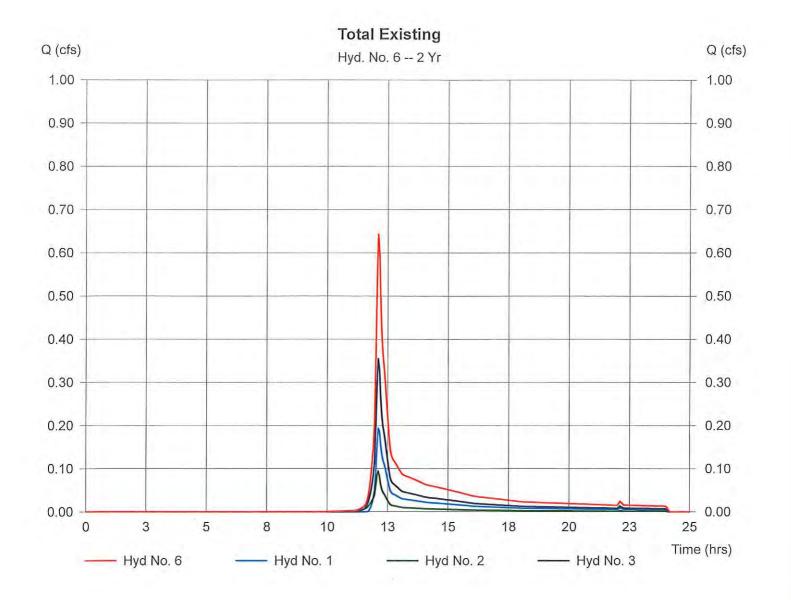
Hydraflow Hydrographs by Intelisolve


Hyd. No. 3

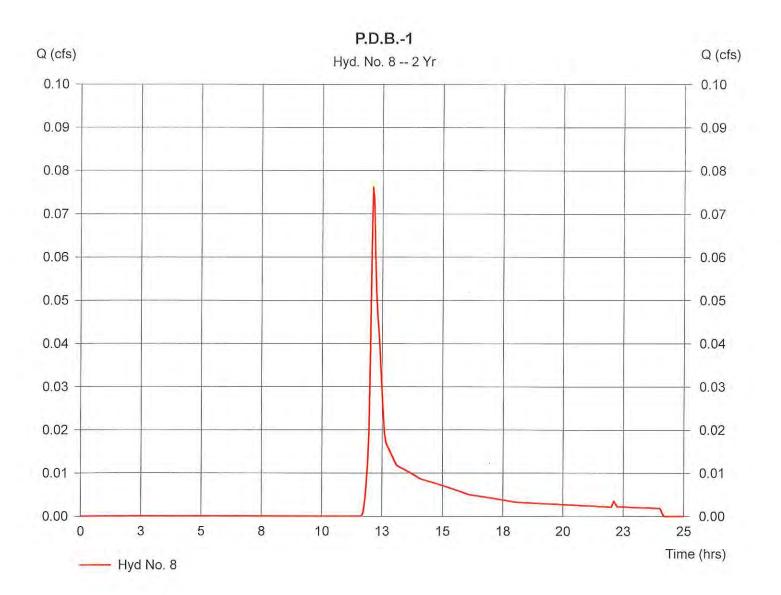
E.C.B.-3

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.45 ac
Basin Slope	= 4.2 %
Tc method	= LAG
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Peak discharge=0.35 cfsTime interval=3 minCurve number=70.4Hydraulic length=207 ftTime of conc. (Tc)=5.817464 minDistribution=Type IIIShape factor=484


Hydrograph Volume = 1,304 cuft

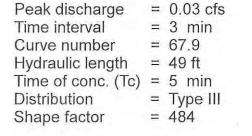
Hydraflow Hydrographs by Intelisolve		M	onday, May 7 2018, 8:27 PM
Hyd. No. 5			
Flow to Wetlands			
Hydrograph type = Combir Storm frequency = 2 yrs nflow hyds. = 1, 3	ne	Peak discharge Time interval	= 0.55 cfs = 3 min
		Hydi	rograph Volume = 2,093 cuft
(cfs)	Flow to Wetl Hyd. No. 5		Q (cf
1.00			1.00
0.90	statute and the	in the second part	0.90
0.80			0.80
0.70			0.70
	and the second sec		
0.60			0.60
			0.50
0.50			
0.50			0.50
0.50			0.50
0.50			0.50
0.50			0.50
0.60			0.50


4

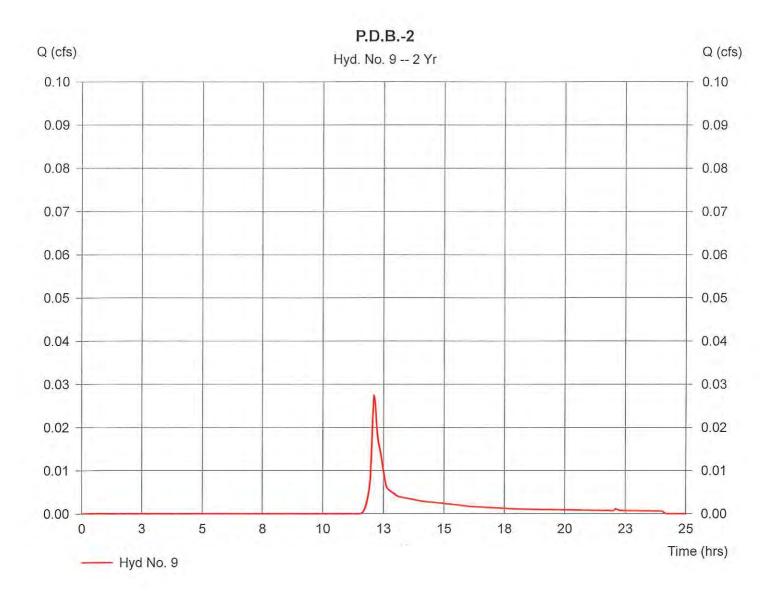
Hydraflow Hydrographs by Intelisolve		Mo	onday, May 7 2018, 8:27 PM
Hyd. No. 6 Total Existing			
Hydrograph type Storm frequency Inflow hyds.	= Combine = 2 yrs = 1, 2, 3	Peak discharge Time interval	= 0.64 cfs = 3 min
		Hydr	ograph Volume = 2,410 cuft

5

Hydraflow Hydrographs by Intelisolve		Mon	iday, May 7 2018, 8:27 PM
Hyd. No. 8 P.D.B1			
Hydrograph type Storm frequency Drainage area Basin Slope Tc method Total precip. Storm duration	 = SCS Runoff = 2 yrs = 0.14 ac = 4.4 % = LAG = 3.20 in = 24 hrs 	Peak discharge Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution Shape factor	= 0.08 cfs = 3 min = 66.4 = 222 ft = 6.686719 min = Type III = 484



Hydraflow Hydrographs by Intelisolve


Hyd. No. 9

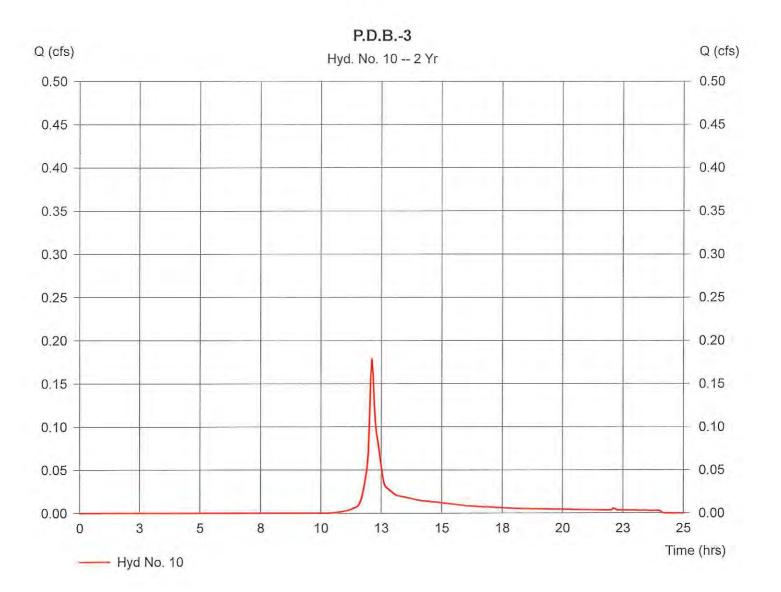
P.D.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.04 ac
Basin Slope	= 1.0 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Hydrograph Volume = 107 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 10


P.D.B.-3

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.16 ac
Basin Slope	= 3.8 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Peak discharge= 0.18 cfsTime interval= 3 minCurve number= 75.3Hydraulic length= 196 ftTime of conc. (Tc)= 5 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 616 cuft

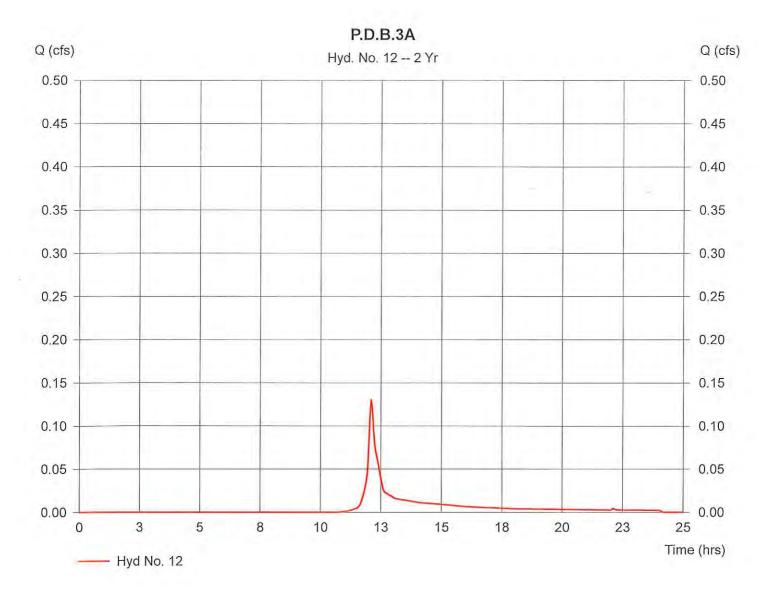
Monday, May 7 2018, 8:27 PM

8

Hydraflow Hydrographs by Intelisolve

Hyd. No. 12

P.D.B.3A


Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.13 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs

Monday, May 7 2018, 8:27 PM

-

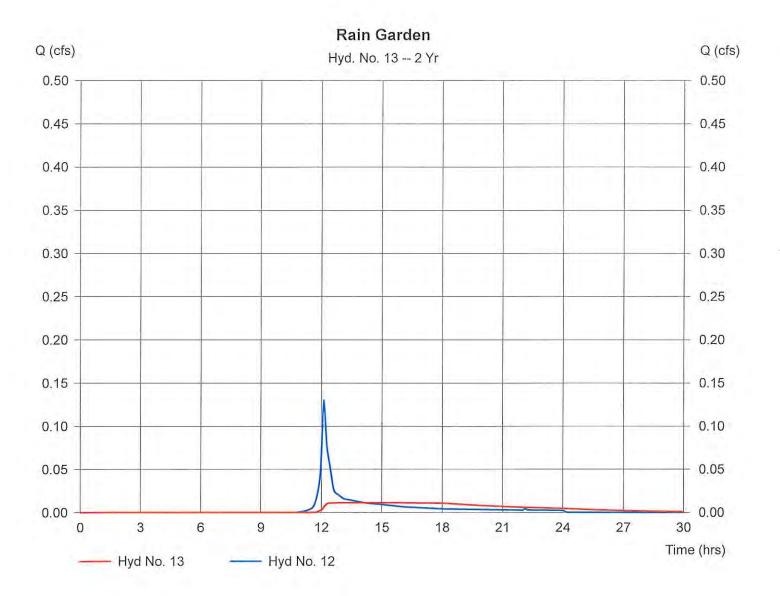
Peak discharge	Ξ	0.13 cfs
Time interval	=	3 min
Curve number	=	73.5
Hydraulic length	=	100 ft
Time of conc. (Tc)	Ξ	5 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 457 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 13

Rain Garden


Hydrograph type	= Reservoir	
Storm frequency	= 2 yrs	
Inflow hyd. No.	= 12	
Reservoir name	= Rain Garden	

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	=	0.01 cfs
Time interval	=	3 min
Max. Elevation		164.12 ft
Max. Storage	=	209 cuft

Hydrograph Volume = 443 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Rain Garden

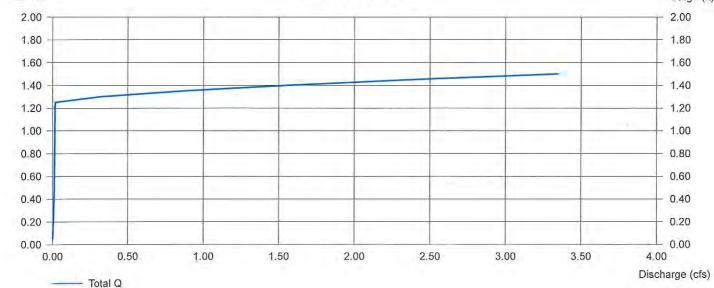
Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	163.50	140	0	0
0.50	164.00	448	147	147
1.00	164.50	591	260	407
1.50	165.00	748	335	742

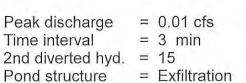
Culvert / Orifice Structures


	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]	
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00	
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 164.75	0.00	0.00	0.00	
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00	
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect				
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No	
Slope (%)	= 0.00	0.00	0.00	0.00						
N-Value	= .000	.000	.000	.000						
Orif. Coeff.	= 0.00	0.00	0.00	0.00						
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (Co	ntour) Tai	lwater Elev	<i>i</i> . = 0.00 ft	

Weir Structures

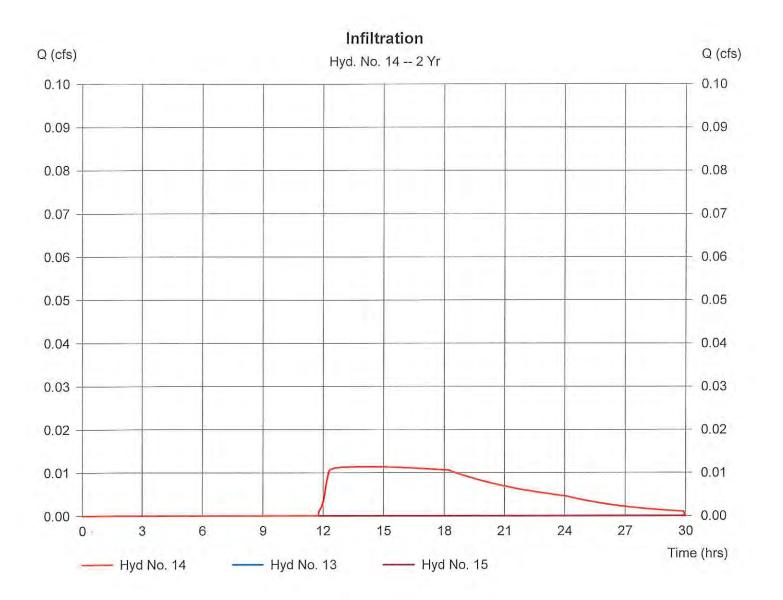
Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Stage / Discharge



Hydraflow Hydrographs by Intelisolve

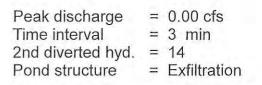
Hyd. No. 14


Infiltration

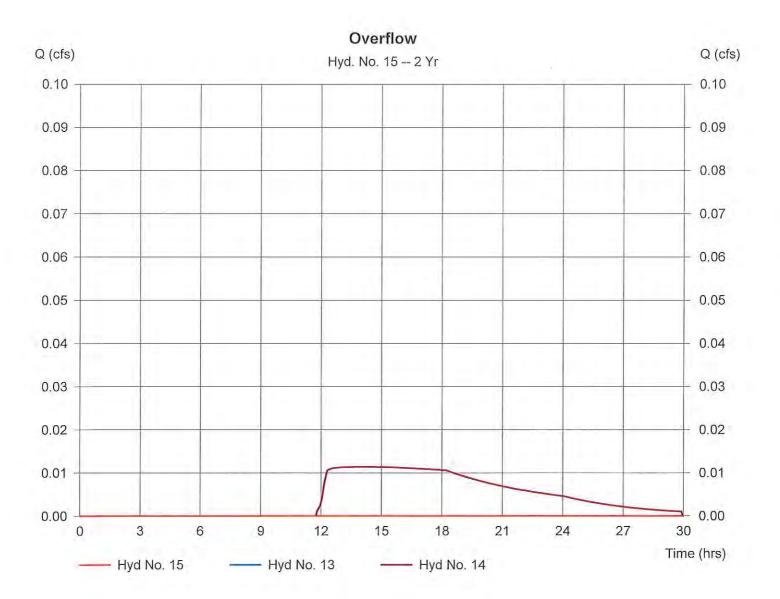
Hydrograph type	=	Diversion1
Storm frequency	=	2 yrs
Inflow hydrograph	=	13
Diversion method	=	Pond - Rain Garden

= Exfiltration

Hydrograph Volume = 443 cuft



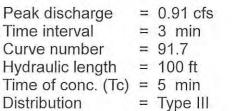
Hydraflow Hydrographs by Intelisolve


Hyd. No. 15

Overflow

Hydrograph type	=	Diversion2
Storm frequency	=	2 yrs
Inflow hydrograph	=	13
Diversion method	Ξ	Pond - Rain Garden

Hydrograph Volume = 0 cuft

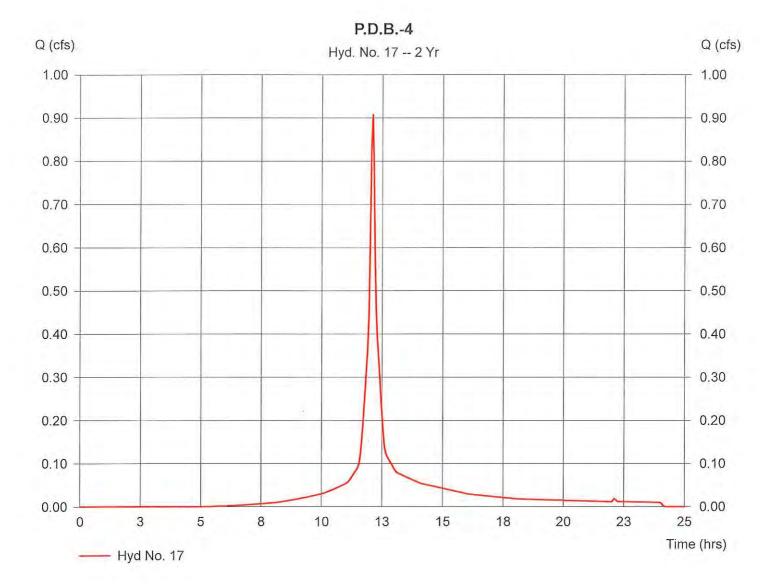


Hydraflow Hydrographs by Intelisolve

Hyd. No. 17

P.D.B.-4

Hydrograph type	= SCS Runoff
Storm frequency	= 2 yrs
Drainage area	= 0.39 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 3.20 in
Storm duration	= 24 hrs



Shape factor

Hydrograph Volume = 3,098 cuft

= 484

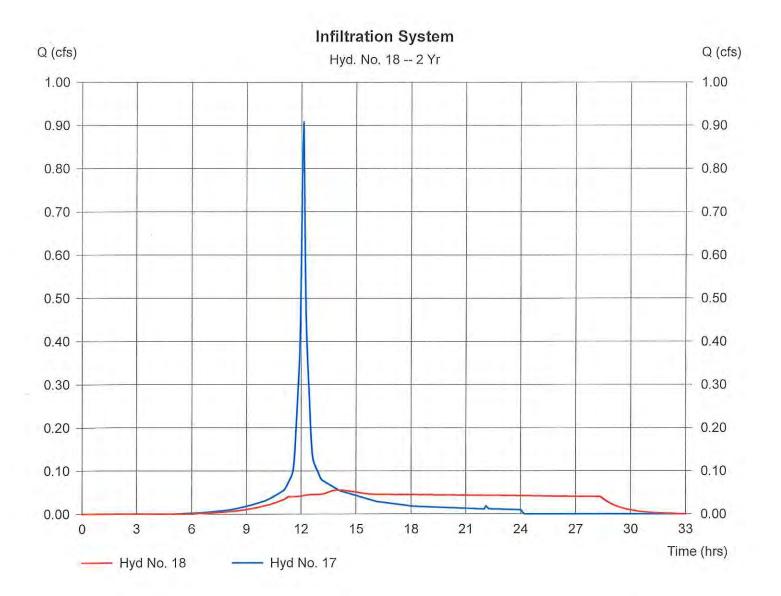
Monday, May 7 2018, 8:27 PM

14

Hydraflow Hydrographs by Intelisolve

Hyd. No. 18

Infiltration System


Hydrograph type	=	Reservoir
Storm frequency	Ξ	2 yrs
Inflow hyd. No.	=	17
Reservoir name	=	Infiltration System

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	= 0.06 cfs
Time interval	= 3 min
Max. Elevation	= 163.81 ft
Max. Storage	= 1,657 cuft

Hydrograph Volume = 3,094 cuft

Pond Report

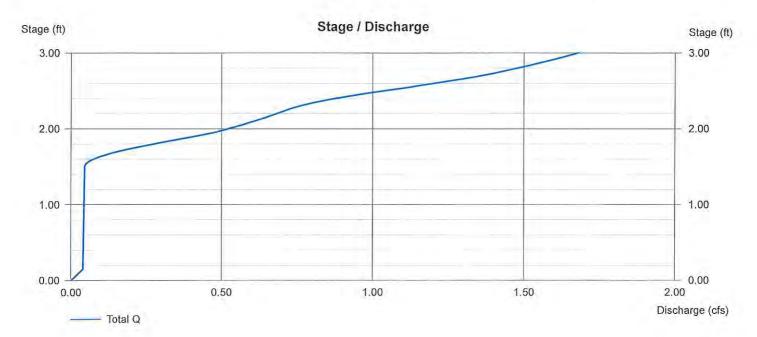
Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Infiltration System

Pond Data

Bottom LxW = 52.0 x 32.0 ft Side slope = 0.0:1 Bottom elev. = 162.25 ft Depth = 3.00 ft

Stage / Storage Table

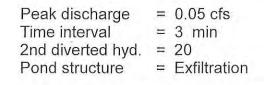

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)*	Total storage (cuft)*	(*64.00% voids applied)	
0.00	162.25	1,664	0	0		
0.15	162.40	1,664	160	160		
0.30	162.55	1,664	160	319		
0.45	162.70	1,664	160	479		
0.60	162.85	1,664	160	639		
0.75	163.00	1,664	160	799		
0.90	163.15	1,664	160	958		
1.05	163.30	1,664	160	1,118		
1.20	163.45	1,664	160	1,278		
1.35	163.60	1,664	160	1,438		
1.50	163.75	1,664	160	1,597		
1.65	163.90	1,664	160	1,757		
1.80	164.05	1,664	160	1,917		
1.95	164.20	1,664	160	2,077		
2.10	164.35	1,664	160	2,236		
2.25	164.50	1,664	160	2,396		
2.40	164.65	1,664	160	2,556		
2.55	164.80	1,664	160	2,716		
2.70	164.95	1,664	160	2,875		
2.85	165.10	1,664	160	3,035		
3.00	165.25	1,664	160	3,195		

Weir Structures

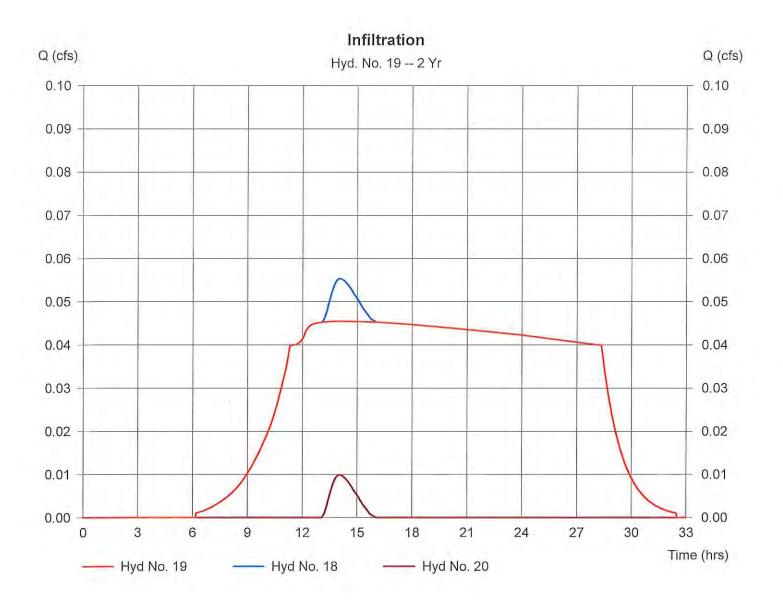
Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 6.00	6.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 6.00	6.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 163.75	164.50	0.00	0.00	Weir Type				
Length (ft)	= 50.00	50.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	2.00	0.00	0.00	New Street				
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (W	et area) Ta	ailwater Ele	ev. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.



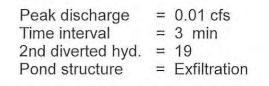
Hydraflow Hydrographs by Intelisolve


Hyd. No. 19

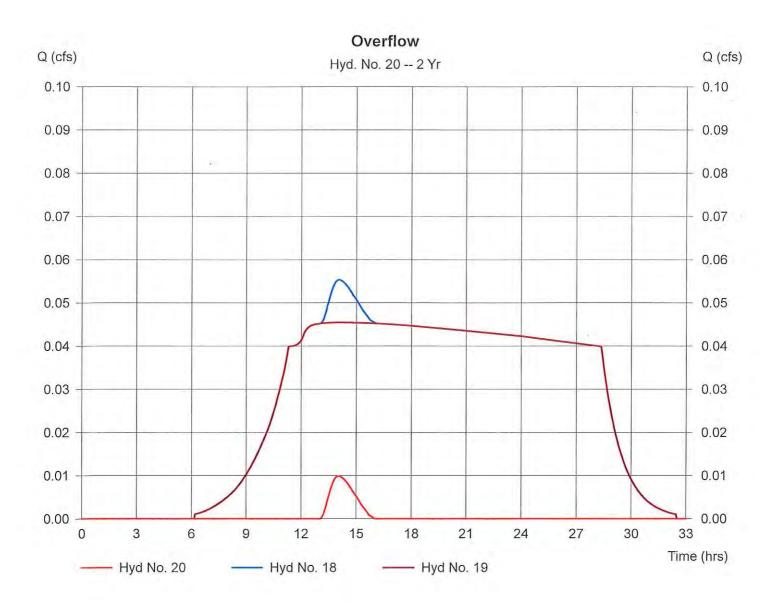
Infiltration

Hydrograph type	=	Diversion1
Storm frequency	Ξ	2 yrs
Inflow hydrograph	=	18
Diversion method	Ξ	Pond - Infiltration System

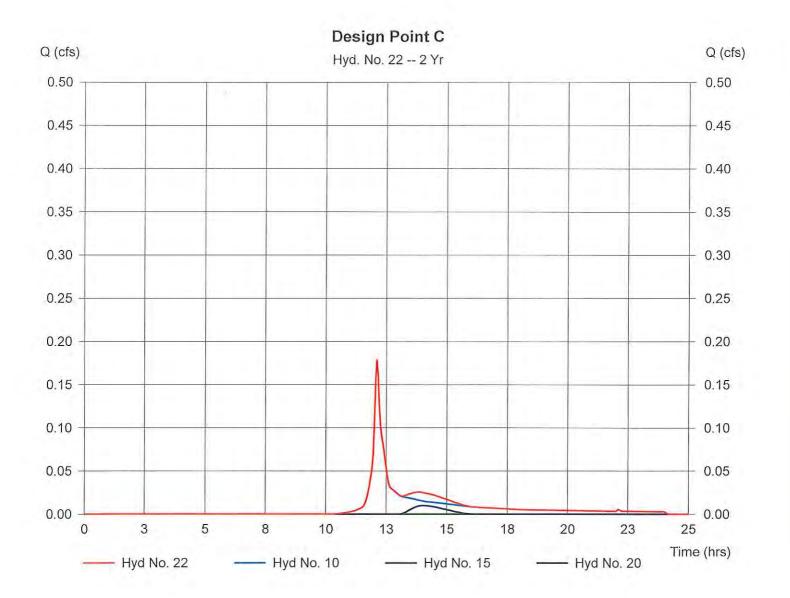
Hydrograph Volume = 3,039 cuft

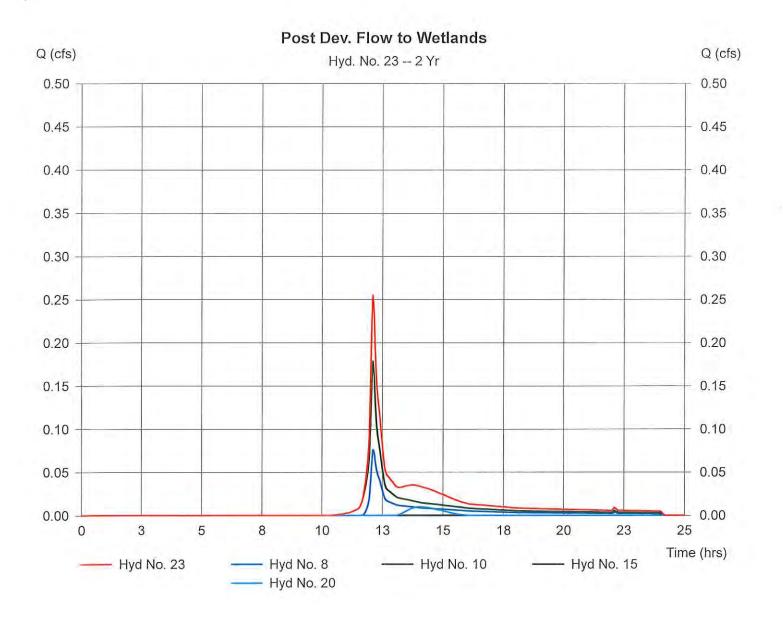


Hydraflow Hydrographs by Intelisolve


Hyd. No. 20

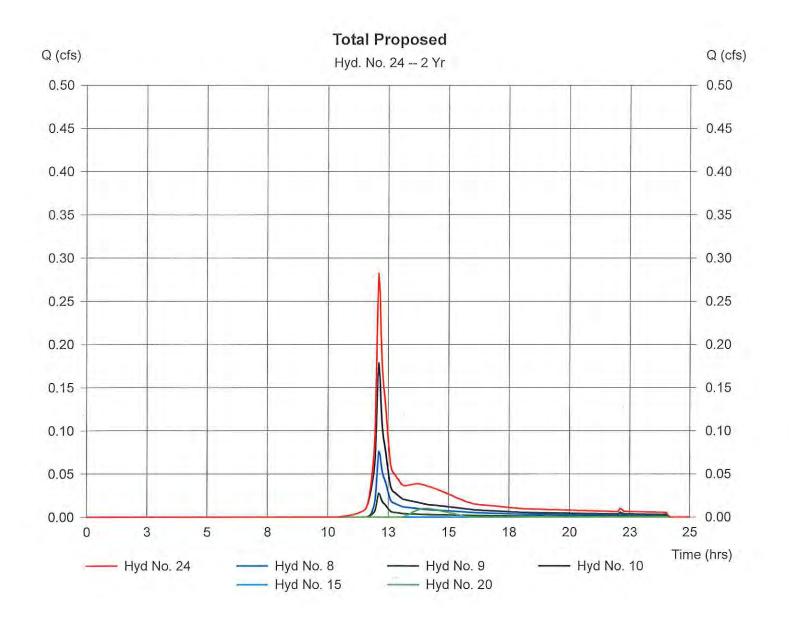
Overflow


Hydrograph type	=	Diversion2
Storm frequency	=	2 yrs
Inflow hydrograph	=	18
Diversion method	=	Pond - Infiltration System


