

STORMWATER MANAGEMENT AND POLLUTION PREVENTION PLAN

CARROLL SCHOOL WALTHAM ROAD WAYLAND, MASSACHUSETTS

Prepared for:

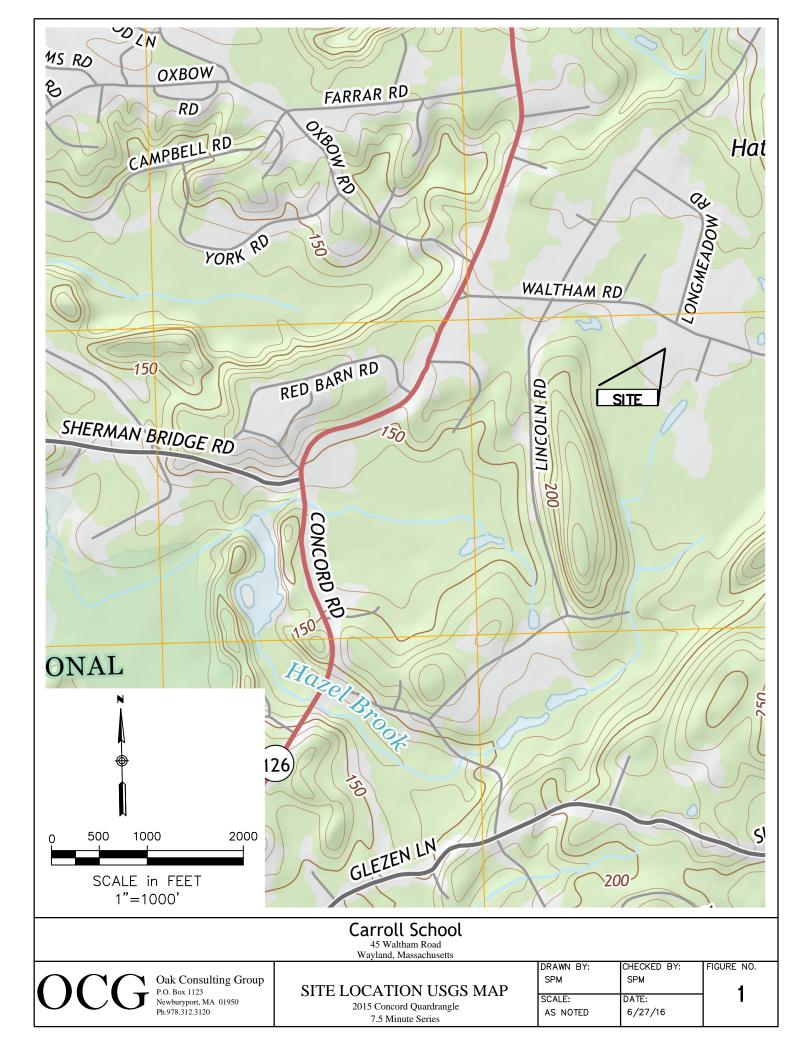
Carroll School Baker Bridge Road Lincoln, Massachusetts

Prepared by:

Oak Consulting Group, LLC P.O. Box 1123 Newburyport, Massachusetts 01950 978.312.3120

> Project 16011 June 2016

TABLE OF CONTENTS


1.0	INTR	ODUCTION	.1
	1.1	Current Conditions	. 1
	1.2	Site Geology and Hydrogeology	. 2
	1.3	Proposed Improvements	
2.0	STOR	MWATER MANAGEMENT STANDARDS CONFORMANCE	.5
	2.1	Untreated Stormwater (Standard 1)	. 5
	2.2	Post-Expansion Peak Discharge Rates (Standard 2)	. 5
	2.3	Recharge to Groundwater (Standard 3)	.6
	2.4	Water Quality (Standard 4)	.6
	2.5	Land Uses with Higher Potential Pollutant Loads (Standard 5)	
	2.6	Protection of Critical Areas (Standard 6)	
	2.7	Redevelopment Project (Standard 7)	. 6
	2.8	Construction Period Erosion/Sediment Control (Standard 8)	
	2.9	Operation and Maintenance Plan (Standard 9)	
	2.10	Prohibition of Illicit Discharges (Standard 10)	

DRAWINGS:

Figure 1	Site Location USGS Map
C-001	Existing Conditions Plan
C-002	Proposed Site Layout Plan
C-003	Grading, Drainage and Erosion Control Plan
C-004	Erosion Control Notes and Details
C-005	Site Details Plan
C-006	Site Details Plan
C-007	Site Circulation Plan
L101	Site Materials Plan
L102	Site Landscape Plan
DR-001	Pre-Development Subcatchment Plan
DR-002	Post-Development Subcatchment Plan

APPENDICES:

Appendix A:	Soils Information
Appendix B:	Pollution Prevention and Stormwater Operation and Maintenance Plan
Appendix C:	Pre-Development Drainage Calculations
Appendix D:	Post-Development Drainage Calculations
Appendix E:	Stormwater Checklist
Appendix F:	Plans

1.0 INTRODUCTION

On behalf of Carroll School (School), Oak Consulting Group, LLC (OCG) has prepared the following Stormwater Management and Pollution Prevention Plan for the School's property at 45 Waltham Road in Wayland, Massachusetts. The purpose of this report is to demonstrate compliance with the Town of Wayland Regulations, the Massachusetts Department of Environmental Protection's (MA DEP's) Stormwater Policy and standard engineering practice.

1.1 Current Conditions

The project site consists of a +/-11-acre parcel bounded to the North by Waltham Road; town conservation wetlands to the west and south; and residential property to the east. There is also a tributary to the Hazel Brook identified as a perennial stream within the wetland area west of the site. The site is relatively flat, sloping generally from Waltham Road in the north to the wetlands in the southwest.

The site is developed with a large main building, and several accessory use buildings including a pool house and barn. The site is also developed with supporting driveways, parking areas, septic system, and other miscellaneous site improvements. The site has most recently been used as a single family residence.

Areas which are not developed with impervious surfaces are generally comprised of grassed pasture areas, or landscaped lawn areas. Landscaped areas are served by an automatic sprinkler system believed to be connected to two irrigation wells on site.

The site consists of a single watershed that drains to the wetlands to the south and the tributary to Hazel Brook. As shown on Pre-Development Subcatchment Plan DR-001, this watershed area is further divided into smaller subcatchment areas and is described as follows:

Subcatchment 1a

This subcatchment consists of the middle and southern portions of the site. This area is development with the pool house area, the barn and the paved driveway to and around the barn as well as several smaller shed structures. A majority of this subcatchment is open pasture land. This subcatchment is moderately sloped southwesterly draining toward the wetlands along the south and west boundary.

Subcatchment 1b

This subcatchment consists of the roof of the main building. This roof is guttered with downspouts to below grade structures believed to be drywells. There does not appear to be any surface discharge from the roof. For the purpose of this study, the drainage model assumed drywells sized to infiltrate the entire flow from this subcatchment.

Subcatchment 2a

This subcatchment consists of paved parking, walkways, and drive aisles along with landscaped area located in the northeastern portion of the site. This subcatchment is moderately sloped northeasterly flowing to a catchbasin and drainage easement located offsite along the eastern property boundary. This drainage then is piped along the eastern boundary discharging to a pond draining to the wetlands along the south and western boundary.

Subcatchment 2b

This subcatchment consists of paved parking, walkways, and drive aisles along with landscaped area located in the center of the northern portion of the site. This subcatchment is moderately sloped northeasterly flowing to a drain inlet in the existing drive. This drainage is piped underground and believed to be connected to a drywells. There does not appear to be any surface discharge or overflow from this basin. For the purpose of this study, the drainage model assumed drywells sized to infiltrate the entire flow from this subcatchment.

Subcatchment 3

This subcatchment consists of gravel parking, and drive aisles along with landscaped area located in the northwestern portion of the site. This subcatchment is moderately sloped northwesterly flowing overland offsite to the west. This drainage then flows to the wetlands along the south and western boundary.

Subcatchment 4

This subcatchment consists of gravel parking, drive aisles and a sports court, along with landscaped area located in the northwestern portion of the site. This subcatchment is moderately sloped westerly flowing overland offsite to the west. This drainage then flows to the wetlands along the south and western boundary.

1.2 Site Geology and Hydrogeology

According to the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) Soil Map for Essex County, the soils within the project area are classified as Haven Silt Loam with a Hydrologic Soil Group (HSG) A designation. Test pits conducted in June 2016 confirmed this soil profile which consists of a thick top soil layer over a fine sandy loam layer over a coarse sand and gravel. The subsoils are considered very well-draining. The soils data is enclosed as Appendix A.

1.3 Proposed Improvements

The Project consists of renovating the main building and pool house building for use as a middle school. To support the school use, new parking, driveways and walkways will be constructed as well as two athletic fields with landscaping and drainage infrastructure.

Under proposed conditions, stormwater patterns will generally replicate existing conditions. As shown on the Post-Development Subcatchment Plan, sheet DR-002, the site was divided into subcatchment areas substantially similar to the Pre-Development condition. Subcatchments 1 and 2 were divided into several smaller subcatchment areas to evaluate proposed stormwater Best Management Practices (BMP's) to be implemented. The Post-Development subcatchments are described as follows:

Subcatchment 1a

This subcatchment consists of the southern portions of the site. This area included the barn and the paved driveway to and around the barn, portions of the two playing fields as well as land left undisturbed around the perimeter of the site. A majority of this subcatchment remains pervious open space. This subcatchment is moderately sloped southwesterly draining overland toward the wetlands along the south and west boundary.

Subcatchment 1b

This subcatchment consists of the roof of the main building. This roof is guttered with downspouts to below grade structures believed to be drywells. There does not appear to be any surface discharge from the roof. For the purpose of this study, the drainage model assumed drywells sized to infiltrate the entire flow from this subcatchment. This is unchanged from the Pre-development condition.

Subcatchment 1c

This subcatchment consists of the middle portion of the site. This area includes the pool house new walkways, half of the one playing field as well as landscaped lawn area. A majority of this subcatchment remains pervious open space. This subcatchment is moderately sloped southeasterly draining overland to one of three drain inlets adjacent to the playing field. These inlets are interconnected with perforated pipe which is to be constructed in the very permeable sand and gravel soil. Stormwater not infiltrated will be discharged through the wall on the western edge of the property and to the wetlands along the south and western boundary.

Subcatchment 1d

This subcatchment consists of the middle portion of the site. This area includes new walkways, portion of the one playing field as well as landscaped lawn area. A majority of this subcatchment remains pervious open space. This subcatchment is moderately sloped southwesterly draining overland to one of two drain inlets adjacent to the playing field. These inlets are interconnected to the drainage within Subcatchment 1c with perforated pipe which is to be constructed in the very permeable sand and gravel soil.

Subcatchment 1e

This subcatchment consists of the middle eastern portion of the site. This area includes a large portion of the drive to the barn, half of the one playing field as well as landscaped lawn area. This subcatchment is moderately sloped southerly draining overland to a 350 foot french drain adjacent to the playing field. This drain is connected to perforated pipe which is to be constructed in the very permeable sand and gravel soil beneath the field. Stormwater not infiltrated will flow overland to the southern edge of the property and to the wetlands along the south and western boundary.

Subcatchment 2a

This subcatchment consists of paved walkways, and drive aisles along with landscaped area located in the northeastern portion of the site. This subcatchment is moderately sloped northeasterly flowing to a catchbasin and drainage easement located offsite along the eastern property boundary. This drainage then is piped along the eastern boundary discharging to a pond draining to the wetlands along the south and western boundary.

Subcatchment 2b

This subcatchment consists of paved parking, walkways, and drive aisles along with landscaped area located in the center of the northern portion of the site. This subcatchment is moderately sloped northerly flowing overland to a new bioretention basin #1. The basin has a drain inlet to limit the regular ponding depth. This inlet is interconnected to the other 2 basins in the area with perforated pipe which is to be constructed in the very permeable sand and gravel soil to easily infiltrate stormwater.

Subcatchment 2c

This subcatchment consists of paved parking and drive aisles along with landscaped area located in the center of the northern portion of the site. This subcatchment is moderately sloped northerly flowing overland to a new bioretention basin #2. The basin has a drain inlet to limit the regular ponding depth. This inlet is interconnected to the other 2 basins in the area with perforated pipe which is to be constructed in the very permeable sand and gravel soil to easily infiltrate stormwater.

Subcatchment 2d

This subcatchment consists of paved parking and drive aisles along with landscaped area located in the center of the northern portion of the site. This subcatchment is moderately sloped flowing overland to a new bioretention basin #3. The basin has a drain inlet to limit the regular ponding depth. This inlet is interconnected to the other 2 basins in the area with perforated pipe which is to be constructed in the very permeable sand and gravel soil to easily infiltrate stormwater.

Subcatchment 3

This subcatchment consists of a paved driveway along with landscaped area located in the northwestern portion of the site. This subcatchment is moderately sloped northwesterly flowing overland offsite to the west. This drainage then flows to the wetlands along the south and western boundary.

Subcatchment 4

This subcatchment consists of the sports court, along with landscaped area located in the northwestern portion of the site. This subcatchment is moderately sloped westerly flowing overland offsite to the west. This drainage then flows to the wetlands along the south and western boundary.

2.0 STORMWATER MANAGEMENT STANDARDS CONFORMANCE

The measures taken to address each of the performance standards of the MA DEP Stormwater Policy are presented below.

2.1 Untreated Stormwater (Standard 1)

The proposed project will not result in new untreated discharges or outfalls. Existing stormwater runoff patterns will be maintained.

2.2 Post-Expansion Peak Discharge Rates (Standard 2)

Pre- and Post-Development runoff rates were calculated using HydroCAD based on the Cornell Rainfall data. As shown in the table below, peak discharge rates from the site will not increase in the Post-Redevelopment condition for all storm events.

Table 2.2.1		Rainfall Events				
	1.0 Inches	2-Year (3.2 Inches)	10-Year (4.8 Inches)	25-Year (6 Inches)	100-Year (8.5 Inches)	
	Site Runoff Rate (cfs)					
Pre-development Pond Elevation	0.35	1.46	2.15	2.97	7.37	
Post-development Pond Elevation	0.29	1.02	1.54	1.97	7.32	
Change (cfs)	-0.06 (-17%)	-0.44 (-30%)	-0.61 (-28%)	-1.0 (-34%)	-0.05 (-1%)	

The HydroCAD calculations can be found in Appendix C and D.

Additionally, as shown in the table below, volume of runoff from the site will not increase in the Post-Redevelopment condition.

Table 2.2.2		Rainfall Events				
	1.0 Inches	2-Year 10-Year (3.2 Inches) (4.8 Inches)		25-Year (6 Inches)	100-Year (8.5 Inches)	
Site Runoff Volume (acft)						
Pre-development Pond Elevation	0.064	0.25	0.48	0.772	1.645	
Post-development Pond Elevation	0.030	0.112	0.212	0.36	0.954	
Change (acft)	-0.034(-53%)	-0.138(-55%)	-0.268(-56%)	-0.412(-53%)	-0.691 (-42%)	

As shown above, the proposed project will result in a reduction in the rate and volume of runoff from the site over the Pre-development condition.

2.3 Recharge to Groundwater (Standard 3)

The groundwater recharge performance standard requires that the recharge in the Postdevelopment condition shall approximate the annual recharge in the Pre-development condition. As shown in table 2.2.2, the volume of runoff from the site will be reduced for all storm events. This reduction in stormwater volume represents an increase in infiltration and recharge on the site thus meeting the groundwater recharge standard.

2.4 Water Quality (Standard 4)

Runoff from new paved parking areas and drive aisles will flow overland to one of three bioretention areas to treat and infiltrate stormwater.

2.5 Land Uses with Higher Potential Pollutant Loads (Standard 5)

The project site does not meet the definition of a Land Use with Higher Potential Pollutant Loads (LUHPPL) as defined by the MA DEP.

2.6 Protection of Critical Areas (Standard 6)

The site does not contain critical environmental resource areas.

2.7 Redevelopment Project (Standard 7)

Portions of the project constitute a redevelopment project; however the project has been designed to meet the MA DEP Stormwater Standards in full.

2.8 Construction Period Erosion/Sediment Control (Standard 8)

Erosion and sediment control barriers are proposed at the downstream end of the project area as shown on the project plans. In addition, inlet protection will be provided for catch basins receiving runoff from the project site. These measures will be installed prior to the start of work and maintained by the Contractor for the duration of project construction. Additional Erosion control notes and required measures are provided on Sheet C-004.

The project will disturb more than one acre of land and will require a Stormwater Pollution Prevention Plan (SWPPP) under the National Pollution Discharge Elimination System (NPDES) Construction General Permit (CGP). The SWPPP will be prepared as required by NPDES and be in place prior to the start of construction.

2.9 Operation and Maintenance Plan (Standard 9)

A campus Operation and Maintenance (O&M) Plan is enclosed as Appendix B.

2.10 Prohibition of Illicit Discharges (Standard 10)

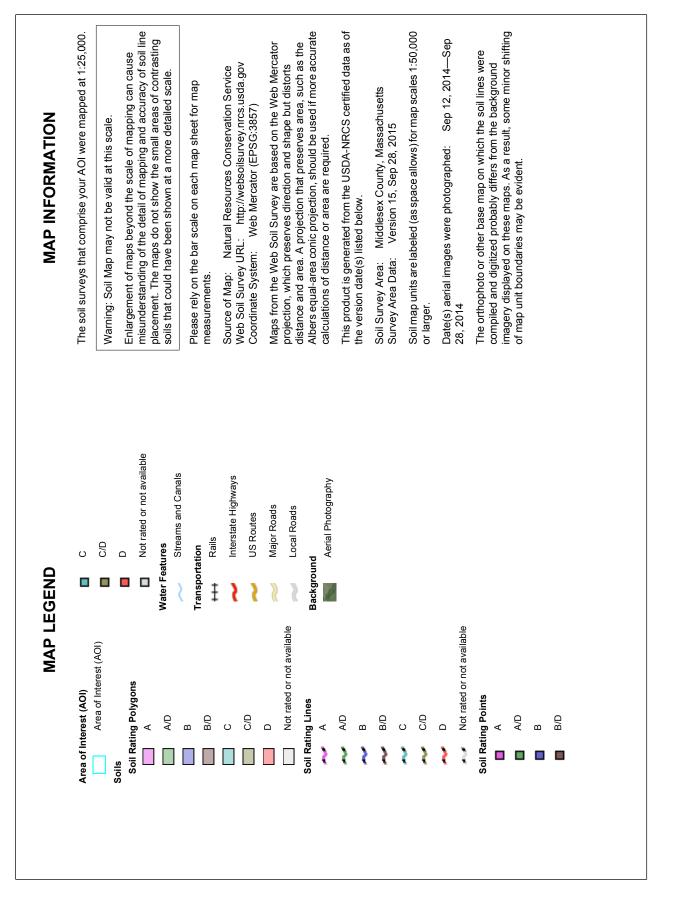
The project does not include any illicit discharges.