Hydrograph Volume = 55 cuft

Hydraflow Hydrographs by Intelisolve		Monday, May 7 2018, 8:27 PM	
Hyd. No. 22 Design Point C			
Hydrograph type Storm frequency Inflow hyds.	= Combine = 2 yrs = 10, 15, 20	Peak discharge Time interval	= 0.18 cfs = 3 min
		Ну	drograph Volume = 672 cuft

	nday, May 7 2018, 8:27 PM
Peak discharge Time interval	= 0.25 cfs = 3 min


 Hydraflow Hydrographs by Intelisolve
 Monday, May 7 2018, 8:27 PM

 Hydr. No. 24
 Total Proposed

 Hydrograph type
 = Combine

 Storm frequency
 = 2 yrs

 Inflow hyds.
 = 8, 9, 10, 15, 20

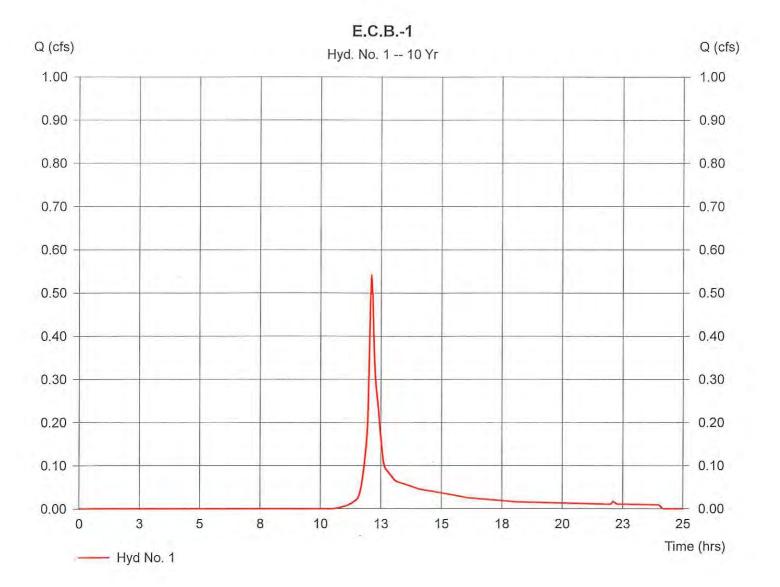
10-Year Storm, Pre and Post-Development

Hydrograph Summary Report

Hyd. No,	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	0.54	3	726	1,881	~~~~			E.C.B1
2	SCS Runoff	0.18	3	726	602				E.C.B2
3	SCS Runoff	0.85	3	726	2,875			A 4	E.C.B3
5	Combine	1.39	3	726	4,756	1, 3,			Flow to Wetlands
5	Combine	1.57	3	726	5,358	1, 2, 3,			Total Existing
8	SCS Runoff	0.21	3	726	740				P.D.B1
Э	SCS Runoff	0.07	3	726	246				P.D.B2
10	SCS Runoff	0.38	3	726	1,252	and the set of the set			P.D.B3
12	SCS Runoff	0.29	3	726	955				P.D.B.3A
13	Reservoir	0.02	3	915	941	12	164.70	542	Rain Garden
14	Diversion1	0.02	3	915	941	13			Infiltration
15	Diversion2	0.00	3	915	0	13			Overflow
7	SCS Runoff	1.45	3	726	5,061				P.D.B4
8	Reservoir	0.49	3	744	5,057	17	164.21	2,089	Infiltration System
9	Diversion1	0.05	3	744	3,548	18			Infiltration
20	Diversion2	0.44	3	744	1,510	18			Overflow
22	Combine	0.59	3	741	2,761	10, 15, 20,			Design Point C
23	Combine	0.70	3	738	3,501	8, 10, 15, 2	0,		Post Dev. Flow to Wetlands
24	Combine	0.74	3	738	3,747	8, 9, 10, 15	.20,	 -	Total Proposed
24 S	chool Stree	et, Way	/land_R	1.gpw	Return	Period: 10) Year	Friday, Ma	ay 4 2018, 2:09 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1


E.C.B.-1

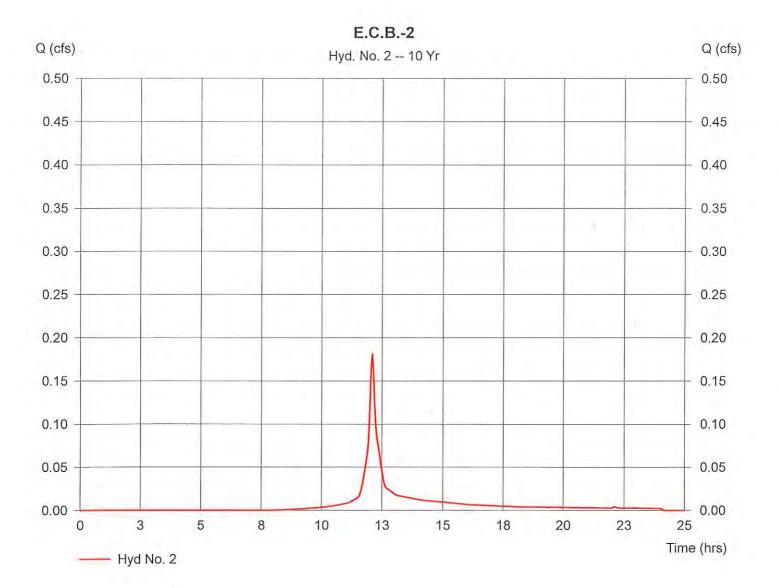
Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.35 ac
Basin Slope	= 5.2 %
Tc method	= LAG
Total precip.	= 4.73 in
Storm duration	= 24 hrs

Monday, May 7 2018, 8:27 PM

i ear uischarge	-	0.04 015	
Time interval	=	3 min	
Curve number	=	66.4	
Hydraulic length	=	189 ft	
Time of conc. (Tc)	=	5.407852 min	
Distribution	=	Type III	
Shape factor	=	484	

Hydrograph Volume = 1,881 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 2

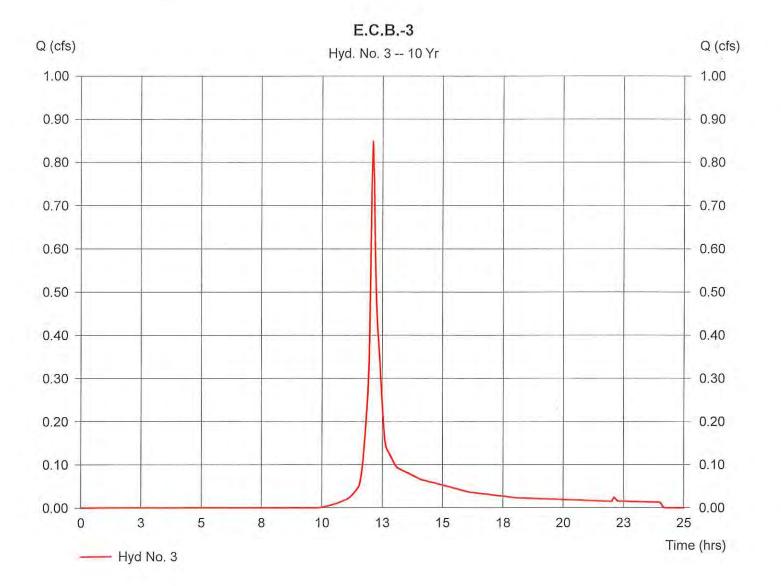
E.C.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.07 ac
Basin Slope	= 1.9 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs

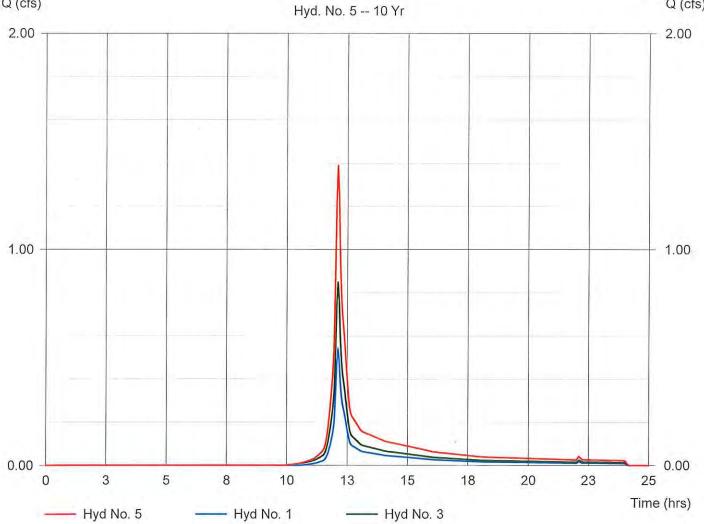
Peak discharge	=	0.18 cfs
Time interval	Ξ	3 min
Curve number	Ξ	79.8
Hydraulic length	=	68 ft
Time of conc. (Tc)	Ξ	5 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 602 cuft

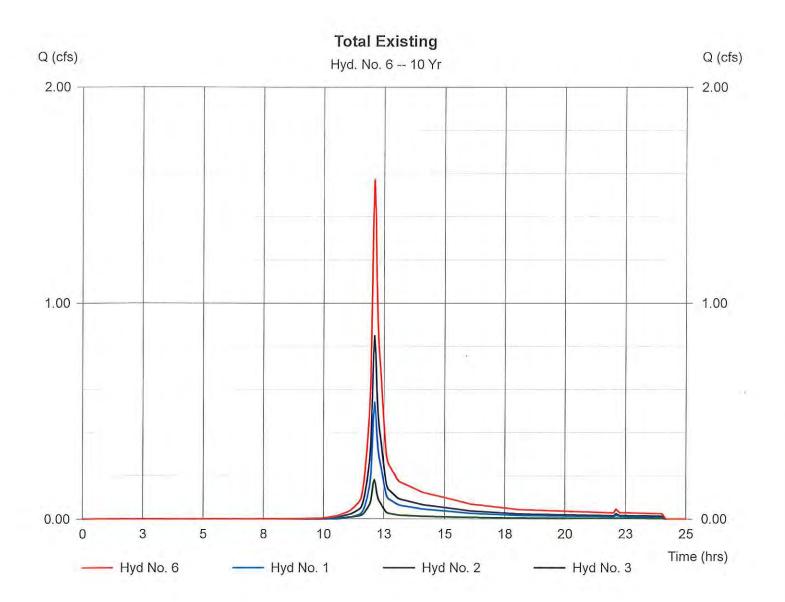
Hydraflow Hydrographs by Intelisolve


Hyd. No. 3

E.C.B.-3

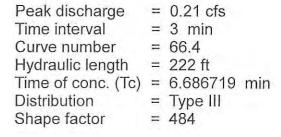

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.45 ac
Basin Slope	= 4.2 %
Tc method	= LAG
Total precip.	= 4.73 in
Storm duration	= 24 hrs

=	0.85 cfs	
=	3 min	
=	70.4	
=	207 ft	
=	5.817464	min
Ξ	Type III	
=	484	
	пппп	= 0.85 cfs = 3 min = 70.4 = 207 ft = 5.817464 = Type III = 484

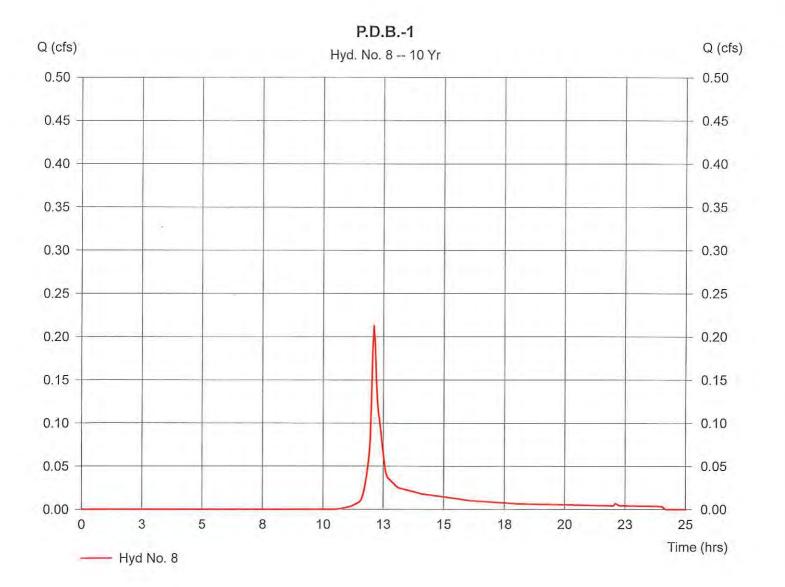

Hydrograph Volume = 2,875 cuft

Hydraflow Hydrographs by Intelisolve	М	onday, May 7 2018, 8:27 PM
Hyd. No. 5 Flow to Wetlands		
Hydrograph type = Combine Storm frequency = 10 yrs Inflow hyds. = 1, 3	Peak discharge Time interval	= 1.39 cfs = 3 min
	Hyd	rograph Volume = 4,756 cuft
	Flow to Wetlands	
Q (cfs)	Hyd. No. 5 10 Yr	Q (cfs
2.00		2.00

Hydraflow Hydrographs by Intelisolve		Mo	onday, May 7 2018, 8:27 PM
Hyd. No. 6 Total Existing			
Hydrograph type = Combine Storm frequency = 10 yrs Inflow hyds. = 1, 2, 3		Peak discharge Time interval	= 1.57 cfs = 3 min
		Hydr	ograph Volume = 5,358 cuf



Hydraflow Hydrographs by Intelisolve


Hyd. No. 8

P.D.B.-1

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.14 ac
Basin Slope	= 4.4 %
Tc method	= LAG
Total precip.	= 4.73 in
Storm duration	= 24 hrs

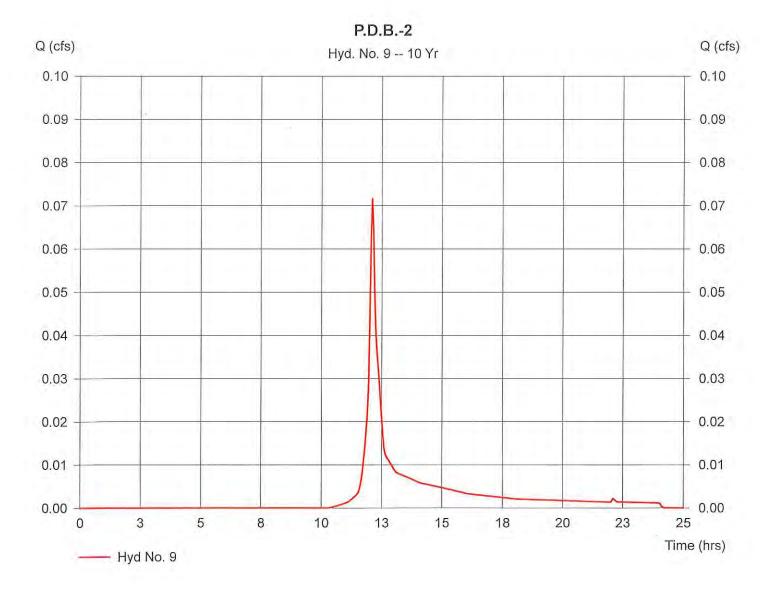
Hydrograph Volume = 740 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 9

P.D.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.04 ac
Basin Slope	= 1.0 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs
	- W.


Peak discharge = 0.07 cfs Time interval $= 3 \min$ Curve number = 67.9 Hydraulic length $= 49 \, \text{ft}$ Time of conc. (Tc) = 5 min Distribution

Shape factor

-	LUDO III	
	Type III	
	1 1 1	

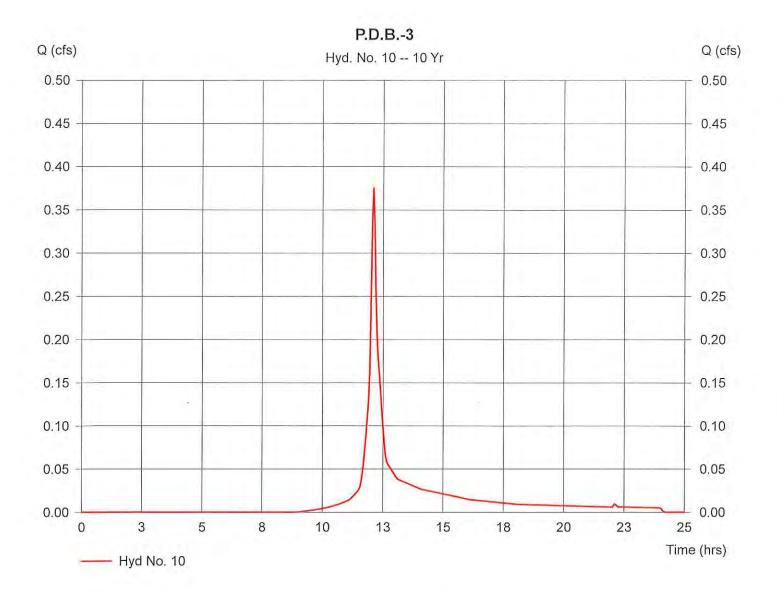
= 484

Hydrograph Volume = 246 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 10

P.D.B.-3


Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.16 ac
Basin Slope	= 3.8 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs

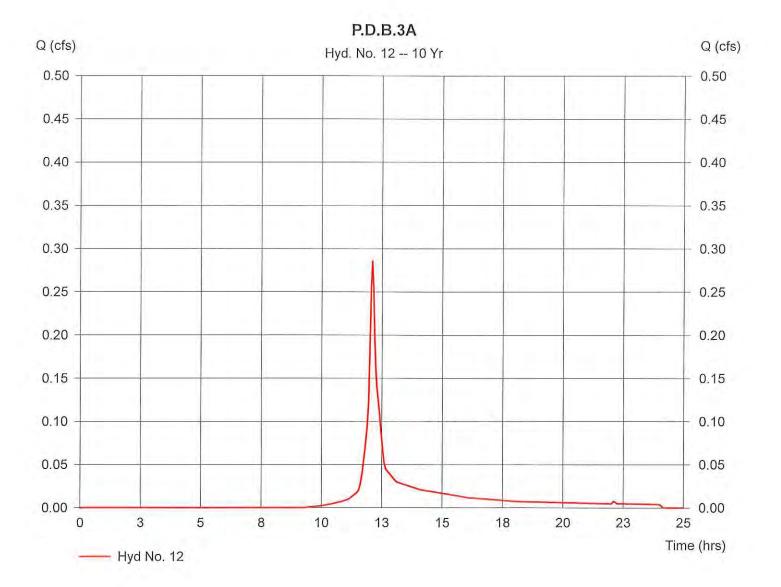
Peak discharge= 0.38 cfsTime interval= 3 minCurve number= 75.3Hydraulic length= 196 ftTime of conc. (Tc)= 5 minDistribution= Type III

Shape factor

Hydrograph Volume = 1,252 cuft

= 484

Hydraflow Hydrographs by Intelisolve


Hyd. No. 12

P.D.B.3A

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.13 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs

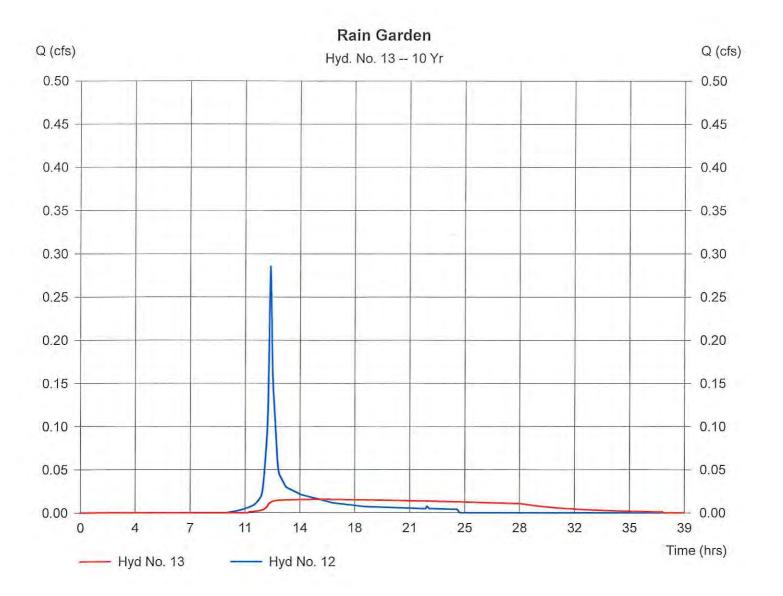
Time interval	Ξ	3 min
Curve number	=	73.5
Hydraulic length	=	100 ft
Time of conc. (Tc)	=	5 min
Distribution	=	Type III
Shape factor		484

Hydrograph Volume = 955 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 13

Rain Garden


= Reservoir
= 10 yrs
= 12
= Rain Garden

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	= 0.02 cfs
Time interval	= 3 min
Max. Elevation	= 164.70 ft
Max. Storage	= 542 cuft

Hydrograph Volume = 941 cuft

Pond Report

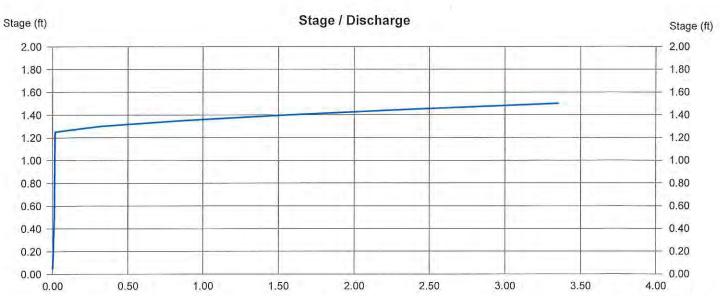
Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Rain Garden

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	163.50	140	0	0	
0.50	164.00	448	147	147	
1.00	164.50	591	260	407	
1.50	165.00	748	335	742	

Weir Structures

Culvert / Orifice Structures

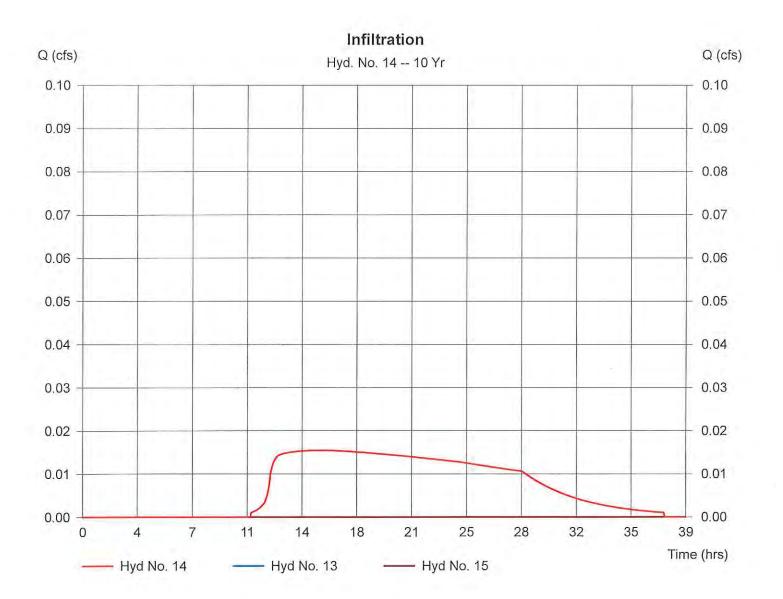
	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]	
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00	
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 164.75	0.00	0.00	0.00	
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00	
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect				
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No	
Slope (%)	= 0.00	0.00	0.00	0.00						
N-Value	= .000	.000	.000	.000						
Orif. Coeff.	= 0.00	0.00	0.00	0.00						
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	1.020 in/hr (Co	ntour) Tai	lwater Elev	<i>ı.</i> = 0.00 ft	

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

----- Total Q

Discharge (cfs)

Hydraflow Hydrographs by Intelisolve

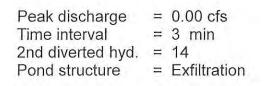

Hyd. No. 14

Infiltration

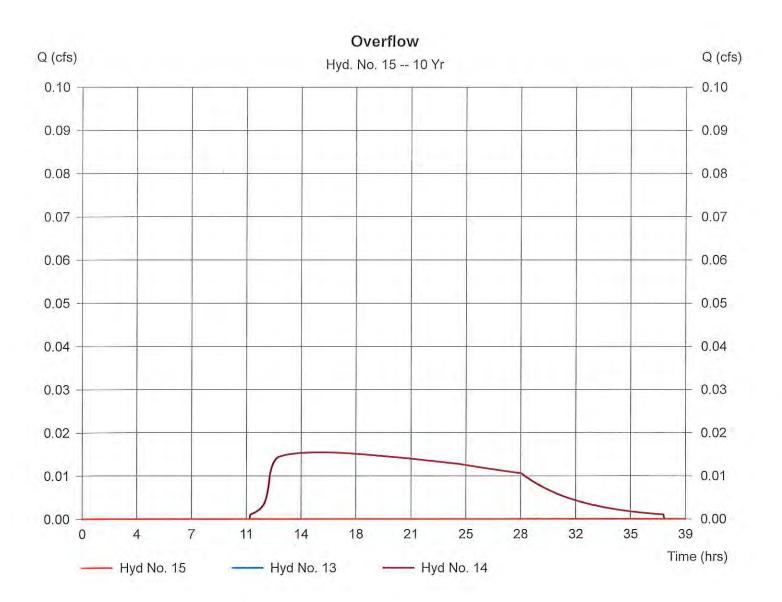
Hydrograph type	Ξ	Diversion1
Storm frequency	=	10 yrs
Inflow hydrograph	=	13
Diversion method	=	Pond - Rain Garden

Peak discharge= 0.02 cfsTime interval= 3 min2nd diverted hyd.= 15Pond structure= Exfiltration

Hydrograph Volume = 941 cuft



Hydraflow Hydrographs by Intelisolve


Hyd. No. 15

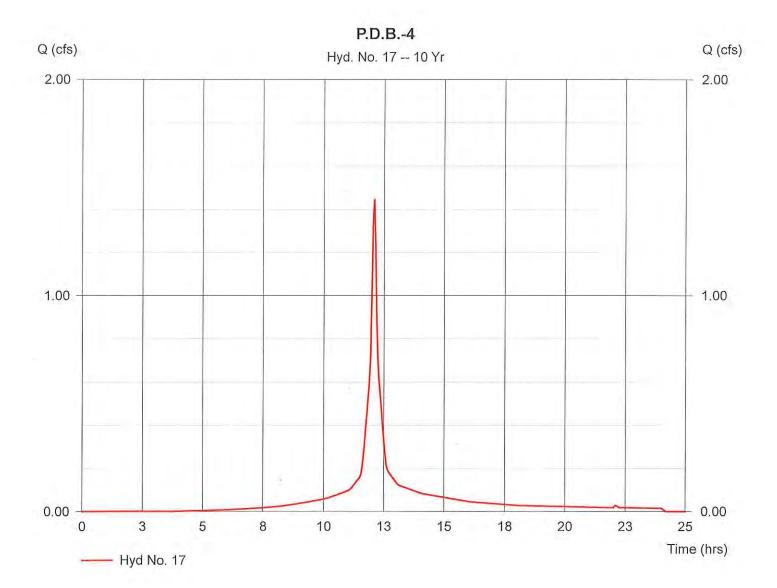
Overflow

Diversion2
10 yrs
13
Pond - Rain Garden

Hydrograph Volume = 0 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 17


P.D.B.-4

Hydrograph type	= SCS Runoff
Storm frequency	= 10 yrs
Drainage area	= 0.39 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 4.73 in
Storm duration	= 24 hrs

Peak discharge = 1.45 cfs Time interval = 3 min Curve number = 91.7

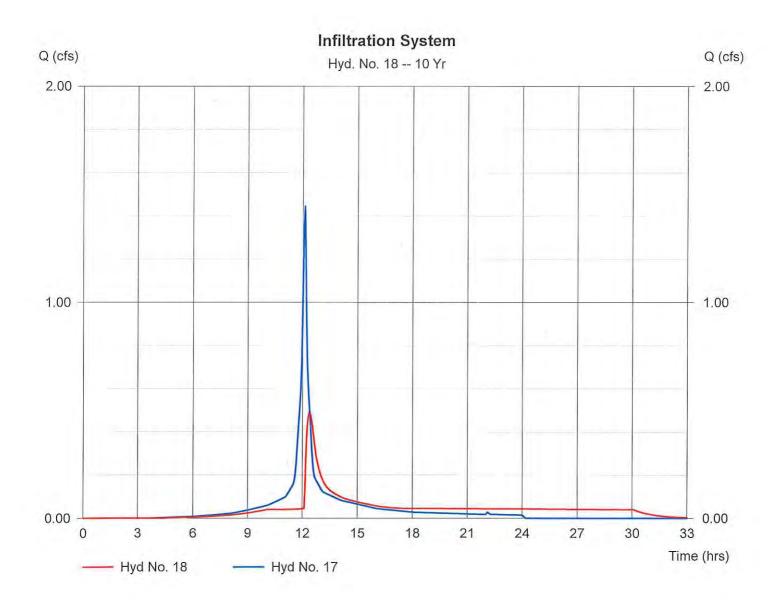
Hydraulic length	=	100 ft
Time of conc. (Tc)	=	5 min
Distribution	Ξ	Type III
Shape factor	=	484

Hydrograph Volume = 5,061 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 18

Infiltration System


=	Reservoir
Ξ	10 yrs
=	17
Ξ	Infiltration System
	п п

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	= 0.49 cfs
Time interval	= 3 min
Max. Elevation	= 164.21 ft
Max. Storage	= 2,089 cuft

Hydrograph Volume = 5,057 cuft

Pond Report

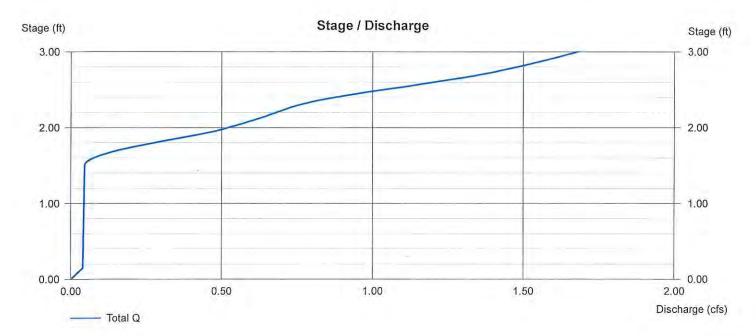
Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Infiltration System

Pond Data

Bottom LxW = 52.0×32.0 ft Side slope = 0.0:1 Bottom elev. = 162.25 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)*	Total storage (cuft)*	(*64.00% voids applied)
0.00	162.25	1,664	0	0	
0.15	162.40	1,664	160	160	
0.30	162.55	1,664	160	319	
0.45	162.70	1,664	160	479	
0.60	162.85	1,664	160	639	
0.75	163.00	1,664	160	799	
0.90	163.15	1,664	160	958	
1.05	163.30	1,664	160	1,118	
1.20	163.45	1,664	160	1,278	
1.35	163.60	1,664	160	1,438	
1.50	163.75	1,664	160	1,597	
1.65	163.90	1,664	160		
1.80	164.05	1,664	160	1,917	
1.95	164.20	1,664	160	2,077	
2.10	164.35	1,664	160	2,236	
2.25	164.50	1,664	160	2,396	
2,40	164.65	1,664	160	2,556	
2.55	164.80	1,664	160	2,716	
2.70	164.95	1,664	160	2,875	
2.85	165.10	1,664	160	3,035	
3.00	165.25	1,664	160	3,195	

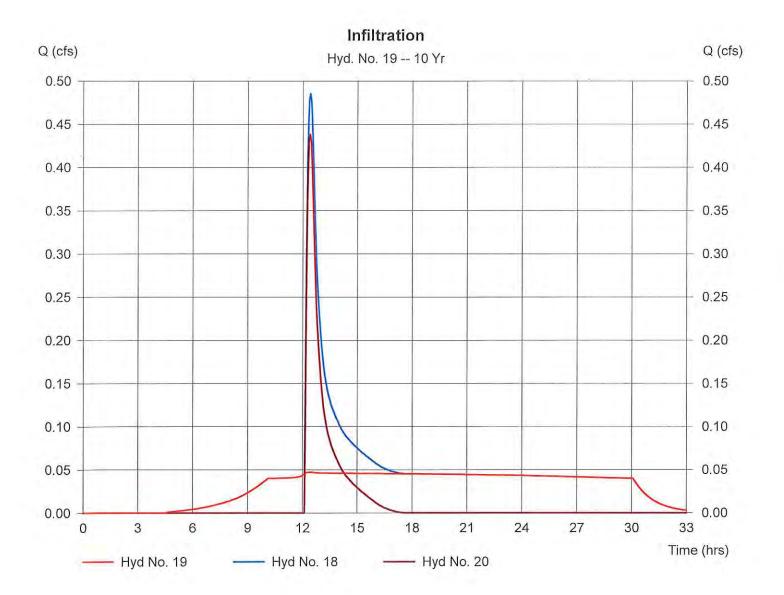
Weir Structures

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]	
Rise (in)	= 6.00	6.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00	
Span (in)	= 6.00	6.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00	
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00	
Invert El. (ft)	= 163.75	164.50	0.00	0.00	Weir Type	=				
Length (ft)	= 50.00	50.00	0.00	0.00	Multi-Stage	= No	No	No	No	
Slope (%)	= 2.00	2.00	0.00	0.00						
N-Value	= .013	.013	.000	.000						
Orif. Coeff.	= 0.60	0.60	0.00	0.00						
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (We	et area) Ta	ailwater Ele	ev. = 0.00 f	t

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Depth = 3.00 ft


Hydraflow Hydrographs by Intelisolve

Hyd. No. 19

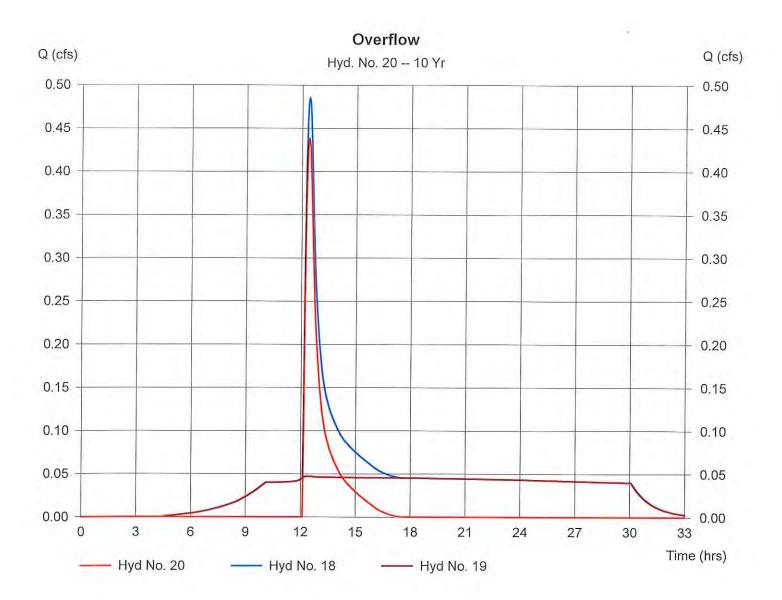
Infiltration

Hydrograph type	=	Diversion1
Storm frequency	=	10 yrs
Inflow hydrograph	=	18
Diversion method	=	Pond - Infiltration System

Hydrograph Volume = 3,548 cuft

Peak discharge= 0.05 cfsTime interval= 3 min2nd diverted hyd.= 20Pond structure= Exfiltration

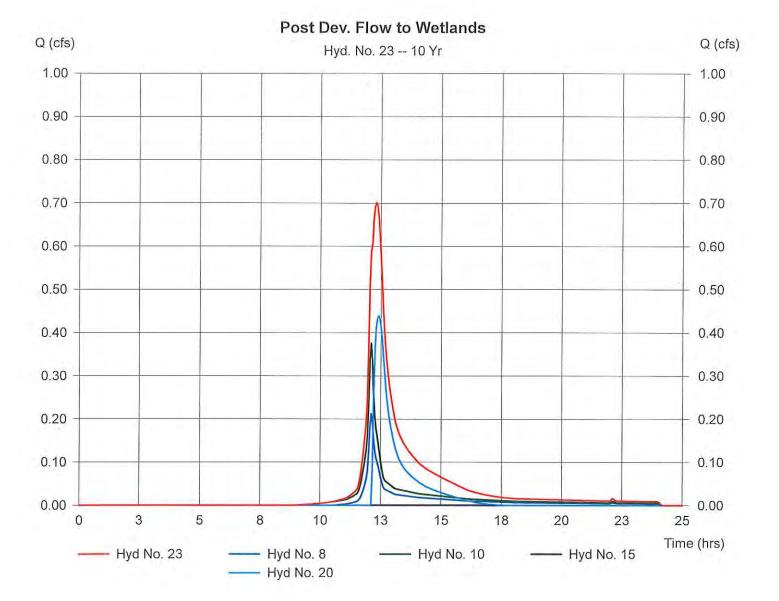
Hydraflow Hydrographs by Intelisolve


Hyd. No. 20

Overflow

Hydrograph type	=	Diversion2
Storm frequency	Ξ	10 yrs
Inflow hydrograph	=	18
Diversion method	=	Pond - Infiltration System

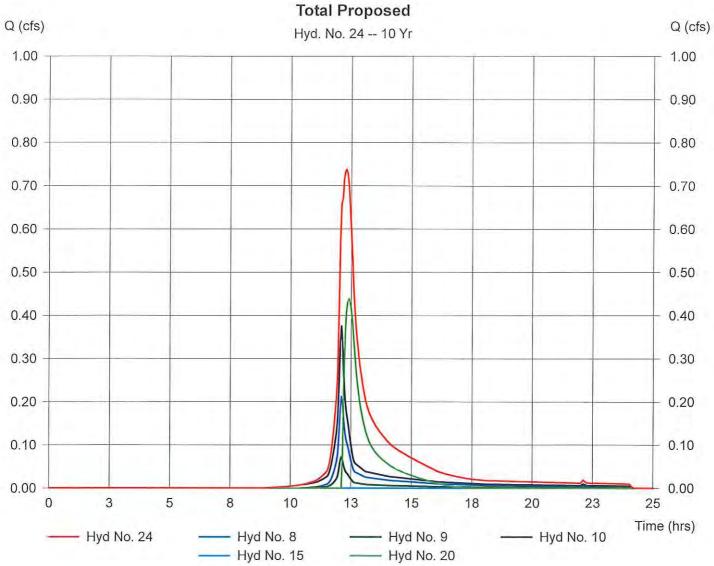
Peak discharge	= 0.44 cfs	
Time interval	= 3 min	
2nd diverted hyd.	= 19	
Pond structure	= Exfiltration	


Hydrograph Volume = 1,510 cuft

Hydraflow Hydrographs by	Intelisolve	Mo	onday, May 7 2018, 8:27 PM
Hyd. No. 22			
Design Point C			
Hydrograph type= CombineStorm frequency= 10 yrsInflow hyds.= 10, 15, 20		Peak discharge Time interval	= 0.59 cfs = 3 min
		Hydr	ograph Volume = 2,761 cuft

Hydraflow Hydrographs by	Intelisolve	Mo	onday, May 7 2018, 8:27 PM
Hyd. No. 23			
Post Dev. Flow to	Wetlands		
Hydrograph type= CombineStorm frequency= 10 yrsInflow hyds.= 8, 10, 15, 20		Peak discharge Time interval	= 0.70 cfs = 3 min
-		Hydr	ograph Volume = 3,501 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 24

Total Proposed

Hydrograph type	= Combine
Storm frequency	= 10 yrs
Inflow hyds.	= 8, 9, 10, 15, 20

Peak discharge = 0.74 cfs Time interval = 3 min

Hydrograph Volume = 3,747 cuft

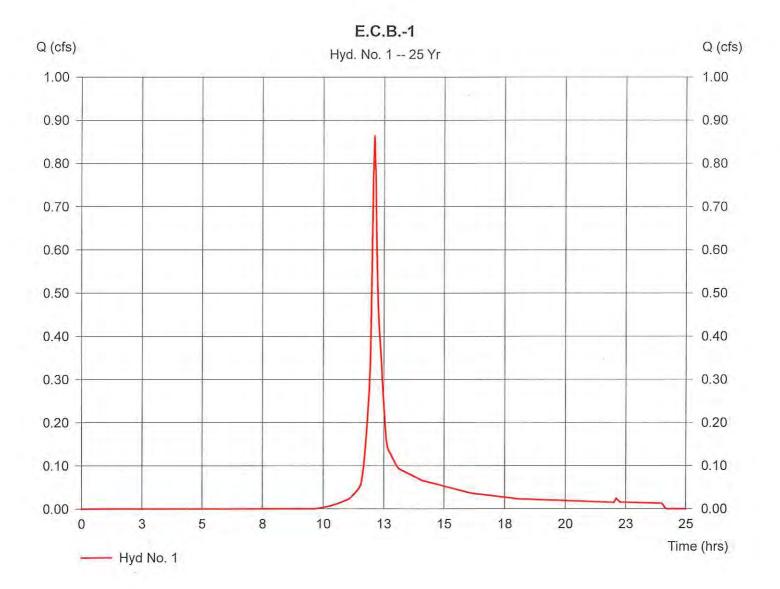
25-Year Storm, Pre and Post-Development

.

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	0.86	з	726	2,913			wetween	E.C.B1
2	SCS Runoff	0.25	3	726	847				E.C.B2
3	SCS Runoff	1.29	3	726	4,311				E.C.B3
5	Combine	2.16	3	726	7,224	1, 3,			Flow to Wetlands
6	Combine	2.41	3	726	8,071	1, 2, 3,			Total Existing
8	SCS Runoff	0.34	3	726	1,145				P.D.B1
9	SCS Runoff	0.11	3	726	377				P.D.B2
10	SCS Runoff	0.55	3	726	1,813			****	P.D.B3
12	SCS Runoff	0.42	3	726	1,401				P.D.B.3A
13	Reservoir	0.17	3	741	1,387	12	164.78	591	Rain Garden
14	Diversion1	0.02	3	741	1,075	13			Infiltration
15	Diversion2	0.15	3	741	312	13			Overflow
7	SCS Runoff	1.87	3	726	6,652				P.D.B4
18	Reservoir	0.81	3	738	6,648	17	164.60	2,505	Infiltration System
19	Diversion1	0.05	3	738	3,857	18			Infiltration
20	Diversion2	0.77	3	738	2,791	18			Overflow
22	Combine	1.13	3	741	4,916	10, 15, 20,		for an annual an	Design Point C
23	Combine	1.40	3	729	6,061	8, 10, 15, 2	0,		Post Dev. Flow to Wetlands
24	Combine	1.50	3	729	6,438	8, 9, 10, 15	. 20,		Total Proposed
24 S	chool Stree	et, Way	land_R	1.gpw	Return	Period: 25	5 Year	Friday, Ma	ay 4 2018, 2:09 PM

Hydraflow Hydrographs by Intelisolve


Hyd. No. 1

E.C.B.-1

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.35 ac
Basin Slope	= 5.2 %
Tc method	= LAG
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Peak discharge	=	0.86 cfs	
Time interval	=	3 min	
Curve number	Ξ	66.4	
Hydraulic length	=	189 ft	
Time of conc. (Tc)	=	5.407852	min
Distribution	=	Type III	
Shape factor	=	484	

Hydrograph Volume = 2,913 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

E.C.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.07 ac
Basin Slope	= 1.9 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

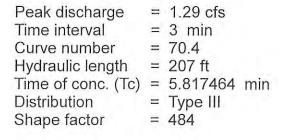

Peak discharge = 0.25 cfs Time interval = 3 min Curve number = 79.8 Hydraulic length = 68 ft Time of conc. (Tc) = 5 min

Distribution Shape factor

	T	
_	Type	

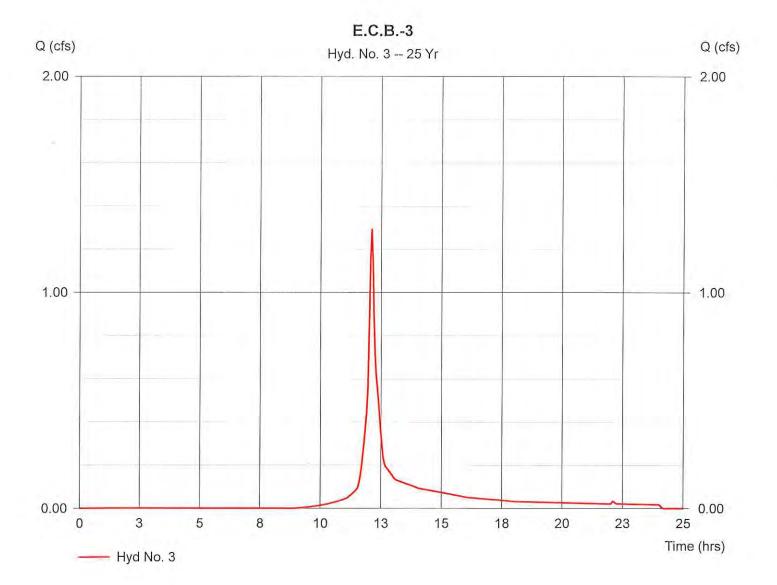
= 484

Hydrograph Volume = 847 cuft



Hydraflow Hydrographs by Intelisolve

Hyd. No. 3


E.C.B.-3

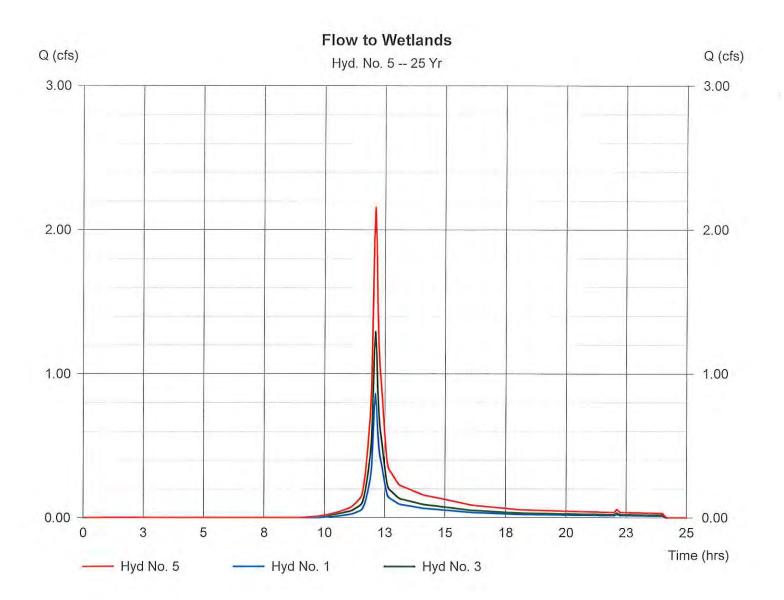
Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.45 ac
Basin Slope	= 4.2 %
Tc method	= LAG
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Hydrograph Volume = 4,311 cuft

Monday, May 7 2018, 8:27 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 5


Flow to Wetlands

Hydrograph type	= Combine
Storm frequency	= 25 yrs
Inflow hyds.	= 1, 3

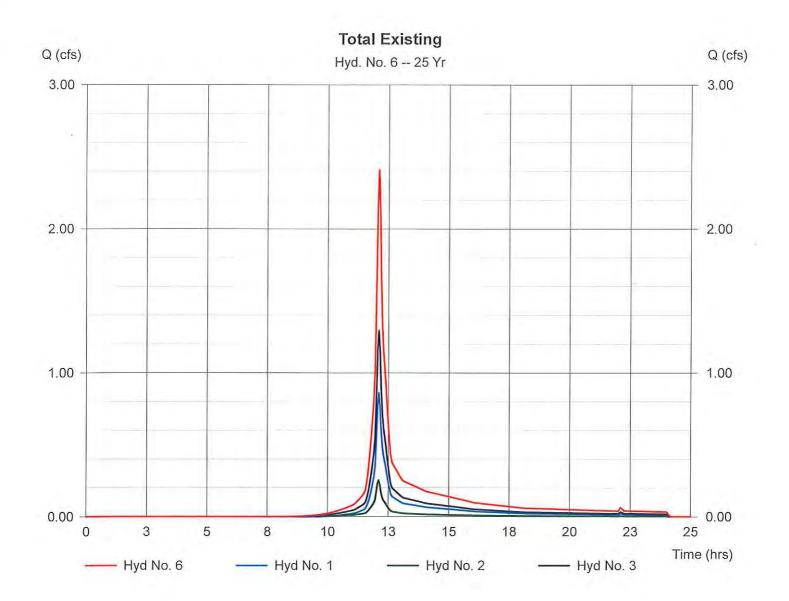
Monday, May 7 2018, 8:27 PM

Peak discharge = 2.16 cfs Time interval = 3 min

Hydrograph Volume = 7,224 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 6


Total Existing

Hydrograph type	= Combine
Storm frequency	= 25 yrs
Inflow hyds.	= 1, 2, 3

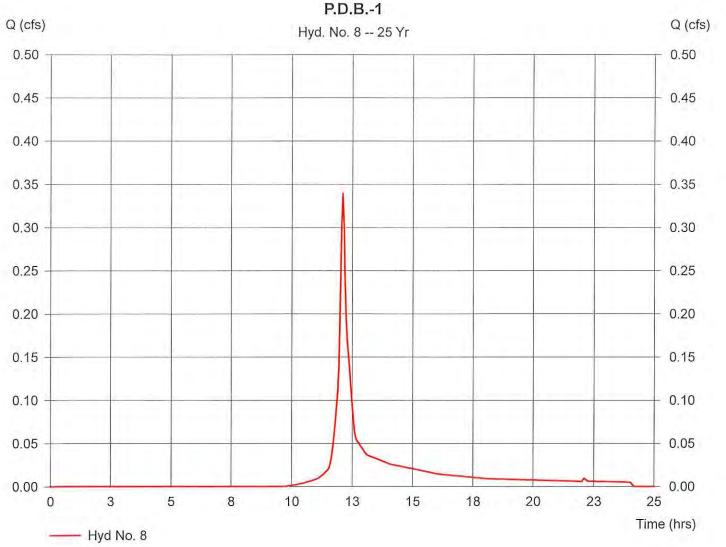
Monday, May 7 2018, 8:27 PM

Peak discharge = 2.41 cfs Time interval = 3 min

Hydrograph Volume = 8,071 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 8


P.D.B.-1

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.14 ac
Basin Slope	= 4.4 %
Tc method	= LAG
Total precip.	= 5.95 in
Storm duration	= 24 hrs

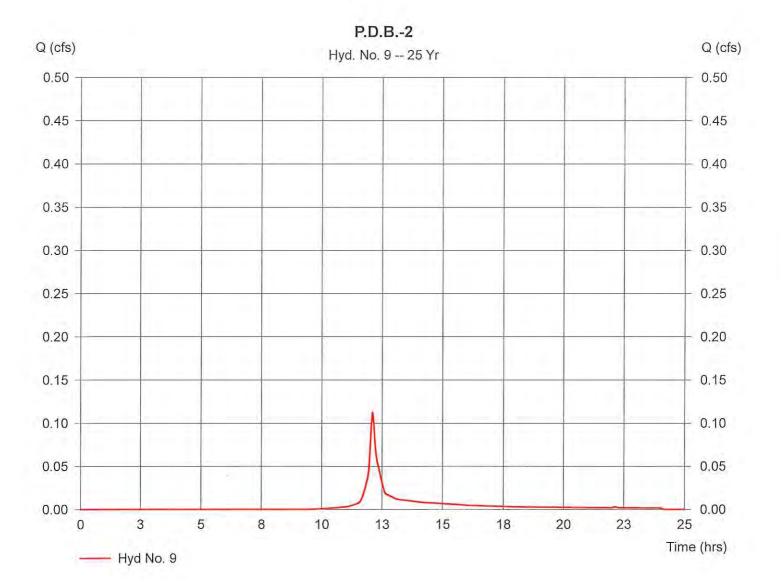
Peak discharge=0.34 cfsTime interval=3 minCurve number=66.4Hydraulic length=222 ftTime of conc. (Tc)=6.686719 minDistribution=Type IIIShape factor=484

Hydrograph Volume = 1,145 cuft

Monday, May 7 2018, 8:27 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 9


P.D.B.-2

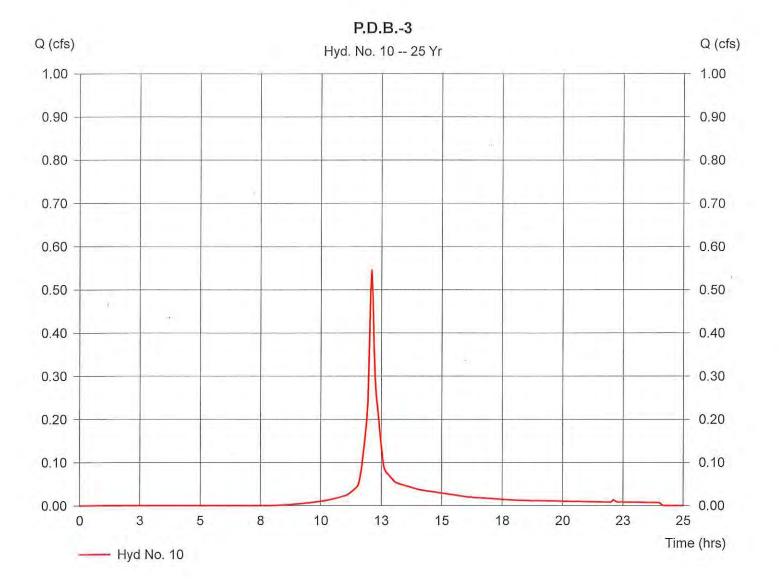
Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.04 ac
Basin Slope	= 1.0 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

49

Peak discharge	=	0.11 cfs
Time interval	=	3 min
Curve number	=	67.9
Hydraulic length	=	49 ft
Time of conc. (Tc)	=	5 min
Distribution	Ξ	Type III
Shape factor	\equiv	484

Hydrograph Volume = 377 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 10

P.D.B.-3

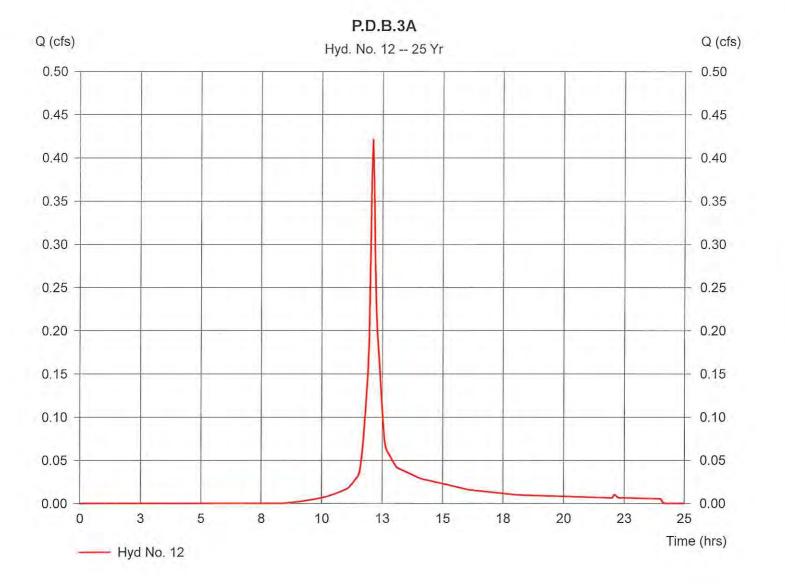
Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.16 ac
Basin Slope	= 3.8 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Peak discharge	=	0.55 cfs
Time interval	=	3 min
Curve number	=	75.3
Hydraulic length	Ξ	196 ft
Time of conc. (Tc)	=	5 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 1,813 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 12


P.D.B.3A .

. .

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.13 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

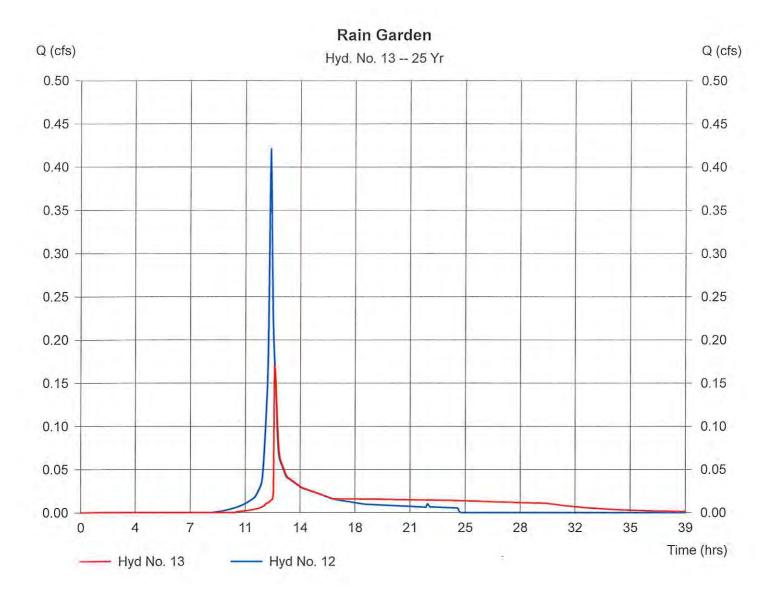
Peak discharge = 0.42 cfs Time interval $= 3 \min$ Curve number = 73.5 Hydraulic length $= 100 \, \text{ft}$ Time of conc. (Tc) = 5 minDistribution = Type III Shape factor = 484

Hydrograph Volume = 1,401 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 13

Rain Garden


Hydrograph type	= Reservoir
Storm frequency	= 25 yrs
Inflow hyd. No.	= 12
Reservoir name	= Rain Garden

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

=	0.17 cfs	
=	3 min	
=	164.78 ft	
Ξ	591 cuft	
	пп	= 0.17 cfs = 3 min = 164.78 ft = 591 cuft

Hydrograph Volume = 1,387 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Rain Garden

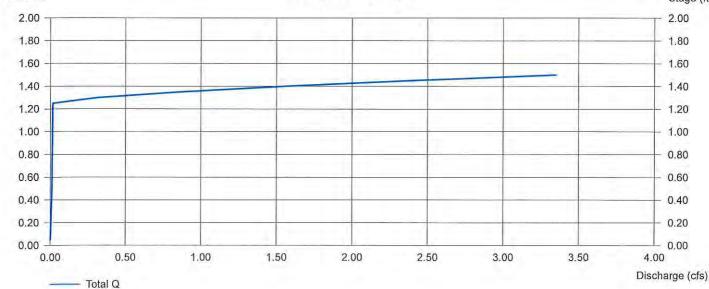
Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	163.50	140	0	0	
0.50	164.00	448	147	147	
1.00	164.50	591	260	407	
1.50	165.00	748	335	742	
Culvert / Or	fice Structures		Weir Structur	es	

Culvert / Orifice Structures

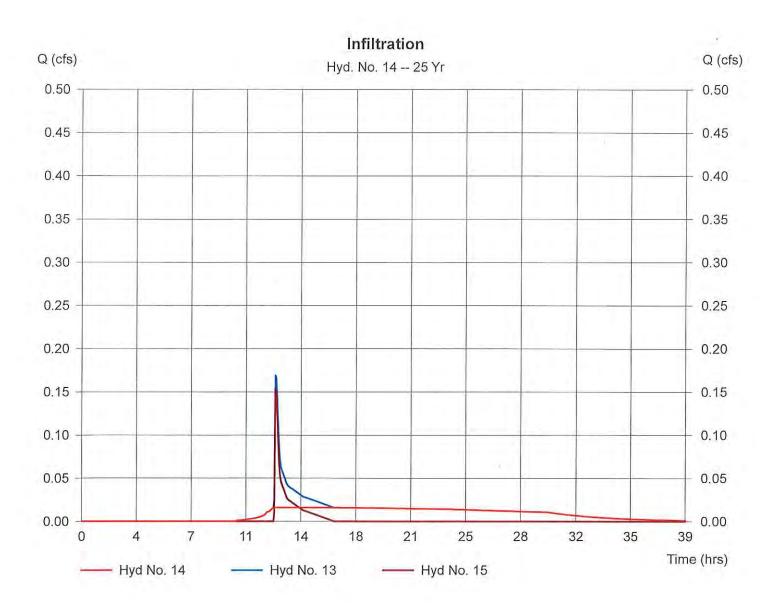

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]	
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00	
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 164.75	0.00	0.00	0.00	
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00	
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect				
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No	
Slope (%)	= 0.00	0.00	0.00	0.00						
N-Value	= .000	.000	.000	.000						
Orif. Coeff.	= 0.00	0.00	0.00	0.00						
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (Co	ntour) Tai	lwater Elev	v. = 0.00 ft	

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Stage / Discharge

Hydraflow Hydrographs by Intelisolve

Hyd. No. 14

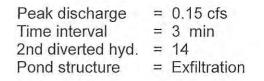

Infiltration

Hydrograph type	Ξ	Diversion1
Storm frequency	=	25 yrs
Inflow hydrograph	=	13
Diversion method	=	Pond - Rain Garden

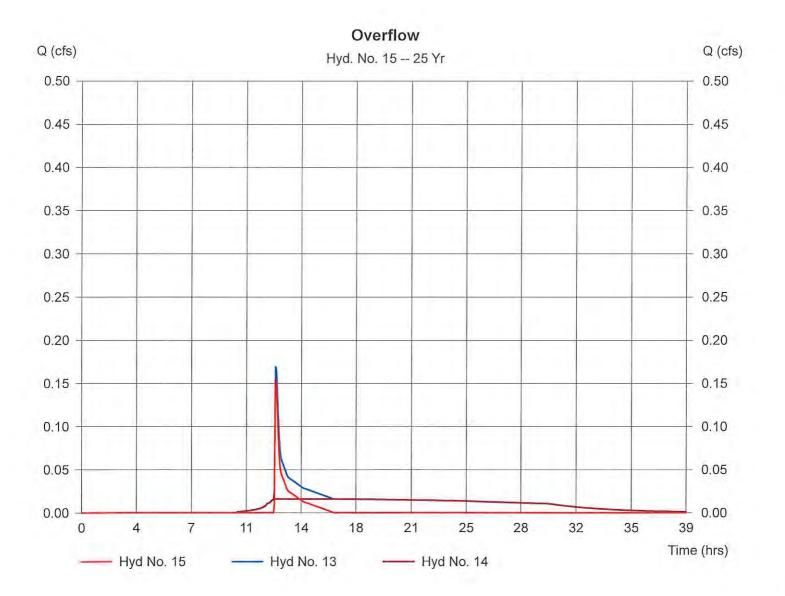
Monday, May 7 2018, 8:27 PM

Peak discharge= 0.02 cfsTime interval= 3 min2nd diverted hyd.= 15Pond structure= Exfiltration