APPENDIX A

Soils Information

Carroll School Waltham Road Wayland, Massachusetts

Oak Consulting Group, LLC Project 16011


Natural Resources Conservation Service

<u>USDA</u>

Web Soil Survey National Cooperative Soil Survey

Massachusetts	
Hydrologic Soil Group—Middlesex County, I (46 Waltham Road HSG)	

S

Hydrologic Soil Group

Hydrolog	Hydrologic Soil Group— Summary by Map Unit — Middlesex County, Massachusetts (MA017)						
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
52A	Freetown muck, 0 to 1 percent slopes	B/D	2.0	16.2%			
251A	Haven silt loam, 0 to 3 percent slopes	A	10.4	83.8%			
Totals for Area of Inter	est	12.4	100.0%				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Middlesex County, Massachusetts

251A—Haven silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: vqpb Elevation: 100 to 1,000 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Haven and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Haven

Setting

Landform: Terraces, plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Convex Parent material: Friable loamy eolian deposits over loose sandy glaciofluvial deposits

Typical profile

H1 - 0 to 2 inches: silt loam

- H2 2 to 20 inches: silt loam
- H3 20 to 32 inches: very fine sandy loam
- H4 32 to 65 inches: stratified coarse sand to sand to fine sand

Properties and qualities

- Slope: 0 to 3 percent Depth to restrictive feature: 18 to 36 inches to strongly contrasting textural stratification
- Natural drainage class: Well drained
- Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
- Depth to water table: More than 80 inches
- Frequency of flooding: None
- Frequency of ponding: None

Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 1 Hydrologic Soil Group: A

Minor Components

Merrimac

Percent of map unit: 9 percent Landform: Terraces, plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Tread, rise Down-slope shape: Convex Across-slope shape: Convex

Scio

Percent of map unit: 5 percent Landform: Depressions, terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave

Unnamed

Percent of map unit: 1 percent

Data Source Information

Soil Survey Area: Middlesex County, Massachusetts Survey Area Data: Version 15, Sep 28, 2015

TP-1 DEEP OBSERVATION HOLE

45 Waltham Road, Wayland, Massachusetts

Date: <u>6/17/16</u>

Time: <u>AM</u> Wea	ther: Sunny, 70	<u>0°s, dry</u>				
Vegetation: Grassed	l Pasture.					
Open water body:	<u>200+ feet</u>	Drainage way: <u>50+ feet</u>				
Wetlands:	<u>100+ feet</u>	Property line: <u>10+ feet</u>				
Drinking water well: <u>NA</u>						

Depth from surface (inches)	Soil Layer/ Horizon	Soil Texture (USDA/ NRCS)	Soil Color (EarthColors)	Redox features/ mottles	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, etc.
0 - 23"	A	Silty Loam	10YR 4/4	ND	Friable
23 - 48"	В	Fine Sandy Loam	2.5Y 6/8	ND	Firm in place, Friable, weak medium-angular blocky
48 - 92"	С	Coarse Sand	2.5Y 6/5	68"	Loose, structureless, stratified, well graded, coarse sand with gravel and cobbles.

ND: none detected

Depth to bedrock: <u>>92"</u>	Hydric/ Upland Soil: upland	
Drainage Class: <u>VED</u>	Hydrologic Soil Group: <u>A</u>	Soil map unit: 251A Haven silt loam

DEPTH TO GROUNDWATER

Estimated Seasonal High Groundwater Table: 68"

Depth to stabilized free water: $\underline{N.O.}$ (inches below grade)

Apparent water seeping from pit face: <u>N.O.</u> (inches below grade)

Soil moisture state: damp.

Comments: B layer has varying color with some grays; C layer has varying layers of very coarse sand and gravels Solid Ground water line around the entire hole at 68"

TP-2 DEEP OBSERVATION HOLE

45 Waltham Road, Wayland, Massachusetts

Date: 6/17/16

Time: <u>AM</u> Wea	ther: <u>Sunny, 7</u>	7 <u>0°s, dry</u>
Vegetation: Grassed	1 Pasture.	
Open water body:	<u>200+ feet</u>	Drainage way: <u>50+ feet</u>
Wetlands:	<u>100+ feet</u>	Property line: <u>10+ feet</u>

Drinking water well: NA

Depth from surface (inches)	Soil Layer/ Horizon	Soil Texture (USDA/ NRCS)	Soil Color (EarthColors)	Redox features/ mottles	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, etc.
0 - 17"	A	Silty Loam	10YR 4/4	ND	Friable
17 - 39"	В	Fine Sandy Loam	2.5Y 6/8	ND	Firm in place, Friable, weak medium-angular blocky
39 - 96"	С	Coarse Sand	2.5Y 6/5	42"	Loose, structureless, stratified, well graded, coarse sand with gravel and cobbles.

ND: none detected

Depth to bedrock: <u>>96"</u>	Hydric/ Upland Soil: upland	
Drainage Class: <u>VED</u>	Hydrologic Soil Group: <u>A</u>	Soil map unit: 251A Haven silt loam

DEPTH TO GROUNDWATER

Estimated Seasonal High Groundwater Table: <u>42"</u>

 Depth to stabilized free water: N.O. (inches below grade)
 Apparent water seeping from pit face: N.O. (inches below grade)

 Soil moisture state: damp.
 Apparent water seeping from pit face: N.O. (inches below grade)

Comments: Roots to 42", Solid Ground water line around the entire hole at 42", damp at 82"

TP-3 DEEP OBSERVATION HOLE

45 Waltham Road, Wayland, Massachusetts

Date: 6/17/16

Time: <u>AM</u> Wea	ther: Sunny, 70	l ^o s, dry
Vegetation: Grassed	<u>l Pasture.</u>	
Open water body:	<u>200+ feet</u>	Drainage way: <u>50+ feet</u>
Wetlands:	<u>50+ feet</u>	Property line: <u>10+ feet</u>

Drinking water well: NA

Depth from surface (inches)	Soil Layer/ Horizon	Soil Texture (USDA/ NRCS)	Soil Color (EarthColors)	Redox features/ mottles	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, etc.
0 - 8"	A	Silty Loam	10YR 4/4	ND	Friable
8 - 24"	В	Fine Sandy Loam	2.5Y 6/8	ND	Firm in place, Friable, weak medium-angular blocky
24 - 90"	С	Coarse Sand	2.5Y 6/5	24"	Loose, structureless, stratified, well graded, coarse sand with gravel and cobbles.

ND: none detected

Depth to bedrock: <u>>90"</u>	Hydric/ Upland Soil: upland	
Drainage Class: VED	Hydrologic Soil Group: <u>A</u>	Soil map uni

Hydrologic Soil Group: <u>A</u> Soil map unit: <u>251A Haven silt loam</u>

DEPTH TO GROUNDWATER

Estimated Seasonal High Groundwater Table:	<u>24"</u>
Depth to stabilized free water: <u>N.O.</u> (inches below grade)	Apparent water seeping from pit face: <u>N.O.</u> (inches below grade)
Soil moisture state: damp.	

Comments: Solid Ground water rust line around the entire hole at 24", seepage at 88", clean sand at 70"

TP-4 DEEP OBSERVATION HOLE

45 Waltham Road, Wayland, Massachusetts

Date: 6/17/16

Time: <u>AM</u> Weather: <u>Sunny</u>, 70°s, dry

Vegetation: <u>Grassed Pasture.</u>

 Open water body:
 200+ feet
 Drainage way:
 50+ feet

Wetlands:100 + feetProperty line:10 + feet

Drinking water well: NA

Depth from surface (inches)	Soil Layer/ Horizon	Soil Texture (USDA/ NRCS)	Soil Color (EarthColors)	Redox features/ mottles	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, etc.
0 - 14"	A	Silty Loam	10YR 4/4	ND	Friable
14 - 28"	В	Fine Sandy Loam	2.5Y 6/8	ND	Firm in place, Friable, weak medium-angular blocky
28 - 40"	С	Coarse Sand	2.5Y 6/5	ND	Loose, structureless, stratified, well graded, coarse sand with gravel and cobbles.

ND: none detected

 Depth to bedrock: _>40"
 Hydric/ Upland Soil: upland

 Drainage Class: VED
 Hydrologic Soil Group: A
 Soil map unit: 251A Haven silt loam

DEPTH TO GROUNDWATER

Estimated Seasonal High Groundwater Table: N.O.

Depth to stabilized free water: <u>N.O.</u> (inches below grade) Soil moisture state: <u>damp.</u>

Apparent water seeping from pit face: <u>N.O.</u> (inches below grade)

TP-5 DEEP OBSERVATION HOLE

45 Waltham Road, Wayland, Massachusetts

Date: 6/17/16

Time: <u>AM</u> Weather: <u>Sunny</u>, 70°s, dry

Vegetation: <u>Grassed Pasture.</u>

Open water body:200+ feetDrainage way:50+ feet

Wetlands:100 + feetProperty line:10 + feet

Drinking water well: NA

Depth from surface (inches)	Soil Layer/ Horizon	Soil Texture (USDA/ NRCS)	Soil Color (EarthColors)	Redox features/ mottles	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, etc.
0 - 15"	A	Silty Loam	10YR 4/4	ND	Friable
15 - 38"	В	Fine Sandy Loam	2.5Y 6/8	ND	Firm in place, Friable, weak medium-angular blocky
38 - 72"	С	Coarse Sand	2.5Y 6/5	52"	Loose, structureless, stratified, well graded, coarse sand with gravel and cobbles.

ND: none detected

Depth to bedrock: <u>>72"</u>	Hydric/ Upland Soil: upland	
Drainage Class: <u>VED</u>	Hydrologic Soil Group: <u>A</u>	Soil map unit: 251A Haven silt loam

DEPTH TO GROUNDWATER

 Estimated Seasonal High Groundwater Table:
 52"

 Depth to stabilized free water:
 N.O. (inches below grade)

 Soil moisture state:
 damp.

Comments: Solid Ground water rust line around the entire hole at 52"

APPENDIX B

Pollution Prevention and Stormwater Operation and Maintenance Plan Carroll School Waltham Road Wayland, Massachusetts

Oak Consulting Group, LLC Project 16011

Pollution Prevention and Stormwater Operation and Maintenance Plan

For

Carroll School Waltham Road Wayland, Massachusetts

Prepared by:

P.O. Box 1123 Newburyport, Massachusetts (978) 312-3120

TABLE OF CONTENTS

1.0	INTE	RODUCTION	. 2
	1.1	Roles and Responsibilities	
2.0	POL	LUTION PREVENTION	.3
	2.1	Equipment and Material Storage	. 3
	2.2	Fuel Storage	. 3
	2.3	Trash and Recyclables Collection	. 3
	2.4	General Housekeeping	. 3
		2.4.1 Trash and Debris Pickup	
		2.4.2 Sweeping	
		2.4.3 Spring and Fall Cleanup	
	2.5	Snow Plowing/Deicing	
	2.6	Landscape Maintenance	.4
3.0	OPE	RATION AND MAINTENANCE	
	3.1	Drain inlets	
	3.2	Stormwater Basins	
	3.3	Record Keeping	. 5

APPENDICES:

Appendix A: Stormwater System O&M Inspection Report

1.0 INTRODUCTION

This Pollution Prevention and Operation and Maintenance (O&M) Plan has been prepared to implement procedures for the Carroll School at 45 Waltham Road in Wayland (Project). The purpose of the plan is to help minimize the potential for stormwater pollution and adverse impacts to resource areas subject to protection under the Massachusetts Wetlands Protections Act and Town of Wayland Wetlands Bylaw. This plan has been prepared to identify pollution prevention measures which are implemented as part of daily operations as well as O&M practices and procedures for stormwater Best Management Practices (BMPs).

The Project encompasses approximately 11 acres located at 45 Waltham Road in Wayland, Massachusetts. Wetlands resource areas associated with a tributary to Hazel Brook include bordering vegetated wetlands (BVW) and riverfront area. A plan showing the configuration of the Project stormwater systems and wetlands resource areas is provided on Sheet C-003, Site Grading, Drainage & Erosion Control Plan. Inspection forms for Stormwater BMPs are enclosed in Appendix A.

1.1 Roles and Responsibilities

Owner

Carroll School (The School)

Implementation

The School

This plan shall be maintained by the School and distributed to all relevant staff and outside contractors on an annual basis.

2.0 POLLUTION PREVENTION

The following section presents methods and procedures implemented by the Project as part of daily operations to minimize potential stormwater pollution. The procedures presented below have been developed to be practical to implement and sufficiently protective of nearby resource areas and the environment in general.

2.1 Equipment and Material Storage

Seasonal equipment, generally limited to snow plows, lawn mowers and other miscellaneous equipment used by the personnel or companies conducting routine maintenance at the Project, will be regularly stored in the barn or similar structure. Equipment used at the Project shall be generally clean and free of oil leaks and/or hazardous material which could potentially impact storm water quality.

Supplies such as sand, grass seed, fertilizers, and other materials which may be affected by weather or become airborne stored on site, shall be stored in the barn or similar structure.

2.2 Fuel Storage

There is no proposed significant fuel storage at the Project. Any fuel storage would be limited to small containers of 5 gallons or less and stored in the barn or similar structure. Any fueling on site of maintenance equipment shall be conducted on paved areas at least 100' away from any resource area.

2.3 Trash and Recyclables Collection

Trash and recyclables will be picked up from the Project on a routine basis by an outside, licensed hauler. Trash and recyclable containers shall be stored within the designated enclosure or within the building until they are picked up.

2.4 General Housekeeping

Cleanup to remove accumulated trash and debris shall be performed on both an as-needed and scheduled basis. Routine cleanup activities include the following:

2.4.1 Trash and Debris Pickup

Trash and debris pickup shall be performed continuously as needed. School personnel as well as landscape and maintenance contractors shall be responsible for removing litter from the grounds. Students, staff and visitors are prohibited from littering and are encouraged to pickup miscellaneous debris which they may encounter.

2.4.2 Sweeping

Sweeping of driveways, walkways and parking areas shall be performed on an annual basis during the early spring to remove salt and sand applied to these surfaces during the winter months. Should the need arise; selected areas of the Project may be swept more frequently. Sweeping will be performed by school personnel and outside contractors using suitable

equipment. Recovered sweepings shall be disposed with other yard waste off-site in accordance with all applicable state, local and federal laws.

2.4.3 Spring and Fall Cleanup

Spring and fall cleanups shall be performed once per year following snow melt and tree defoliation, respectively. The majority of the spring and fall cleanup efforts shall focus on landscaped and lawn areas throughout the Project. Yard waste, including leaves, grass cuttings, nuisance vegetation, branches, stumps, rocks, etc., shall be disposed of off-site in accordance with all applicable state, local and federal laws.

2.5 Snow Plowing/Deicing

Snow and ice removal operations shall be performed on an as-needed basis. Snow from driveways, parking areas and walkways shall be plowed to the sides of the paved surfaces in accordance with customary snow plowing procedures. Snow shall be plowed into wetlands resource areas or the buffer zones. Snow stockpiles shall be located beyond wetlands buffer zones and in designated locations throughout the Project. Snow banks or piles may be removed from parking lots or other critical areas as needed. Snow which may be removed in this manner shall be disposed of off-site in accordance with applicable state, local and federal laws. Snow shall not be dumped or pushed into drainage bioretention basins.

Deicing operations consist of applying sand or salt to walkways and other paved surfaces as needed for vehicle and pedestrian safety. Salt shall be applied at the minimal acceptable rates to provide safe vehicle and pedestrian safety.

2.6 Landscape Maintenance

Lawn and landscape areas shall be regularly maintained by a school personnel or a landscape contractor. School personnel or a landscape contractor shall be responsible for the maintenance and upkeep of the stormwater bio-retention including by not limited to replacement of dead or dying vegetation, removal of sediment and replacement of mulch.

The use of fertilizers, pesticides, and herbicides shall be minimized and in no case shall they be used within 100' of a wetland resource area.

3.0 OPERATION AND MAINTENANCE

School personnel or an outside contractor shall inspect the stormwater management systems on a routine basis. Refer to the Site Grading, Drainage & Erosion Control Plans (Plans) for drainage structure locations. Inspection and maintenance shall be performed as follows:

3.1 Drain inlets

Drain inlets shall be inspected for accumulation of silt, sediment, or debris on a semi-annual basis. Cleaning will be performed at least once per year or more frequently if the sediment level rises 2 feet above the bottom of the sump. Removed sediment will be disposed off site by a qualified waste disposal contractor in accordance with local, state and federal regulations.

3.2 Stormwater Basins

Three bio-retention areas are located in the area of the parking and drives in the north end of the site. Inspection will include identifying and repairing eroded areas. Eroded areas will be remulched as necessary. The maintenance schedule for the bioretention basins is as follows:

Activity	Time of Year	Frequency
Inspect and Remove Trash	Year round	Monthly
Mulch	Spring	Annually
Remove Dead Vegetation	Fall or Spring	Annually
Replace Dead Vegetation	Spring	Annually
Prune	Spring or Fall	Annually
Replace Entire Media and All Vegetation	Late Spring/early Summer	As needed

3.3 Record Keeping

The School shall complete the Stormwater System Inspection Report (Appendix A) as part of routine inspections. Copies of completed reports shall be kept for at least 5 years. Receipts of catch basin cleaning and other O&M activities which require contracted services shall also kept on file for a minimum of 5 years.

APPENDIX A

Stormwater System O&M Inspection Report

Carroll School 45 Waltham Road Wayland, Massachusetts

Stormwater System Inspection Report

General Information				
Location: Carroll School, 45 Waltham Road, Wa	yland, MA			
Date of Inspection	Start/End Time			
Inspector's Name(s)	ł			
Inspector's Title(s)				
Inspector's Contact Information				
Purpose of Inspection				
Weather Information				
Has it rained since the last inspection? □Yes □No				
Weather at time of this inspection?				