Hydrograph Volume = 1,075 cuft



Hydraflow Hydrographs by Intelisolve


Hyd. No. 15

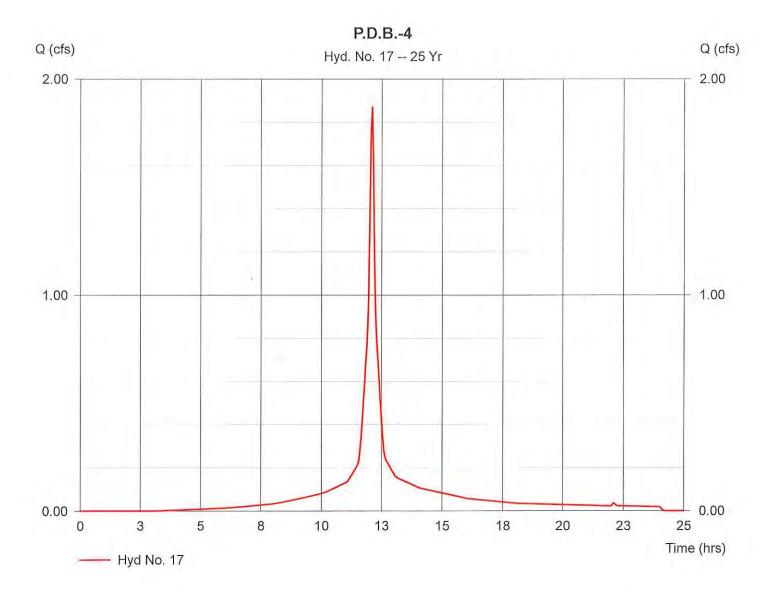
Overflow

Hydrograph type	Ξ	Diversion2	
Storm frequency	=	25 yrs	
Inflow hydrograph	=	13	
Diversion method	=	Pond - Rain Garden	

Hydrograph Volume = 312 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 17


P.D.B.-4

Hydrograph type	= SCS Runoff
Storm frequency	= 25 yrs
Drainage area	= 0.39 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 5.95 in
Storm duration	= 24 hrs

Monday, May 7 2018, 8:27 PM

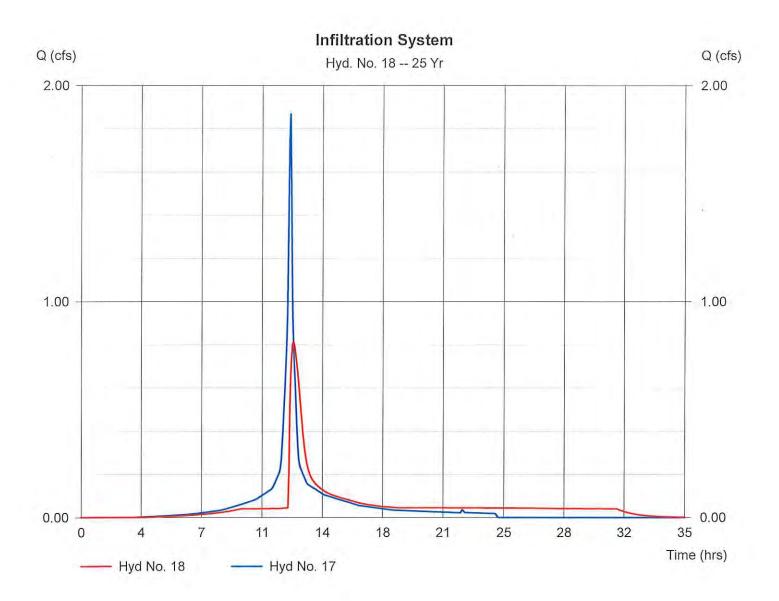
Peak discharge	Ξ	1.87 cfs
Time interval	=	3 min
Curve number		91.7
Hydraulic length	Ξ	100 ft
Time of conc. (Tc)	=	5 min
Distribution	Ξ	Type III
Shape factor	=	484

Hydrograph Volume = 6,652 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 18

Infiltration System


Hydrograph type	= Reservoir
Storm frequency	= 25 yrs
Inflow hyd. No.	= 17
Reservoir name	= Infiltration System

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	= 0.81 cfs
Time interval	= 3 min
Max. Elevation	= 164.60 ft
Max. Storage	= 2,505 cuft

Hydrograph Volume = 6,648 cuft

Pond Report

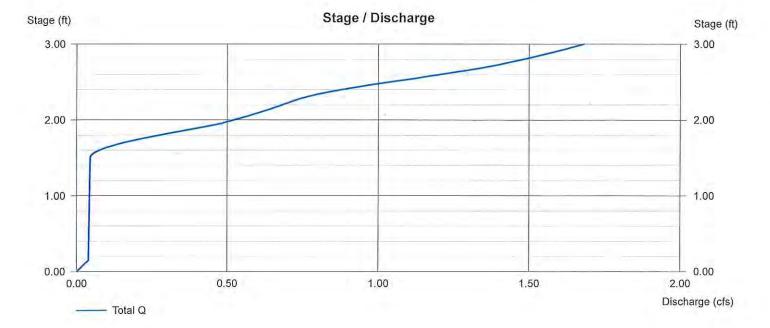
Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Infiltration System

Pond Data

Bottom LxW = 52.0×32.0 ft Side slope = 0.0:1 Bottom elev. = 162.25 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)*	Total storage (cuft)*	(*64.00% voids applied)
0.00	162.25	1,664	0	0	
0.15	162.40	1,664	160	160	
0.30	162.55	1,664	160	319	
0.45	162.70	1,664	160	479	
0.60	162.85	1,664	160	639	
0.75	163.00	1,664	160	799	
0.90	163.15	1,664	160	958	
1.05	163.30	1,664	160	1,118	
1.20	163.45	1,664	160	1,278	
1.35	163.60	1,664	160	1,438	
1.50	163.75	1,664	160	1,597	
1.65	163.90	1,664	160	1,757	
1.80	164.05	1,664	160	1,917	
1.95	164.20	1,664	160	2,077	
2.10	164.35	1,664	160	2,236	
2.25	164.50	1,664	160	2,396	
2.40	164.65	1,664	160	2,556	
2.55	164.80	1,664	160	2,716	
2.70	164.95	1,664	160	2,875	
2.85	165.10	1,664	160	3,035	
3.00	165.25	1,664	160	3,195	

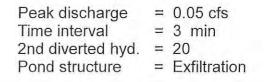
Weir Structures

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 6.00	6.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 6.00	6.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No, Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 163.75	164.50	0.00	0.00	Weir Type	=			
Length (ft)	= 50.00	50.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	2.00	0.00	0.00	a state and the				
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (We	et area) Ta	ailwater Ele	ev. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Monday, May 7 2018, 8:27 PM


Depth = 3.00 ft

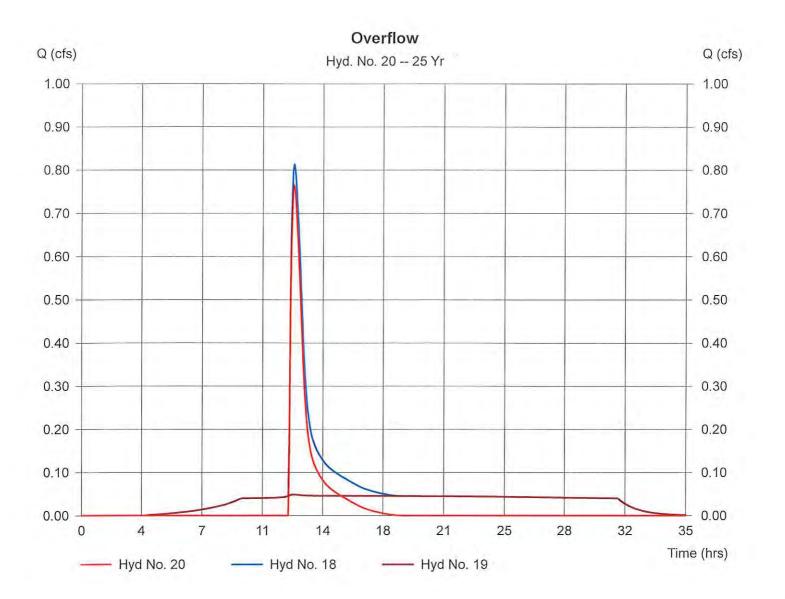
Hydraflow Hydrographs by Intelisolve

Hyd. No. 19

Infiltration

Hydrograph type	=	Diversion1	
Storm frequency	Ξ	25 yrs	
Inflow hydrograph	=	18	
Diversion method	=	Pond - Infiltration System	

Hydrograph Volume = 3,857 cuft


Hydraflow Hydrographs by Intelisolve

Hyd. No. 20

Overflow

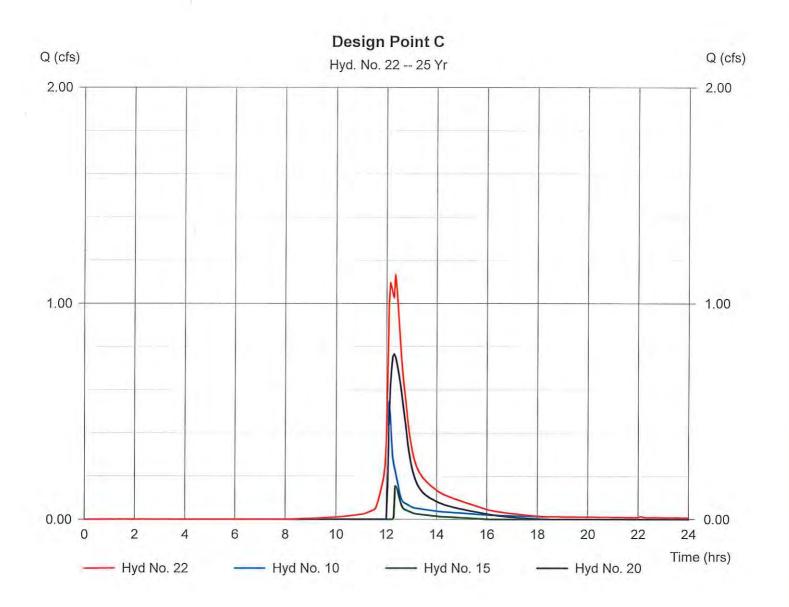
Hydrograph type	=	Diversion2
Storm frequency	=	25 yrs
Inflow hydrograph	=	18
Diversion method	Ξ	Pond - Infiltration System

Hydrograph Volume = 2,791 cuft

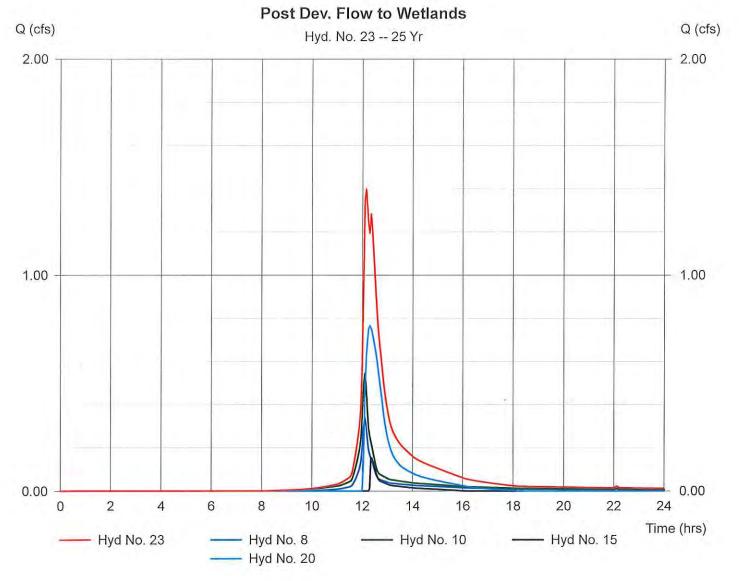
Peak discharge= 0.77 cfsTime interval= 3 min2nd diverted hyd.= 19Pond structure= Exfiltration

Hydraflow Hydrographs by Intelisolve

Hyd. No. 22


Design Point C

Hydrograph type	=	Combine
Storm frequency	=	25 yrs
Inflow hyds.	=	10, 15, 20


Monday, May 7 2018, 8:27 PM

Peak discharge = 1.13 cfs Time interval = 3 min

Hydrograph Volume = 4,916 cuft

Hydraflow Hydrographs by Intelisolve		Monday, May 7 2018, 8:27 Pl		
Hyd. No. 23				
Post Dev. Flow to	Wetlands			
Hydrograph type Storm frequency Inflow hyds.	= Combine = 25 yrs = 8, 10, 15, 20	Peak discharge Time interval	= 1.40 cfs = 3 min	
		Hydi	rograph Volume = 6,061 cuft	

Hydraflow Hydrographs by Intelisolve


Hyd. No. 24

Total Proposed

Hydrograph type	= Combine
Storm frequency	= 25 yrs
Inflow hyds.	= 8, 9, 10, 15, 20

Peak discharge = 1.50 cfs Time interval = 3 min

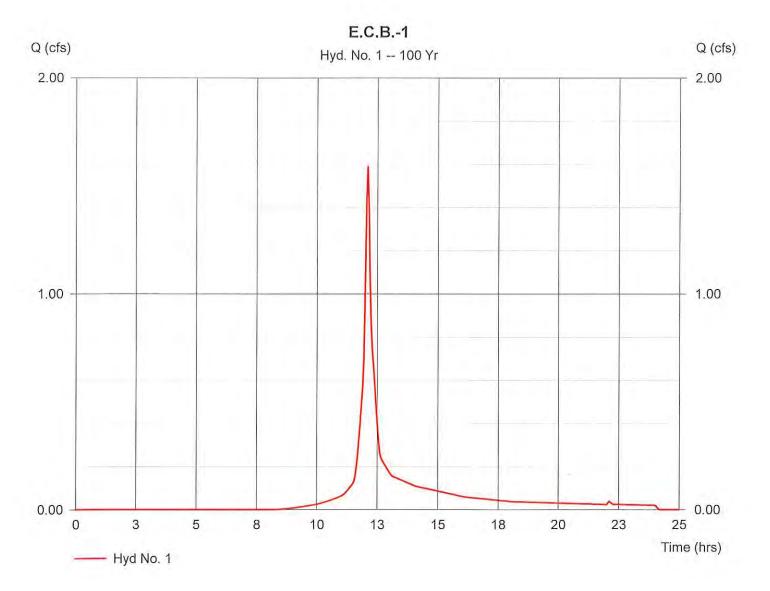
Hydrograph Volume = 6,438 cuft

100-Year Storm, Pre and Post-Development

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	1.59	3	726	5,287		******		E.C.B1
2	SCS Runoff	0.40	3	726	1,374				E.C.B2
З	SCS Runoff	2.26	3	726	7,539				E.C.B3
5	Combine	3.85	3	726	12,826	1, 3,			Flow to Wetlands
6	Combine	4.26	3	726	14,200	1, 2, 3,			Total Existing
8	SCS Runoff	0.63	3	726	2,079				P.D.B1
9	SCS Runoff	0.20	3	726	674				P,D.B2
10	SCS Runoff	0.91	3	726	3,043				P.D.B3
12	SCS Runoff	0.71	3	726	2,385				P.D.B.3A
13	Reservoir	0.73	3	726	2,372	12	164.84	633	Rain Garden
14	Diversion1	0.02	3	726	1,231	· 13			Infiltration
15	Diversion2	0.71	3	726	1,141	13			Overflow
17	SCS Runoff	2.73	3	726	9,943				P.D.B4
18	Reservoir	1.65	3	732	9,939	17	165,22	3,163	Infiltration System
19	Diversion1	0.05	3	732	4,344	18			Infiltration
20	Diversion2	1.60	3	732	5,595	18	***		Overflow
22	Combine	2.97	3	726	9,778	10, 15, 20,	44 - aj - aj - kaj - aj	242-24	Design Point C
23	Combine	3,59	3	726	11,857	8, 10, 15, 20),	4	Post Dev. Flow to Wetlands
24	Combine	3.79	3	726	12,531	8, 9, 10, 15,	20,		Total Proposed
24 S	chool Stre	et, Way	/land_R	1.gpw	Return	Period: 10)0 Year	Friday, Ma	ay 4 2018, 2:09 PM

Hydraflow Hydrographs by Intelisolve


Hyd. No. 1

E.C.B.-1

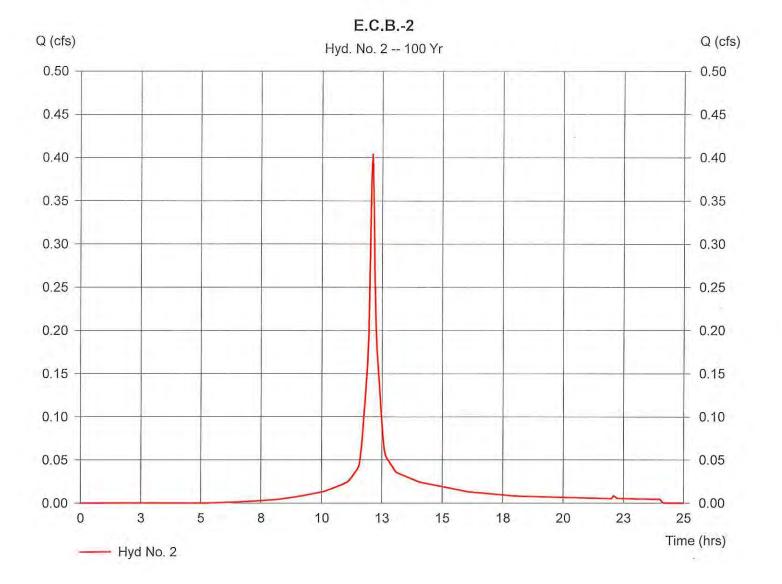
Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.35 ac
Basin Slope	= 5.2 %
Tc method	= LAG
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Peak discharge= 1.59 cfsTime interval= 3 minCurve number= 66.4Hydraulic length= 189 ftTime of conc. (Tc)= 5.407852 minDistribution= Type IIIShape factor= 484

Hydrograph Volume = 5,287 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2


E.C.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.07 ac
Basin Slope	= 1.9 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Monday, May 7 2018, 8:27 PM

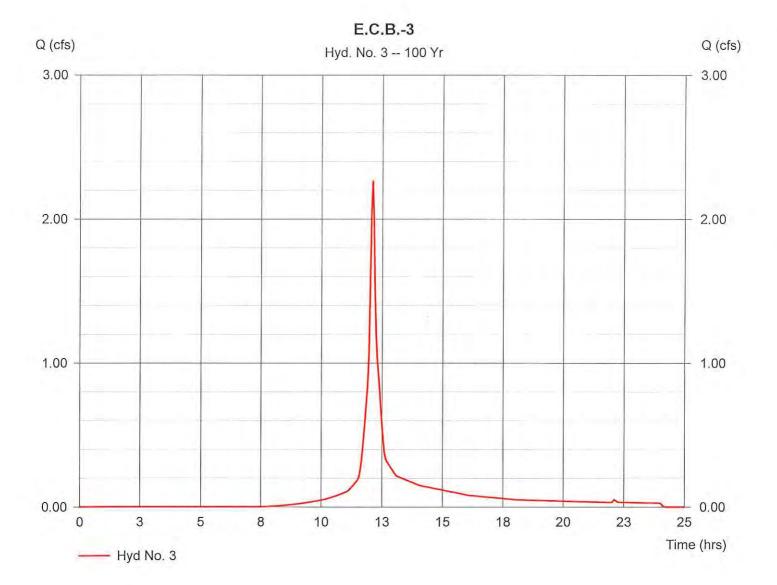
Peak discharge	=	0.40 cfs
Time interval	=	3 min
Curve number	=	79.8
Hydraulic length	=	68 ft
Time of conc. (Tc)	=	5 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 1,374 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

E.C.B.-3


Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.45 ac
Basin Slope	= 4.2 %
Tc method	= LAG
Total precip.	= 8.45 in
Storm duration	= 24 hrs

66

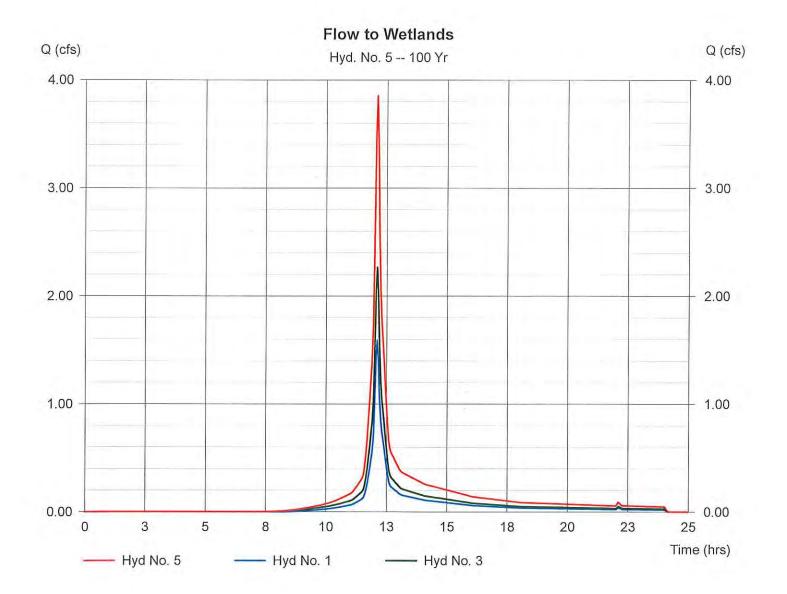
Monday, May 7 2018, 8:27 PM

Peak discharge	Ξ	2.26 cfs	
Time interval	=	3 min	
Curve number	=	70.4	
Hydraulic length	=	207 ft	
Time of conc. (Tc)	П	5.817464 mir	٦
Distribution	=	Type III	
Shape factor	=	484	

Hydrograph Volume = 7,539 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 5


Flow to Wetlands

Hydrograph type	=	Combine	
Storm frequency	Ξ	100 yrs	
Inflow hyds.	=	1, 3	

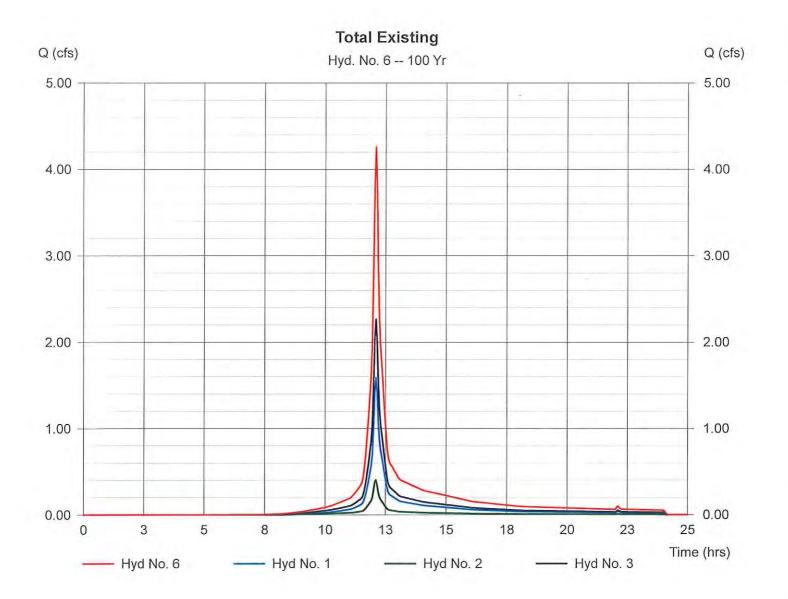
Monday, May 7 2018, 8:27 PM

Peak discharge = 3.85 cfs Time interval = 3 min

Hydrograph Volume = 12,826 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 6


Total Existing

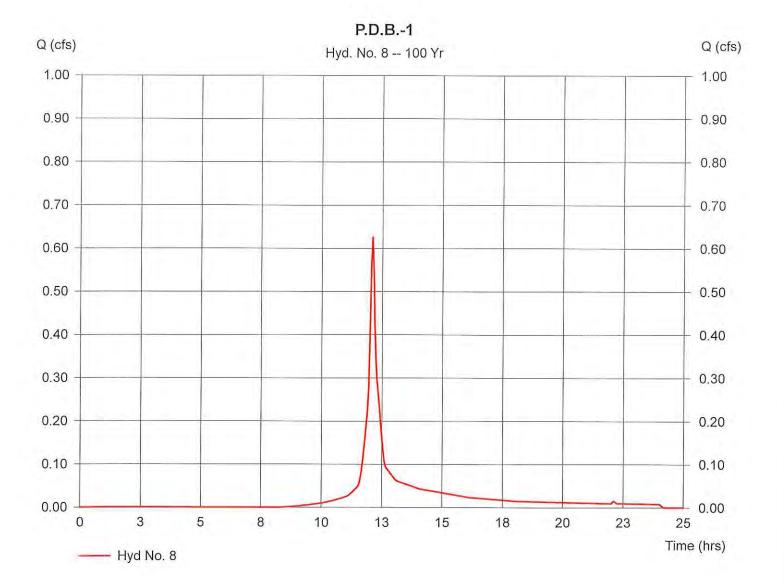
Hydrograph type	=	Combine	
Storm frequency	=	100 yrs	
Inflow hyds.	=	1, 2, 3	

Monday, May 7 2018, 8:27 PM

Peak discharge = 4.26 cfs Time interval = 3 min

Hydrograph Volume = 14,200 cuft

Hydraflow Hydrographs by Intelisolve

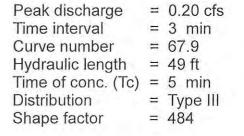

Hyd. No. 8

P.D.B.-1

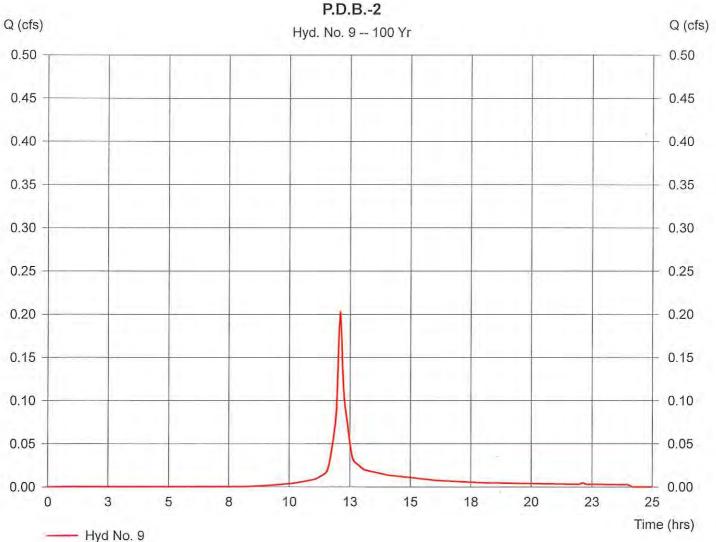
Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.14 ac
Basin Slope	= 4.4 %
Tc method	= LAG
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Peak discharge=0.63 cfsTime interval=3 minCurve number=66.4Hydraulic length=222 ftTime of conc. (Tc)=6.686719 minDistribution=Type IIIShape factor=484

Hydrograph Volume = 2,079 cuft



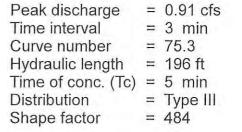
Hydraflow Hydrographs by Intelisolve


Hyd. No. 9

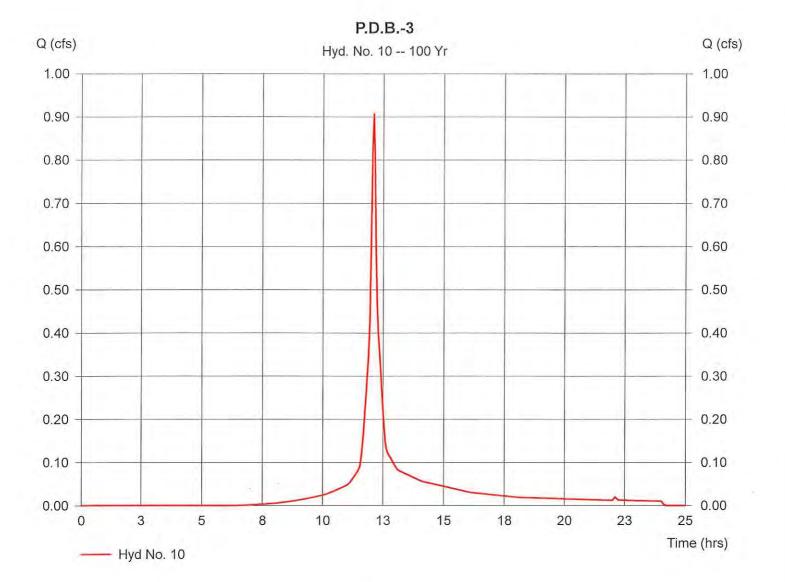
P.D.B.-2

Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.04 ac
Basin Slope	= 1.0 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Hydrograph Volume = 674 cuft


Hydraflow Hydrographs by Intelisolve

Hyd. No. 10

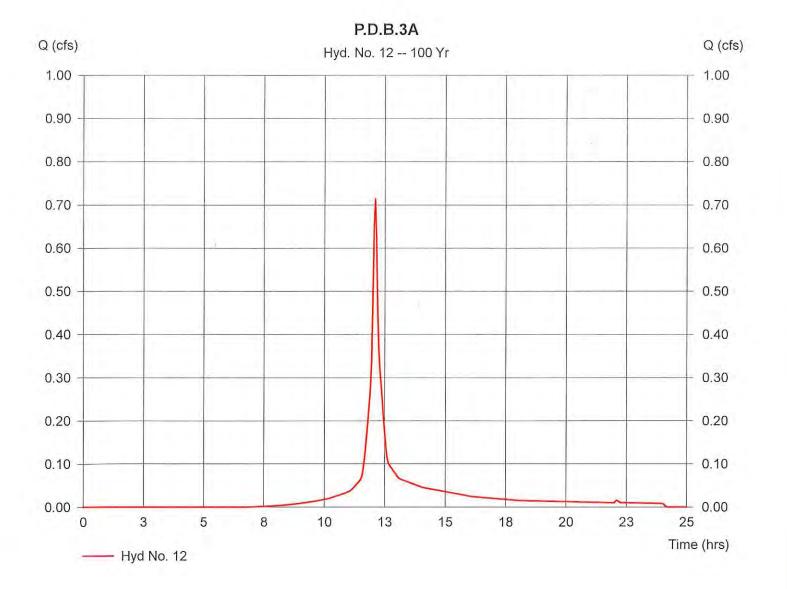

P.D.B.-3

. .

Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.16 ac
Basin Slope	= 3.8 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Hydrograph Volume = 3,043 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 12

P.D.B.3A

Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.13 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

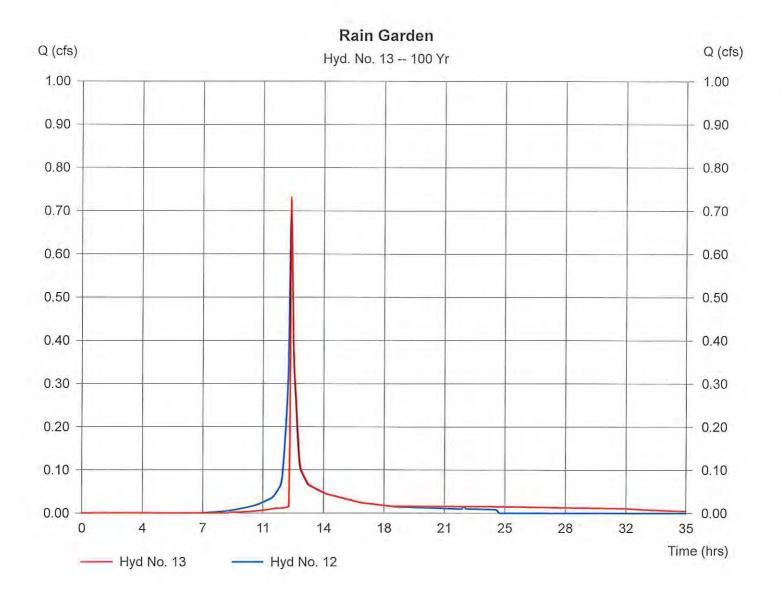
Peak discharge	=	0.71 cfs
Time interval	=	3 min
Curve number	=	73.5
Hydraulic length	=	100 ft
Time of conc. (Tc)	=	5 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 2,385 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 13

Rain Garden


Hydrograph type	= Reservoir	
Storm frequency	= 100 yrs	
Inflow hyd. No.	= 12	
Reservoir name	= Rain Garden	

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	=	0.73 cfs
Time interval		3 min
Max. Elevation	=	164.84 ft
Max. Storage	Π	633 cuft

Hydrograph Volume = 2,372 cuft

Pond Report

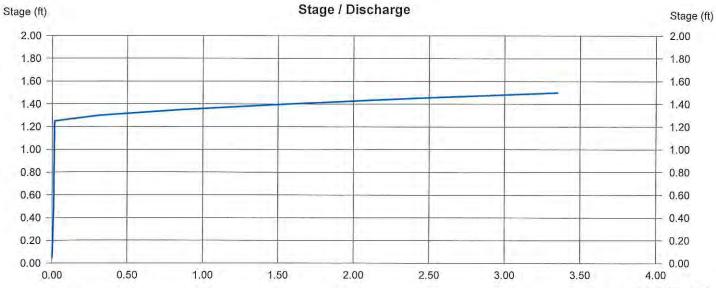
Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Rain Garden

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	163.50	140	0	0	
0.50	164.00	448	147	147	
1.00	164.50	591	260	407	
1.50	165.00	748	335	742	

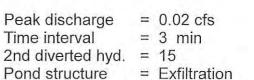
Weir Structures

Culvert / Orifice Structures

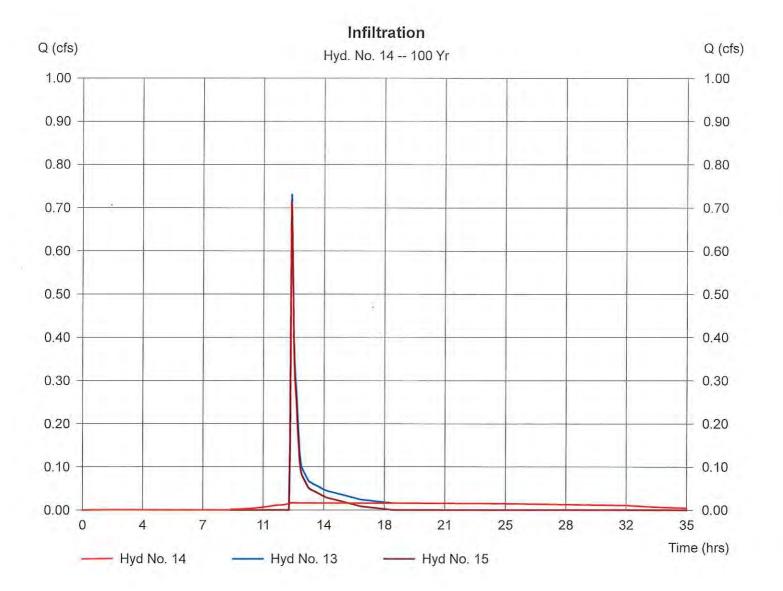
10 2010 (D C D C) (D C					2.2.2.2.2.2.2.2.2.2.2.2.2				
	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 8.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 164.75	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect		ينبو	
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
N-Value	= .000	.000	.000	.000					
Orif. Coeff.	= 0.00	0.00	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (Cor	ntour) Tai	water Elev	h = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Discharge (cfs)


74

Hydraflow Hydrographs by Intelisolve

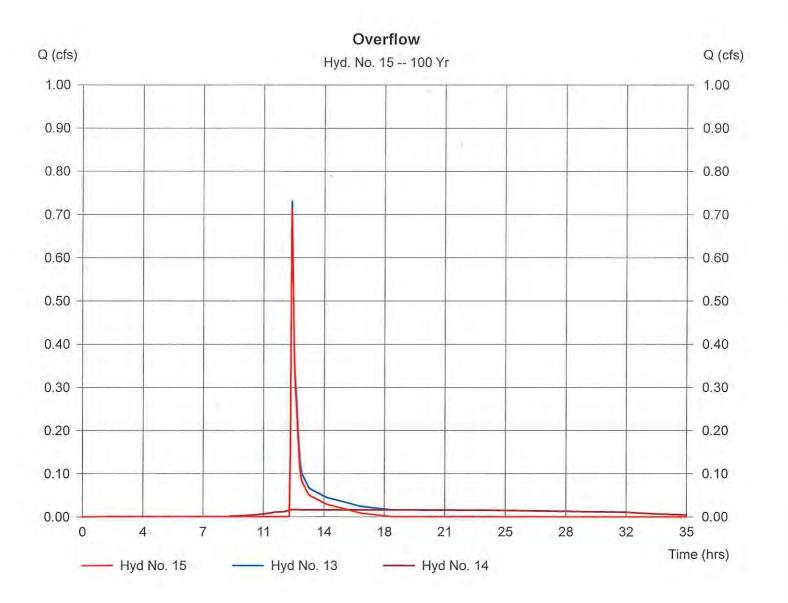

Hyd. No. 14

Infiltration

=	Diversion1
=	100 yrs
=	13
Ξ	Pond - Rain Garden
	II II

Hydrograph Volume = 1,231 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 15

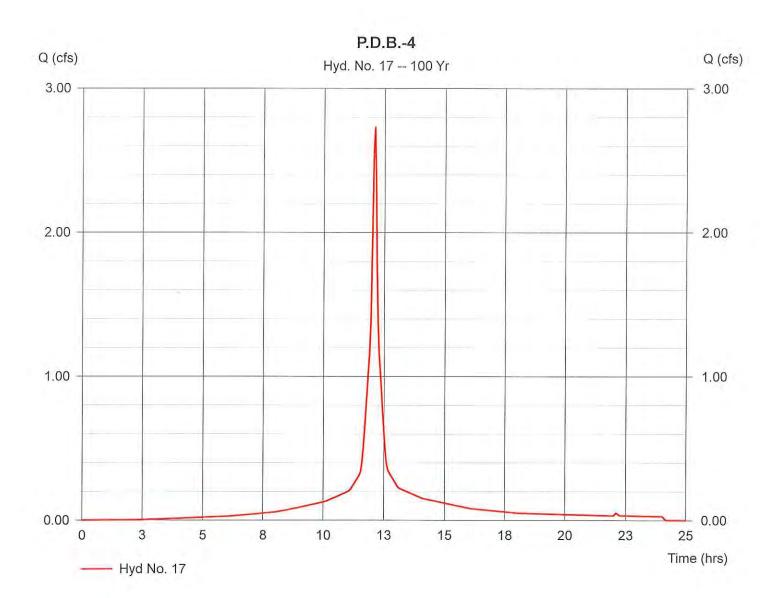
Overflow

Hydrograph type	Ξ	Diversion2
Storm frequency	=	100 yrs
Inflow hydrograph	=	13
Diversion method	Ξ	Pond - Rain Garden

Peak discharge = 0.71 cfs Time interval = 3 min 2nd diverted hyd. = 14 Pond structure = Exfiltration

Hydrograph Volume = 1,141 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 17

P.D.B.-4

Hydrograph type	= SCS Runoff
Storm frequency	= 100 yrs
Drainage area	= 0.39 ac
Basin Slope	= 2.0 %
Tc method	= USER
Total precip.	= 8.45 in
Storm duration	= 24 hrs

Peak discharge	Ξ	2.73 cfs
Time interval	=	3 min
Curve number	=	91.7
Hydraulic length	=	100 ft
Time of conc. (Tc)	=	5 min
Distribution	=	Type III
Shape factor	=	484

Hydrograph Volume = 9,943 cuft

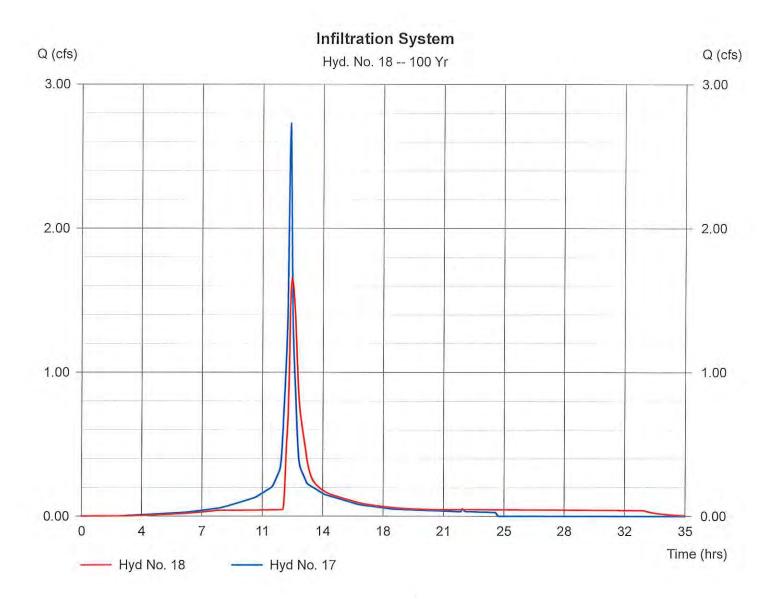
٠

77

Hydraflow Hydrographs by Intelisolve

Hyd. No. 18

Infiltration System


Hydrograph type	=	Reservoir
Storm frequency	=	100 yrs
Inflow hyd. No.	Ξ	17
Reservoir name	=	Infiltration System

Storage Indication method used.

Monday, May 7 2018, 8:27 PM

Peak discharge	= 1.65 cfs
Time interval	= 3 min
Max. Elevation	= 165.22 ft
Max. Storage	= 3,163 cuft

Hydrograph Volume = 9,939 cuft

Pond Report

79

Monday, May 7 2018, 8:27 PM

Depth = 3.00 ft

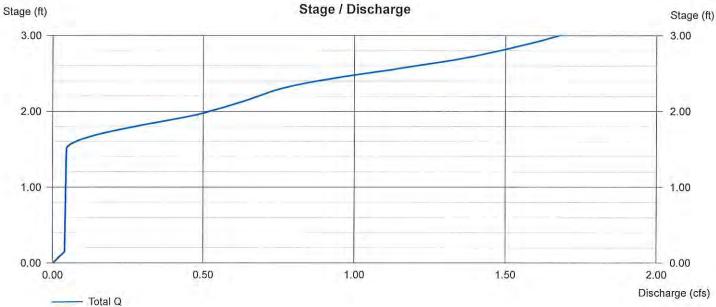
Hydraflow Hydrographs by Intelisolve

Pond No. 1 - Infiltration System

Pond Data

Bottom LxW = 52.0 x 32.0 ft Side slope = 0.0:1 Bottom elev. = 162.25 ft

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)*	Total storage (cuft)*	(*64.00% voids applied)
0.00	162.25	1,664	0	0	
0.15	162.40	1,664	160	160	
0.30	162.55	1,664	160	319	
0.45	162.70	1,664	160	479	
0.60	162.85	1,664	160	639	
0.75	163.00	1,664	160	799	
0.90	163.15	1,664	160	958	
1.05	163.30	1,664	160	1,118	
1.20	163,45	1,664	160	1,278	
1.35	163.60	1,664	160	1,438	
1.50	163.75	1,664	160	1,597	
1.65	163.90	1,664	160	1,757	
1.80	164.05	1,664	160	1,917	
1.95	164.20	1,664	160	2,077	
2.10	164.35	1,664	160	2,236	
2.25	164.50	1,664	160	2,396	
2.40	164.65	1,664	160	2,556	
2.55	164.80	1,664	160	2,716	
2.70	164.95	1,664	160	2,875	
2.85	165.10	1,664	160	3,035	
3.00	165.25	1,664	160	3,195	

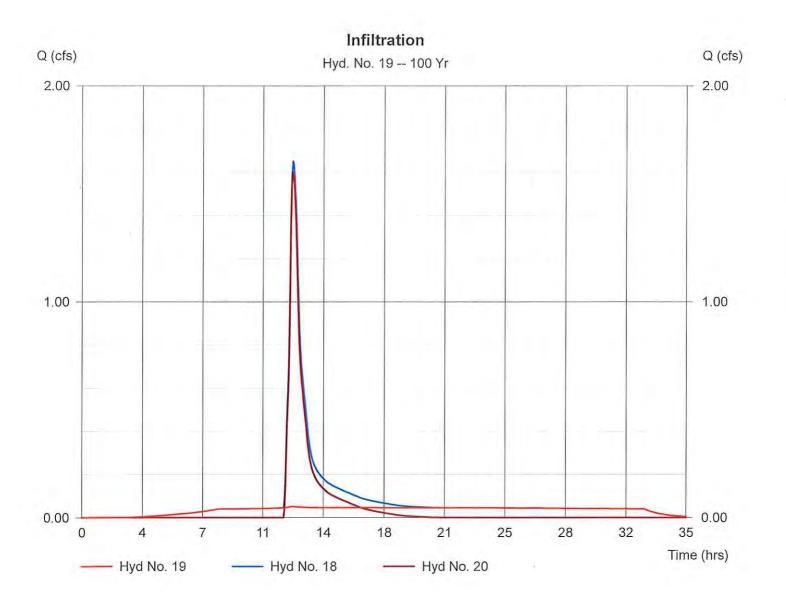
Weir Structures

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 6.00	6.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 6.00	6.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 163.75	164.50	0.00	0.00	Weir Type	=			
Length (ft)	= 50.00	50.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	2.00	0.00	0.00					
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 1	.020 in/hr (We	et area) Ta	ailwater Ele	ev. = 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Hydraflow Hydrographs by Intelisolve


Hyd. No. 19

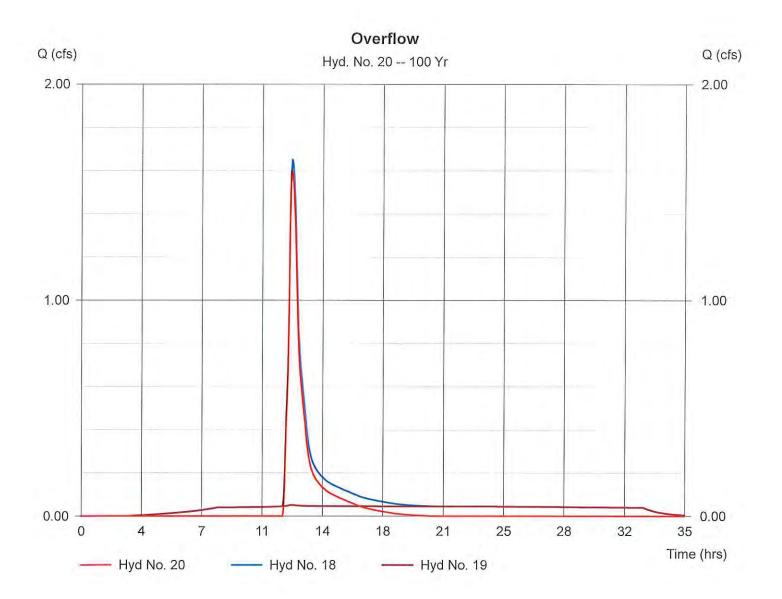
Infiltration

Hydrograph type	=	Diversion1
Storm frequency	Ξ	100 yrs
Inflow hydrograph	=	18
Diversion method	=	Pond - Infiltration System

Peak discharge= 0.05 cfsTime interval= 3 min2nd diverted hyd.= 20Pond structure= Exfiltration

Hydrograph Volume = 4,344 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 20

Overflow

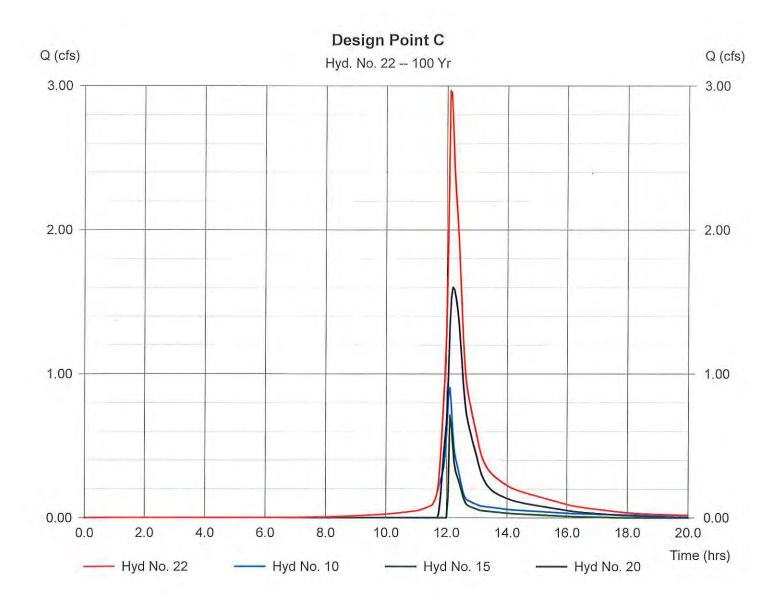
Hydrograph type	=	Diversion2
Storm frequency	=	100 yrs
Inflow hydrograph	=	18
Diversion method	Ξ	Pond - Infiltration System

Peak discharge	Ξ	1.60 cfs
Time interval	Ξ	3 min
2nd diverted hyd.		19
Pond structure	=	Exfiltration

Hydrograph Volume = 5,595 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 22


Design Point C

Hydrograph type	= Combine
Storm frequency	= 100 yrs
Inflow hyds.	= 10, 15, 20

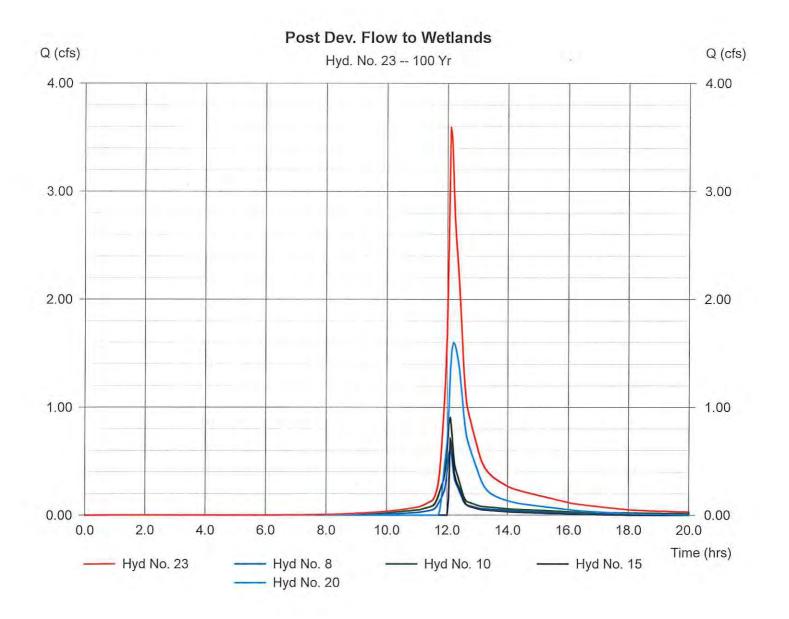
Monday, May 7 2018, 8:27 PM

Peak discharge = 2.97 cfs Time interval = 3 min

Hydrograph Volume = 9,778 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 23


Post Dev. Flow to Wetlands

Hydrograph type	= Combine
Storm frequency	= 100 yrs
Inflow hyds.	= 8, 10, 15, 20

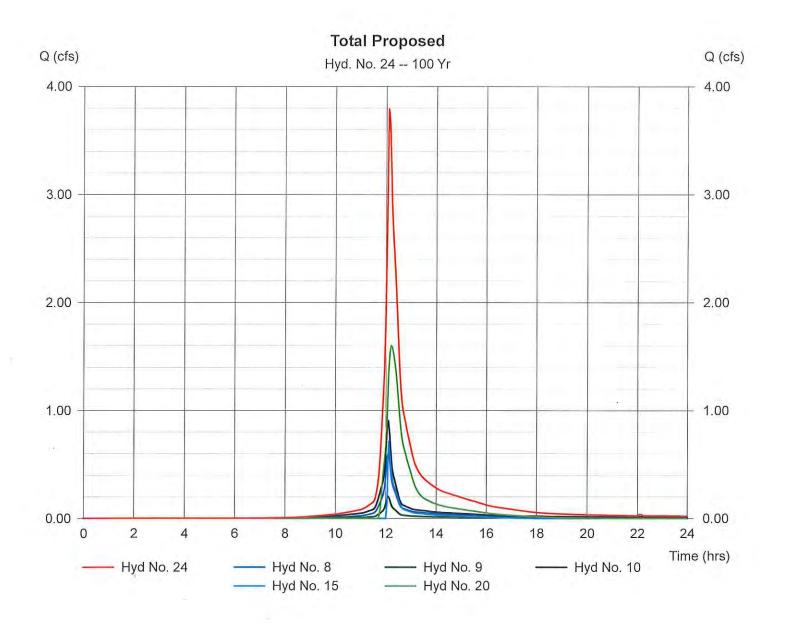
Monday, May 7 2018, 8:27 PM

Peak discharge = 3.59 cfs Time interval = 3 min

Hydrograph Volume = 11,857 cuft

Hydraflow Hydrographs by Intelisolve

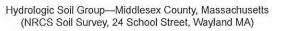
Hyd. No. 24

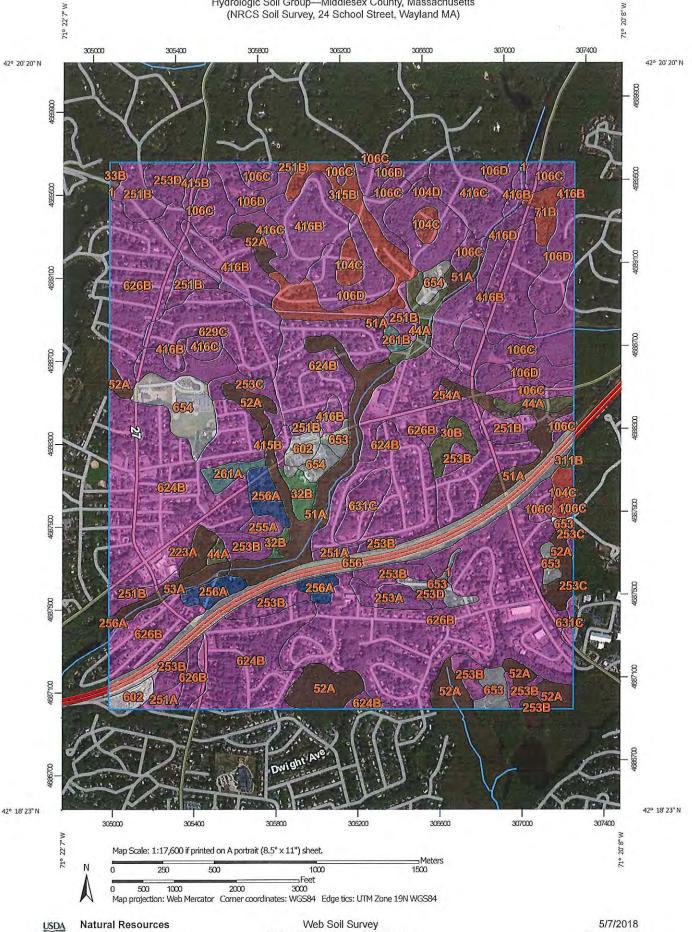

Total Proposed

Hydrograph type	= Combine	
Storm frequency	= 100 yrs	
Inflow hyds.	= 8, 9, 10, 15, 20	

Monday, May 7 2018, 8:27 PM

Peak discharge = 3.79 cfs Time interval = 3 min

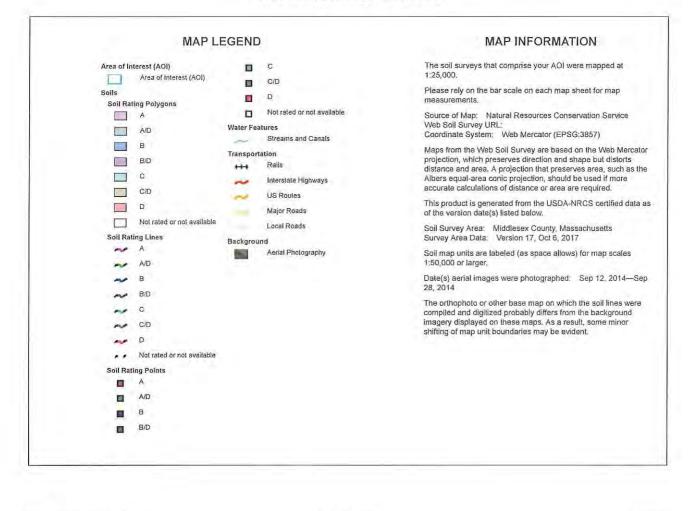

Hydrograph Volume = 12,531 cuft



Appendix B: Stormwater Operation and Maintenance Plan

See Chapter 11 in Stormwater Report For Operation and Maintenace Plan Proposed Site Redevelopment 24 School Street Wayland MA 01778

Appendix C: NRCS Soil Survey



National Cooperative Soil Survey

Conservation Service

Page 1 of 5

Hydrologic Soil Group—Middlesex County, Massachusetts (NRCS Soil Survey, 24 School Street, Wayland MA)

USDA

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 5/7/2018 Page 2 of 5

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		<u>1.8</u>	0.1%
30B	Raynham silt loam, 0 to 5 percent slopes	C/D	8.0	0.5%
32B	Wareham loamy fine sand, 0 to 5 percent stopes	A/D	8.0	0.5%
33B	Raypol silt loam, 0 to 5 percent slopes	B/D	1.6	0.1%
44A	Birdsall mucky silt loam, 0 to 1 percent slopes	C/D	17.0	1.1%
51A	Swansea muck, 0 to 1 percent slopes	B/D	63.9	4.3%
52A	Freetown muck, 0 to 1 percent slopes	B/D	55.0	3.7%
53A	Freetown muck, ponded, 0 to 1 percent slopes	B/D	8.9	0.6%
718	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	D	7.8	0.5%
104C	Hollis-Rock outcrop- Charlton complex, 0 to 15 percent slopes	D	16.0	1.1%
104D	Hollis-Rock outcrop- Charlton complex, 15 to 25 percent slopes	A	22.5	1.5%
106C	Narragansett-Hollis- Rock outcrop complex, 3 to 15 percent slopes	A	93.7	6.3%
106D	Narragansett-Hollis- Rock outcrop complex, 15 to 25 percent slopes	A	73.0	4.9%
223A	Scio very fine sandy Ioam, 0 to 3 percent slopes	B/D	6.1	0.4%
251A	Haven silt loam, 0 to 3 percent slopes	A	6.2	0.4%
251B	Haven silt loam, 3 to 8 percent slopes	A	40.8	2.7%
253A	Hinckley loamy sand, 0 to 3 percent slopes	А	7.2	0.5%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
253B	Hinckley loamy sand, 3 to 8 percent slopes	А	43.4	2.9%
253C	Hinckley loamy sand, 8 to 15 percent slopes	A	8.8	0.6%
253D	Hinckley loamy sand, 15 to 25 percent slopes	A	13.5	0.9%
254A	Merrimac fine sandy Ioam, 0 to 3 percent slopes	A	1.5	0.1%
255A	Windsor loamy sand, 0 to 3 percent slopes	A	4.2	0.3%
256A	Deerfield loamy sand, 0 to 3 percent slopes	В	21.3	1.4%
261A	Tisbury silt loam, 0 to 3 percent slopes	С	5.7	0.4%
261B	Tisbury silt loam, 3 to 8 percent slopes	С	2.7	0.2%
311B	Woodbridge fine sandy Ioam, 0 to 8 percent slopes, very stony	C/D	1.0	0.1%
315B	Scituate fine sandy Ioam, 3 to 8 percent slopes	D	37.3	2.5%
415B	Narragansett silt loam, 3 to 8 percent slopes	A	6.7	0.5%
416B	Narragansett silt loam, 3 to 8 percent slopes, very stony	A	116.6	7.9%
416C	Narragansett silt loam, 8 to 15 percent slopes, very stony	A	35.9	2.4%
416D	Narragansett silt loam, 15 to 25 percent slopes, very stony	A	9.0	0.6%
602	Urban land		10.5	0.7%
624B	Haven-Urban land complex, 0 to 8 percent slopes	A	257.7	17.4%
626B	Merrimac-Urban land complex, 0 to 8 percent slopes	A	307.8	20.7%
629C	Canton-Charlton-Urban land complex, 3 to 15 percent slopes	A	43.0	2.9%
631C	Charlton-Urban land- Hollis complex, 3 to 15 percent slopes, rocky	A	15.2	1.0%
653	Udorthents, sandy		20.5	1.4%
654	Udorthents, loamy		32.7	2.2%

А

		eren eren er en besteren er bilderen besteren er besteren er besteren er besteren er besteren er besteren er b	Andrew Alfred States and Alfred States and	ter el construction de la construct
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
656	Udorthents-Urban land complex		51.2	3.5%
Totals for Area of Intere	est		1,483.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

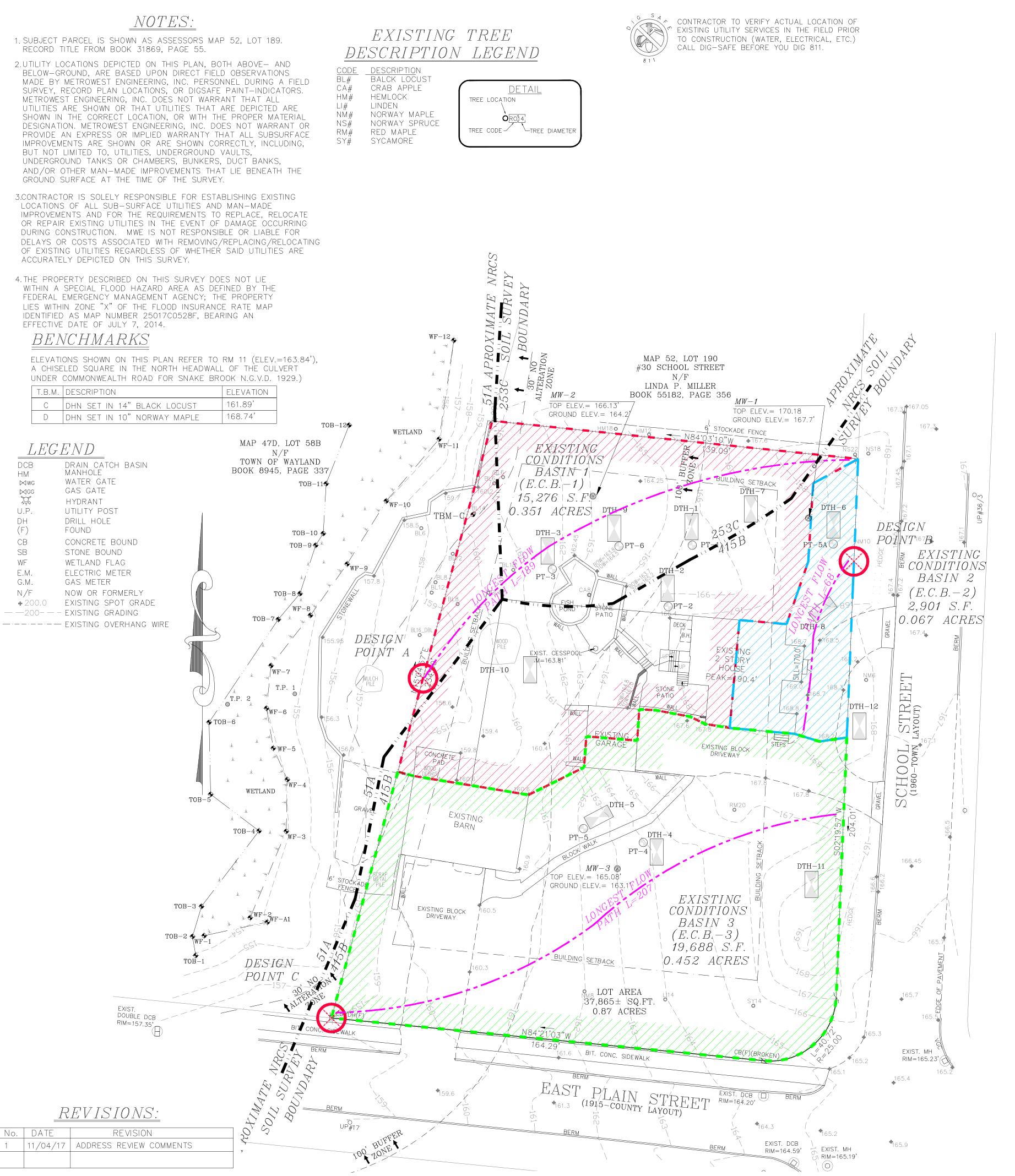
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options


Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

USDA

Appendix D: Time of Concentration Calculations

Time of Concentration Calculations		
		······
24 School Street, Wayland MA		
Prepared For: Windsor Place, LLC		
Existing Conditions Watersheds		
<u>E.C.B1</u>		
Longest Flow Path (ft.)	189	
L^0.8 (ft.)	66.25	
Runoff Curve Number	66.4	
Maximum Retention (S)	5.06	
(\$+1)^0.7	3.53	
Basin Slope (%)	5,2	·
	J.Z	
	0,05	
Lag Time (Hours)		
Lag Time (Minutes)	3.24	
Time of Concentration (Tc) (minutes)	5.4	· · · · · · · · · · · · · · · · · · ·
<u>E.C.B2</u>		
Time of Concentration (Tc) (minutes)	5.0	
Manua	ally Entered	
E.C.B3	-	
Longest Flow Path (ft.)	207	
L^0.8 (ft.)	71.25	· · · · · · · · · · · · · · · · · · ·
	71.20	
Runoff Curve Number	70.4	
	4.20	
Maximum Retention (S)	3.17	
(S+1)^0.7		
Basin Slope (%)	4.2	
Lag Time (Hours)	0.06	
Lag Time (Minutes)	3.48	
Time of Concentration (Tc) (minutes)	5.8	
·		
· · · · · · · · · · · · · · · · · · ·		
		· · · ·
· · · · · · · · · · · · · · · ·		

Time of Concentration Calculations	6
24 School Street, Wayland MA	
Prepared For: Windsor Place, LLC	
Proposed Conditions Watersheds	
<u>P.D.B1</u>	
Longest Flow Path (ft.)	222
L^0.8 (ft.)	75.35
Runoff Curve Number	66.4
Maximum Retention (S)	5.06
(S+1)^0.7	3.53
Basin Slope (%)	4.4
<u></u>	
Lag Time (Hours)	0,07
Lag Time (Minutes)	4.00
Time of Concentration (Tc) (minutes)	6.7
P.D.B2	
Time of Concentration (Tc) (minutes)	5.0
Man	ually Entered
· · · · · · · · · · · · · · · · ·	
<u>P.D.B3</u>	
Longest Flow Path (ft.)	196
L^0.8 (ft.)	68.20
Runoff Curve Number	75.3
Maximum Retention (S)	3.28
(S+1)^0.7	2.77
Basin Slope (%)	4
	0.05
Lag Time (Hours) Lag Time (Minutes)	0.05 2.98
Time of Concentration (Tc) (minutes)	5.0
Manually Entered a	<u></u>
manually Entered a	
P.D.B3A	
P.D.B3A Time of Concentration (Tc) (minutes)	5.0
Time of Concentration (Tc) (minutes)	
Time of Concentration (Tc) (minutes)	5.0
Time of Concentration (Tc) (minutes)	5.0
Time of Concentration (Tc) (minutes) Man	5.0

SOIL LOGS SOIL TEST RES	ULTS						
DTH-1 ELEV=165.7' DTH-2 ELEV=165	.9'	DTH-3 ELEV=16	1.7'	DTH-4 ELE	V=164.1'	DTH-5 ELEV=	162.6'
0"-10" Ap FINE SANDY LOAM 10YR3/3 10"-24" Bw FINE SANDY LOAM 10YR5/6 24"-62" C1 SANDY LOAM 2.5Y5/3 62"-126" C2 SANDY LOAM 2.5Y5/4 NO STANDING OR WEEPING WATER NO REFUSAL, C2 HORIZON IS TIGHT REDOX @70" 7.5YR5/8 5% ESTIMATED DESIGN GROUNDWATER=159.87' DATE: JULY 31, 2014 0"-22" Ap FINE SANDY 22"-42" Bw FINE SANDY 42"-96" C1 SANDY LO 42"-96" C1 SANDY LOAM 42"-96" C1 SANDY LOAM 44"-40" AND	LOAM 10YR5/6 AM 2.5Y5/3 1 2.5Y6/3 NO REFUSAL (F	22"—84" C1 SANDY L 84"—110" C2 SILT LO NO STANDING WATER, C2 HORIZON IS DAMP REDOX @82" 7.5YR5/	r loam 10YR5/6 OAM 2.5Y5/3 AM 2.5Y6/3 NO REFUSAL 8	20"–28" Ap FINE 28"–40" Bw FINE 40"–86" C1 SAN 86"–116" C2 SAN NO REFUSAL, NO STANO NO REDOX	SANDY LOAM 10YR5/6 NDY LOAM 2.5Y5/4 NDY LOAM 2.5Y4/4 ANDING OR WEEPING WATER	34"-84" C1 SANDY 84"-118" C2 SAND WEEPING WATER @1	NDY LOAM 10YR5/6 7 LOAM 2.5Y5/4 Y LOAM 2.5Y4/3 12" 5/8
BY: BRIAN T. NELSON, SOIL EVALUATOR (METROWEST ENG	NEERING, INC.)						
SOIL LOGS							
$\underbrace{No:}_{No:} SOIL \ TEST \ RES$	•		*				
DTH-6 ELEV=167.7' DTH-7 ELEV=166 0"-14" Ap FINE SANDY LOAM 10YR3/3 0"-14" Ap FINE SANDY 14"-26" Bw FINE SANDY LOAM 10YR3/3 14"-32" Bw FINE SANDY	-	DTH-8 ELEV=16		<i>DTH-9 ELE</i> 0"-16" Ap FINE		<i>DTH-10 ELEV=</i> 0"-15" Ap FINE SAN	
14"-26" Bw FINE SANDY LOAM 10YR5/614"-32" Bw FINE SANDY26"-64" C1 SANDY LOAM 2.5Y5/332"-58" C1 SANDY LC64"-122" C2 SANDY LOAM 2.5Y4/458"-114" C2 SANDY LNO STANDING OR WEEPING WATERNO STANDING OR WEEPING WATERNO REFUSALLENSES OF SILT LOAM FRREDOX @70" 7.5YR5/8 5%ESTIMATED DESIGN GROUNDWATER=161.87'	AM 2.5Y5/3 DAM 2.5Y5/4 NG WATER ROM 76" DOWN F	40 – 78 C1 SANDY L 78"–108" C2 LOAMY 108"–126" C3 SILT L(DAM 2.5Y5/4 Sand 2.5Y5/3 DAM 2.5Y6/3 8 10%	30 – 46 BC SA 46"–98" C1 SA 98"–118" C2 SA WATER STANDIN WATER WEEPING REDOX SEEN @6	NDY LOAM 2.5Y5/4 NDY LOAM 2.5Y5/3 ANDY LOAM 2.5Y4/4 G @108" @88" S2", NO REFUSAL	30 -66 C1 LOAMY 66"-112" C2 SILT	7 SAND 2.5Y5/3 LOAM 2.5Y5/4 100" 88" 7.5YR5/8 10%
	PI	ERCOLATION		DTH-11 ELE	V=166.0'	DTH-12 ELEV=	=168.2'
	NO. DEPT PT-1 60' PT-2 68' PT-3 50' PT-4 55'	' 8 MPI 07/31/14 ' 13 MPI 07/31/14 ' 10 MPI 07/31/14	+ D.N. D.M. 1 B.N. B.M. 4 B.N. B.M. 4 B.N. B.M.	36"–58" C1 SAN 58"–128" C2 SA WATER STANDING NO WEEPING WA REDOX SEEN @6	ANDY LOAM 2.5Y6/3 G @125" .TER 50" 7.5YR5/8 5% GROUNDWATER=161.0'	C2 HORIZON HAS LEN	SES OF SILT LOAM EEPING WATER 7.5YR5/8
	PT-5 60"	' MPI 07/31/14			ELSON, SOIL EVALUA	TOR (METROWEST EN	NGINEERING, INC.)
	P]	ERCOLATION		INSPECTOR: JUL	IA JUNGHANNS, WAY	'LAND BOARD OF HE	ALTH
	NO. DEPT PT-5A 54' PT-6 60'			USDA	SOIL C	LASSIFIC	CATION
				SOIL NUME	BER SOIL SERIE SWANSEA		HYDROLOGIC Soil group B/D
				253C 415B	HINCKLEY NARRAGAN SILT LOAN		A B
EXISTING CONDITIONS BASIN	PROPI	ERTIES:			GIC SOIL GROU		DR ANALSYIS
EXISTING CONDITIONS BASIN 1 (E.C.B. TOTAL BASIN AREA = 15,276 S.F. (0.351 ACRES) HYDRAULIC LENGTH = 189 FEET CHANGE IN ELEVATION = 9.8 FEET BASIN SLOPE = 0.052 (5.2%) GROUND COVER				CLASSIFIED WI	E ARE SANDY LOAM Thin Hydrologic S <i>Owest Enginei</i> . <i>Gemma, P.E.(C</i>	SOIL GROUP B. E <i>RING, INC</i> .	DATE
MPERVIOUS AREA = 2,205 S.F. (0.051 ACRES) _AWN AREA (GOOD COND.) = 13,071 S.F. (0.300 ACRES)	98 0.	ACKES FRODUCT 051 5.000 300 18.300				P.L.S. # 37046	
	SUM 0.	351 SUM 23.300	20	Û	$\begin{array}{rcr} GRAPHIC & SC \\ 1 & inch = 20 & f \end{array}$		
WEIGHTED CURVE NUMBER ((N = (20.000	9/0.331) — 00.4				20 (METEF	
EXISTING CONDITIONS BASIN 2 (E.C.B) TOTAL BASIN AREA = 2,901 S.F. (0.067 ACRES) HYDRAULIC LENGTH = 68 FEET CHANGE IN ELEVATION = 1.3 FEET	-2)			<u></u>	TURE		
BASIN SLOPE = 0.019 (1.9%) <u>GROUND COVER</u> IMPERVIOUS AREA = 1,460 S.F. (0.034 ACRES) LAWN AREA (GOOD COND.) = 1,440 S.F. (0.033 ACRES)	98 0. 61 0.	(ACRES) <u>PRODUCT</u> 034 3.332 033 2.013 0.067 SUM 5.345	WAI	ERSHE	ING COP 2D DELIP 24 school s' 1N	VEATION	9 PLAN
WEIGHTED CURVE NUMBER ($\mathbb{W}\mathbb{A}$	YLAND,	MASS	
EXISTING CONDITIONS BASIN 3 (E.C.I	3.−3)	//////////////////////////////////////	PREPARED	CHADW 73 PE	VICK HOMES LHAM ISLAND RO ND, MA 01778	DAD	
TOTAL BASIN AREA = 19,688 S.F. (0.452 ACRES) HYDRAULIC LENGTH = 207 FEET CHANGE IN ELEVATION = 8.8 FEET BASIN SLOPE = 0.042 (4.2%) <u>GROUND COVER</u>	Cn ARFA	(ACRES) PRODUCT	PROPERTY	LINDA (GARY W 24 SCH	C. KNOWLES & 7. RIDGE 700L STREET 1D, MA 01778		
	98 ((Noncomposition)(Noncomposition)0.11711.4660.33420.374	ENGINEERS SURVEY(&			
WEIGHTED CURVE NUMBER		0.452 SUM 31.840 40/0.452) = 70.4		MW	75 FRANK FRAMINGH TEL.: (508	T ENGINEERING, LIN STREET AM, MA 01702 2)626–0063)875–6440	INC.
EXISTING CONDITIONS - TOTAL IMPERVIOUS AREA = 8,7 EXISTING CONDITIONS - TOTAL LAWN AREA = 29,085 S			SHEE calc'd by:	RAG FIEL	D BK: 621 CA	ATE: DECEMBER	R1.dwg
			DRAFTER:	PRO	JECT: WY_SCH	WG FILE: SK121916_R1	l.dwg

No.DATEREVISION207/29/15ADD TOP OF BANK311/01/15ADD ELEVATION DATUM REFERENCEREVISE WF#11, WF#12	LECEND DCB DRAIN CATCH BASIN HM MANHOLE NWW WATER GATE SWW HYDRANT U.P. UTILITY POSI DRILL HOLE FOUND CB CONCRETE BOUND SB STONE BOUND SB STONE BOUND SG.M. GAS METER G.M. GAS METER G.M. GAS METER SING SPOT GRADE EXISTING SPOT GRADE EXISTING GRADING EXISTING OVERHANG WIRE	EXISTING TREE DESCRIPTION BL# BALCK LOCUST CA# CRAB APPLE HM# HEMLOCK LI# NORWAY MAPLE NORWAY SPRUCE RM# RED MAPLE SY# SYCAMORE	FRONTAGE= 200 S: VT LOT LINE= 30 VT ROW CENTER L YARD= 15 ³ FT. R YARD=30 FT. GHT = 35 FT./21 702 SHALL REQUINA LESSER SETBAC 702 SHALL REQUINA DS SHALL MEET AND 703.2, ANI MAY BE REDUCED OF §198-703.2 FRONT YARD WID IN ACCORDANCE IN ACCORDANCE	DNTRACTOR TO VERIFY ACTUAL LOCATI (ISTING UTILITY SERVICES IN THE FIELD D CONSTRUCTION (WATER, ELECTRICAL, ALL DIG-SAFE BEFORE YOU DIG 811. \underline{VC} : \underline{ZONE} 20,000 ¹⁵ S.F. NVERAGE= 20%	4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014. BENCHMARS DATE OF JULY 7, 2014. ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.= A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CUL UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1 T.B.M. DESCRIPTION C DHN SET IN 14" BLACK LOCUST 161.89' D DHN SET IN 10" NORWAY MAPLE 168.74'	ESSORS MAP 52, PAGE 55. PAGE 55. INC. PERSONNEL OR DIRECT FIELD OB: INC. PERSONNEL OR DIGSAFE PAIN S NOT WARRANT LITIES THAT ARE [OR WITH THE PR NARRANTY THAT ARE [OF WITH THE SURVEY. THE SURVEY. INC. DOES NO NARRANTY THAT ARE INC. DOES NO NARRANTY AND
	APROXIME TOCELET OF THE PROVINCE SIDE OF THE PROVINCE STORE OF THE PROVINCE SIDE OF THE PROVI		TOB-6 T.P. 2 T.P. 2 T.P. 2 T.P. 1 T.P. 1 T.S. 7 T.P. 1 T.S. 7 T.S. 7	ТОВ-10 ТОВ-10 ТОВ-10 тОВ-9 ± ± тоВ-9 ± ± тоВ-9 ± тоВ-10 тоВ-10 тоВ-10 тоВ-10 тоВ-10 тоВ-9 ± тоВ-9 тоВ-10	LIE (THE ERTY MAP MAP MAP (ELEV.=163.84'), E CULVERT (V.D. 1929.LOT 58B (/F WAYLAND JF WAYLAND JF WAYLAND J45, PAGE 337	LOT 189. BOVE- AND SERVATIONS DURING A FIELD IT-INDICATORS. THAT ALL DEPICTED ARE OPER MATERIAL DT WARRANT OR ALL SUBSURFACE LLY, INCLUDING, IS, T BANKS, BENEATH THE AGE OCCURRING R LIABLE FOR ACING/RELOCATING ACING/RELOCATING UTILITIES ARE
POST-DEVELOPMENT BASIN 3 (P.D.B3) 7,081 S.F. 0.163 ACRES	159.6 159.6 159.6 159.6 159.6 159.6 159.6 159.6 159.6 159.6 159.6 159.6 159.6 161.95 161	3-STORY WOODFRAMED BUI FOOTPRINT=4	8.5' TOC=169.0' TOC=170.0' TOC=170.6' TOC=169.0' TOC=169.0' TOC=170.0' TOC=170.6' TOC=1	$\frac{1000}{1000}$	253C SOIL	

SOC

LOT AREA -16637,8654 SQ.FT: 0.87 ACRES

EC170

MW-1 POST DEVELOPMENT BASPINEV2 (P. DR DIVEV2 (P. DR DIVE 2) 1,87767S.F. 0.043 ACRES

PT-415B

D

SIGN

167.1

TOTAL BASIN AREA = 5,991 S.F. (0.138)HYDRAULIC LENGTH = 222 FEET CHANGE IN ELEVATION = 9.7 FEET BASIN SLOPE = 0.044 (4.4%)

POST-DEVELOPMENT

IMPERVIOUS AREA = 857 S.F. (0.020 ACRES) LAWN AREA (GOOD COND.) = 3,815 S.F. (0.087 LANDSCAPED AREA (GOOD COND.) = 1,323 S.F.

В

167.4

GROUND COVER

0

PROPOSED

TOC=170.0 OFE=169.5 FFE=170,0

SCHOOL STREET (1960-TOWN LAYOUE-50' WIDE)

T = DEVELOPMENT T = DEVELOPMENT (P.D.B.-4) (P.D.B.-4) 17,059 S.F. 0.392 ACRES C63

S.F. ACRES

 $\begin{array}{c} 75' \quad BUFFER \\ 1 \quad ZONE \end{array}$

 $\begin{bmatrix} & & \\ &$

" N/F LINDA P. MILLER BOOK 55182, PAGE 356

MAP 52, LOT 190 #30 SCHOOL STREET

0"-14" AP FINE SANDY LOAM 10YR3/3 14"-26" BW FINE SANDY LOAM 10YR3/3 26"-64" C1 SANDY LOAM 2.5Y5/3 64"-122" C2 SANDY LOAM 2.5Y4/4 NO STANDING OR WEEPING WATER NO REFUSAL REDOX @70" 7.5YR5/8 5% ESTIMATED DESIGN GROUNDWATER=161 87

4647 EC168

-168-

PROPOSED PROPOSED PROPOSED

CONDITIONS CONDITIONS CONDITIONS

169.1

PATH

167.45

_____91

POST-

DEVELOPMENT

DEVELOPMENT ASIN 1

PT-5A

54"

10 MPI

DATE 08/21/14

B.N.

J.J.

CTOR

B

 \leq

WAYLAND

B ∹

BRIAN T.

NELSON,

SOIL

PT-6

60"

3 MPI

08/21/14 B.N.

. . .

SOIL

LOGS

ZOIL

Mo:

DTH-

0

ELEV =

167.

. ~

N 0.

DEPTH

RATE

PERCOLATION

PT-5

60"

MPI

07/31/14

B.N.

PT-4

ດີ

MPI

07/31/14

B.N.

0"-10" AP FINE SANDY LOAM 10YR3/3 (10"-24" Bw FINE SANDY LOAM 10YR5/6 2: 24"-62" C1 SANDY LOAM 2.5Y5/3 4: 62"-126" C2 SANDY LOAM 2.5Y5/4 90 NO STANDING OR WEEPING WATER NO REFUSAL, C2 HORIZON IS TIGHT NO REDOX @70" 7.5YR5/8 5% ESTIMATED DESIGN GROUNDWATER=159.87' ES DATE: JULY 31, 2014

B.M. B.M.

PT-3

50

10 MPI

, 70

/31/14

B.Z

B.M.

PT-2

68**"**

13 MPI

07/31/14

B.N.

PT-1

60"

8 MPI

07/31/14

B.N.

B. ≤ S.

NО.

DEPTH

RATE

DATE

B≺

INSE

DTi

-1 ELEV =

-165.

2

SOIL

LOGS

TIOS

Mo:

PERCOLATION

GROUND COVER ANDSC 1PERVIOUS AREA = awn area (good (andscaped area (= 14,145 D COND.) = A (GOOD C COND. S (0.32 02 S 1,51 $\mathbf{\hat{o}}$ ACR (0.03

TOTAL BASIN AREA = 17,059 S.F. HYDRAULIC LENGTH = N.A. CHANGE IN ELEVATION = N.A. BASIN SLOPE = N.A. POST-DEVELOPMENT BASIN . (0.392 ACRES) 4

IMPERVIOUS AREA = 1,960 S.F. (0.045 ACRES) LAWN AREA (GOOD COND.) = 1,914 S.F. (0.044 LANDSCAPED AREA (GOOD COND.) = 1,983 S.F. ACRE (0.04

₿ Þ GROUND COVER

TOTAL BASIN AREA = 5,856 S.F. HYDRAULIC LENGTH = N.A. CHANGE IN ELEVATION = N.A. BASIN SLOPE = N.A. (0.133 ACRES)

162.55

52.90

162.66

E

Tool and

62

162. 거+

EXIST

DCB 4.20

YOUT-50'

STREÉT

-0 UP#6/18

EXIST. MH RIM=165.19

EXIST. DCB RIM=164.59

165.2

POST-

 $\sum_{i=0}^{M_{G}} \frac{1}{2} = \frac{1}{2} \sum_{i=0}^{M_{G}} \frac{1}{2} = \frac{1}{2} \sum_{i=0}^{M_{G}} \frac{1}{2} \sum_{i=0}^$

.-991-

0

WIDE)

PROPOSED UNIT TA

TOC=167.0 GFE=166.5' FFE=167.0'

<u></u>_____

PROPOSED UNIT 2A

PROPOSED

TOC=168.5' TOC=168.5' GFE=168.0' FFE=168.5' FFE=168.5' FFE=168.5' FFE=168.5' FFE=168.5' FFE=168.5' FFE=168.5' FFE=169.5' FFE=168.5' FFE=16

DTH

166.45

166.6 166.2

BERM

GROUNI = 163.

EDGE_OF_PAVEMENT____

8, 165. ELEV.

GFE=16957 FFE=170.07

<u>MM A PI</u>

AUDBCAPE.

GRAVEL

POST-DEVELOPMENT BASIN3A

IMPERVIOUS AREA = 2,745 S.F. (0.063 ACRES) LAWN AREA (GOOD COND.) = 2,391 S.F. (0.055 LANDSCAPED AREA (GOOD COND.)= 1,946 S.F. (GROUND COVER 5 ACRE (0.045

TOTAL BASIN AREA = 7,081 S.F. (0.163 ACRES) HYDRAULIC LENGTH = 196 FEET CHANGE IN ELEVATION = 7.5 FEET BASIN SLOPE = 0.038 (3.8%)

POST-DEVELOPMENT BASIN ω

IMPERVIOUS AREA = 356 S.F. (0.008 ACRES) LAWN AREA (GOOD COND.) = 880 S.F. (0.020 ACRES LANDSCAPED AREA (GOOD COND.)= 640 S.F. (0.015 , GROUND COVER

ACRES)

POST-

DEVELOPMENT

TOTAL BASIN AREA = 1,877 S.F. (0.043 HYDRAULIC LENGTH = 49 FEET CHANGE IN ELEVATION = 0.5 FEET BASIN SLOPE = 0.010 (1.0%)

NX

SHEET 1 OF 1 DATE: APRIL 23, 2018	= 1,402 S.F. (0.032 ACRES) 61 0.032 1.952 OND.) = 1,511 S.F. (0.035 ACRES) 61 0.035 2.135
ENGINEERS & SURVEYORS: MAXE METROWEST ENGINEERING, INC. 75 FRANKLIN STREET WAYLAND, MA 01702 TEL.: (508)626-0063 FAX: (508)875-6440	S.F. (0.392 ACRES)
PROPERTY OF: <i>WINDSOR PLACE LLC</i> <i>73 PELHAM ISLAND ROAD</i> <i>WAYLAND, MA 01778</i>	SUM 0.134 SUM 9.778 WEIGHTED CURVE NUMBER (C_N) = (9.778/0.133) = 73.5 T BASIN 4 (P.D.B4) = (9.778/0.137)
DSOR PLACE LLC PELHAM ISLAND ROAD LAND, MA 01778	A (ACRES) PRODU 0.045 4.4 0.044 2.6 0.045 2.6
ED DELINEATION 24 school street in Ayland. Mass	
	$\begin{array}{c cccc} \underline{Cn} & \underline{AREA} & \underline{(ACRES)} & \underline{PRODUCT} \\ \hline & 2,391 & S.F. & (0.055 & ACRES) & 61 & 0.063 & 6.174 \\ \hline & 2,391 & S.F. & (0.045 & ACRES) & 61 & 0.045 & 3.355 \\ \hline & 0.045 & S.F. & (0.045 & ACRES) & 61 & 0.045 & 2.745 \\ \hline & SUM & 0.163 & SUM & 12.274 \\ \hline & WEIGHTED & CURVE & NUMBER & (C_N) & = (12.274/0.163) & = 75.3 \\ \end{array}$
$\begin{array}{c} \text{GRAPHIC SCALE} \\ 1 \text{ inch} = 20 \text{ ft.} \\ \hline \begin{array}{c} 20 \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \bigg $ \\ \hline \end{array} \\ \\ \hline \bigg \\ \\ \\ \\ \\ \\ \\ \\ \\	S.F. (0.163 ACRES) EET FEET ()
FOR METROWEST ENGINEERING, INC. DATE ROBERT A. GEMMA, P.E.(CIVIL) # 31967 P.L.S. # 37046	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ 0.008 \ \text{ACRES} \end{array} \\ 80 \ \text{S.F.} & (0.020 \ \text{ACRES} \end{array} \\ 0.020 \ \text{ACRES} \end{array} \\ 0.015 \ \text{ACRES} \end{array} \\ 0.0015 \ \text{ACRES} \end{array} \\ 0.0015 \ \text{ACRES} \end{array} \\ 0.0015 \ \text{ACRES} \end{array} \\ 0.015 \ \text{ACRES} \end{array} \\ 0.0015 \ \text{ACRES} \end{array} \\ \\ \\ 0.0015 \ \text{ACRES} \end{array} \\ \\ 0.0015 \ \text{ACRES} \end{array} \\ \\ 0.0015 \ \text{ACRES} \end{array} \\ \\ \\ 0.0015 \ \text{ACRES} \end{array} \\ \\ \\ \\ \\ \\ 0.0015 \ \text{ACRES} \end{array} \\ \\ \\ \\ \\ \\ 0.0015 \ \text{ACRES} \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \\ \\ \end{aligned} \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \\ \end{aligned} \\ \end{aligned} \\ \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \\ \end{aligned} \\ \end{aligned}$
HYDROLOGIC SOIL GROUP B USED FOR ANALSYIS SOILS ON SITE ARE SANDY LOAM TEXTURES AND CLASSIFIED WITHIN HYDROLOGIC SOIL GROUP B.	43 ACRES)
SOIL NUMBERSOIL SERIESHYDROLOGIC SOIL GROUP $51A$ SWANSEA MUCKSOIL GROUP $253C$ HINCKLEY LOAMY SAND B/D $415B$ NARRAGANSETT B SILT LOAMSILT LOAM B	MENT BASIN 2 (P.D.B2)
USDA SOIL CLASSIFICATION	38 ACRES)
DESIGN GROUNDWATER=161.0'	MENT BASIN PROPERTIES: ENT BASIN 1 (P.D.B1)
DTH-TTELEV=766.0DTH-TZELEV=768.20"-18" FILL0"-18" FILL0"-54" FILL18"-30" Ap FINE SANDY LOAM 10YR3/358"-82" C1 SANDY LOAM 2.5Y5/630"-36" Bw FINE SANDY LOAM 10YR5/682"-114" C2 SANDY LOAM 2.5Y4/436"-58" C1 SANDY LOAM 2.5Y5/3682"-114" C2 SANDY LOAM 2.5Y5/458"-128" C2 SANDY LOAM 2.5Y6/3C2 HORIZON HAS LENSES OF SILT LOAMNO WEEPING WATER0"-54" FILLNO WEEPING WATERNO REFUSALRFDOX SFEN @60" 7 5YR5/8 5%RFDOX SFEN @64" 7 5YR5/8	- TOTAL IMPERVIOUS AREA = 20,063 S.F. - TOTAL LAWN AREA = 10,402 S.F. - TOTAL LANDSCAPED AREA = 7,403 S.F.
0"-16" Ap FINE SANDY LOAM 10YR3/3 0"-15" Ap FINE SANDY LOAM 10YR5/6 16"-30" Bw FINE SANDY LOAM 10YR5/6 15"-30" Bw FINE SANDY LOAM 10YR5/6 10"-16" Ap FINE SANDY LOAM 10YR5/6 15"-30" Bw FINE SANDY LOAM 10YR5/6 10"-16" Ap FINE SANDY LOAM 2.5Y5/3 0"-15" Ap FINE SANDY LOAM 2.5Y5/3 10"-16" Ap FINE SANDY LOAM 2.5Y5/3 66"-112" C2 SILT LOAM SANDY LOAM 2.5Y5/3 10" Ap FINE SANDY LOAM 2.5Y5/3 66"-112" C2 SILT LOAM SANDY LOAM 2.5Y4/4 10" Ap FINE STANDING @108" WATER STANDING @108" 10" Ap FINE STANDING @288" NO REFUSAL 10" Ap FINE SIGN GROUNDWATER=157.8' ESTIMATED DESIGN GROUNDWATER=157.8' 10" Ap FINE SIGN GROUNDWATER=157.8' ESTIMATED DESIGN GROUNDWATER=157.8'	4" Ap FINE SANDY LOAM 10YR3/3 0"-26" FILL 2" Bw FINE SANDY LOAM 10YR5/6 26"-40" Bw FINE SANDY 2" Bw FINE SANDY LOAM 2.5Y5/3 40"-78" C1 SANDY LOAM 2.5Y5/4 14" C2 SANDY LOAM 2.5Y5/4 78"-108" C2 LOAMY S 14" C2 SANDY LOAM 76" DOWN NO REFUSAL 78"-126" C3 SILT LOAM S S OF SILT LOAM FROM 76" DOWN NO REFUSAL C3 HORIZON IS DAMP REDOX @80" 7.5YR5/8 REDOX @80" 7.5YR5/8 TED DESIGN GROUNDWATER=NONE ESTIMATED DESIGN GROUNDWATER
	IL TEST RESULTS
	ATOR (METROWEST ENGINEERING, INC D BOARD OF HEALTH
1.7'DTH-4ELEV=164.1'DTH-5ELEV=162.6'LOAM 10YR3/30"-20" FILL 20"-28" Ap FINE SANDY LOAM 10YR3/3 28"-40" Bw FINE SANDY LOAM 10YR3/3 40"-86" C1 SANDY LOAM 10YR5/6 38"-40" Bw FINE SANDY LOAM 2.5Y5/4 86"-116" C2 SANDY LOAM 2.5Y5/4 86"-116" C2 SANDY LOAM 2.5Y4/4 NO REFUSAL NO REFUSAL, NO STANDING OR WEEPING WATER NO REDOX0"-16" Ap FINE SANDY LOAM 10YR3/3 16"-34" Bw FINE SANDY LOAM 10YR5/6 34"-84" C1 SANDY LOAM 10YR5/6 84"-118" C2 SANDY LOAM 2.5Y5/4 WEEPING WATER @112" REDOX @72" 7.5YR5/8 STIMATED DESIGN GROUNDWATER=NONE10DWATER=154.87'	DTH-2ELEV=165.9'DTH-3ELEV=161.7'10YR3/30"-22" Ap FINE SANDY LOAM 10YR3/3 10YR5/60"-10" Ap FINE SANDY LOAM 10YR5/60"-10" Ap FINE SANDY LOAM 10YR5/60"-10" Ap FINE SANDY LOAM 10"-22" Bw FINE SANDY LOAM 2.5Y5/30"-10" Ap FINE SANDY LOAM 2.5Y5/30"-10" Ap FINE SANDY LOAM 2.5Y5/322.5Y5/442"-96" C1 SANDY LOAM 42"-96" C1 SANDY LOAM 2.5Y5/42.5Y5/3 96"-118" C2 SILT LOAM 2.5Y6/30"-10" Ap FINE SANDY LOAM 2.5Y6/32.5Y5/496"-118" C2 SILT LOAM 96"-118" C2 SILT LOAM 2.5Y6/32.5Y6/3 84"-110" C2 SILT LOAM 84"-110" C2 SILT LOAM 2.5Y6/384"-110" C2 SILT LOAM 84"-110" C2 SILT LOAM 2.5Y6/3MATER WATER WATER NO STANDING WATER, NO REFUSAL REDOX @80" 7.5YR5/8NO STANDING WATER, NO FINE REDOX @82" 7.5YR5/8 REDOX @82" 7.5YR5/8R=159.87'ESTIMATED DESIGN GROUNDWATER=159.23'ESTIMATED DESIGN GROUNDWATER
	T RESULTS