Site-Specific Stormwater Devices

	Description	Installed and Operating Properly?	Corrective Action Needed	Date for Corrective Action/Responsible Person
1		□Yes □No		
2		□Yes □No		
3		□Yes □No		
4		□Yes □No		
5		□Yes □No		
6		□Yes □No		
7		□Yes □No		
8		□Yes □No		
9		□Yes □No		

Oak Consulting Group, LLC Project 16011

	Description	Installed and Operating Properly?	Corrective Action Needed	Date for Corrective Action/Responsible Person
10		□Yes □No		
11		□Yes □No		
12		□Yes □No		
13		□Yes □No		
14		□Yes □No		
15		□Yes □No		
16		□Yes □No		
17		□Yes □No		
18		□Yes □No		
19		□Yes □No		
20		□Yes □No		

Overall Site Issues

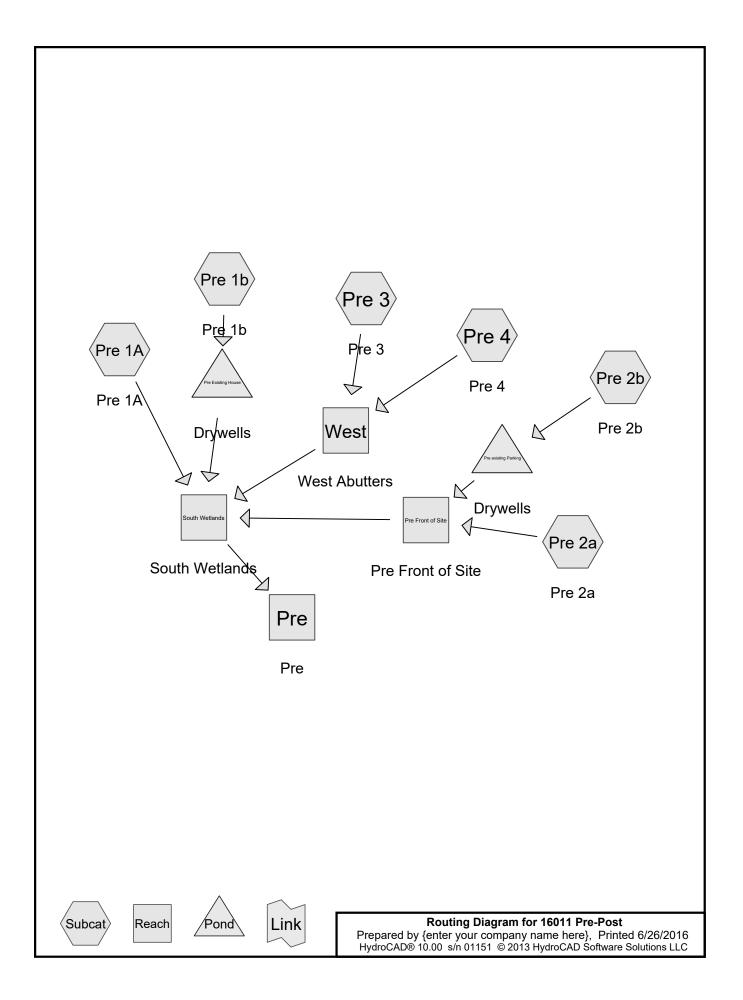
	Description		Corrective Action	Date for Corrective Action/Responsible Person
1	Are all slopes properly stabilized?	□Yes □No		
2	Are natural resource areas (e.g., streams, wetlands, etc.) being subjected to erosion?	□Yes □No		
3	Are discharge points free of sediment deposits?	□Yes □No		

Certification Statement:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Print name:

Signature:


Date:

APPENDIX C

Pre-development Calculations

Carroll School Waltham Road Wayland, Massachusetts

Oak Consulting Group, LLC Project 16011

16011 Pre-Post Prepared by {enter your company name here} <u>HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Softwa</u>	Type III 24-hr 1" Storm Rainfall=1.00"Printed 6/26/2016are Solutions LLCPage 2
Runoff by SCS TR-20 me	rs, dt=0.05 hrs, 301 points hod, UH=SCS, Weighted-Q - Pond routing by Dyn-Stor-Ind method
	Area=376,941 sf 7.80% Impervious Runoff Depth>0.06" 0210 '/' Tc=53.1 min CN=43 Runoff=0.26 cfs 0.042 af
	rea=10,363 sf 100.00% Impervious Runoff Depth>0.75").3000 '/' Tc=5.0 min CN=98 Runoff=0.21 cfs 0.015 af
	Area=46,100 sf 19.87% Impervious Runoff Depth>0.15" 0110 '/' Tc=22.9 min CN=49 Runoff=0.12 cfs 0.013 af
	Area=9,282 sf 51.13% Impervious Runoff Depth>0.38" 0.0100 '/' Tc=9.5 min CN=69 Runoff=0.08 cfs 0.007 af
	Area=19,806 sf 2.91% Impervious Runoff Depth>0.05" 0300 '/' Tc=12.8 min CN=42 Runoff=0.02 cfs 0.002 af
	Area=33,991 sf 9.71% Impervious Runoff Depth>0.10").0900 '/' Tc=7.9 min CN=45 Runoff=0.09 cfs 0.007 af
Reach Pre: Pre	Inflow=0.35 cfs 0.064 af Outflow=0.35 cfs 0.064 af
Reach Pre Front of Site: Pre Front of Site	Inflow=0.12 cfs 0.013 af Outflow=0.12 cfs 0.013 af
Reach South Wetlands: South Wetlands	Inflow=0.35 cfs 0.064 af Outflow=0.35 cfs 0.064 af
Reach West: West Abutters	Inflow=0.11 cfs 0.009 af Outflow=0.11 cfs 0.009 af
Pond Pre Existing House: Drywells Peak	Elev=178.16' Storage=0.002 af Inflow=0.21 cfs 0.015 af Outflow=0.09 cfs 0.015 af
	Elev=180.19' Storage=0.003 af Inflow=0.08 cfs 0.007 af If Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.007 af

Total Runoff Area = 11.398 acRunoff Volume = 0.086 afAverage Runoff Depth = 0.09"88.41% Pervious = 10.076 ac11.59% Impervious = 1.321 ac

Summary for Subcatchment Pre 1A: Pre 1A

Runoff = 0.26 cfs @ 12.70 hrs, Volume= 0.042 af, Depth> 0.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

	Area (sf)	CN	Description		
	29,409	98	Paved park	ing, HSG A	A
	554	96	Gravel surfa	ace, HSG A	4
	328,021	39	>75% Gras	s cover, Go	bod, HSG A
	18,957	30	Woods, Go	od, HSG A	
	376,941	43	Weighted A	verage	
	347,532	39	92.20% Per	rvious Area	1
	29,409	98	7.80% Impe	ervious Are	a
_					
To	5	Slope		Capacity	Description
(min)) (feet)	(ft/ft) (ft/sec)	(cfs)	
53.1	885	0.0210	0.28		Lag/CN Method, Pre 1A

Summary for Subcatchment Pre 1b: Pre 1b

Runoff = 0.21 cfs @ 12.07 hrs, Volume= 0.015 af, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

A	rea (sf)	CN	Description		
	10,363	98	Paved park	ing, HSG A	N Contraction of the second seco
	0	96	Gravel surfa	ace, HSG A	λ
	0	39	>75% Gras	s cover, Go	bod, HSG A
	0	30	Woods, Go	od, HSG A	
	10,363	98	Weighted A	verage	
	10,363	98	100.00% In	npervious A	rea
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
0.1	25	0.300	2.90		Lag/CN Method, Pre 1b
0.1	25	Total,	Increased t	to minimum	Tc = 5.0 min

Summary for Subcatchment Pre 2a: Pre 2a

Runoff = 0.12 cfs @ 12.31 hrs, Volume= 0.013 af, Depth> 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

16011 Pre-Post

 Type III 24-hr
 1" Storm Rainfall=1.00"

 Printed
 6/26/2016

 LC
 Page 4

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Are	ea (sf)	CN	Description		
	9,158	98	Paved park	ing, HSG A	A Contraction of the second se
	0	96	Gravel surfa	ace, HSG A	4
3	30,230	39	>75% Gras	s cover, Go	bod, HSG A
	6,712	30	Woods, Go	od, HSG A	
4	46,100	49	Weighted A	verage	
3	36,942	37	80.13% Pei	vious Area	l
	9,158	98	19.87% Imp	pervious Ar	ea
	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft	(ft/sec)	(cfs)	
22.9	250	0.0110	0.18		Lag/CN Method, Pre 2a

Summary for Subcatchment Pre 2b: Pre 2b

Runoff = 0.08 cfs @ 12.13 hrs, Volume= 0.007 af, Depth> 0.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

A	rea (sf)	CN	Description		
	4,746	98	Paved park	ing, HSG A	N Contraction of the second seco
	0	96	Gravel surf	ace, HSG A	4
	4,536	39	>75% Gras	s cover, Go	bod, HSG A
	0	30	Woods, Go	od, HSG A	
	9,282	69	Weighted A	verage	
	4,536	39	48.87% Pe	rvious Area	l
	4,746	98	51.13% lm	pervious Ar	ea
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
9.5	150	0.0100	0.26		Lag/CN Method, Pre 2b

Summary for Subcatchment Pre 3: Pre 3

Runoff = 0.02 cfs @ 12.17 hrs, Volume= 0.002 af, Depth> 0.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Area (sf)	CN	Description
577	98	Paved parking, HSG A
1,015	96	Gravel surface, HSG A
15,608	39	>75% Grass cover, Good, HSG A
2,606	30	Woods, Good, HSG A
19,806	42	Weighted Average
19,229	41	97.09% Pervious Area
577	98	2.91% Impervious Area

Prepared by {enter your company name here}						Printed 6/26/2016
HydroCA	D® 10.00	s/n 0115	1 © 2013 H	lydroCAD S	oftware Solutions LLC	Page 5
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.8	181	0.0300	0.24		Lag/CN Method, Pre 3	

Summary for Subcatchment Pre 4: Pre 4

Type III 24-hr 1" Storm Rainfall=1.00"

Runoff 0.09 cfs @ 12.11 hrs, Volume= 0.007 af, Depth> 0.10" =

16011 Pre-Post

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

A	rea (sf)	CN	Description		
	3,301	98	Paved park	ing, HSG A	A
	1,823	96	Gravel surfa	ace, HSG A	4
	20,190	39	>75% Gras	s cover, Go	bod, HSG A
	8,677	30	Woods, Go	od, HSG A	
	33,991	45	Weighted A	verage	
	30,690	40	90.29% Pe	rvious Area	1
	3,301	98	9.71% Impe	ervious Are	a
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
7.9	216	0.0900	0.46		Lag/CN Method, Pre 4

Summary for Reach Pre: Pre

Inflow Area =	11.398 ac, 11.59% Impervious, Inflow I	Depth > 0.07" for 1" Storm event
Inflow =	0.35 cfs @ 12.50 hrs, Volume=	0.064 af
Outflow =	0.35 cfs $@$ 12.50 hrs, Volume=	0.064 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Pre Front of Site: Pre Front of Site

Inflow Are	a =	1.271 ac, 25.11% Impervious, Inflow	v Depth > 0.12"	for 1" Storm event
Inflow	=	0.12 cfs @ 12.31 hrs, Volume=	0.013 af	
Outflow	=	0.12 cfs @ 12.31 hrs, Volume=	0.013 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach South Wetlands: South Wetlands

Inflow Area =	11.398 ac, 11.59% Impervious, Ir	nflow Depth > 0.07" for 1" Storm event
Inflow =	0.35 cfs @ 12.50 hrs, Volume=	0.064 af
Outflow =	0.35 cfs @ 12.50 hrs, Volume=	0.064 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach West: West Abutters

Inflow Area =	1.235 ac,	7.21% Impervious, Inflow	Depth > 0.08"	for 1" Storm event
Inflow =	0.11 cfs @	12.12 hrs, Volume=	0.009 af	
Outflow =	0.11 cfs @	12.12 hrs, Volume=	0.009 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond Pre Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow Depth > 0.75" for 1" Storm event	
Inflow =	0.21 cfs @ 12.07 hrs, Volume= 0.015 af	
Outflow =	0.09 cfs @ 12.10 hrs, Volume= 0.015 af, Atten= 59%, Lag= 1.7 min	
Discarded =	0.09 cfs @ 12.10 hrs, Volume= 0.015 af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 178.16' @ 12.28 hrs Surf.Area= 0.010 ac Storage= 0.002 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 3.5 min (761.2 - 757.8)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.083 af	8.00'D x 8.00'H Vertical Cone/Cylinderx 9
Device	Routing	Invert Ou	tlet Devices
#1	Discarded	178.00' 8.2	70 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 12.10 hrs HW=178.10' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.09 cfs)

Summary for Pond Pre existing Parking: Drywells

Inflow Area =	0.213 ac, 51.13% Impervious, Inflow De	epth > 0.38" for 1" Storm event
Inflow =	0.08 cfs @ 12.13 hrs, Volume=	0.007 af
Outflow =	0.01 cfs @ 11.80 hrs, Volume=	0.007 af, Atten= 89%, Lag= 0.0 min
Discarded =	0.01 cfs @ 11.80 hrs, Volume=	0.007 af
Primary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 180.19' @ 12.94 hrs Surf.Area= 0.001 ac Storage= 0.003 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 87.4 min (848.8 - 761.3)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.007 af	8.00'D x 6.00'H Vertical Cone/Cylinder
Device	Routing	Invert Ou	itlet Devices
#1 #2	Discarded Primary		270 in/hr Exfiltration over Surface area 0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.01 cfs @ 11.80 hrs HW=178.10' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=178.00' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Controls 0.00 cfs)

16011 Pre-Post Prepared by {enter your company name here} <u>HydroCAD® 10.00_s/n 01151_© 2013 HydroCAD Software Solutic</u>	Type III 24-hr 2-YR Cornell Rainfall=3.20"Printed 6/26/2016Dns LLCPage 8					
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method , Pond routing by Dyn-Stor-Ind method						
	,941 sf 7.80% Impervious Runoff Depth>0.22" Tc=53.1 min CN=43 Runoff=0.92 cfs 0.158 af					
	63 sf 100.00% Impervious Runoff Depth>2.77" Tc=5.0 min CN=98 Runoff=0.74 cfs 0.055 af					
	100 sf 19.87% Impervious Runoff Depth>0.55" Tc=22.9 min CN=49 Runoff=0.42 cfs 0.049 af					
	282 sf 51.13% Impervious Runoff Depth>1.42" Tc=9.5 min CN=69 Runoff=0.30 cfs 0.025 af					
	,806 sf 2.91% Impervious Runoff Depth>0.21" Tc=12.8 min CN=42 Runoff=0.09 cfs 0.008 af					
	,991 sf 9.71% Impervious Runoff Depth>0.41" Tc=7.9 min CN=45 Runoff=0.33 cfs 0.027 af					
Reach Pre: Pre	Inflow=1.46 cfs 0.250 af Outflow=1.46 cfs 0.250 af					
Reach Pre Front of Site: Pre Front of Site	Inflow=0.71 cfs 0.057 af Outflow=0.71 cfs 0.057 af					
Reach South Wetlands: South Wetlands	Inflow=1.46 cfs 0.250 af Outflow=1.46 cfs 0.250 af					
Reach West: West Abutters	Inflow=0.41 cfs 0.035 af Outflow=0.41 cfs 0.035 af					
Pond Pre Existing House: Drywells Peak Elev=179.	.74' Storage=0.018 af Inflow=0.74 cfs 0.055 af Outflow=0.09 cfs 0.055 af					
	.93' Storage=0.007 af Inflow=0.30 cfs 0.025 af y=0.40 cfs 0.009 af Outflow=0.41 cfs 0.019 af					

Total Runoff Area = 11.398 acRunoff Volume = 0.321 afAverage Runoff Depth = 0.34"88.41% Pervious = 10.076 ac11.59% Impervious = 1.321 ac

Summary for Subcatchment Pre 1A: Pre 1A

Runoff = 0.92 cfs @ 12.69 hrs, Volume= 0.158 af, Depth> 0.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

A	rea (sf)	CN	Description	escription					
	29,409	98	Paved park	ing, HSG A	N Contraction of the second seco				
	554	96	Gravel surfa	ace, HSG A	4				
3	828,021	39	>75% Gras	s cover, Go	bod, HSG A				
	18,957	30	Woods, Go	od, HSG A					
3	376,941	43	43 Weighted Average						
3	347,532	39	92.20% Pervious Area						
	29,409	98	7.80% Impervious Area						
_									
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
53.1	885	0.0210	0.28		Lag/CN Method, Pre 1A				

Summary for Subcatchment Pre 1b: Pre 1b

Runoff = 0.74 cfs @ 12.07 hrs, Volume= 0.055 af, Depth> 2.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

Area	(sf)	CN [Description					
10,	363	98 F	Paved parking, HSG A					
	0	96 (Gravel surfa	ace, HSG A	A Contraction of the second seco			
	0	39 >	>75% Gras	s cover, Go	bod, HSG A			
	0	30 \	Voods, Go	od, HSG A				
10,	363	98 \	Veighted A	verage				
10,	363	98 1	100.00% Im	pervious A	rea			
	ength feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
0.1	25	0.3000	2.90		Lag/CN Method, Pre 1b			
0.1	25	Total,	Increased t	o minimum	Tc = 5.0 min			

Summary for Subcatchment Pre 2a: Pre 2a

Runoff = 0.42 cfs @ 12.30 hrs, Volume= 0.049 af, Depth> 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

Type III 24-hr 2-YR Cornell Rainfall=3.20" Printed 6/26/2016

Page 10

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description							
	9,158	98	Paved park	Paved parking, HSG A						
	0	96	Gravel surfa	ace, HSG A	A					
	30,230	39	>75% Gras	s cover, Go	bod, HSG A					
	6,712	30	Woods, Go	od, HSG A						
	46,100	49	Weighted Average							
	36,942	37	80.13% Per	vious Area						
	9,158	98	19.87% Impervious Area							
_										
Тс	Length	Slope		Capacity	Description					
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
22.9	250	0.0110	0.18		Lag/CN Method, Pre 2a					

Summary for Subcatchment Pre 2b: Pre 2b

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

Description							
Paved parking, HSG A	Paved parking, HSG A						
Gravel surface, HSG A							
>75% Grass cover, Go	bod, HSG A						
Woods, Good, HSG A							
9 Weighted Average							
48.87% Pervious Area	1						
51.13% Impervious Ar	ea						
, , ,	Description						
ft) (ft/sec) (cfs)							
0.26	Lag/CN Method, Pre 2b						
	-						
	Paved parking, HSG A Gravel surface, HSG A >75% Grass cover, Go Woods, Good, HSG A Weighted Average 48.87% Pervious Area 51.13% Impervious Ar pe Velocity Capacity ft) (ft/sec) (cfs)						

Summary for Subcatchment Pre 3: Pre 3

Runoff = 0.09 cfs @ 12.17 hrs, Volume= 0.008 af, Depth> 0.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

Area (sf)	CN	Description					
577	98	Paved parking, HSG A					
1,015	96	Gravel surface, HSG A					
15,608	39	>75% Grass cover, Good, HSG A					
2,606	30	Woods, Good, HSG A					
19,806	42	Weighted Average					
19,229	41	97.09% Pervious Area					
577	98	2.91% Impervious Area					

	d by {en D® 10.00	Printed 6/26/2016 Page 11				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.8	181	0.0300	0.24		Lag/CN Method, Pre 3	

Type III 24-hr 2-YR Cornell Rainfall=3.20"

Summary for Subcatchment Pre 4: Pre 4

Runoff = 0.33 cfs @ 12.11 hrs, Volume= 0.027 af, Depth> 0.41"

16011 Pre-Post

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

rea (sf)	CN	Description				
3,301	98	Paved park	ing, HSG A	A		
1,823	96	Gravel surfa	ace, HSG A	Α		
20,190	39	>75% Gras	s cover, Go	bod, HSG A		
8,677	30	Woods, Go	od, HSG A			
33,991	45	Weighted Average				
30,690	40	90.29% Pervious Area				
3,301	98	9.71% Impervious Area				
Length			Capacity	Description		
(feet)	(ft/ft) (ft/sec)	(cfs)			
216	0.0900	0.46		Lag/CN Method, Pre 4		
	3,301 1,823 20,190 8,677 33,991 30,690 3,301 Length (feet)	3,301 98 1,823 96 20,190 39 8,677 30 33,991 45 30,690 40 3,301 98 Length Slope (feet) (ft/ft)	3,301 98 Paved park 1,823 96 Gravel surfa 20,190 39 >75% Gras 8,677 30 Woods, Go 33,991 45 Weighted A 30,690 40 90.29% Per 3,301 98 9.71% Imped Length Slope Velocity (feet) (ft/ft) (ft/sec)	3,30198Paved parking, HSG A1,82396Gravel surface, HSG A20,19039>75% Grass cover, Ge8,67730Woods, Good, HSG A33,99145Weighted Average30,6904090.29% Pervious Area3,301989.71% Impervious AreaLengthSlopeVelocityLengthSlopeVelocityCfeet)(ft/ft)(ft/sec)(cfest)(ft/ft)		