NOTES:

- 1. SUBJECT PARCEL IS SHOWN AS ASSESSORS MAP 52, LOT 189. RECORD TITLE FROM BOOK 69050, PAGE 394.
- 2. UTILITY LOCATIONS DEPICTED ON THIS PLAN, BOTH ABOVE AND BELOW-GROUND, ARE BASED UPON DIRECT FIELD OBSERVATIONS MADE BY METROWEST ENGINEERING, INC. PERSONNEL DURING A FIELD SURVEY, RECORD PLAN LOCATIONS, OR DIGSAFE PAINT-INDICATORS. METROWEST ENGINEERING, INC. DOES NOT WARRANT THAT ALL UTILITIES ARE SHOWN OR THAT UTILITIES THAT ARE DEPICTED ARE SHOWN IN THE CORRECT LOCATION, OR WITH THE PROPER MATERIAL DESIGNATION. METROWEST ENGINEERING, INC. DOES NOT WARRANT OR PROVIDE AN EXPRESS OR IMPLIED WARRANTY THAT ALL SUBSURFACE IMPROVEMENTS ARE SHOWN OR ARE SHOWN CORRECTLY, INCLUDING, BUT NOT LIMITED TO, UTILITIES, UNDERGROUND VAULTS, UNDERGROUND TANKS OR CHAMBERS, BUNKERS, DUCT BANKS, AND/OR OTHER MAN-MADE IMPROVEMENTS THAT LIE BENEATH THE GROUND SURFACE AT THE TIME OF THE SURVEY.
- 3.CONTRACTOR IS SOLELY RESPONSIBLE FOR ESTABLISHING EXISTING LOCATIONS OF ALL SUB-SURFACE UTILITIES AND MAN-MADE IMPROVEMENTS AND FOR THE REQUIREMENTS TO REPLACE, RELOCATE OR REPAIR EXISTING UTILITIES IN THE EVENT OF DAMAGE OCCURRING DURING CONSTRUCTION. MWE IS NOT RESPONSIBLE OR LIABLE FOR DELAYS OR COSTS ASSOCIATED WITH REMOVING/REPLACING/RELOCATING OF EXISTING UTILITIES REGARDLESS OF WHETHER SAID UTILITIES ARE ACCURATELY DEPICTED ON THIS SURVEY.
- 4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014.

BENCHMARKS

ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.=163.84'), A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CULVERT UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1929.)

ONDEN	COMMONWERENT NORD FOR SMARE BRO	JOIN 14.0. V.D. 1523	٠.
T.B.M.	DESCRIPTION	ELEVATION	
С	DHN SET IN 14" BLACK LOCUST	161.89'	
D	DHN SET IN 10" NORWAY MAPLE	168.74'	

G S A A CONTRACTOR TO VERIFY ACTUAL LOCATION OF EXISTING UTILITY SERVICES IN THE FIELD PRIOR TO CONSTRUCTION (WATER, ELECTRICAL, ETC.) CALL DIG-SAFE BEFORE YOU DIG 811.

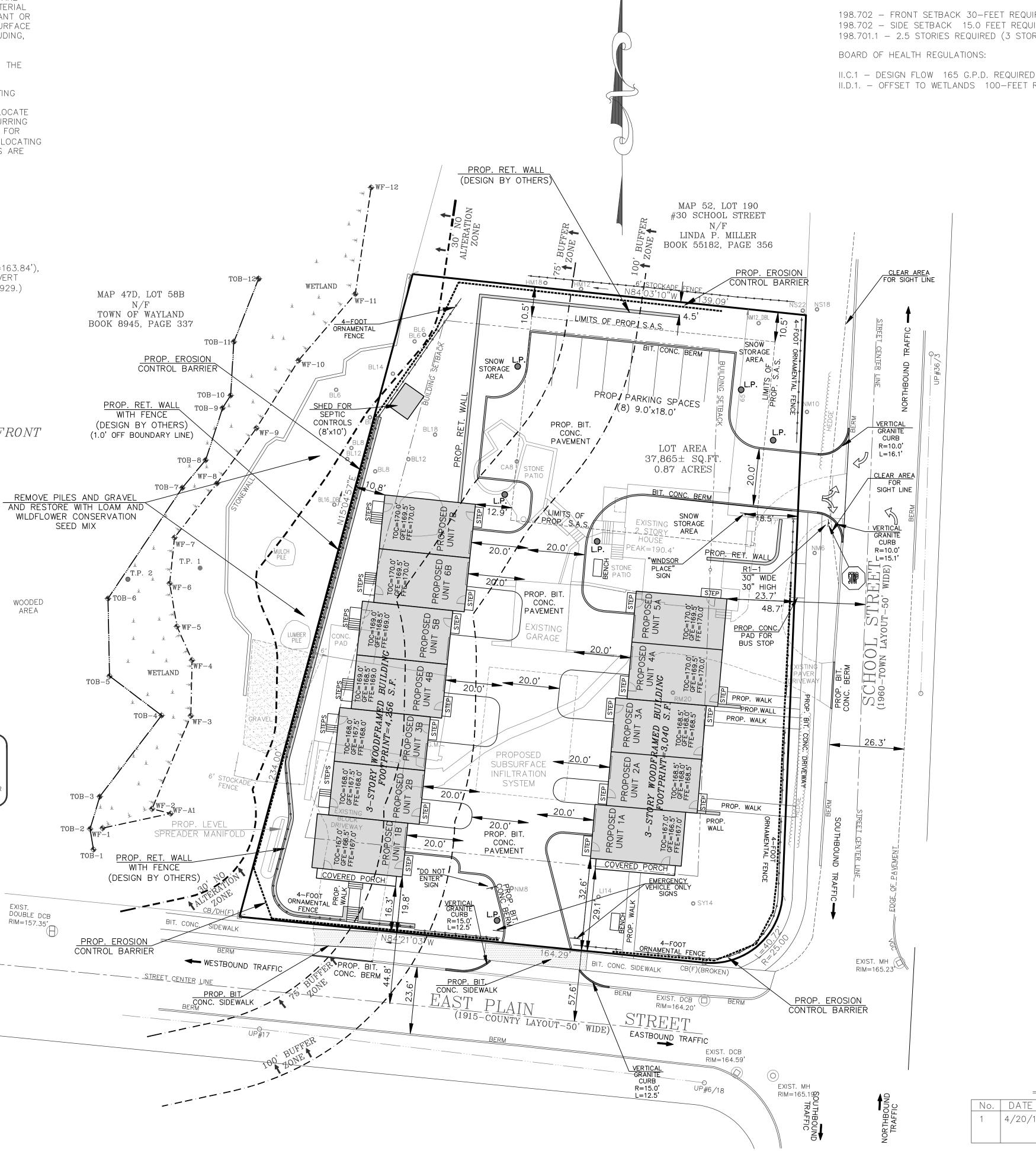
ZONING:

RESIDENCE ZONE 20,000 - 120' FRONT MINIMUM LOT AREA= 20,000¹⁵ S.F. MINIMUM LOT COVERAGE= 20% MINIMUM FRONTAGE= 200 FT. SETBACKS: FRONT LOT LINE = 30^2 FT. FRONT ROW CENTER LINE= 55 FT. SIDE YARD= 15^3 FT. REAR YARD=30 FT. MAX. HEIGHT = $35 \text{ FT.}/2\frac{1}{2}$ STORIES

2) IF §198-702 SHALL REQUIRE A GREATER SETBACK OR PERMIT A LESSER SETBACK, THE PROVISIONS OF SAID §198-702 SHALL PREVAIL OVER THIS TABLE.

3) SIDE YARDS SHALL MEET THE REQUIREMENTS OF \$\$198-702.4 AND 703.2, AND THE REQUIRED MINIMUM SIDE YARD MAY BE REDUCED IN ACCORDANCE WITH PROVISIONS OF \$198-703.2

15) MINIMUM FRONT YARD WIDTH SHALL BE CALCULATED IN ACCORDANCE WITH THE REQUIREMENTS OF §198-705.1 OF THE ZONING BYLAW.

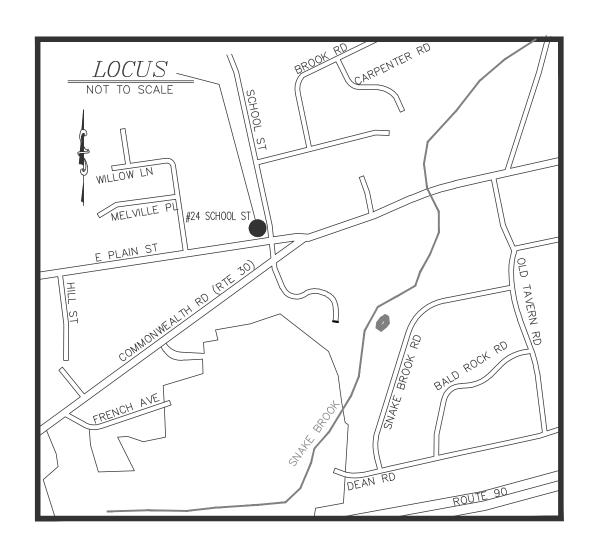


<u>CODE</u> BL#	<u>DESCRIPTIO</u> N BALCK LOCUST
CA#	CRAB APPLE
HM#	HEMLOCK
LI#	LINDEN
NM#	NORWAY MAPLE
NS#	NORWAY SPRUCE
RM#	red maple
SY#	SYCAMORE

<u>De</u>	ETAIL
TREE LOCATION	
O RO	14
TREE CODE-	TREE DIAMETER

LEGEND

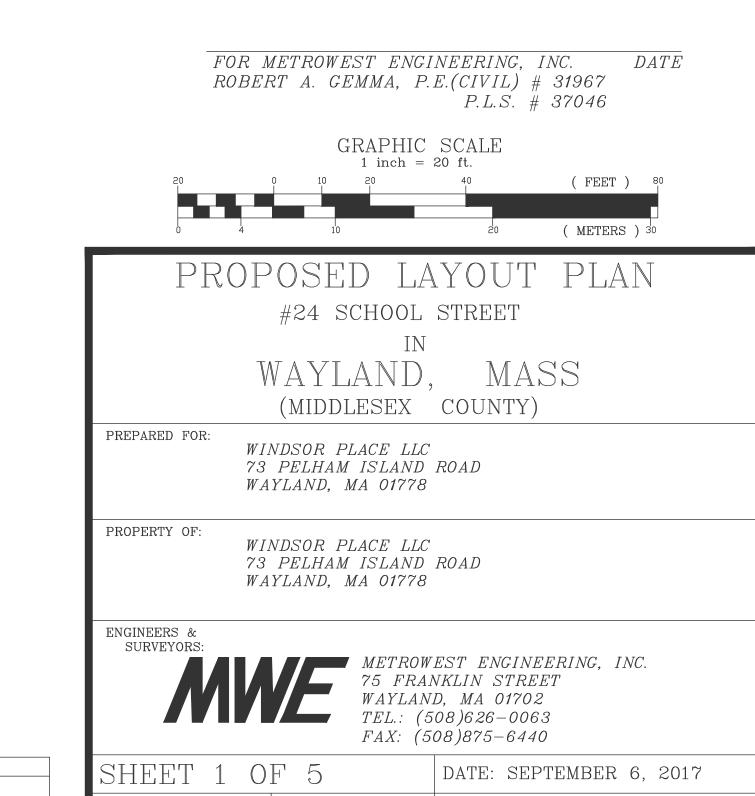
DCB	DRAIN CATCH BASIN
НМ	MANHOLE
⊠WG	WATER GATE
⊠GG	GAS GATE
* , ,	HYDRANT
U.P.	UTILITY POST
DH	DRILL HOLE
(F)	FOUND
СВ	CONCRETE BOUND
SB	STONE BOUND
WF	WETLAND FLAG
E.M.	ELECTRIC METER
G.M.	GAS METER
N/F	NOW OR FORMERLY
+200.0	EXISTING SPOT GRADE
200	EXISTING GRADING
	EXISTING OVERHEAD WIRE


LOCAL WAIVERS REQUESTED:

198–504 – EARTH MOVEMENT – 500 CUBIC YARDS MAXIMUM ALLOWED (106 CUBIC YARDS CUT, 4,571 CUBIC YARDS FILL REQUESTED)

198.702 - FRONT SETBACK 30-FEET REQUIRED (16.3 AND 23.7-FEET REQUESTED) 198.702 – SIDE SETBACK 15.0 FEET REQUIRED (10.8-FEET REQUESTED) 198.701.1 – 2.5 STORIES REQUIRED (3 STORIES REQUESTED)

II.C.1 – DESIGN FLOW 165 G.P.D. REQUIRED (110 G.P.D REQUESTED) II.D.1. – OFFSET TO WETLANDS 100-FEET REQUIRED (54.6-FEET REQUESTED)



ZONING TABLE					
RESIDENCE	ZONE, 20,	000 SQUARI	E FEET		
	REQUIRED	EXISTING	PROPOSED		
AREA	20,000 S.F.	37,865 S.F.	37,865 S.F.		
FRONTAGE	120 FEET	204.01 FEET	204.01 FEET		
SETBACKS: FRONT YARD	30 FEET*	17.5 FEET	19.8 FEET		
SIDE YARD	15 FEET	N.A.	N.A.		
REAR YARD	30 FEET	6.2 FEET	10.8 FEET		
BUILDING COVERAGE	20% MAXIMUM	0.092 (9.2%)	0.199 (19.9%)		
LOT COVERAGE	20% MAXIMUM	0.092 (9.2%)	0.199 (19.9%)		
IMPERVIOUS AREA	N.A.	8,908 S.F. (23.5%)	19,956 S.F. (52.7%)		
BUILDING COVERAGE	7,573 S.F.	3,493 S.F. (9.2%)	7,572 S.F. (19.9%)		
OTHER IMPERV, AREA	N.A.	5,415 S.F. (14.3%)	12,384 S.F. (32.7%)		
OPEN SPACE	N.A.	28,957 S.F. (76.5%)	17,909 S.F. (47.3%)		
BUILDING HEIGHT	35 FEET	28± FEET	35.5 FEET		
NUMBER OF STORIES	2.5 STORIES	2 STORIES	3 STORIES		
BUILDING TYPE	N.A.	2-STORY W.F.	3-STORY W.F.		
FLOOR AREA RATIO	N.A.	0.090 (9.0%±)	0.52 (52.0%±)		
NUMBER OF BEDROOMS	N.A.	4 BEDROOMS	26 BÈDROOMŚ		
UNITS PER ACRE	N.A.	0.9	13.8		
UNITS PER BUILDABLE ACRE	Ν.Α.	0.9	13.9		
# PARKING SPACES PER UNIT	N.A.	4	2.5		
# PARKING SPACES PER SQUARE FOOT	N.A.	N.A.	0.002		
# PARKING SPACES	N.A.	4	30*		

* – INCLUDES GARAGE PARKING

CALC'D BY: BTN

DRAFTER: BTN

FIELD BK: 621

PROJECT: WY_SCH

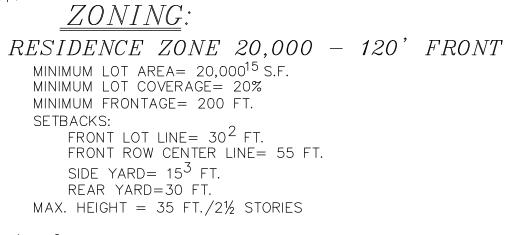
CAD FILE: PROP_SITE_3_R7.dwg

DWG FILE: SP090617_R1.dwg

REVISIONS:

REVISION 4/20/18 REVISIONS TO BUILDING FOOTPRINTS, GRADING, DRAINAGE SYSTEM SND SEPTIC SYSTEM

NOTES:


- 1. SUBJECT PARCEL IS SHOWN AS ASSESSORS MAP 52, LOT 189. RECORD TITLE FROM BOOK 69050, PAGE 394.
- 2. UTILITY LOCATIONS DEPICTED ON THIS PLAN, BOTH ABOVE- AND BELOW-GROUND, ARE BASED UPON DIRECT FIELD OBSERVATIONS MADE BY METROWEST ENGINEERING, INC. PERSONNEL DURING A FIELD SURVEY, RECORD PLAN LOCATIONS, OR DIGSAFE PAINT-INDICATORS. METROWEST ENGINEERING, INC. DOES NOT WARRANT THAT ALL UTILITIES ARE SHOWN OR THAT UTILITIES THAT ARE DEPICTED ARE SHOWN IN THE CORRECT LOCATION, OR WITH THE PROPER MATERIAL DESIGNATION. METROWEST ENGINEERING, INC. DOES NOT WARRANT OR PROVIDE AN EXPRESS OR IMPLIED WARRANTY THAT ALL SUBSURFACE IMPROVEMENTS ARE SHOWN OR ARE SHOWN CORRECTLY, INCLUDING, BUT NOT LIMITED TO, UTILITIES, UNDERGROUND VAULTS, UNDERGROUND TANKS OR CHAMBERS, BUNKERS, DUCT BANKS, AND/OR OTHER MAN-MADE IMPROVEMENTS THAT LIE BENEATH THE GROUND SURFACE AT THE TIME OF THE SURVEY.
- 3.CONTRACTOR IS SOLELY RESPONSIBLE FOR ESTABLISHING EXISTING LOCATIONS OF ALL SUB-SURFACE UTILITIES AND MAN-MADE IMPROVEMENTS AND FOR THE REQUIREMENTS TO REPLACE, RELOCATE OR REPAIR EXISTING UTILITIES IN THE EVENT OF DAMAGE OCCURRING DURING CONSTRUCTION. MWE IS NOT RESPONSIBLE OR LIABLE FOR DELAYS OR COSTS ASSOCIATED WITH REMOVING/REPLACING/RELOCATING OF EXISTING UTILITIES REGARDLESS OF WHETHER SAID UTILITIES ARE ACCURATELY DEPICTED ON THIS SURVEY.
- 4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014.

BENCHMARKS

ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.=163.84'), A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CULVERT UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1929.)

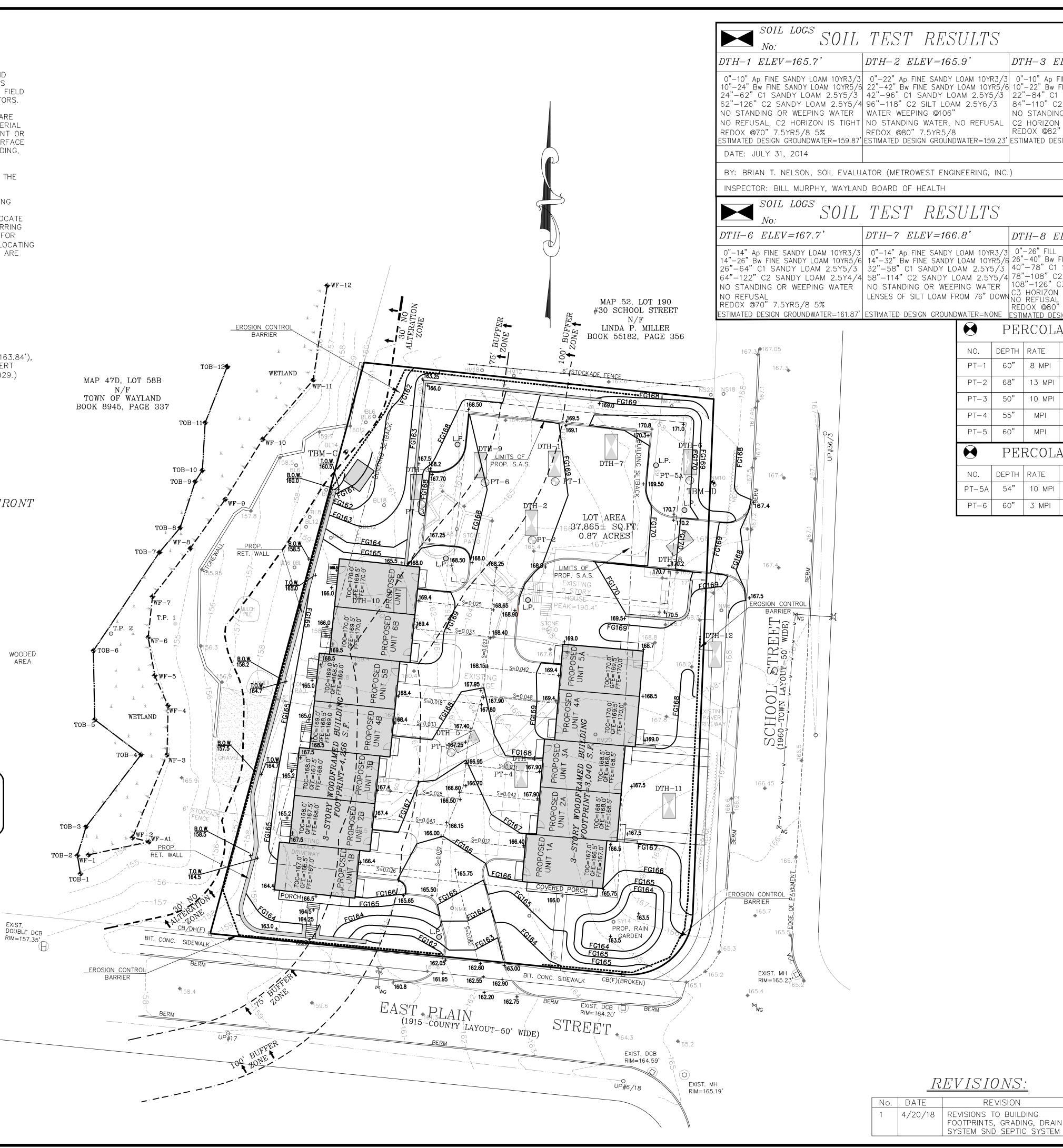
UNDEN	COMMONWERENT NORD FOR SMARE BRO	JOIN 11.0. V.D.
T.B.M.	DESCRIPTION	ELEVATION
С	DHN SET IN 14" BLACK LOCUST	161.89'
D	DHN SET IN 10" NORWAY MAPLE	168.74'

CONTRACTOR TO VERIFY ACTUAL LOCATION OF EXISTING UTILITY SERVICES IN THE FIELD PRIOR TO CONSTRUCTION (WATER, ELECTRICAL, ETC.) CALL DIG-SAFE BEFORE YOU DIG 811.

2) IF §198–702 SHALL REQUIRE A GREATER SETBACK OR PERMIT A LESSER SETBACK, THE PROVISIONS OF SAID §198–702 SHALL PREVAIL OVER THIS TABLE.

3) SIDE YARDS SHALL MEET THE REQUIREMENTS OF \$\$198-702.4 AND 703.2, AND THE REQUIRED MINIMUM SIDE YARD MAY BE REDUCED IN ACCORDANCE WITH PROVISIONS OF \$198-703.2

15) MINIMUM FRONT YARD WIDTH SHALL BE CALCULATED IN ACCORDANCE WITH THE REQUIREMENTS OF §198–705.1 OF THE ZONING BYLAW.



CODE	<u>DESCRIPTION</u>
BL#	BALCK LOCUST
CA#	CRAB APPLE
HM#	HEMLOCK
LI#	LINDEN
NM#	NORWAY MAPLE
NS#	NORWAY SPRUCE
RM#	red maple
SY#	SYCAMORE

<u>De</u>	ETAIL
TREE LOCATION	
	TREE DIAMETER

LEGEND

DCB HM	DRAIN CATCH BASIN MANHOLE
⊠wG	WATER GATE
⊠GG	GAS GATE
ж.	HYDRANT
U.P.	UTILITY POST
DH	DRILL HOLE
(F)	FOUND
СВ	CONCRETE BOUND
SB	STONE BOUND
WF	WETLAND FLAG
E.M.	ELECTRIC METER
G.M.	GAS METER
N/F	NOW OR FORMERLY
+200.0	EXISTING SPOT GRADE
200	EXISTING GRADING
	EXISTING OVERHEAD WIRE

SULTS							
65.9'	DTH-3 E	LEV=161	'.7'	DTH-4	ELEV=16	54. 1 '	DTH-5 ELEV=162.6'
DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/3 OAM 2.5Y6/3 D6" R, NO REFUSAL 5/8 JNDWATER=159.23'	10"-22" Bw 22"-84" C1 84"-110" C NO STANDIN C2 HORIZON REDOX @82'	FINE SANDY SANDY LC 2 SILT LOA IG WATER, I IS DAMP "7.5YR5/8	LOAM 10YR5/ OAM 2.5Y5/3 M 2.5Y6/3 NO REFUSAL	6 20"-28" 28"-40" 40"-86" 86"-116 NO REFUSA NO REDC	Ap FINE SAND Bw FINE SAND C1 SANDY L C2 SANDY L, NO STANDING X	(LOAM 10YR5/6 OAM 2.5Y5/4 LOAM 2.5Y4/4 OR WEEPING WATE	- WEEPING WATER @112" R NO REFUSAL REDOX @72" 7.5YR5/8
NGINEERING, INC	.)						
SULTS							
COM 10YR3/3 DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/3 Y LOAM 2.5Y5/4 EEPING WATER M FROM 76" DOWN UNDWATER=NONE	40"-40 BW 40"-78" C1 78"-108" C 108"-126" (C3 HORIZON NO REFUSAL REDOX @80"	FINE SANDY SANDY LO 2 LOAMY S 23 SILT LO IS DAMP 7.5YR5/8 SIGN GROUND	LOAM 10YR5/ AM 2.5Y5/4 AND 2.5Y5/3 AM 2.5Y6/3 10%	0"-16" 6 16"-30" 30"-46" 3 46"-98" 98"-118 WATER S WATER V REDOX S ESTIMATED	BW FINE SAND` BC SANDY L C1 SANDY L "C2 SANDY STANDING @10 VEEPING @88" SEEN @62". N	(LOAM 10YR3/3 Y LOAM 10YR5/4 OAM 2.5Y5/4 OAM 2.5Y5/3 LOAM 2.5Y4/4 8" O REFUSAL	6 15"-30" Bw FINE SANDY LOAM 10YR5/6 30"-66" C1 LOAMY SAND 2.5Y5/3 66"-112" C2 SILT LOAM 2.5Y5/4 WATER STANDING @100" WATER WEEPING @98" NO REFUSAL REDOX SEEN @68" 7.5YR5/8 10%
NO. DEF PT-1 6 PT-2 6 PT-3 5 PT-4 5	PTH RATE 0" 8 MPI 8" 13 MPI 0" 10 MPI 5" MPI 0" MPI	DATE 07/31/14 07/31/14 07/31/14 07/31/14 07/31/14	B.N. B.M. B.N. B.M. B.N. B.M.	30"–36" 36"–58" 58"–128 WATER S NO WEEF REDOX S ESTIMATED	Ap FINE SANDY Bw FINE SANDY C1 SANDY L "C2 SANDY TANDING @12 PING WATER EEN @60"7.	(LOAM 10YR5/6 OAM 2.5Y5/3 LOAM 2.5Y6/3 5 5 SYR5/8 5% IDWATER=161.0	0"-54" FILL 58"-82" C1 SANDY LOAM 2.5Y4/4 682"-114" C2 SANDY LOAM 2.5Y5/4 C2 HORIZON HAS LENSES OF SILT LOAM NO STANDING OR WEEPING WATER NO REFUSAL REDOX SEEN @64" 7.5YR5/8 ESTIMATED DESIGN GROUNDWATER=161.0'
	PERCOLA	, ,	D.N. D.M.				ATOR (METROWEST ENGINEERING, INC. Yland board of health
NO. DEF	PTH RATE 4" 10 MPI	DATE 08/21/14	BY INSP. B.N. J.J.			IMATE E LCULATI	ARTHWORK ONS:
PT-6 6	0" 3 MPI	08/21/14	B.N. J.J.		TOTAL FILL= TOTAL CUT=		
					EXISTING HO DRIVEWAY – PROPOSED S EARTHWORK	USE — 274 CI 740 CUBIC Y SEPTIC SYSTEM <u>ACTIVITIES SU</u>	- 1,380 CUBIC YARDS (FILL) UBIC YARDS (FILL) ARDS (FILL) I – 788 CUBIC YARDS (FILL) I <u>BJECT TO BYLAW</u> ,103 CUBIC YARDS (FILL)
					BERT A. G.		
				0 4	10		20 (METERS) 30
			ŀ	PR0]		SCHOOL S	ADING PLAN Treet
						in LAND, lesex (MASS County)
			PREPARED		WINDSOR F 73 PELHAN WAYLAND,	I ISLAND R	OAD
			PROPERTY		WINDSOR F 73 PELHAN WAYLAND,	I ISLAND R	OAD
EVISION	<u> 75:</u>		ENGINEER	/ORS:	NE	75 FRANK WAYLAND, TEL.: (508	ST ENGINEERING, INC. KLIN STREET MA 01702 8)626–0063 3)875–6440
REVISIONS TO E	ION		SHEE	IT 2	OF 5		DATE: SEPTEMBER 6, 2017
FOOTPRINTS, GE	RADING, DRAII		CALC'D BY		FIELD BK: PROJECT:		AD FILE: PROP_SITE_3_R7.dwg WG FILE: SP090617_R1.dwg

DRAFTER: BTN

PROJECT: WY_SCH

DWG FILE: SP090617_R1.dwg

NOTES:

- 1. SUBJECT PARCEL IS SHOWN AS ASSESSORS MAP 52, LOT 189. RECORD TITLE FROM BOOK 69050, PAGE 394.
- 2. UTILITY LOCATIONS DEPICTED ON THIS PLAN, BOTH ABOVE- AND BELOW-GROUND, ARE BASED UPON DIRECT FIELD OBSERVATIONS MADE BY METROWEST ENGINEERING, INC. PERSONNEL DURING A F SURVEY, RECORD PLAN LOCATIONS, OR DIGSAFE PAINT-INDICATOR METROWEST ENGINEERING, INC. DOES NOT WARRANT THAT ALL UTILITIES ARE SHOWN OR THAT UTILITIES THAT ARE DEPICTED AR SHOWN IN THE CORRECT LOCATION, OR WITH THE PROPER MATER DESIGNATION. METROWEST ENGINEERING, INC. DOES NOT WARRAN PROVIDE AN EXPRESS OR IMPLIED WARRANTY THAT ALL SUBSURI IMPROVEMENTS ARE SHOWN OR ARE SHOWN CORRECTLY, INCLUDIN BUT NOT LIMITED TO, UTILITIES, UNDERGROUND VAULTS, UNDERGROUND TANKS OR CHAMBERS, BUNKERS, DUCT BANKS, AND/OR OTHER MAN-MADE IMPROVEMENTS THAT LIE BENEATH TH GROUND SURFACE AT THE TIME OF THE SURVEY.
- 3.CONTRACTOR IS SOLELY RESPONSIBLE FOR ESTABLISHING EXISTING LOCATIONS OF ALL SUB-SURFACE UTILITIES AND MAN-MADE IMPROVEMENTS AND FOR THE REQUIREMENTS TO REPLACE, RELOC OR REPAIR EXISTING UTILITIES IN THE EVENT OF DAMAGE OCCURF DURING CONSTRUCTION. MWE IS NOT RESPONSIBLE OR LIABLE F DELAYS OR COSTS ASSOCIATED WITH REMOVING/REPLACING/RELO OF EXISTING UTILITIES REGARDLESS OF WHETHER SAID UTILITIES A ACCURATELY DEPICTED ON THIS SURVEY.
- 4. THE PROPERTY DESCRIBED ON THIS SURVEY DOES NOT LIE WITHIN A SPECIAL FLOOD HAZARD AREA AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY; THE PROPERTY LIES WITHIN ZONE "X" OF THE FLOOD INSURANCE RATE MAP IDENTIFIED AS MAP NUMBER 25017C0528F, BEARING AN EFFECTIVE DATE OF JULY 7, 2014.