Summary for Reach Pre: Pre

Inflow Area	a =	1.398 ac, 11.59% Impervious, Inflow Depth > 0.26" for 2-YR Cornell event	t
Inflow	=	1.46 cfs @ 12.15 hrs, Volume= 0.250 af	
Outflow	=	1.46 cfs @ 12.15 hrs, Volume= 0.250 af, Atten= 0%, Lag= 0.0 min	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Pre Front of Site: Pre Front of Site

Inflow Area =	1.271 ac, 25.11% Impervious, Inflow Depth > 0.54" for 2-YR Cornell event
Inflow =	0.71 cfs @ 12.15 hrs, Volume= 0.057 af
Outflow =	0.71 cfs @ 12.15 hrs, Volume= 0.057 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach South Wetlands: South Wetlands

Inflow Area =	11.398 ac, 11.59% Impervious, Inflow	Depth > 0.26" 1	for 2-YR Cornell event
Inflow =	1.46 cfs @ 12.15 hrs, Volume=	0.250 af	
Outflow =	1.46 cfs @ 12.15 hrs, Volume=	0.250 af, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach West: West Abutters

Inflow Area =	1.235 ac,	7.21% Impervious, Inflow	/ Depth > 0.34"	for 2-YR Cornell event
Inflow =	0.41 cfs @	12.12 hrs, Volume=	0.035 af	
Outflow =	0.41 cfs @	12.12 hrs, Volume=	0.035 af, Atte	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond Pre Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow Depth > 2.77"	for 2-YR Cornell event
Inflow =	0.74 cfs @ 12.07 hrs, Volume= 0.055 af	
Outflow =	0.09 cfs @ 11.75 hrs, Volume= 0.055 af, At	ten= 88%, Lag= 0.0 min
Discarded =	0.09 cfs $@$ 11.75 hrs, Volume= 0.055 af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 179.74' @ 12.66 hrs Surf.Area= 0.010 ac Storage= 0.018 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 60.8 min (798.7 - 737.8)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.083 af	8.00'D x 8.00'H Vertical Cone/Cylinderx 9
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	178.00' 8.2	270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 11.75 hrs HW=178.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.09 cfs)

Summary for Pond Pre existing Parking: Drywells

Inflow Area =	0.213 ac, 51.13% Impervious, Inflow De	epth > 1.42" for 2-YR Cornell event
Inflow =	0.30 cfs @ 12.13 hrs, Volume=	0.025 af
Outflow =	0.41 cfs @ 12.15 hrs, Volume=	0.019 af, Atten= 0%, Lag= 1.5 min
Discarded =	0.01 cfs @ 9.35 hrs, Volume=	0.011 af
Primary =	0.40 cfs $\overline{@}$ 12.15 hrs, Volume=	0.009 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.93' @ 12.15 hrs Surf.Area= 0.001 ac Storage= 0.007 af

Plug-Flow detention time= 95.1 min calculated for 0.019 af (77% of inflow) Center-of-Mass det. time= 37.1 min (778.2 - 741.2)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.007 af	8.00'D x 6.00'H Vertical Cone/Cylinder
Device	Routing	Invert Ou	tlet Devices
#1	Discarded		70 in/hr Exfiltration over Surface area
#2	Primary	185.50' 6.0	"Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.01 cfs @ 9.35 hrs HW=178.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.37 cfs @ 12.15 hrs HW=185.91' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Orifice Controls 0.37 cfs @ 2.17 fps)

16011 Pre-Post TyPrepared by {enter your company name here}HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solution	/pe III 24-hr 10-YR-Cornell Rainfall=4.80" Printed 6/26/2016 ns LLC Page 14					
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method						
	941 sf 7.80% Impervious Runoff Depth>0.44" c=53.1 min CN=43 Runoff=1.41 cfs 0.315 af					
	3 sf 100.00% Impervious Runoff Depth>4.24" Tc=5.0 min CN=98 Runoff=1.12 cfs 0.084 af					
	00 sf 19.87% Impervious Runoff Depth>0.92" c=22.9 min CN=49 Runoff=0.64 cfs 0.081 af					
	82 sf 51.13% Impervious Runoff Depth>2.23" Tc=9.5 min CN=69 Runoff=0.45 cfs 0.040 af					
	806 sf 2.91% Impervious Runoff Depth>0.43" c=12.8 min CN=42 Runoff=0.14 cfs 0.016 af					
	991 sf 9.71% Impervious Runoff Depth>0.70" Tc=7.9 min CN=45 Runoff=0.51 cfs 0.046 af					
Reach Pre: Pre	Inflow=2.15 cfs 0.480 af Outflow=2.15 cfs 0.480 af					
Reach Pre Front of Site: Pre Front of Site	Inflow=1.02 cfs 0.102 af Outflow=1.02 cfs 0.102 af					
Reach South Wetlands: South Wetlands	Inflow=2.15 cfs 0.480 af Outflow=2.15 cfs 0.480 af					
Reach West: West Abutters	Inflow=0.63 cfs 0.062 af Outflow=0.63 cfs 0.062 af					
Pond Pre Existing House: Drywells Peak Elev=181.	17' Storage=0.033 af Inflow=1.12 cfs 0.084 af Outflow=0.09 cfs 0.081 af					
	06' Storage=0.007 af Inflow=0.45 cfs 0.040 af /=0.53 cfs 0.021 af Outflow=0.54 cfs 0.033 af					

Total Runoff Area = 11.398 acRunoff Volume = 0.582 afAverage Runoff Depth = 0.61"88.41% Pervious = 10.076 ac11.59% Impervious = 1.321 ac

Summary for Subcatchment Pre 1A: Pre 1A

Runoff = 1.41 cfs @ 12.70 hrs, Volume= 0.315 af, Depth> 0.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	rea (sf)	CN	Description				
	29,409	98	Paved park	ing, HSG A	N Contraction of the second seco		
	554	96	Gravel surfa	ace, HSG A	4		
3	828,021	39	>75% Gras	s cover, Go	bod, HSG A		
	18,957	30	Woods, Go	od, HSG A			
3	376,941	43	Weighted Average				
3	347,532	39	92.20% Pervious Area				
	29,409	98	7.80% Impervious Area				
_							
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
53.1	885	0.0210	0.28		Lag/CN Method, Pre 1A		

Summary for Subcatchment Pre 1b: Pre 1b

Runoff = 1.12 cfs @ 12.07 hrs, Volume= 0.084 af, Depth> 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	rea (sf)	CN	Description			
	10,363	98	Paved park	ing, HSG A	N Contraction of the second seco	
	0	96	Gravel surfa	ace, HSG A	A Contraction of the second seco	
	0	39 :	>75% Gras	s cover, Go	bod, HSG A	
	0	30	Woods, Go	od, HSG A		
	10,363	98	8 Weighted Average			
	10,363	98	100.00% In	npervious A	rea	
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
0.1	25	0.3000	2.90		Lag/CN Method, Pre 1b	
0.1	25	Total,	Increased t	o minimum	Tc = 5.0 min	

Summary for Subcatchment Pre 2a: Pre 2a

Runoff = 0.64 cfs @ 12.30 hrs, Volume= 0.081 af, Depth> 0.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Printed 6/26/2016

Page 16

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	9,158	98	Paved park	ing, HSG A	4
	0	96	Gravel surfa	ace, HSG A	4
	30,230	39	>75% Gras	s cover, Go	bod, HSG A
	6,712	30	Woods, Go	od, HSG A	
	46,100	49	Weighted A	verage	
	36,942	37	80.13% Pei	vious Area	1
	9,158	98	19.87% Imp	pervious Ar	ea
Тс	Length	Slope	e Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)	
22.9	250	0.0110	0.18		Lag/CN Method, Pre 2a

Summary for Subcatchment Pre 2b: Pre 2b

Runoff = 0.45 cfs @ 12.13 hrs, Volume= 0.040 af, Depth> 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	rea (sf)	CN	Description		
	4,746	98	Paved park	ing, HSG A	A
	0	96	Gravel surfa	ace, HSG A	4
	4,536	39	>75% Gras	s cover, Go	bod, HSG A
	0	30	Woods, Go	od, HSG A	
	9,282	69	Weighted A	verage	
	4,536	39	48.87% Pe	rvious Area	1
	4,746	98	51.13% lmp	pervious Ar	ea
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
9.5	150	0.0100	0.26		Lag/CN Method, Pre 2b

Summary for Subcatchment Pre 3: Pre 3

Runoff = 0.14 cfs @ 12.17 hrs, Volume= 0.016 af, Depth> 0.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Area (sf)	CN	Description
577	98	Paved parking, HSG A
1,015	96	Gravel surface, HSG A
15,608	39	>75% Grass cover, Good, HSG A
2,606	30	Woods, Good, HSG A
19,806	42	Weighted Average
19,229	41	97.09% Pervious Area
577	98	2.91% Impervious Area

16011 Pre-Post Prepared by {enter your company name her HydroCAD® 10.00 s/n 01151 © 2013 HydroCADS						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.8	181	0.0300	0.24		Lag/CN Method, Pre 3	
	Summary for Subcatchment Pre 4: Pre 4					
Runoff	=	0.51 cf	s@ 12.1	1 hrs, Volu	me= 0.046 af, Depth> 0.70"	
	Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"					
А	rea (sf)	CN E	escription			

_	<u> </u>	rea (st)	CN	Description		
		3,301	98	Paved park	ing, HSG A	A
		1,823	96	Gravel surfa	ace, HSG A	4
		20,190	39	>75% Gras	s cover, Go	bod, HSG A
_		8,677	30	Woods, Go	<u>od, HSG A</u>	
		33,991	45	Weighted A	verage	
		30,690	40	90.29% Pe	rvious Area	1
		3,301	98	9.71% Impe	ervious Are	a
	Tc	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	7.9	216	0.0900	0.46		Lag/CN Method, Pre 4
						•

Summary for Reach Pre: Pre

Inflow Area =	11.398 ac, 11.59% Impervious, Inflow D	epth > 0.51" for 10-YR-Cornell event
Inflow =	2.15 cfs @ 12.40 hrs, Volume=	0.480 af
Outflow =	2.15 cfs @ 12.40 hrs, Volume=	0.480 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Pre Front of Site: Pre Front of Site

Inflow Area =	1.271 ac, 25.11% Impervious, Inflow D	epth > 0.97" for 10-YR-Cornell event
Inflow =	1.02 cfs @ 12.20 hrs, Volume=	0.102 af
Outflow =	1.02 cfs @ 12.20 hrs, Volume=	0.102 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach South Wetlands: South Wetlands

Inflow Area =	11.398 ac, 11.59% Impervious, Inflow D	epth > 0.51" for 10-YR-Cornell event
Inflow =	2.15 cfs @ 12.40 hrs, Volume=	0.480 af
Outflow =	2.15 cfs @ 12.40 hrs, Volume=	0.480 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach West: West Abutters

Inflow Area =	1.235 ac,	7.21% Impervious, In	flow Depth > 0.60"	for 10-YR-Cornell event
Inflow =	0.63 cfs @	12.12 hrs, Volume=	0.062 af	
Outflow =	0.63 cfs @	12.12 hrs, Volume=	0.062 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond Pre Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow De	epth > 4.24" for 10-YR-Cornell event
Inflow =	1.12 cfs @ 12.07 hrs, Volume=	0.084 af
Outflow =	0.09 cfs @ 11.60 hrs, Volume=	0.081 af, Atten= 92%, Lag= 0.0 min
Discarded =	0.09 cfs @_ 11.60 hrs, Volume=	0.081 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 181.17' @ 13.06 hrs Surf.Area= 0.010 ac Storage= 0.033 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 114.8 min (849.4 - 734.6)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.083 af	8.00'D x 8.00'H Vertical Cone/Cylinderx 9
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	178.00' 8.2	270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 11.60 hrs HW=178.10' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.09 cfs)

Summary for Pond Pre existing Parking: Drywells

Inflow Area =	0.213 ac, 51.13% Impervious, Inflow D	epth > 2.23" for 10-YR-Cornell event
Inflow =	0.45 cfs @ 12.13 hrs, Volume=	0.040 af
Outflow =	0.54 cfs @ 12.11 hrs, Volume=	0.033 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.01 cfs @ 8.00 hrs, Volume=	0.012 af
Primary =	0.53 cfs $@$ 12.11 hrs, Volume=	0.021 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.06'@ 12.10 hrs Surf.Area= 0.001 ac Storage= 0.007 af

Plug-Flow detention time= 72.0 min calculated for 0.033 af (83% of inflow) Center-of-Mass det. time= 21.6 min (765.1 - 743.5)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.007 af	8.00'D x 6.00'H Vertical Cone/Cylinder
Device	Routing	Invert Ou	itlet Devices
#1 #2	Discarded Primary		270 in/hr Exfiltration over Surface area 0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.01 cfs @ 8.00 hrs HW=178.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.51 cfs @ 12.11 hrs HW=186.04' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Orifice Controls 0.51 cfs @ 2.60 fps)

16011 Pre-Post Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solu	Type III 24-hr 25-YR Cornell Rainfall=6.00" Printed 6/26/2016 tions LLC Page 20
Time span=5.00-20.00 hrs, dt=0 Runoff by SCS TR-20 method, UI Reach routing by Dyn-Stor-Ind method - Pon	H=SCS, Weighted-Q
	6,941 sf 7.80% Impervious Runoff Depth>0.74" Tc=53.1 min CN=43 Runoff=2.27 cfs 0.530 af
	363 sf 100.00% Impervious Runoff Depth>5.33" " Tc=5.0 min CN=98 Runoff=1.41 cfs 0.106 af
	,100 sf 19.87% Impervious Runoff Depth>1.31" Tc=22.9 min CN=49 Runoff=0.83 cfs 0.115 af
	,282 sf 51.13% Impervious Runoff Depth>2.91" " Tc=9.5 min CN=69 Runoff=0.56 cfs 0.052 af
	9,806 sf 2.91% Impervious Runoff Depth>0.72" Tc=12.8 min CN=42 Runoff=0.19 cfs 0.027 af
	3,991 sf 9.71% Impervious Runoff Depth>1.03" " Tc=7.9 min CN=45 Runoff=0.65 cfs 0.067 af
Reach Pre: Pre	Inflow=2.97 cfs 0.772 af Outflow=2.97 cfs 0.772 af
Reach Pre Front of Site: Pre Front of Site	Inflow=1.21 cfs 0.148 af Outflow=1.21 cfs 0.148 af
Reach South Wetlands: South Wetlands	Inflow=2.97 cfs 0.772 af Outflow=2.97 cfs 0.772 af
Reach West: West Abutters	Inflow=0.81 cfs 0.094 af Outflow=0.81 cfs 0.094 af
Pond Pre Existing House: Drywells Peak Elev=18	2.39' Storage=0.046 af Inflow=1.41 cfs 0.106 af Outflow=0.09 cfs 0.086 af
	6.12' Storage=0.007 af Inflow=0.56 cfs 0.052 af ary=0.58 cfs 0.033 af Outflow=0.58 cfs 0.045 af

Total Runoff Area = 11.398 acRunoff Volume = 0.897 afAverage Runoff Depth = 0.94"88.41% Pervious = 10.076 ac11.59% Impervious = 1.321 ac

Summary for Subcatchment Pre 1A: Pre 1A

Runoff = 2.27 cfs @ 12.81 hrs, Volume= 0.530 af, Depth> 0.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description				
	29,409	98	Paved park	ing, HSG A	N Contraction of the second seco		
	554	96	Gravel surfa	ace, HSG A	4		
3	828,021	39	>75% Gras	s cover, Go	bod, HSG A		
	18,957	30	Woods, Good, HSG A				
3	376,941	43	Weighted A	verage			
3	347,532	39	92.20% Pei	rvious Area	l		
	29,409	98 7.80% Impervious Area			а		
_							
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
53.1	885	0.0210	0.28		Lag/CN Method, Pre 1A		

Summary for Subcatchment Pre 1b: Pre 1b

Runoff = 1.41 cfs @ 12.07 hrs, Volume= 0.106 af, Depth> 5.	5.33"
--	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

Area (sf)	CN	Description		
10,363	98	Paved park	ing, HSG A	
0	96	Gravel surfa	ace, HSG A	N
0	39	>75% Gras	s cover, Go	ood, HSG A
0	30	Woods, Go	od, HSG A	
10,363	98	Weighted A	verage	
10,363	98	100.00% Im	npervious A	rea
Tc Length (min) (feet)	Slop (ft/ft		Capacity (cfs)	Description
0.1 25	0.300	0 2.90		Lag/CN Method, Pre 1b
0.1 25	Total,	Increased t	o minimum	Tc = 5.0 min

Summary for Subcatchment Pre 2a: Pre 2a

Runoff = 0.83 cfs @ 12.32 hrs, Volume= 0.115 af, Depth> 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

Type III 24-hr 25-YR Cornell Rainfall=6.00" Printed 6/26/2016

Page 22

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description				
	9,158	98	Paved park	ing, HSG A	Λ		
	0	96	Gravel surfa	ace, HSG A	A		
	30,230	39	>75% Gras	s cover, Go	bod, HSG A		
	6,712	30	Woods, Good, HSG A				
	46,100	49	Weighted A	verage			
	36,942	37	80.13% Per	vious Area			
	9,158	98	19.87% Imp	pervious Ar	ea		
Тс	Length	Slop		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft	:) (ft/sec)	(cfs)			
22.9	250	0.011	0 0.18		Lag/CN Method, Pre 2a		

Summary for Subcatchment Pre 2b: Pre 2b

Runoff = 0.56 cfs @ 12.13 hrs, Volume= 0.052 af, Depth> 2.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description				
	4,746	98	Paved park	ing, HSG A	A		
	0	96	Gravel surfa	ace, HSG A	4		
	4,536	39	>75% Gras	s cover, Go	bod, HSG A		
	0	30	Woods, Go	od, HSG A			
	9,282	69	Weighted A	verage			
	4,536	39	48.87% Pervious Area				
	4,746	98	51.13% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
9.5	150	0.0100	0.26		Lag/CN Method, Pre 2b		

Summary for Subcatchment Pre 3: Pre 3

Runoff = 0.19 cfs @ 12.20 hrs, Volume= 0.027 af, Depth> 0.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

Area (sf)	CN	Description
577	98	Paved parking, HSG A
1,015	96	Gravel surface, HSG A
15,608	39	>75% Grass cover, Good, HSG A
2,606	30	Woods, Good, HSG A
19,806	42	Weighted Average
19,229	41	97.09% Pervious Area
577	98	2.91% Impervious Area

16011 Pre-PostType III 24-hr25-YR Cornell RainfalPrepared by {enter your company name here}Printed 6/2HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPrinted 6/2								
Tc (min)								
12.8	181	0.0300	0.24		Lag/CN Method, Pre 3			
Summary for Subcatchment Pre 4: Pre 4								
Runoff	=	0.65 cfs	s@ 12.1	1 hrs, Volu	me= 0.067 af, Depth> 1.03"			
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"								

Area	(sf)	CN	Description				
3	,301	98	Paved park	ing, HSG A	\		
1	,823	96	Gravel surfa	ace, HSG A	A Contraction of the second seco		
20	,190	39	>75% Gras	s cover, Go	bod, HSG A		
8	,677	30	Woods, Good, HSG A				
33	,991	45	Weighted A	verage			
30	,690	40	90.29% Per	vious Area			
3	,301	98	9.71% Impe	ervious Area	а		
Tc L	ength	Slope		Capacity	Description		
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)			
7.9	216	0.0900	0.46		Lag/CN Method, Pre 4		

Summary for Reach Pre: Pre

Inflow Area =	11.398 ac, 11.59% Impervious, Inflow D	epth > 0.81" for 25-YR Cornell event
Inflow =	2.97 cfs @ 12.50 hrs, Volume=	0.772 af
Outflow =	2.97 cfs @ 12.50 hrs, Volume=	0.772 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Pre Front of Site: Pre Front of Site

Inflow Area =	1.271 ac, 25.11% Impervious, Inflow D	epth > 1.40" for 25-YR Cornell event
Inflow =	1.21 cfs @ 12.20 hrs, Volume=	0.148 af
Outflow =	1.21 cfs @ 12.20 hrs, Volume=	0.148 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach South Wetlands: South Wetlands

Inflow Area =	11.398 ac, 11.59% Impervious, Inflow D	epth > 0.81" for 25-YR Cornell event
Inflow =	2.97 cfs @ 12.50 hrs, Volume=	0.772 af
Outflow =	2.97 cfs @ 12.50 hrs, Volume=	0.772 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach West: West Abutters

Inflow Area	a =	1.235 ac,	7.21% Impervious, Inflow	Depth > 0.91"	for 25-YR Cornell event
Inflow	=	0.81 cfs @	12.12 hrs, Volume=	0.094 af	
Outflow	=	0.81 cfs @	12.12 hrs, Volume=	0.094 af, Att	en= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond Pre Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow Dep	oth > 5.33" for 25-YR Cornell event
Inflow =	1.41 cfs @ 12.07 hrs, Volume= (0.106 af
Outflow =	0.09 cfs @ 11.30 hrs, Volume= (0.086 af, Atten= 94%, Lag= 0.0 min
Discarded =	0.09 cfs @ 11.30 hrs, Volume= (0.086 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 182.39' @ 13.61 hrs Surf.Area= 0.010 ac Storage= 0.046 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 99.0 min (832.4 - 733.4)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.083 af	8.00'D x 8.00'H Vertical Cone/Cylinderx 9
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	178.00' 8.2	270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 11.30 hrs HW=178.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.09 cfs)

Summary for Pond Pre existing Parking: Drywells

Inflow Area =	0.213 ac, 51.13% Impervious, Inflow D	epth > 2.91" for 25-YR Cornell event
Inflow =	0.56 cfs @ 12.13 hrs, Volume=	0.052 af
Outflow =	0.58 cfs @ 12.11 hrs, Volume=	0.045 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.01 cfs @ 7.05 hrs, Volume=	0.012 af
Primary =	0.58 cfs @ 12.11 hrs, Volume=	0.033 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.12' @ 12.11 hrs Surf.Area= 0.001 ac Storage= 0.007 af

Plug-Flow detention time= 64.8 min calculated for 0.045 af (87% of inflow) Center-of-Mass det. time= 21.3 min (767.8 - 746.4)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.007 af	8.00'D x 6.00'H Vertical Cone/Cylinder
Device	Routing	Invert Ou	tlet Devices
#1	Discarded		70 in/hr Exfiltration over Surface area
#2	Primary	185.50' 6.0	"Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.01 cfs @ 7.05 hrs HW=178.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.55 cfs @ 12.11 hrs HW=186.09' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Orifice Controls 0.55 cfs @ 2.81 fps)

16011 Pre-Post Prepared by {enter your company name <u>HydroCAD® 10.00_s/n 01151_© 2013 HydroC</u>	
Runoff by SCS T	0-20.00 hrs, dt=0.05 hrs, 301 points ⁻ R-20 method, UH=SCS, Weighted-Q d method - Pond routing by Dyn-Stor-Ind method
SubcatchmentPre 1A: Pre 1A Flow Length=885'	Runoff Area=376,941 sf 7.80% Impervious Runoff Depth>1.65" Slope=0.0210 '/' Tc=53.1 min CN=43 Runoff=6.14 cfs 1.187 af
SubcatchmentPre 1b: Pre 1b Flow Length=25	Runoff Area=10,363 sf 100.00% Impervious Runoff Depth>7.60" 5' Slope=0.3000 '/' Tc=5.0 min CN=98 Runoff=2.00 cfs 0.151 af
SubcatchmentPre 2a: Pre 2a Flow Length=250'	Runoff Area=46,100 sf 19.87% Impervious Runoff Depth>2.36" Slope=0.0110 '/' Tc=22.9 min CN=49 Runoff=1.60 cfs 0.208 af
SubcatchmentPre 2b: Pre 2b Flow Length=150	Runoff Area=9,282 sf 51.13% Impervious Runoff Depth>4.48" V Slope=0.0100 '/' Tc=9.5 min CN=69 Runoff=0.89 cfs 0.079 af
SubcatchmentPre 3: Pre 3 Flow Length=181'	Runoff Area=19,806 sf 2.91% Impervious Runoff Depth>1.61" Slope=0.0300 '/' Tc=12.8 min CN=42 Runoff=0.56 cfs 0.061 af
SubcatchmentPre 4: Pre 4 Flow Length=216	Runoff Area=33,991 sf 9.71% Impervious Runoff Depth>1.97" Slope=0.0900 '/' Tc=7.9 min CN=45 Runoff=1.37 cfs 0.128 af
Reach Pre: Pre	Inflow=7.37 cfs 1.645 af Outflow=7.37 cfs 1.645 af
Reach Pre Front of Site: Pre Front of Site	Inflow=2.11 cfs 0.269 af Outflow=2.11 cfs 0.269 af
Reach South Wetlands: South Wetlands	Inflow=7.37 cfs 1.645 af Outflow=7.37 cfs 1.645 af
Reach West: West Abutters	Inflow=1.83 cfs 0.189 af Outflow=1.83 cfs 0.189 af
Pond Pre Existing House: Drywells	Peak Elev=185.36' Storage=0.076 af Inflow=2.00 cfs 0.151 af Outflow=0.09 cfs 0.093 af
Pond Pre existing Parking: Drywells	Peak Elev=186.63' Storage=0.007 af Inflow=0.89 cfs 0.079 af

Discarded=0.01 cfs 0.012 af Primary=0.89 cfs 0.061 af Outflow=0.90 cfs 0.073 af

Total Runoff Area = 11.398 acRunoff Volume = 1.815 afAverage Runoff Depth = 1.91"88.41% Pervious = 10.076 ac11.59% Impervious = 1.321 ac

Summary for Subcatchment Pre 1A: Pre 1A

Runoff = 6.14 cfs @ 12.81 hrs, Volume= 1.187 af, Depth> 1.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

A	rea (sf)	CN	Description				
	29,409	98	Paved park	ing, HSG A	N Contraction of the second seco		
	554	96	Gravel surface, HSG A				
3	828,021	39	>75% Grass cover, Good, HSG A				
	18,957	30	Woods, Good, HSG A				
3	376,941	43	Weighted Average				
3	347,532	39	92.20% Pei	rvious Area	l		
	29,409	98	7.80% Impervious Area				
_							
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
53.1	885	0.0210	0.28		Lag/CN Method, Pre 1A		

Summary for Subcatchment Pre 1b: Pre 1b

Runoff = 2.00 cfs @ 12.07 hrs, Volume= 0.151 af, Depth> 7.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Ar	ea (sf)	CN	Description					
	10,363	98	Paved park	ing, HSG A	N Contraction of the second seco			
	0	96	Gravel surface, HSG A					
	0	39	>75% Grass cover, Good, HSG A					
	0	30	Woods, Good, HSG A					
	10,363	98	Weighted A	verage				
	10,363	98	100.00% Im	npervious A	rea			
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.1	25	0.3000	2.90		Lag/CN Method, Pre 1b			
0.1	25	Total,	Increased t	o minimum	Tc = 5.0 min			

Summary for Subcatchment Pre 2a: Pre 2a

Runoff = 1.60 cfs @ 12.34 hrs, Volume= 0.208 af, Depth> 2.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Type III 24-hr 100-YR-Cornell Rainfall=8.50" Printed 6/26/2016

Page 28

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	9,158	98	Paved parking, HSG A					
	0	96	Gravel surface, HSG A					
	30,230	39	>75% Grass cover, Good, HSG A					
	6,712	30	Woods, Good, HSG A					
	46,100	49	Weighted A	verage				
	36,942	37	80.13% Per	vious Area	l			
	9,158	98	19.87% Imp	pervious Ar	ea			
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
22.9	250	0.0110	0.18		Lag/CN Method, Pre 2a			

Summary for Subcatchment Pre 2b: Pre 2b

	Runoff =	0.89 cfs @	12.14 hrs,	Volume=	0.079 af, Depth> 4.48"
--	----------	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

A	rea (sf)	CN	Description					
	4,746	98	Paved park	ing, HSG A	A			
	0	96	Gravel surface, HSG A					
	4,536	39	>75% Gras	s cover, Go	bod, HSG A			
	0	30	Woods, Good, HSG A					
	9,282	69	Weighted A	verage				
	4,536	39	48.87% Pe	rvious Area	1			
	4,746	98	51.13% Imp	pervious Ar	ea			
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
9.5	150	0.0100	0.26		Lag/CN Method, Pre 2b			

Summary for Subcatchment Pre 3: Pre 3

Runoff = 0.56 cfs @ 12.21 hrs, Volume= 0.061 af, Depth> 1.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Area (sf)	CN	Description	
577	98	Paved parking, HSG A	
1,015	96	Gravel surface, HSG A	
15,608	39	>75% Grass cover, Good, HSG A	
2,606	30	Voods, Good, HSG A	
19,806	42	Veighted Average	
19,229	41	97.09% Pervious Area	
577	98	2.91% Impervious Area	

	Prepared by {enter your company name here}Printed 6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 29						
HydroCA	D® 10.00	s/n 0115	1 © 2013 H	HydroCAD S	Software Solution	ns LLC	Page 29
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
12.8	181	0.0300	0.24		Lag/CN Met	hod, Pre 3	
			Summ	ary for S	ubcatchme	nt Pre 4: Pre 4	
Runoff	=	1.37 cf	s@ 12.1	2 hrs, Volu	ıme= C).128 af, Depth> 1.97"	
			hod, UH=S rnell Rainfa		nted-Q, Time S	span= 5.00-20.00 hrs, d	t= 0.05 hrs
Α	rea (sf)	CN E	Description				
	3,301			ing, HSG A			
	1,823			ace, HSG A			
	20,190						
		8,677 30 Woods, Good, HSG A					
	33,991		Weighted Average				
	30,690						
	3,301	98 9	0.71% Impe	ervious Are	a		
Тс	Length	Slope	Velocity	Capacity	Description		

Type III 24-hr 100-YR-Cornell Rainfall=8.50"

7.9	216	0.0900	0.46	x	Lag/CN Method, Pre 4	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
IC	Length	Siope	velocity	Capacity	Description	

16011 Pre-Post

Summary for Reach Pre: Pre

Inflow Area =	11.398 ac, 11.59% Impervious, Inflow	Depth > 1.73" for 100-YR-Cornell event
Inflow =	7.37 cfs @ 12.72 hrs, Volume=	1.645 af
Outflow =	7.37 cfs @ 12.72 hrs, Volume=	1.645 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Pre Front of Site: Pre Front of Site

Inflow Area =	1.271 ac, 25.11% Impervious, Inflow Depth > 2.54" for 100-YR-Cornell event
Inflow =	2.11 cfs @ 12.29 hrs, Volume= 0.269 af
Outflow =	2.11 cfs @ 12.29 hrs, Volume= 0.269 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach South Wetlands: South Wetlands

Inflow Area =	11.398 ac, 11.59% Impervious, Inflow Depth > 1.73"	for 100-YR-Cornell event
Inflow =	7.37 cfs @ 12.72 hrs, Volume= 1.645 af	
Outflow =	7.37 cfs @ 12.72 hrs, Volume= 1.645 af, Atte	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach West: West Abutters

Inflow Are	a =	1.235 ac,	7.21% Impervious, Inflow De	epth > 1.84" for 100-YR-Cornell event
Inflow	=	1.83 cfs @	12.14 hrs, Volume=	0.189 af
Outflow	=	1.83 cfs @	12.14 hrs, Volume=	0.189 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Pond Pre Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow Depth > 7.60" for 100-YR-Cornell event
Inflow =	2.00 cfs @ 12.07 hrs, Volume= 0.151 af
Outflow =	0.09 cfs @ 10.45 hrs, Volume= 0.093 af, Atten= 96%, Lag= 0.0 min
Discarded =	0.09 cfs @ 10.45 hrs, Volume= 0.093 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.36' @ 14.64 hrs Surf.Area= 0.010 ac Storage= 0.076 af

Plug-Flow detention time= 154.0 min calculated for 0.093 af (61% of inflow) Center-of-Mass det. time= 74.4 min (806.6 - 732.2)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.083 af	8.00'D x 8.00'H Vertical Cone/Cylinderx 9
Device	Routing	Invert Ou	itlet Devices
#1	Discarded	178.00' 8.2	270 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.09 cfs @ 10.45 hrs HW=178.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.09 cfs)

Summary for Pond Pre existing Parking: Drywells

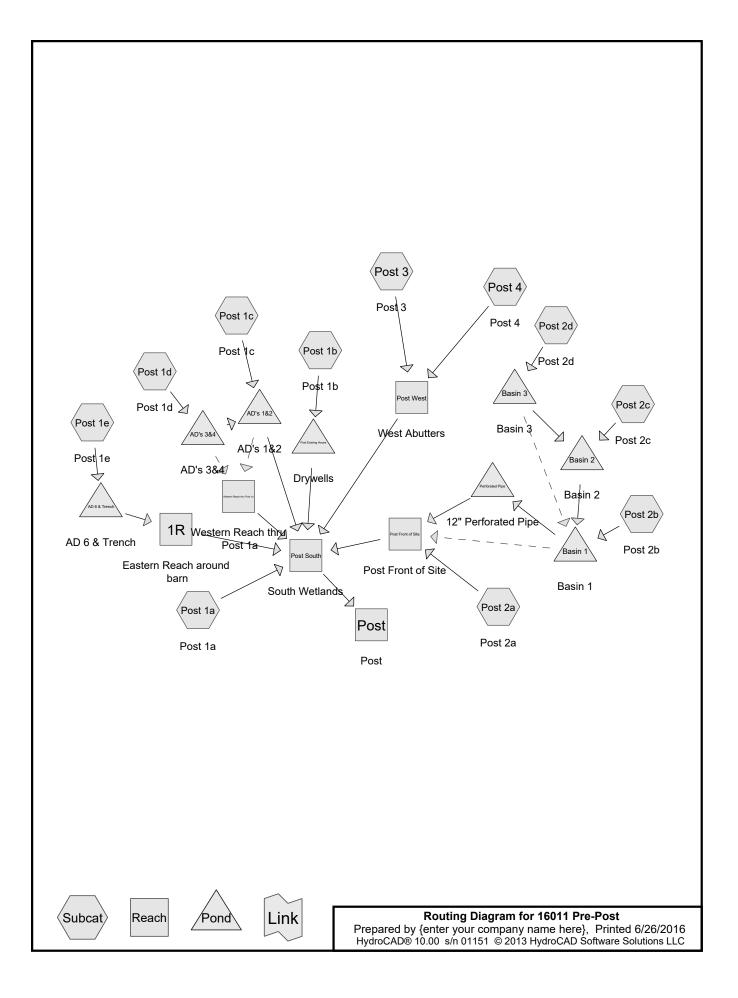
Inflow Area =	0.213 ac, 51.13% Impervious, Inflow D	epth > 4.48" for 100-YR-Cornell event
Inflow =	0.89 cfs @ 12.14 hrs, Volume=	0.079 af
Outflow =	0.90 cfs @ 12.12 hrs, Volume=	0.073 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.01 cfs @ 5.40 hrs, Volume=	0.012 af
Primary =	0.89 cfs @ 12.12 hrs, Volume=	0.061 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.63' @ 12.12 hrs Surf.Area= 0.001 ac Storage= 0.007 af

Plug-Flow detention time= 51.8 min calculated for 0.072 af (91% of inflow) Center-of-Mass det. time= 21.1 min (771.9 - 750.8)

Volume	Invert	Avail.Storage	Storage Description
#1	178.00'	0.007 af	8.00'D x 6.00'H Vertical Cone/Cylinder
Device	Routing	Invert Ou	itlet Devices
#1 #2	Discarded Primary		270 in/hr Exfiltration over Surface area "Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=0.01 cfs @ 5.40 hrs HW=178.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)


Primary OutFlow Max=0.86 cfs @ 12.12 hrs HW=186.58' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Orifice Controls 0.86 cfs @ 4.38 fps)

APPENDIX D

Post-development Calculations

Carroll School Waltham Road Wayland, Massachusetts

Oak Consulting Group, LLC Project 16011

16011 Pre-Post	Тур
Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions L	LC

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 1a: Post 1a	Runoff Area=168,490 sf 3.95% Impervious Runoff Depth>0.03"
Flow Length=408'	Slope=0.0210 '/' Tc=30.2 min CN=41 Runoff=0.08 cfs 0.010 af
SubcatchmentPost 1b: Post 1b	Runoff Area=10,363 sf 100.00% Impervious Runoff Depth>0.75"
Flow Length=25	' Slope=0.3000 '/' Tc=5.0 min CN=98 Runoff=0.21 cfs 0.015 af
SubcatchmentPost 1c: Post 1c	Runoff Area=96,215 sf 8.76% Impervious Runoff Depth>0.07"
Flow Length=507'	Slope=0.0330 '/' Tc=26.4 min CN=44 Runoff=0.10 cfs 0.012 af
SubcatchmentPost 1d: Post 1d	Runoff Area=37,714 sf 3.16% Impervious Runoff Depth>0.02"
Flow Length=199'	Slope=0.0120 '/' Tc=22.5 min CN=41 Runoff=0.02 cfs 0.002 af
SubcatchmentPost 1e: Post 1e	Runoff Area=74,143 sf 14.39% Impervious Runoff Depth>0.11"
Flow Length=216'	Slope=0.0120 '/' Tc=20.5 min CN=47 Runoff=0.15 cfs 0.015 af
SubcatchmentPost 2a: Post 2a	Runoff Area=18,911 sf 43.46% Impervious Runoff Depth>0.32"
Flow Length=198'	Slope=0.0170 '/' Tc=10.4 min CN=64 Runoff=0.14 cfs 0.012 af
SubcatchmentPost 2b: Post 2b	Runoff Area=19,943 sf 33.14% Impervious Runoff Depth>0.25"
Flow Length=200'	Slope=0.0200 '/' Tc=11.6 min CN=57 Runoff=0.11 cfs 0.009 af
SubcatchmentPost 2c: Post 2c	Runoff Area=17,310 sf 45.70% Impervious Runoff Depth>0.34"
Flow Length=102'	'Slope=0.0150 '/' Tc=6.4 min CN=65 Runoff=0.16 cfs 0.011 af
SubcatchmentPost 2d: Post 2d	Runoff Area=15,537 sf 68.69% Impervious Runoff Depth>0.51"
Flow Length=204'	'Slope=0.0150 '/' Tc=7.3 min CN=80 Runoff=0.21 cfs 0.015 af
SubcatchmentPost 3: Post 3	Runoff Area=10,681 sf 23.03% Impervious Runoff Depth>0.17"
Flow Length=174'	Slope=0.0200 '/' Tc=12.1 min CN=51 Runoff=0.04 cfs 0.004 af
SubcatchmentPost 4: Post 4	Runoff Area=27,176 sf 11.78% Impervious Runoff Depth>0.09"
Flow Length=201'	'Slope=0.0900 '/' Tc=7.8 min CN=43 Runoff=0.06 cfs 0.005 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af 67.0' S=0.0299 '/' Capacity=35.30 cfs Outflow=0.00 cfs 0.000 af
Reach Post: Post	Inflow=0.29 cfs 0.030 af Outflow=0.29 cfs 0.030 af
Reach Post Front of Site: Post Front of Site	te Inflow=0.14 cfs 0.012 af Outflow=0.14 cfs 0.012 af
Reach Post South: South Wetlands	Inflow=0.29 cfs 0.030 af Outflow=0.29 cfs 0.030 af
Reach Post West: West Abutters	Inflow=0.10 cfs 0.008 af Outflow=0.10 cfs 0.008 af