BENCHMARKS

811

ELEVATIONS SHOWN ON THIS PLAN REFER TO RM 11 (ELEV.=16) A CHISELED SQUARE IN THE NORTH HEADWALL OF THE CULVER UNDER COMMONWEALTH ROAD FOR SNAKE BROOK N.G.V.D. 1929

T.B.M.	DESCRIPTION	ELEVATION
С	DHN SET IN 14" BLACK LOCUST	161.89'
D	DHN SET IN 10" NORWAY MAPLE	168.74'

CONTRACTOR TO VERIFY ACTUAL LOCATION OF EXISTING UTILITY SERVICES IN THE FIELD PRIOR TO CONSTRUCTION (WATER, ELECTRICAL, ETC.) CALL DIG-SAFE BEFORE YOU DIG 811.

ZONING:

RESIDENCE ZONE 20,000 - 120' FR MINIMUM LOT AREA = $20,000^{15}$ S.F. PROP. INFILTRATI MINIMUM LOT COVERAGE 20% 84 SHEA LOV MINIMUM FRONTAGE= 200 FT. GALLEYS (4'x4 SETBACKS: TOP ELEV.= FRONT LOT LINE = 30^2 FT. INV.S IN=162.5 FRONT ROW CENTER LINE= 55 FT. INV.S IN=163.5 SIDE YARD= 15^3 FT. 6" INV. OUT REAR YARD=30 FT. 6" INV. OUT MAX. HEIGHT = $35 \text{ FT.}/2\frac{1}{2}$ STORIES BOTTOM ELEV

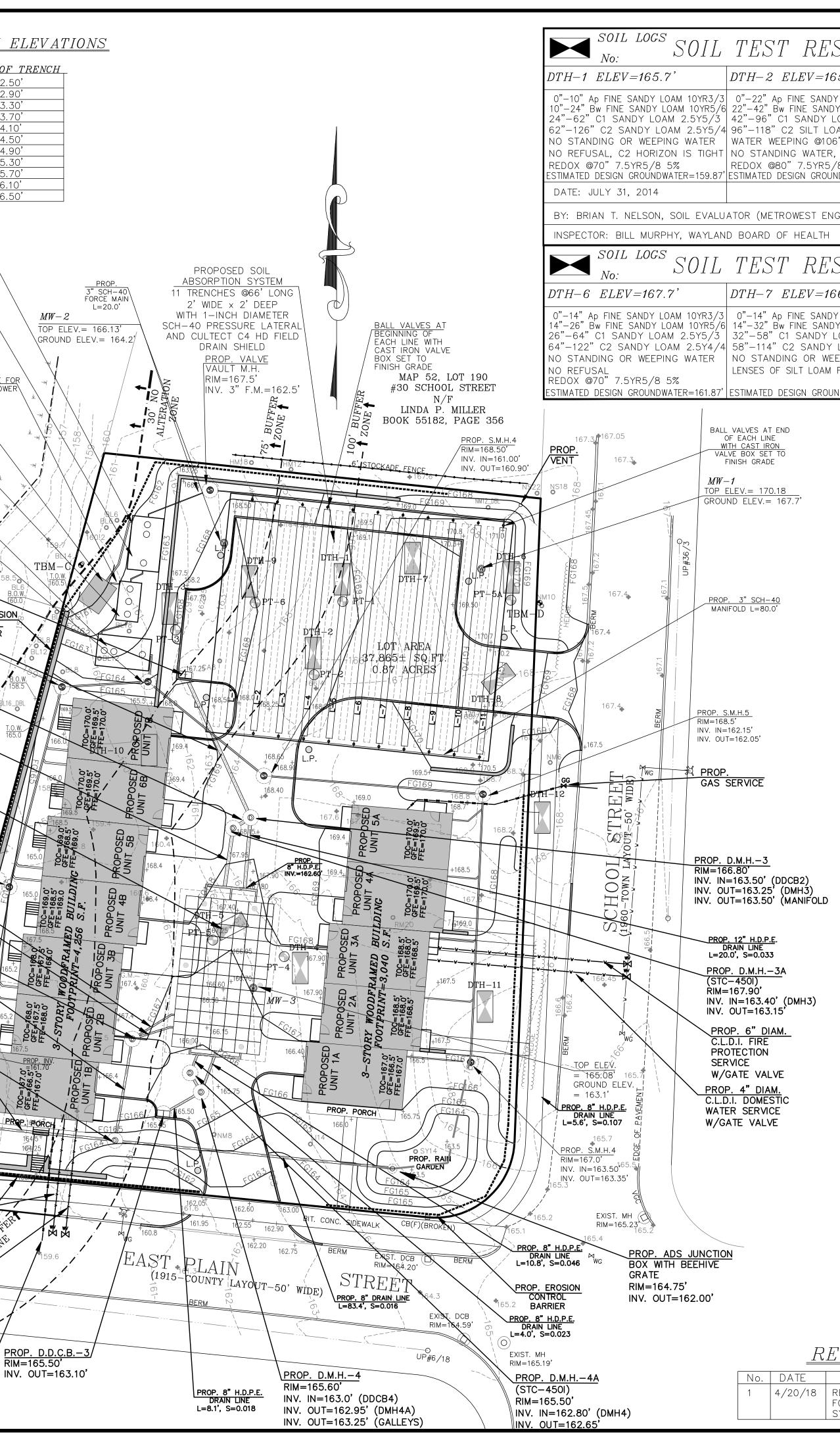
2) IF §198-702 SHALL REQUIRE A GREATER SETBACK OR PERMIT A LESSER SETBACK, THE PROVISIONS OF SAID \$198-702 SHALL PREVAIL OVER THIS TABLE.

3) SIDE YARDS SHALL MEET THE REQUIREMENTS OF \$\$198-702.4 AND 703.2, AND THE REQUIRED MINIMUM SIDE YARD MAY BE REDUCED IN ACCORDANCE WITH PROVISIONS OF §198-703.2

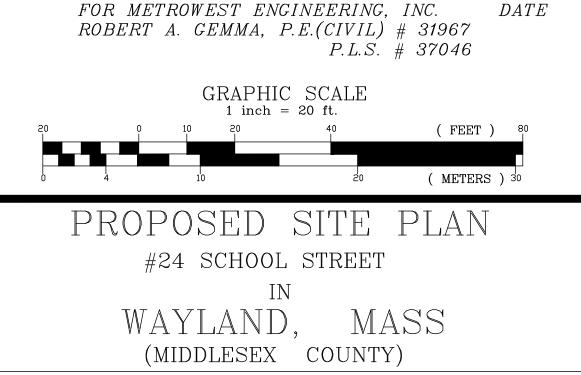
15) MINIMUM FRONT YARD WIDTH SHALL BE CÁLCULATED IN ACCORDANCE WITH THE REQUIREMENTS OF §198-705.1 OF THE ZONING BYLAW.

EXISTING TREE *DESCRIPTION LEGEND*

<u>CODE</u> BL# CA# HM# LI# NM# NS#	DESCRIPTION BALCK LOCUST CRAB APPLE HEMLOCK LINDEN NORWAY MAPLE NORWAY SPRUCE	DETAIL TREE LOCATION
NS# RM# SY#	NORWAY SPRUCE RED MAPLE SYCAMORE	


LEGEND

MGG →→ J.P. DH	DRAIN CATCH BASIN MANHOLE WATER GATE GAS GATE HYDRANT UTILITY POST DRILL HOLE FOUND
СВ	CONCRETE BOUND
SB	STONE BOUND
WF	WETLAND FLAG
	ELECTRIC METER
G.M.	GAS METER
N/F	NOW OR FORMERLY
+ 200.0	EXISTING SPOT GRADE
-200	EXISTING GRADING
	EXISTING OVERHEAD WIRE


PROPOSED SOIL ABSORPTION SYSTEM ELEVATIONS

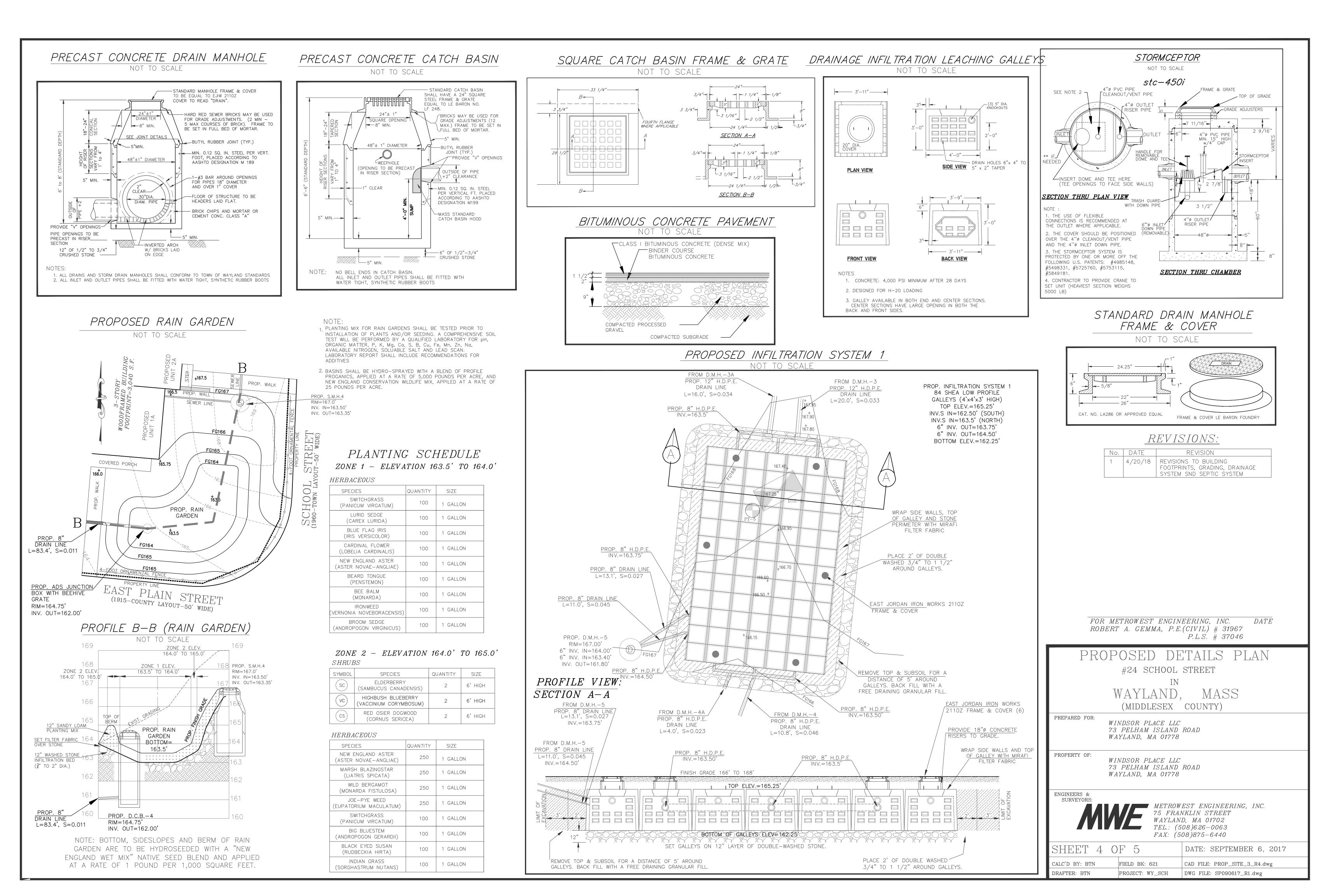
				<u>STEM ELEVA</u>
	LOCATION	BEG. LINE	END LINE	BOTTOM OF TRENC
_	LINE 1	164.50'	164.50'	<u> </u>
-	LINE 2	<u> 164.90' </u>	<u>164.90'</u> 165.30'	163.30'
ELD	LINE 4	165.70'	165.70'	163.70'
S.	LINE 5	166.10'	166.10'	164.10'
: -	LINE 6	<u> 166.50' </u>	166.50' 166.90'	<u> </u>
AL – OR –	LINE 8	167.30'	167.30'	165.30'
	LINE 9	167.70'	167.70'	165.70'
G,	LINE 10	<u> 168.10' </u>	168.10'	166.10'
L	LINE 11	168.50'	168.50'	166.50'
E			ELECTRIC CON	IDUIT TROLS
			2. 5,000 GALLON	í /
TE		INV.S	P CHAMBER IN=159.00'	
NG R		INV.	OUT=159.00'	
ATING Re	CONTR	FOR SEPTIC S Rols, pump ai Tast blower		MW TOP GRO
	FAST	2,500 GALLO TREATMENT TA	`	
	ÍNV.S	MPARTMENT) IN=159.20'		V <u>ENT LINE FOR</u> FAST BLOWER
)UT=159.10' 10,000 GALLO	N	
.84'),	SEPTIC			
		JT=159.40'	TOB-12	
)	MAP 47D,		\sim	
	N/I TOWN OF	F		
	BOOK 8945,		_	
		п	OB-11	<u>H.3</u> 🔪 🧨 🔀
		<u>D.D.C.B.</u> _2	RIM=164.0'	\sim × / \sim
	RIM=16 INV. OL	7.25' JT=164.25'	INV.s IN=15 INV. OUT=1	
				TBM
		2" H.D.P.E.	B-10	158.5 <u>1</u> . BL6
	DRAI	N LINE S=0.017 TOE		BL6 B.O.W./ 160.0/
		TOE		
DNT				CONTROL 🔨 🧃
	P <u>ROP. 12"</u> DRAIN		PROP. S	BARRIER
n system 1 Profile	L=4.0', S		RIM=165	5.2' i / BL12
x3' HIGH)	P <u>ROP. 12" H.D.P.E.</u> DRAIN LINE	× / 4	INV. IN=	T-160 15'
65.25'	L=16.0', S=0.0	\sim		<u>B.o.w.</u> 158.5
'(SOUTH)	\sim	TOB-7	×	
(NORTH)		*/</td <td></td> <td>BL16_DBL</td>		BL16_DBL
163.75'		\times /	155.95	1221
164.50' =162.25'				/ <u>T.O.W.</u> 165.0
- 102.20		/ i		
			200-	
		7.P. 1		
	O ^{T.P.}	(1)	-12	
	TOB-6	19 1 1	• 156.3	
		Î, Î	ј В.С	D.W. T
<u>P. D.M.H5</u>	$\frac{PROP. S.}{RIM=165.}$		7- 158 /	
=167.00'	INV. IN=1	161.05' 🚺 🦳	156,9	
NV. IN=164.00'	INV. QUT	=161,00' *\/	5	<u>1.0.W</u> 164.7
NV. IN=163.40' OUT=161.80'			0	
001-101.00	*	ר אַ ד	<u>COP. 8" DRAIN LINE</u> =13.1', S=0.027	165.0
	TOB-5		ROP. 8" DRAIN LINE L=11.0', S=0.045	
<u>PROP.</u> D.M.H	·	* * .		
RIM=164.00'	× ``		<u>B.O.W.</u> 157.5	
INV. IN=160.70			P. 8" DRAIN LINE	167.5 /T.O.W + 0.100
INV. IN=160.70 INV. OUT=160.	• •	/\/_=2	27.6', S=0.040	
		*	165.9	
PROP. D.M.H RIM=164.2'	-/ /	, _ <i>i</i> /~		E SE
INV. IN=159.1	5'	- <i>ï</i> /		000=168.0'
INV. OUT=159	. Y	× /		165.2 165.2 1989
TOB	-3 / \		<u>B.O.W.</u>	
	<u>,</u> * * / >		158.5	
TOB-2	1 2 +	<u>PROP. 8" DF</u> L=36.5', S <u>PROP. 8" DRA</u>		PROP. INV.
108-2		55 - 1 = 9.3', S = 0	.050	65.5.0
m	↓ 0B−1		<u>T.O.W.</u> 164.5	
1	<u>г г г г г г г г г г г г г г г г г г г </u>		/!]	
		157	NOT	PROP. PORCH
		30	BRANE S	G76 1645+
IST.			HONE 59	163.0 + 1 104 25
UBLE DCB			B/DH(F)	
\bigcirc		UNC.	SIDEWALK	18019
PROP. LEVEL			BERM	
SPREADER MA	NIFOLD, L=20	.0'		
INV. IN=158.5	,	C.L.D.I.	FIRE PROP FROM	SION
INV. @ENDS=1			HON CONTRO	
				76 2011 159.
		BERM		V 50/
				=
			UP#17	
				BUFFER
		PROP. 4" DIA	<u></u>	BURE
		C.L.D.I. DOME WATER SERV	.5110	
		WATER SERVI W/GATE VAL		/ <u>PROP. D.D</u>
			-	/ RIM=165.5 INV. OUT=
			PROP	,

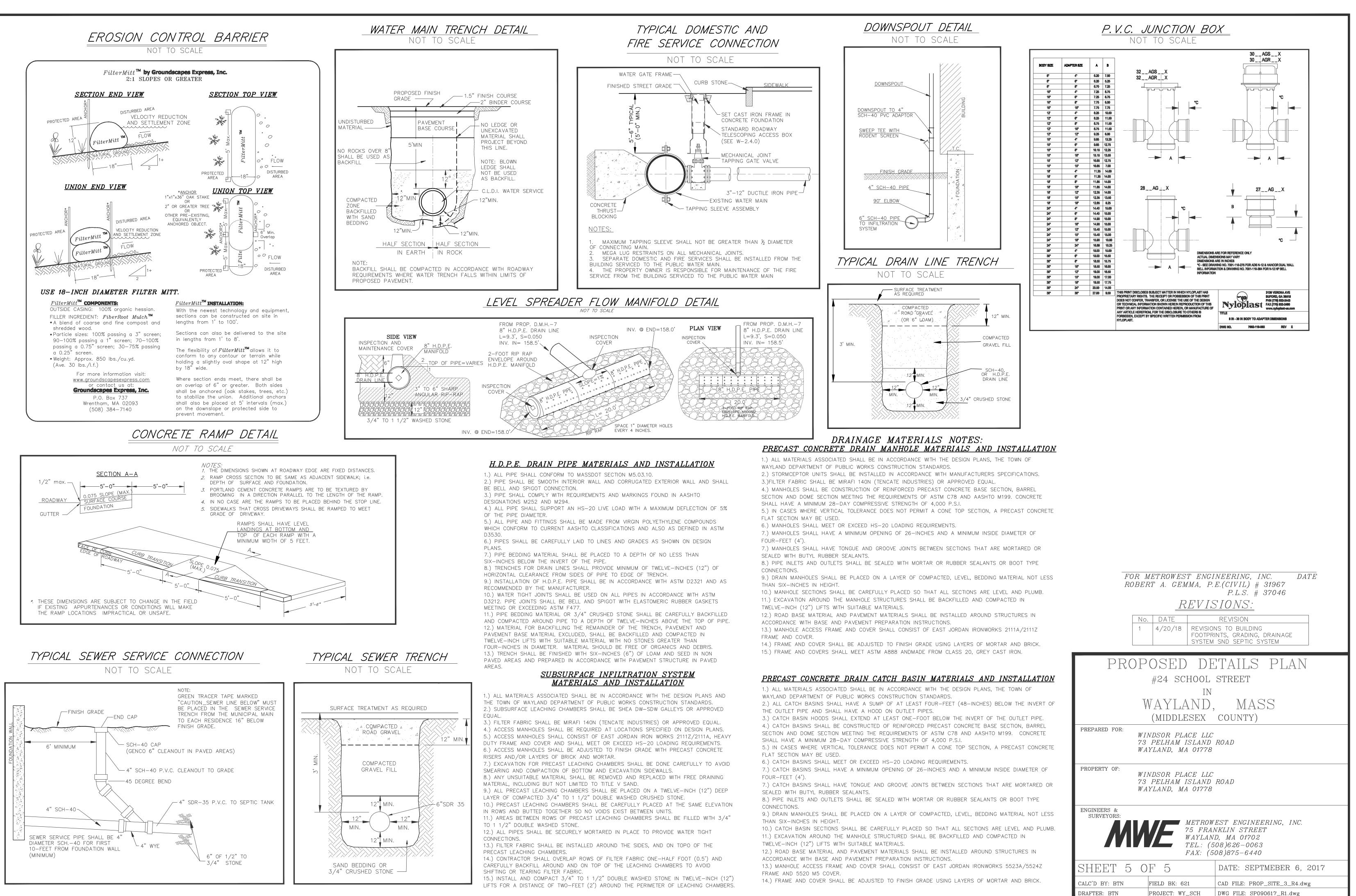
PROP. GAS SERVICE

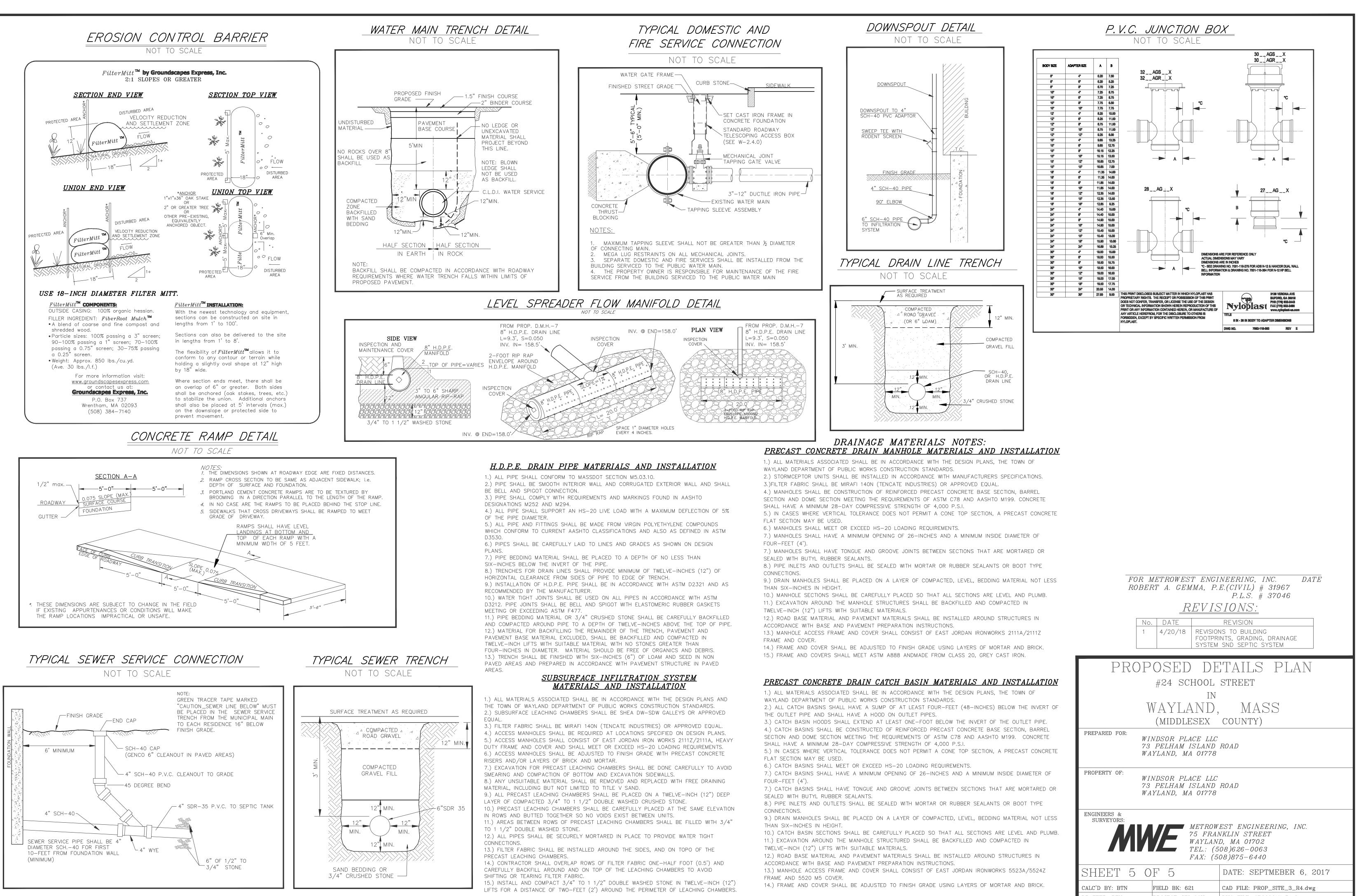
S	ULT	S						
65	5.9'	D'I	[H-3]	ELEV=167	1.7'		DTH-4 ELEV=164.1'	DTH-5 ELEV=162.6'
DY LOAM 10YR3/3 DY LOAM 10YR3/3 DY LOAM 10YR5/6 LOAM 2.5Y5/3 OAM 2.5Y6/3 D6" R, NO REFUSAL C2 HORIZON IS DAMP		20"-28" Ap FINE SANDY LOAM 10YR3/3 28"-40" Bw FINE SANDY LOAM 10YR5/6 40"-86" C1 SANDY LOAM 2.5Y5/4 86"-116" C2 SANDY LOAM 2.5Y4/4 NO REFUSAL, NO STANDING OR WEEPING WATER NO REDOX	34"-84" C1 SANDY LOAM 2.5Y5/4 84"-118" C2 SANDY LOAM 2.5Y4/3 WEEPING WATER @112"					
NGII	NEERING,	INC.)						
S	ULT	S						
66	6. <i>8'</i>	D'	[H-8]	ELEV=168	9. <i>2'</i>		DTH-9 ELEV=163.0'	DTH-10 ELEV=160.75'
DY LO Y Lu EEF 1 FF)AM 2.5Y5 OAM 2.5Y PING WATE ROM 76" [R5/6 26 5/3 40 5/4 78 5R 108 50WN C3 50WN N0 RE	-40 Bw "-78" C1 "-108" C 8"-126" HORIZON REFUSA DOX @80	FINE SANDY 1 SANDY LC C2 LOAMY S C3 SILT LO N IS DAMP L " 7.5YR5/8)AM 2.5 SAND 2 AM 2.5 3 10%	5Y5/4 2.5Y5/3 5Y6/3	46"-98" C1 SANDY LOAM 2.5Y5/3 98"-118" C2 SANDY LOAM 2.5Y4/4 WATER STANDING @108" WATER WEEPING @88" REDOX SEEN @62", NO REFUSAL	15"-30" BW FINE SANDY LOAM 10YR5/6 30"-66" C1 LOAMY SAND 2.5Y5/3 66"-112" C2 SHIT LOAM 2.5Y5/4
	\bigotimes	PE	RCOL	ATION			DTH-11 ELEV=166.0'	DTH-12 ELEV=168.2'
	NO.	DEPTH	RATE	DATE	BY	INSP.	0"–18" FILL 18"–30" Ap FINE SANDY LOAM 10YR3/3 30"–36" Bw FINE SANDY LOAM 10YR5/6	0"-54" FILL 58"-82" C1 SANDY LOAM 2.5Y4/4 82"-114" C2 SANDY LOAM 2.5Y5/4
	PT-1	60"	8 MPI	07/31/14		B.M.	36"-58" C1 SANDY LOAM 2.5Y5/3	C2 HORIZON HAS LENSES OF SILT LOAM
	PT-2	68"	13 MPI	, ,			NO WEEPING WATER	NO STANDING OR WEEPING WATER
	PT-3	50" 	10 MPI					REDOX SEEN @64"7.5YR5/8 ESTIMATED DESIGN GROUNDWATER=161.0'
	PT-4 PT-5	55 60"	MPI	07/31/14		B.M. B.M.	DATE: AUGUST 21, 2014	
					ט.וע.	ט.ועו.	BY: BRIAN T. NELSON, SOIL EVALUA	TOR (METROWEST ENGINEERING, INC.)
• PERCOLATION							INSPECTOR: JULIA JUNGHANNS, WAYI	LAND BOARD OF HEALTH
	NO.	DEPTH	RATE	DATE	BY	INSP.		
	PT-5A	54"	10 MPI	08/21/14	B.N.	J.J.		
	PT-6	60"	3 MPI	08/21/14	B.N.	J.J.		
-								

PREPARED FOR: WINDSOR PLACE LLC 73 PELHAM ISLAND ROAD WAYLAND, MA 01778

PROPERTY OF: WINDSOR PLACE LLC 73 PELHAM ISLAND ROAD WAYLAND, MA 01778


ENGINEERS & SURVEYORS:




REVISIONS:

REVISION 1 4/20/18 REVISIONS TO BUILDING FOOTPRINTS, GRADING, DRAINAGE SYSTEM SND SEPTIC SYSTEM

FAX: (508)875–6440 SHEET 3 OF 5 DATE: SEPTEMBER 6, 2017 CALC'D BY: BTN FIELD BK: 621 CAD FILE: PROP_SITE_3_R4.dwg DRAFTER: BTN PROJECT: WY_SCH DWG FILE: SP090617_R1.dwg