16011 Pre-PostType III 24-hr1" Storm Rainfall=1.00"Prepared by {enter your company name here}Printed 6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 3
Reach Western Reach thru Post 1a: Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.035 L=269.0' S=0.0223 '/' Capacity=60.96 cfs Outflow=0.00 cfs 0.000 af
Pond AD 6 & Trench: AD 6 & TrenchPeak Elev=177.50' Storage=0 cf Inflow=0.15 cfs 0.015 afDiscarded=0.15 cfs 0.015 afSecondary=0.00 cfs 0.000 afOutflow=0.15 cfs 0.015 af
Pond AD's 1&2: AD's 1&2 Peak Elev=177.50' Storage=0 cf Inflow=0.10 cfs 0.012 af Discarded=0.10 cfs 0.012 af Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.10 cfs 0.012 af
Pond AD's 3&4: AD's 3&4 Peak Elev=177.40' Storage=0 cf Inflow=0.02 cfs 0.002 af Discarded=0.02 cfs 0.002 af Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.002 af
Pond Basin 1: Basin 1Peak Elev=184.05' Storage=20 cf Inflow=0.11 cfs 0.009 afDiscarded=0.08 cfs 0.009 afPrimary=0.00 cfs 0.000 afSecondary=0.00 cfs 0.000 afOutflow=0.08 cfs 0.009 af
Pond Basin 2: Basin 2Peak Elev=185.01' Storage=6 cf Inflow=0.16 cfs 0.011 afDiscarded=0.13 cfs 0.011 afPrimary=0.00 cfs 0.000 afSecondary=0.00 cfs 0.000 afOutflow=0.13 cfs 0.011 af
Pond Basin 3: Basin 3Peak Elev=185.62' Storage=59 cf Inflow=0.21 cfs 0.015 afDiscarded=0.12 cfs 0.015 afPrimary=0.00 cfs 0.000 afSecondary=0.00 cfs 0.000 afOutflow=0.12 cfs 0.015 af
Pond Perforated Pipe:12" Perforated PipePeak Elev=181.50'Storage=0 cfInflow=0.00 cfs0.000 afDiscarded=0.00 cfs0.000 afSecondary=0.00 cfs0.000 afOutflow=0.00 cfs0.000 af
Pond Post Existing House: DrywellsPeak Elev=178.16' Storage=0.002 af Inflow=0.21 cfs 0.015 afDiscarded=0.09 cfs0.015 af Primary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.015 af
Total Runoff Area = 11.398 ac Runoff Volume = 0.110 af Average Runoff Depth = 0.12" 84.62% Pervious = 9.644 ac 15.38% Impervious = 1.753 ac

Summary for Subcatchment Post 1a: Post 1a

Runoff = 0.08 cfs @ 12.40 hrs, Volume= 0.010 af, Depth> 0.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

A	rea (sf)	CN	Description				
	6,649	98	Paved park	ing, HSG A	\		
554 96			Gravel surfa	ace, HSG A	A		
1	146,589	39	>75% Gras	s cover, Go	bod, HSG A		
	14,698	30	Woods, Go	od, HSG A			
1	168,490	41	Weighted Average				
1	161,841	38	96.05% Pervious Area				
	6,649	98	3.95% Impervious Area				
_		~		• •	-		
Tc	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
30.2	408	0.0210	0.23		Lag/CN Method, Post 1a		

Summary for Subcatchment Post 1b: Post 1b

Runoff = 0.21 cfs @ 12.07 hrs, Volume= 0.015 af, Depth> 0.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

A	rea (sf)	CN	Description				
	10,363	98	Paved park	ing, HSG A			
	0	96	Gravel surfa	ace, HSG A	N .		
	0	39	>75% Gras	s cover, Go	ood, HSG A		
	0	30	Woods, Go	od, HSG A			
	10,363	98	98 Weighted Average				
	10,363	98	100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
0.1	25	0.300	2.90		Lag/CN Method, Post 1b		
0.1	25	Total,	Increased t	to minimum	Tc = 5.0 min		

Summary for Subcatchment Post 1c: Post 1c

Runoff = 0.10 cfs @ 12.35 hrs, Volume= 0.012 af, Depth> 0.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

 Type III 24-hr
 1" Storm Rainfall=1.00"

 Printed
 6/26/2016

 LC
 Page 5

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	8,429	98	Paved park	Paved parking, HSG A				
	0	96	Gravel surfa	ace, HSG A	4			
	87,097	39	>75% Gras	s cover, Go	bod, HSG A			
	689	30	Woods, Go	od, HSG A				
	96,215	44	Weighted Average					
	87,786	39	91.24% Pervious Area					
	8,429	98	8.76% Impervious Area					
Тс	Length	Slope	e Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
26.4	507	0.0330	0.32		Lag/CN Method, Post c			

Summary for Subcatchment Post 1d: Post 1d

Runoff = 0.02 cfs @ 12.30 hrs, Volume= 0.002 af, Depth> 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

vrea (sf)	CN	Description				
1,190	98	Paved park	ing, HSG A	N Contraction of the second seco		
0	96	Gravel surfa	ace, HSG A	4		
36,524	39	>75% Gras	s cover, Go	bod, HSG A		
0	30	Woods, Go	od, HSG A			
37,714	41	Weighted Average				
36,524	39	96.84% Pei	vious Area	l		
1,190	98	3.16% Impervious Area				
Length (feet)	•	•	Capacity (cfs)	Description		
199	0.0120	0.15		Lag/CN Method, Post 1d		
	1,190 0 36,524 0 37,714 36,524 1,190 Length (feet)	1,190 98 0 96 36,524 39 0 30 37,714 41 36,524 39 1,190 98 Length Slope (feet) (ft/ft)	1,190 98 Paved park 0 96 Gravel surfa 36,524 39 >75% 0 30 Woods, Goods,	1,19098Paved parking, HSG A096Gravel surface, HSG A36,52439>75% Grass cover, Go030Woods, Good, HSG A37,71441Weighted Average36,5243996.84% Pervious Area1,190983.16% Impervious AreaLengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)		

Summary for Subcatchment Post 1e: Post 1e

Runoff = 0.15 cfs @ 12.27 hrs, Volume= 0.015 af, Depth> 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Area (sf)	CN	Description					
10,669	98	Paved parking, HSG A					
0	96	Gravel surface, HSG A					
63,474	39	>75% Grass cover, Good, HSG A					
0	30	Woods, Good, HSG A					
74,143	47	Weighted Average					
63,474	39	85.61% Pervious Area					
10,669	98	14.39% Impervious Area					

16011 Pre-Post	Type III 24-hr	1" Storm Rainfall=1.00"
Prepared by {enter your company name here}		Printed 6/26/2016
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutio	ns LLC	Page 6
		-

					Description
(min)	(feet)	(π/π)	(ft/sec)	(cfs)	
20.5	216	0.0120	0.18		Lag/CN Method, Post 1e

Summary for Subcatchment Post 2a: Post 2a

0.14 cfs @ 12.14 hrs, Volume= 0.012 af, Depth> 0.32" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Area (sf)
8,219
0
8,852
1,840
18,911
10,692
8,219
-
U U
(min) (feet)
10.4 198
8,852 1,840 18,911 10,692 8,219 Tc Length (min) (feet)

Summary for Subcatchment Post 2b: Post 2b

0.11 cfs @ 12.16 hrs, Volume= 0.009 af, Depth> 0.25" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

A	rea (sf)	CN	Description				
	6,610	98	Paved park	ing, HSG A	\		
	0	96	Gravel surfa	ace, HSG A	A		
	10,148	39 :	>75% Gras	s cover, Go	bod, HSG A		
	3,185	30	Woods, Go	od, HSG A			
	19,943	57	Weighted Average				
	13,333	37	66.86% Pervious Area				
	6,610	98	33.14% Impervious Area				
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
11.6	200	0.0200	0.29		Lag/CN Method, Post 2b		

Summary for Subcatchment Post 2c: Post 2c

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.011 af, Depth> 0.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Ar	ea (sf)	CN	Description		
	7,910	98	Paved park	ing, HSG A	N Contraction of the second seco
	0	96	Gravel surfa	ace, HSG A	4
	6,910	39	>75% Gras	s cover, Go	bod, HSG A
	2,490	30	Woods, Go	od, HSG A	
	17,310	65	Weighted A	verage	
	9,400	37	54.30% Pe	rvious Area	l
	7,910	98	45.70% Imp	pervious Ar	ea
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.4	102	0.0150	0.27		Lag/CN Method, Post 2c

Summary for Subcatchment Post 2d: Post 2d

Runoff = 0.21 cfs @ 12.10 hrs, Volume= 0.015 af, Depth> 0.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

A	rea (sf)	CN	Description				
	10,672	98	Paved park	ing, HSG A	A Contraction of the second se		
	0	96	Gravel surfa	ace, HSG A	4		
	4,865	39	>75% Gras	s cover, Go	bod, HSG A		
	0	30	Woods, Go	od, HSG A			
	15,537	80	80 Weighted Average				
	4,865	39	31.31% Pervious Area				
	10,672	98	68.69% Imp	pervious Ar	ea		
Тс	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
7.3	204	0.015	0.47		Lag/CN Method, Post 2d		

Summary for Subcatchment Post 3: Post 3

Runoff = 0.04 cfs @ 12.16 hrs, Volume= 0.004 af, Depth> 0.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Type III 24-hr 1" Storm Rainfall=1.00" Printed 6/26/2016 LC Page 8

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Α	rea (sf)	CN	Description				
	2,460	98	Paved park	ing, HSG A	N		
	0	96	Gravel surfa	ace, HSG A	A		
	6,420	39	>75% Gras	s cover, Go	bod, HSG A		
	1,801	30	Woods, Go	od, HSG A			
	10,681	51	51 Weighted Average				
	8,221	37	76.97% Pervious Area				
	2,460	98	23.03% Imp	pervious Ar	ea		
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
12.1	174	0.0200	0.24		Lag/CN Method, Post 3		

Summary for Subcatchment Post 4: Post 4

Runoff = 0.06 cfs @ 12.11 hrs, Volume= 0.005 af, Depth> 0.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 1" Storm Rainfall=1.00"

Area (sf)	CN	Description				
3,200	98	Paved parking, HSG A				
0	96	Gravel surface, HSG A				
15,762	39	>75% Grass cover, Good, HSG A				
8,214	30	Woods, Good, HSG A				
27,176	43	Weighted Average				
23,976	36	88.22% Pervious Area				
3,200	98	11.78% Impervious Area				
Tc Length						
(min) (feet)	(ft/	ft) (ft/sec) (cfs)				

7.8 201 0.0900 0.43

Lag/CN Method, Post 4

Summary for Reach 1R: Eastern Reach around barn

Inflow Area =	1.702 ac, 14.39% Impervious, Infl	low Depth = 0.00" for 1" Storm event
Inflow =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Outflow =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 5.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 10.0 sf, Capacity= 35.30 cfs

16011 Pre-PostType III 24Prepared by {enter your company name here}HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

30.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 167.0' Slope= 0.0299 '/' Inlet Invert= 180.00', Outlet Invert= 175.00'

Summary for Reach Post: Post

Inflow Area =	11.398 ac, 15.38% Impervious, Inflow D	Depth > 0.03" for 1" Storm event
Inflow =	0.29 cfs @ 12.15 hrs, Volume=	0.030 af
Outflow =	0.29 cfs @ 12.15 hrs, Volume=	0.030 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post Front of Site: Post Front of Site

Inflow Are	a =	1.646 ac, 46.60% Impervious, Inflow Depth > 0.09" for 1" Storm event	
Inflow	=	0.14 cfs @ 12.14 hrs, Volume= 0.012 af	
Outflow	=	0.14 cfs @ 12.14 hrs, Volume= 0.012 af, Atten= 0%, Lag= 0.0 mi	in

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post South: South Wetlands

Inflow Area	a =	11.398 ac, 15.38% Impervious, Inflow Depth > 0.03" for 1" Storm even	nt
Inflow	=	0.29 cfs @ 12.15 hrs, Volume= 0.030 af	
Outflow	=	0.29 cfs @ 12.15 hrs, Volume= 0.030 af, Atten= 0%, Lag= 0.0 r	min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post West: West Abutters

Inflow Area	a =	0.869 ac, 14.95% Impervious, Inflow Depth > 0.11" for 1" St	torm event
Inflow	=	0.10 cfs @ 12.13 hrs, Volume= 0.008 af	
Outflow	=	0.10 cfs @ 12.13 hrs, Volume= 0.008 af, Atten= 0%, L	_ag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Western Reach thru Post 1a: Western Reach thru Post 1a

Inflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min

16011 Pre-Post Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Type III 24-hr 1" Storm Rainfall=1.00" Printed 6/26/2016 LC Page 10

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 5.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 20.0 sf, Capacity= 60.96 cfs

60.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 269.0' Slope= 0.0223 '/' Inlet Invert= 181.00', Outlet Invert= 175.00'

Summary for Pond AD 6 & Trench: AD 6 & Trench

Inflow Area =	1.702 ac, 14.39% Impervious, Inflow De	epth > 0.11" for 1" Storm event
Inflow =	0.15 cfs @ 12.27 hrs, Volume=	0.015 af
Outflow =	0.15 cfs @ 12.27 hrs, Volume=	0.015 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.15 cfs @ 12.27 hrs, Volume=	0.015 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 177.50' @ 12.27 hrs Surf.Area= 1,200 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (770.1 - 770.1)

Volume	Invert A	vail.Storage	Storage Description
#1	178.50'	322 cf	
#2	179.00'	636 cf	1,440 cf Overall - 636 cf Embedded = 804 cf x 40.0% Voids 18.0" Round Pipe Storage Inside #1
#3	178.00'	1,060 cf	L= 360.0' 18.0" Round Pipe Storage Inside #4 L= 600.0'
#4	177.50'	776 cf	Custom Stage Data (Prismatic) Listed below (Recalc) 3,000 cf Overall - 1,060 cf Embedded = 1,940 cf x 40.0% Voids
		2,794 cf	Total Available Storage
Elevation	Surf.Are		c.Store Cum.Store

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
178.50 180.50	720	0 1.440	0

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
177.5	50	1,200	0	0	
180.0	00	1,200	3,000	3,000	
Device #1 #2	Routing Discarded Secondary	Invert 177.50' 180.30'	Head (feet) 0.2 2.50 3.00	0' breadth Br 0 0.40 0.60 2.69 2.72 2.	Surface area oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.23 cfs @ 12.27 hrs HW=177.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.23 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=180.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 1&2: AD's 1&2

Inflow Area =	3.075 ac,	7.18% Impervious, Inflow D	Depth > 0.05" for 1" Storm event
Inflow =	0.10 cfs @	12.35 hrs, Volume=	0.012 af
Outflow =	0.10 cfs @	12.35 hrs, Volume=	0.012 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.10 cfs @	12.35 hrs, Volume=	0.012 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 177.50' @ 12.35 hrs Surf.Area= 985 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (774.8 - 774.8)

Volume	Invert A	vail.Storage	Storage	Description
#1	178.00'	141 cf		ound Pipe Storage
#2	177.50'	288 cf		, Stage Data (Prismatic) Listed below (Recalc) verall_x 40.0% Voids
#3	178.00'	2 cf	1.00'D x	2.60'H Vertical Cone/Cylinder
#4	180.60'	618 cf	Custom	Stage Data (Prismatic) Listed below (Recalc)
#5	178.00'	442 cf	18.0" R	ound Pipe Storage
			L= 250.0	
#6	177.50'	500 cf	Custom	Stage Data (Prismatic)Listed below (Recalc)
			1,250 cf	Overall x 40.0% Voids
		1,991 cf	Total Ava	ailable Storage
Elevation (feet)	Surf.Are (sq-1		.Store c-feet)	Cum.Store (cubic-feet)
177.50	36	60	0	0
179.50	36	50	720	720

Prepared by {enter your c	ompany name here}
HydroCAD® 10.00 s/n 01151	© 2013 HydroCAD Software Solutions LL

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
180.60	10	0	0
181.10	2,462	618	618
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
177.50	625	0	0
179.50	625	1,250	1,250

Device	Routing	Invert	Outlet Devices
#1	Discarded	177.50'	8.270 in/hr Exfiltration over Surface area
#2	Primary	178.75'	6.0" Vert. Orifice/Grate C= 0.600
#3	Secondary	180.90'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32

Discarded OutFlow Max=0.19 cfs @ 12.35 hrs HW=177.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.19 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=0.00' (Dynamic Tailwater) 2=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=181.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 3&4: AD's 3&4

Inflow Area =	0.866 ac,	3.16% Impervious, Inflow D	epth > 0.02" for 1" Storm event
Inflow =	0.02 cfs @	12.30 hrs, Volume=	0.002 af
Outflow =	0.02 cfs @	12.30 hrs, Volume=	0.002 af, Atten= 0%, Lag= 0.1 min
Discarded =	0.02 cfs @	12.30 hrs, Volume=	0.002 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 177.40' @ 12.30 hrs Surf.Area= 92 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Type III 24-hr 1" Storm Rainfall=1.00" Printed 6/26/2016 LC Page 13

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stor	age S	Storage D	escription	
#1	177.90'	3			und Pipe Stor	rage
#2	177.40'	7	4 cf (t age Data (Pr erall_x 40.0% '	rismatic) Listed below (Recalc) Voids
#3	180.60'	39				ismatic) Listed below (Recalc)
		50	7 cf 1	Fotal Avail	able Storage	
Elevatio (feet	t)	rf.Area <u>(sq-ft)</u> 92	Inc.S (cubic-1		Cum.Store (cubic-feet) 0	
177.4	-	92 92		184	184	
175.4	0	32		104	104	
Elevatio	n Su	rf.Area		Store	Cum.Store	
(feet	t)	(sq-ft)	(cubic-	feet)	(cubic-feet)	
180.6	0	10		0	0	
181.1	0	1,579		397	397	
Device #1 #2	Routing Discarded Primary	Invert 177.40' 178.40'	8.270		Itration over	
#2 #3	Secondary	180.90'	5.0' lo Head 2.50 & Coef.	ong x 1.0' (feet) 0.2 3.00	breadth Broadth Broadt	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.02 cfs @ 12.30 hrs HW=177.40' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.40' TW=177.50' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.40' TW=181.00' (Dynamic Tailwater) —3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 1: Basin 1

Inflow Area =	1.212 ac, 47.72% Impervious, Inflow D	Depth > 0.09" for 1" Storm event
Inflow =	0.11 cfs @ 12.16 hrs, Volume=	0.009 af
Outflow =	0.08 cfs @ 12.29 hrs, Volume=	0.009 af, Atten= 30%, Lag= 7.9 min
Discarded =	0.08 cfs @ 12.29 hrs, Volume=	0.009 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.05' @ 12.29 hrs Surf.Area= 409 sf Storage= 20 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.0 min (764.0 - 763.0)

Type III 24-hr 1" Storm Rainfall=1.00" Printed 6/26/2016 LC Page 14

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stor	age Storage	Description	
#1	184.00'	1,62	8 cf Custom	n Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio (fee 184.0 185.5	et) 00	rf.Area <u>(sq-ft)</u> 359 1,811	Inc.Store (cubic-feet) 0 1,628	Cum.Store (cubic-feet) 0 1,628	
Device	Routing	Invert	Outlet Device	s	
#1	Discarded	184.00'	8.270 in/hr E	xfiltration over	Surface area
#2	Primary	184.75'	6.0" Vert. Or	ifice/Grate C=	0.600
#3	Secondary	185.30'	30.0' long x	1.0' breadth Bre	oad-Crested Rectangular Weir
	,		•		0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
				,	75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.08 cfs @ 12.29 hrs HW=184.05' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=184.00' TW=181.50' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=184.00' TW=0.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 2: Basin 2

Inflow Area =	0.754 ac, 56.57% Impervious, Inflow D	epth > 0.18" for 1" Storm event
Inflow =	0.16 cfs @ 12.09 hrs, Volume=	0.011 af
Outflow =	0.13 cfs @ 12.15 hrs, Volume=	0.011 af, Atten= 15%, Lag= 3.4 min
Discarded =	0.13 cfs @ 12.15 hrs, Volume=	0.011 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.01' @ 12.14 hrs Surf.Area= 696 sf Storage= 6 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.5 min (759.4 - 758.9)

Volume	Invert	Avail.Storage		Storage	e Description	
#1	185.00'	1,874 cf		Custon	Custom Stage Data (Prismatic)Listed below (Recalc)	
Elevation (feet)		.Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
185.00 186.25		685 2,313		0 1,874	0 1,874	

Prepared by {enter your company name here}

Type III 24-hr 1" Storm Rainfall=1.00" Printed 6/26/2016 HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC Page 15

Device	Routing	Invert	Outlet Devices
#1	Discarded		8.270 in/hr Exfiltration over Surface area
#2	Primary	186.00'	6.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Secondary	186.20'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.13 cfs @ 12.15 hrs HW=185.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 3: Basin 3

Inflow Area =	0.357 ac, 68.69% Impervious, Inflow De	epth > 0.51" for 1" Storm event
Inflow =	0.21 cfs @ 12.10 hrs, Volume=	0.015 af
Outflow =	0.12 cfs @ 12.23 hrs, Volume=	0.015 af, Atten= 41%, Lag= 7.9 min
Discarded =	0.12 cfs @ 12.23 hrs, Volume=	0.015 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.62' @ 12.23 hrs Surf.Area= 634 sf Storage= 59 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 2.3 min (761.8 - 759.6)

Volume	Invert	Avail.Stor	rage Storage	Description	
#1	185.50'	5,93	9 cf Custom	Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
185.5	1	377	0	0	
186.5	51	2,605	1,506	1,506	
187.3	30	8,618	4,433	5,939	
Device	Routing	Invert	Outlet Device	2S	
#1	Primary	186.50'	8.0" Horiz. O	rifice/Grate C= 0.600 Limited to weir flow at low hea	ads
#2	Discarded	185.50'	8.270 in/hr E	xfiltration over Surface area	
#3	Secondary	187.25'		1.0' breadth Broad-Crested Rectangular Weir	
			· · ·	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00	
			2.50 3.00		
			`	h) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31	
			3.30 3.31 3.3	32	

Discarded OutFlow Max=0.12 cfs @ 12.23 hrs HW=185.62' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=185.00' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Perforated Pipe: 12" Perforated Pipe

Inflow Area =	1.212 ac, 4	7.72% Impervious, Inflow D	epth = 0.00"	for 1" Storm event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min
Discarded =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 181.50' @ 5.00 hrs Surf.Area= 361 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avail.Stor	age S	Storage De	scription	
#1	182.00'	141 cf			nd Pipe Stor	age Inside #2
#2	181.50'	231 cf				i smatic) Listed below (Recalc) nbedded = 579 cf x 40.0% Voids
#3	181.50'					Cone/Cylinder
		37	'6 cf 🛛	Fotal Availa	ble Storage	
Elevatio (fee 181.5 183.5	t) i0	rf.Area (sq-ft) 360 360	Inc.S <u>(cubic-</u>		Cum.Store (<u>cubic-feet)</u> 0 720	
Device	Routing	Invert	Outlet	Devices		
#1 #2	Discarded Secondary	181.50' 185.20'	40.0' I Head 2.50 Coef.	l ong x 1.0' (feet) 0.20 3.00	breadth Bro 0.40 0.60 (Surface area bad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=181.50' (Free Discharge) **1=Exfiltration** (Passes 0.00 cfs of 0.07 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=181.50' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Post Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow De	epth > 0.75" for 1" Storm event
Inflow =	0.21 cfs @ 12.07 hrs, Volume=	0.015 af
Outflow =	0.09 cfs @ 12.10 hrs, Volume=	0.015 af, Atten= 59%, Lag= 1.7 min
Discarded =	0.09 cfs @ 12.10 hrs, Volume=	0.015 af
Primary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 178.16' @ 12.28 hrs Surf.Area= 0.010 ac Storage= 0.002 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 3.5 min (761.2 - 757.8)

Volume	Invert	Avail.Stora	ge Storage Description				
#1	178.00'	0.083	af 8.00'D x 8.00'H Vertical Cone/Cylinderx 9				
Device	Routing	Invert	Outlet Devices				
#1	Discarded	178.00'	8.270 in/hr Exfiltration over Surface area				
#2	Primary	186.00'	12.0" Vert. Orifice/Grate C= 0.600				
Discarded OutFlow Max=0.09 cfs @ 12.10 hrs HW=178.10' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.09 cfs)							

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=178.00' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Controls 0.00 cfs)

16011 Pre-Post	Type III 24-hr 2-YR Cornell Rainfall=3.20"
Prepared by {enter your company name here}	Printed 6/26/2016
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solut	tions LLC Page 18

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 1a: Post 1a	Runoff Area=168,490 sf 3.95% Impervious Runoff Depth>0.12"
Flow Length=408	Slope=0.0210 '/' Tc=30.2 min CN=41 Runoff=0.29 cfs 0.038 af
SubcatchmentPost 1b: Post 1b	Runoff Area=10,363 sf 100.00% Impervious Runoff Depth>2.77"
Flow Length=2	5' Slope=0.3000 '/' Tc=5.0 min CN=98 Runoff=0.74 cfs 0.055 af
SubcatchmentPost 1c: Post 1c	Runoff Area=96,215 sf 8.76% Impervious Runoff Depth>0.24"
Flow Length=507	Slope=0.0330 '/' Tc=26.4 min CN=44 Runoff=0.36 cfs 0.045 af
SubcatchmentPost 1d: Post 1d	Runoff Area=37,714 sf 3.16% Impervious Runoff Depth>0.09"
Flow Length=199	Slope=0.0120 '/' Tc=22.5 min CN=41 Runoff=0.05 cfs 0.006 af
SubcatchmentPost 1e: Post 1e	Runoff Area=74,143 sf 14.39% Impervious Runoff Depth>0.40"
Flow Length=216	Slope=0.0120 '/' Tc=20.5 min CN=47 Runoff=0.51 cfs 0.057 af
SubcatchmentPost 2a: Post 2a	Runoff Area=18,911 sf 43.46% Impervious Runoff Depth>1.21"
Flow Length=198	Slope=0.0170 '/' Tc=10.4 min CN=64 Runoff=0.50 cfs 0.044 af
SubcatchmentPost 2b: Post 2b	Runoff Area=19,943 sf 33.14% Impervious Runoff Depth>0.92"
Flow Length=200	Slope=0.0200 '/' Tc=11.6 min CN=57 Runoff=0.39 cfs 0.035 af
SubcatchmentPost 2c: Post 2c	Runoff Area=17,310 sf 45.70% Impervious Runoff Depth>1.27"
Flow Length=10	2' Slope=0.0150 '/' Tc=6.4 min CN=65 Runoff=0.55 cfs 0.042 af
SubcatchmentPost 2d: Post 2d	Runoff Area=15,537 sf 68.69% Impervious Runoff Depth>1.90"
Flow Length=204	4' Slope=0.0150 '/' Tc=7.3 min CN=80 Runoff=0.72 cfs 0.057 af
SubcatchmentPost 3: Post 3	Runoff Area=10,681 sf 23.03% Impervious Runoff Depth>0.64"
Flow Length=174	Slope=0.0200 '/' Tc=12.1 min CN=51 Runoff=0.14 cfs 0.013 af
SubcatchmentPost 4: Post 4	Runoff Area=27,176 sf 11.78% Impervious Runoff Depth>0.33"
Flow Length=20	1' Slope=0.0900 '/' Tc=7.8 min CN=43 Runoff=0.21 cfs 0.017 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af 167.0' S=0.0299 '/' Capacity=35.30 cfs Outflow=0.00 cfs 0.000 af
Reach Post: Post	Inflow=1.02 cfs 0.112 af Outflow=1.02 cfs 0.112 af
Reach Post Front of Site: Post Front of S	ite Inflow=0.50 cfs 0.044 af Outflow=0.50 cfs 0.044 af
Reach Post South: South Wetlands	Inflow=1.02 cfs 0.112 af Outflow=1.02 cfs 0.112 af
Reach Post West: West Abutters	Inflow=0.35 cfs 0.030 af Outflow=0.35 cfs 0.030 af

16011 Pre-Post Prepared by {enter your company name here} <u>HydroCAD® 10.00_s/n 01151_© 2013 HydroCAD Software Soluti</u>	Type III 24-hr 2-YR Cornell Rainfall=3.20"Printed 6/26/2016ons LLCPage 19
Reach Western Reach thru Post 1a: Avg. Flow Depth=0 n=0.035 L=269.0' S=0.0223 '/'	.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af Capacity=60.96 cfs Outflow=0.00 cfs 0.000 af
	78.15' Storage=345 cf Inflow=0.51 cfs 0.057 af ry=0.00 cfs 0.000 af Outflow=0.23 cfs 0.057 af
Pond AD's 1&2: AD's 1&2Peak Elev=1Discarded=0.22 cfs0.045 afPrimary=0.00 cfs0.000 afSeconda	78.03' Storage=215 cf Inflow=0.36 cfs 0.045 af ry=0.00 cfs 0.000 af Outflow=0.22 cfs 0.045 af
Pond AD's 3&4: AD's 3&4Peak Elev=Discarded=0.03 cfs0.006 afPrimary=0.00 cfs0.000 afSeconda	178.29' Storage=46 cf Inflow=0.05 cfs 0.006 af ry=0.00 cfs 0.000 af Outflow=0.03 cfs 0.006 af
Pond Basin 1: Basin 1Peak Elev=1Discarded=0.16 cfs0.035 afPrimary=0.00 cfs0.000 afSeconda	84.49' Storage=292 cf Inflow=0.39 cfs 0.035 af ry=0.00 cfs 0.000 af Outflow=0.16 cfs 0.035 af
Pond Basin 2: Basin 2Peak Elev=1Discarded=0.21 cfs0.042 afPrimary=0.00 cfs0.000 afSeconda	85.32' Storage=288 cf Inflow=0.55 cfs 0.042 af ry=0.00 cfs 0.000 af Outflow=0.21 cfs 0.042 af
Pond Basin 3: Basin 3Peak Elev=1Discarded=0.29 cfs0.057 afPrimary=0.00 cfs0.000 afSeconda	86.01' Storage=473 cf Inflow=0.72 cfs 0.057 af ry=0.00 cfs 0.000 af Outflow=0.29 cfs 0.057 af
Discarded=0.00 cfs 0.000 af Seconda	=181.50' Storage=0 cf Inflow=0.00 cfs 0.000 af ry=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Discarded=0.09 cfs 0.055 af Prima	0.74' Storage=0.018 af Inflow=0.74 cfs 0.055 af ry=0.00 cfs 0.000 af Outflow=0.09 cfs 0.055 af
Total Runoff Area = 11.398 ac Runoff Volu 84.62% Perviou	ume = 0.408 af Average Runoff Depth = 0.43" is = 9.644 ac 15.38% Impervious = 1.753 ac

Summary for Subcatchment Post 1a: Post 1a

Runoff = 0.29 cfs @ 12.40 hrs, Volume= 0.038 af, Depth> 0.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

A	rea (sf)	CN	Description			
	6,649	98	Paved park	ing, HSG A	N Contraction of the second seco	
	554	96	Gravel surfa	ace, HSG A	Ą	
1	46,589	39	>75% Gras	s cover, Go	bod, HSG A	
	14,698	30	Woods, Go	od, HSG A		
1	168,490 41 W			verage		
1	161,841 38		96.05% Pervious Area			
	6,649	98	3.95% Impe	ervious Are	а	
_		~		• •	— • • •	
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
30.2	408	0.0210	0.23		Lag/CN Method, Post 1a	

Summary for Subcatchment Post 1b: Post 1b

Runoff = 0.74 cfs @ 12.07 hrs, Volume= 0.055 af, Depth> 2.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

A	rea (sf)	CN	Description				
	10,363	98	Paved park	ing, HSG A	N		
	0	96	Gravel surfa	ace, HSG A	A Contraction of the second seco		
	0	39	>75% Gras	s cover, Go	bod, HSG A		
	0	30	Woods, Good, HSG A				
	10,363	98	Weighted A	verage			
	10,363	98	100.00% In	npervious A	rea		
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
	· /	(/	(013)	Law/ON Mathead Deat th		
0.1	25	0.3000	2.90		Lag/CN Method, Post 1b		
0.1	25	Total,	Increased t	o minimum	1 Tc = 5.0 min		

Summary for Subcatchment Post 1c: Post 1c

Runoff = 0.36 cfs @ 12.35 hrs, Volume= 0.045 af, Depth> 0.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

Type III 24-hr 2-YR Cornell Rainfall=3.20" Printed 6/26/2016

Page 21

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description			
	8,429	98	Paved park	ing, HSG A	A Contraction of the second se	
	0	96	Gravel surfa	ace, HSG A	4	
	87,097	39	>75% Grass cover, Good, HSG A			
	689	30	Woods, Good, HSG A			
	96,215	44	Weighted A	verage		
	87,786	39	91.24% Pe	vious Area	l	
	8,429	98	8.76% Impe	ervious Are	а	
Тс	Length	Slope		Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)		
26.4	507	0.0330	0.32		Lag/CN Method, Post c	

Summary for Subcatchment Post 1d: Post 1d

Runoff	=	0.05 cfs @	12.30 hrs,	Volume=	0.006 af,	Depth> 0.09"	
--------	---	------------	------------	---------	-----------	--------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

A	rea (sf)	CN	Description			
	1,190	98	Paved park	ing, HSG A	N Contraction of the second seco	
	0	96	Gravel surface, HSG A			
	36,524	39	>75% Grass cover, Good, HSG A			
	0	30	Woods, Go	od, HSG A		
	37,714	41	Weighted A	verage		
	36,524	39	96.84% Pei	rvious Area	l	
	1,190	98	3.16% Impe	ervious Are	а	
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description	
22.5	199	0.0120	0.15		Lag/CN Method, Post 1d	

Summary for Subcatchment Post 1e: Post 1e

Runoff = 0.51 cfs @ 12.27 hrs, Volume= 0.057 af, Depth> 0.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

Area (sf)	CN	Description				
10,669	98	Paved parking, HSG A				
0	96	Gravel surface, HSG A				
63,474	39	>75% Grass cover, Good, HSG A				
0	30	Woods, Good, HSG A				
74,143	47	Weighted Average				
63,474	39	85.61% Pervious Area				
10,669	98	14.39% Impervious Area				

16011	Pre-Pos	st			Type III 24-hr 2-YR Cornell Rainfall=3.20)"			
Prepare	Prepared by {enter your company name here} Printed 6/26/201								
HydroCA	D® 10.00	s/n 0115	1 © 2013 F	HydroCAD S	oftware Solutions LLC Page 22	2			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	_			
20.5	216	0.0120	0.18		Lag/CN Method, Post 1e				

Summary for Subcatchment Post 2a: Post 2a

0.50 cfs @ 12.14 hrs, Volume= 0.044 af, Depth> 1.21" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

A	rea (sf)	CN I	Description			
	8,219	98 I	Paved park	ing, HSG A	A	
	0	96 (Gravel surfa	ace, HSG A	4	
	8,852	39 :	>75% Grass cover, Good, HSG A			
	1,840	30 \	Woods, Good, HSG A			
	18,911	64	Neighted A	verage		
	10,692	37 5	56.54% Pei	rvious Area	1	
	8,219	98 4	43.46% Impervious Area			
Tc	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
10.4	198	0.0170	0.32		Lag/CN Method, Post 2a	
					-	

Summary for Subcatchment Post 2b: Post 2b

Runoff 0.39 cfs @ 12.16 hrs, Volume= 0.035 af, Depth> 0.92" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

A	rea (sf)	CN I	Description				
	6,610	98	Paved park	ing, HSG A	\		
	0	96	Gravel surfa	ace, HSG A	A		
	10,148	39 :	>75% Gras	s cover, Go	bod, HSG A		
	3,185	30	Woods, Good, HSG A				
	19,943	57	Neighted A	verage			
	13,333	37 (6.86% Pe	vious Area			
	6,610	98 3	33.14% Imp	pervious Ar	ea		
_							
Тс	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
11.6	200	0.0200	0.29		Lag/CN Method, Post 2b		

Summary for Subcatchment Post 2c: Post 2c

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 0.042 af, Depth> 1.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

A	rea (sf)	CN	Description			
	7,910	98	Paved park	ing, HSG A	N Contraction of the second seco	
	0	96	Gravel surfa	ace, HSG A	4	
	6,910	39	>75% Grass cover, Good, HSG A			
	2,490	30	Woods, Good, HSG A			
	17,310	65	Weighted A	verage		
	9,400	37	54.30% Pe	rvious Area	l	
	7,910	98	45.70% Imp	pervious Ar	ea	
Та	l a narth	Class	Volocity	Consolt	Description	
Tc	Length	Slope		Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.4	102	0.0150	0.27		Lag/CN Method, Post 2c	

Summary for Subcatchment Post 2d: Post 2d

Runoff = 0.72 cfs @ 12.10 hrs, Volume= 0.057 af, Depth> 1.90	Runoff	=	0.72 cfs @	12.10 hrs,	Volume=	0.057 af, Depth> 1.90
--	--------	---	------------	------------	---------	-----------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

A	rea (sf)	CN	Description				
	10,672	98	Paved park	ing, HSG A	A Contraction of the second se		
	0	96	Gravel surfa	ace, HSG A	4		
	4,865	39	>75% Grass cover, Good, HSG A				
	0	30	Woods, Good, HSG A				
	15,537	80	Weighted A	verage			
	4,865	39	31.31% Pervious Area				
	10,672	98	68.69% Imp	pervious Ar	ea		
Тс	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
7.3	204	0.015	0.47		Lag/CN Method, Post 2d		

Summary for Subcatchment Post 3: Post 3

Runoff = 0.14 cfs @ 12.16 hrs, Volume= 0.013 af, Depth> 0.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

Type III 24-hr 2-YR Cornell Rainfall=3.20" Printed 6/26/2016

Page 24

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description			
	2,460	98	Paved park	ing, HSG A	N	
	0	96	Gravel surfa	ace, HSG A	A	
	6,420	39	>75% Gras	s cover, Go	bod, HSG A	
	1,801	30	Woods, Good, HSG A			
	10,681	51	Weighted A	verage		
	8,221	37	76.97% Pei	vious Area		
	2,460	98	23.03% Imp	pervious Ar	ea	
Тс	Length	Slope	,	Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		
12.1	174	0.0200	0.24		Lag/CN Method, Post 3	

Summary for Subcatchment Post 4: Post 4

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Cornell Rainfall=3.20"

Area (sf)	CN	Description
3,200	98	Paved parking, HSG A
0	96	Gravel surface, HSG A
15,762	39	>75% Grass cover, Good, HSG A
8,214	30	Woods, Good, HSG A
27,176	43	Weighted Average
23,976	36	88.22% Pervious Area
3,200	98	11.78% Impervious Area
Tc Length		
(min) (feet)	(ft/	ft) (ft/sec) (cfs)

7.8	201	0.0900	0.43

Summary for Reach 1R: Eastern Reach around barn

Lag/CN Method, Post 4

Inflow Area =	1.702 ac, 14.39% Impervious,	Inflow Depth = 0.00" for 2-YR Cornell event
Inflow =	0.00 cfs @ 5.00 hrs, Volume	= 0.000 af
Outflow =	0.00 cfs @ 5.00 hrs, Volume	= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 5.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 10.0 sf, Capacity= 35.30 cfs

16011 Pre-PostType III 24-hr2-YR Cornell Rainfall=3.20"Prepared by {enter your company name here}Printed 6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 25

30.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 167.0' Slope= 0.0299 '/' Inlet Invert= 180.00', Outlet Invert= 175.00'

Summary for Reach Post: Post

Inflow Area =	11.398 ac, 15.38% Impervious, Inflow D	epth > 0.12" for 2-YR Cornell event
Inflow =	1.02 cfs @ 12.15 hrs, Volume=	0.112 af
Outflow =	1.02 cfs @ 12.15 hrs, Volume=	0.112 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post Front of Site: Post Front of Site

Inflow Area	a =	1.646 ac, 46.60% Impervious, Inflow Depth > 0.32" for 2-YR Cornell event
Inflow	=	0.50 cfs @ 12.14 hrs, Volume= 0.044 af
Outflow	=	0.50 cfs @ 12.14 hrs, Volume= 0.044 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post South: South Wetlands

Inflow Area	a =	11.398 ac, 15.38% Impervious, Inflow Depth > 0.12" for 2-YR Cornell event
Inflow	=	1.02 cfs @ 12.15 hrs, Volume= 0.112 af
Outflow	=	1.02 cfs @ 12.15 hrs, Volume= 0.112 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post West: West Abutters

Inflow Area	=	0.869 ac, 14.95% Impervious, Inflow Depth > 0.41" for 2-	YR Cornell event
Inflow =	=	0.35 cfs @ 12.12 hrs, Volume= 0.030 af	
Outflow =	=	0.35 cfs @ 12.12 hrs, Volume= 0.030 af, Atten= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Western Reach thru Post 1a: Western Reach thru Post 1a

Inflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min

16011 Pre-Post Type III 24-hr 2-YR Cornell Rainfall=3.20" Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Printed 6/26/2016 Page 26

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 5.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 20.0 sf, Capacity= 60.96 cfs

60.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 269.0' Slope= 0.0223 '/' Inlet Invert= 181.00', Outlet Invert= 175.00'

‡

Summary for Pond AD 6 & Trench: AD 6 & Trench

Inflow Area =	1.702 ac, 14.39% Impervious, Inflow D	epth > 0.40" for 2-YR Cornell event
Inflow =	0.51 cfs @ 12.27 hrs, Volume=	0.057 af
Outflow =	0.23 cfs @ 12.10 hrs, Volume=	0.057 af, Atten= 55%, Lag= 0.0 min
Discarded =	0.23 cfs @ 12.10 hrs, Volume=	0.057 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 178.15' @ 12.63 hrs Surf.Area= 1,200 sf Storage= 345 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 7.3 min (756.7 - 749.4)

Volume	Invert Av	/ail.Storage	Storage Description
#1	178.50'	322 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
			1,440 cf Overall - 636 cf Embedded = 804 cf x 40.0% Voids
#2	179.00'	636 cf	18.0" Round Pipe Storage Inside #1
	470.001	4.000.5	L= 360.0'
#3	178.00'	1,060 CT	18.0" Round Pipe Storage Inside #4 L= 600.0'
#4	177.50'	776 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
#4	177.50	110 01	3,000 cf Overall - 1,060 cf Embedded = 1,940 cf x 40.0% Voids
		2,794 cf	Total Available Storage
Elevation	Surf.Are		c.Store Cum.Store

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
178.50	720	0	0
180.50	720	1,440	1,440

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
177.5	50	1,200	0	0	
180.0	00	1,200	3,000	3,000	
Device #1 #2	Routing Discarded Secondary	Invert 177.50' 180.30'	Head (feet) 0.2 2.50 3.00	0' breadth Br 0 0.40 0.60 2.69 2.72 2.	Surface area oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.23 cfs @ 12.10 hrs HW=177.54' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.23 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=180.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 1&2: AD's 1&2

Inflow Area =	3.075 ac,	7.18% Impervious, Inflow	Depth > 0.17"	for 2-YR Cornell event
Inflow =	0.36 cfs @	12.35 hrs, Volume=	0.045 af	
Outflow =	0.22 cfs @	12.65 hrs, Volume=	0.045 af, Atter	n= 39%, Lag= 18.1 min
Discarded =	0.22 cfs @	12.65 hrs, Volume=	0.045 af	
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 178.03' @ 12.65 hrs Surf.Area= 1,163 sf Storage= 215 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 4.9 min (758.8 - 753.9)

Volume	Invert Av	/ail.Storage	Storage Description
#1	178.00'	141 cf	12.0" Round Pipe Storage L= 180.0'
#2	177.50'	288 cf	
#3	178.00'	2 cf	1.00'D x 2.60'H Vertical Cone/Cylinder
#4	180.60'	618 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
#5	178.00'	442 cf	18.0" Round Pipe Storage
			L= 250.0'
#6	177.50'	500 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
			1,250 cf Overall x 40.0% Voids
		1,991 cf	Total Available Storage
Elevation (feet)	Surf.Area (sq-ft		c.Store Cum.Store ic-feet) (cubic-feet)
177.50	36	0	0 0
179.50	36	0	720 720
(feet) 177.50	(sq-ft 36)	i) (cubi 0	ic-feet)(cubic-feet)00

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
180.60	10	0	0
181.10	2,462	618	618
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
177.50	625	0	0
179.50	625	1,250	1,250

Device	Routing	Invert	Outlet Devices
#1	Discarded	177.50'	8.270 in/hr Exfiltration over Surface area
#2	Primary	178.75'	6.0" Vert. Orifice/Grate C= 0.600
#3	Secondary	180.90'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32

Discarded OutFlow Max=0.22 cfs @ 12.65 hrs HW=178.03' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.22 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=0.00' (Dynamic Tailwater) ←2=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=181.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 3&4: AD's 3&4

Inflow Area =	0.866 ac,	3.16% Impervious, Inflow D	Depth > 0.09" for 2-YR Cornell event
Inflow =	0.05 cfs @	12.30 hrs, Volume=	0.006 af
Outflow =	0.03 cfs @	12.66 hrs, Volume=	0.006 af, Atten= 52%, Lag= 21.8 min
Discarded =	0.03 cfs @	12.66 hrs, Volume=	0.006 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 178.29' @ 12.66 hrs Surf.Area= 137 sf Storage= 46 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 9.7 min (760.6 - 750.9)

Type III 24-hr 2-YR Cornell Rainfall=3.20" Printed 6/26/2016 ons LLC Page 29

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stor	age	Storage	Description	
#1	177.90'	3	6 cf	· •		
#2	177.40'	7	4 cf			rismatic) Listed below (Recalc) Voids
#3	180.60'	39	7 cf			'ismatic) Listed below (Recalc)
		50	7 cf		ailable Storage	
Elevation (feet) 177.40 179.40	Sur	f.Area (sq-ft) 92 92		Store <u>-feet)</u> 0 184	Cum.Store (cubic-feet) 0 184	
	_					
Elevation (feet)	Sur	f.Area (sq-ft)		Store -feet)	Cum.Store (cubic-feet)	
180.60		10	(ouble	0	0	
181.10		1,579		397	397	
	Routing	Invert	-	t Device	-	
)iscarded Primary	177.40' 178.40'	-	-	xfiltration over	
	Secondary	180.90'	5.0' I Head 2.50 Coef	ong x 1 I (feet) 0 3.00	.0' breadth Bro 0.20 0.40 0.60 n) 2.69 2.72 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.03 cfs @ 12.66 hrs HW=178.29' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.40' TW=177.50' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.40' TW=181.00' (Dynamic Tailwater) —3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 1: Basin 1

Inflow Area =	1.212 ac, 47.72% Impervious, Inflow	Depth > 0.35" for 2-YR Cornell event
Inflow =	0.39 cfs @ 12.16 hrs, Volume=	0.035 af
Outflow =	0.16 cfs @ 12.46 hrs, Volume=	0.035 af, Atten= 59%, Lag= 18.0 min
Discarded =	0.16 cfs @ 12.46 hrs, Volume=	0.035 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.49' @ 12.46 hrs Surf.Area= 833 sf Storage= 292 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 11.3 min (754.0 - 742.8)

Type III 24-hr 2-YR Cornell Rainfall=3.20" Printed 6/26/2016 ons LLC Page 30

Prepared by {en	ter your c	ompany r	name here}	
HydroCAD® 10.00	s/n 01151	© 2013 H	ydroCAD Software Solutions LLC	<u>2</u>

Volume	Invert	Avail.Sto	rage Storage [Description	
#1	184.00'	1,62	28 cf Custom	Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee 184.0 185.5	et) 00	f.Area <u>(sq-ft)</u> 359 1,811	Inc.Store (cubic-feet) 0 1,628	Cum.Store (cubic-feet) 0 1,628	
Device #1 #2 #3	Routing Discarded Primary Secondary		6.0" Vert. Orif 30.0' long x 1 Head (feet) 0. 2.50 3.00	filtration over \$ fice/Grate C= 0 .0' breadth Bro 20 0.40 0.60 0) 2.69 2.72 2.7	

Discarded OutFlow Max=0.16 cfs @ 12.46 hrs HW=184.49' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.16 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=184.00' TW=181.50' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=184.00' TW=0.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 2: Basin 2

Inflow Area =	0.754 ac, 56.57% Impervious, Inflow D	Depth > 0.67" for 2-YR Cornell event
Inflow =	0.55 cfs @ 12.09 hrs, Volume=	0.042 af
Outflow =	0.21 cfs @ 12.33 hrs, Volume=	0.042 af, Atten= 61%, Lag= 14.2 min
Discarded =	0.21 cfs @ 12.33 hrs, Volume=	0.042 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.32' @ 12.33 hrs Surf.Area= 1,104 sf Storage= 288 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 6.9 min (745.8 - 738.9)

Volume	Invert	Avail	.Storage	Storage	e Description	
#1	185.00'		1,874 cf	Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)		.Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
185.00 186.25		685 2,313		0 1,874	0 1,874	

Type III 24-hr 2-YR Cornell Rainfall=3.20" Printed 6/26/2016

Page 31

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	185.00'	8.270 in/hr Exfiltration over Surface area
#2	Primary	186.00'	6.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Secondary	186.20'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.21 cfs @ 12.33 hrs HW=185.32' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater) ←2=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 3: Basin 3

Inflow Area =	0.357 ac, 68.69% Impervious, Inflow D	Depth > 1.90" for 2-YR Cornell event
Inflow =	0.72 cfs @ 12.10 hrs, Volume=	0.057 af
Outflow =	0.29 cfs @ 12.34 hrs, Volume=	0.057 af, Atten= 60%, Lag= 14.6 min
Discarded =	0.29 cfs @ 12.34 hrs, Volume=	0.057 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.01' @ 12.34 hrs Surf.Area= 1,493 sf Storage= 473 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 10.5 min (750.1 - 739.5)

<u>Volume</u> #1	Invert 185.50'	Avail.Stor		Description	atic)Listed below (Recalc)
# I	165.50	5,95	Seci Cusioni	Slaye Dala (FIISING	alle Listed below (Recale)
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
185.5	1	377	0		
186.5		2,605	1,506	1,506	
187.3	30	8,618	4,433	5,939	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	186.50'	8.0" Horiz. O	rifice/Grate C= 0.60	00 Limited to weir flow at low heads
#2	Discarded	185.50'		filtration over Surf	
#3	Secondary	187.25'	10.0' long x	1.0' breadth Broad-	Crested Rectangular Weir
	2		Head (feet) 0	.20 0.40 0.60 0.80	1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
			Coef. (English	n) 2.69 2.72 2.75 2	.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.3	32	

Discarded OutFlow Max=0.29 cfs @ 12.34 hrs HW=186.01' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.29 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=185.00' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Perforated Pipe: 12" Perforated Pipe

Inflow Area =	1.212 ac, 47	7.72% Impervious, Inflow [Depth = 0.00" for 2-YR Cornell event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 181.50' @ 5.00 hrs Surf.Area= 361 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avail.Stor	age S	Storage Description			
#1	182.00'	14		12.0" Round Pipe Storage Inside #2			
#2	181.50'	23	1 cf C	L= 180.0' Custom Stage Data (Prismatic) Listed below (Recalc) 720 cf Overall - 141 cf Embedded = 579 cf x 40.0% Voids			
#3	181.50'			1.00'D x 3.75'H Vertical Cone/Cylinder			
		37	6 cf T	Total Available Storage			
Elevatio (fee 181.5 183.5	t) 0 0	rf.Area (sq-ft) 360 360	(cubic-f	0 0 720 720			
Device	Routing	Invert	-	t Devices			
#1	Discarded	181.50') in/hr Exfiltration over Surface area			
#2	Secondary	185.20'	Head (2.50 3 Coef. (long x 1.0' breadth Broad-Crested Rectangular Weir (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 . (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.31 3.32			

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=181.50' (Free Discharge) **1=Exfiltration** (Passes 0.00 cfs of 0.07 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=181.50' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Post Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow De	epth > 2.77" for 2-YR Cornell event
Inflow =	0.74 cfs @ 12.07 hrs, Volume=	0.055 af
Outflow =	0.09 cfs @ 11.80 hrs, Volume=	0.055 af, Atten= 88%, Lag= 0.0 min
Discarded =	0.09 cfs @ 11.80 hrs, Volume=	0.055 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 179.74' @ 12.66 hrs Surf.Area= 0.010 ac Storage= 0.018 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 60.8 min (798.7 - 737.8)

Volume	Invert	Avail.Storag	ge Storage Description			
#1	178.00'	0.083 a	af 8.00'D x 8.00'H Vertical Cone/Cylinderx 9			
Device	Routing	Invert	Outlet Devices			
#1	Discarded	178.00'	8.270 in/hr Exfiltration over Surface area			
#2	Primary	186.00'	12.0" Vert. Orifice/Grate C= 0.600			
Discard	Discarded OutFlow Max=0.09 cfs @ 11.80 hrs HW=178.14' (Free Discharge)					

1=Exfiltration (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=178.00' TW=0.00' (Dynamic Tailwater) 2=Orifice/Grate (Controls 0.00 cfs)

16011 Pre-Post	Type III 24-hr	10-YR-Cornell Rainfall=4.80"
Prepared by {enter your company name here}		Printed 6/26/2016
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Sol	utions LLC	Page 34

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 1a: Post 1a	Runoff Area=168,490 sf 3.95% Impervious Runoff Depth>0.29"
Flow Length=408'	Slope=0.0210 '/' Tc=30.2 min CN=41 Runoff=0.44 cfs 0.092 af
SubcatchmentPost 1b: Post 1b	Runoff Area=10,363 sf 100.00% Impervious Runoff Depth>4.24"
Flow Length=25	5' Slope=0.3000 '/' Tc=5.0 min CN=98 Runoff=1.12 cfs 0.084 af
SubcatchmentPost 1c: Post 1c	Runoff Area=96,215 sf 8.76% Impervious Runoff Depth>0.48"
Flow Length=507'	Slope=0.0330 '/' Tc=26.4 min CN=44 Runoff=0.55 cfs 0.088 af
SubcatchmentPost 1d: Post 1d	Runoff Area=37,714 sf 3.16% Impervious Runoff Depth>0.25"
Flow Length=199'	Slope=0.0120 '/' Tc=22.5 min CN=41 Runoff=0.08 cfs 0.018 af
SubcatchmentPost 1e: Post 1e	Runoff Area=74,143 sf 14.39% Impervious Runoff Depth>0.71"
Flow Length=216'	Slope=0.0120 '/' Tc=20.5 min CN=47 Runoff=0.78 cfs 0.101 af
SubcatchmentPost 2a: Post 2a	Runoff Area=18,911 sf 43.46% Impervious Runoff Depth>1.90"
Flow Length=198'	Slope=0.0170 '/' Tc=10.4 min CN=64 Runoff=0.76 cfs 0.069 af
SubcatchmentPost 2b: Post 2b	Runoff Area=19,943 sf 33.14% Impervious Runoff Depth>1.47"
Flow Length=200'	Slope=0.0200 '/' Tc=11.6 min CN=57 Runoff=0.59 cfs 0.056 af
SubcatchmentPost 2c: Post 2c	Runoff Area=17,310 sf 45.70% Impervious Runoff Depth>1.99"
Flow Length=102	2' Slope=0.0150 '/' Tc=6.4 min CN=65 Runoff=0.82 cfs 0.066 af
SubcatchmentPost 2d: Post 2d	Runoff Area=15,537 sf 68.69% Impervious Runoff Depth>2.95"
Flow Length=204	I' Slope=0.0150 '/' Tc=7.3 min CN=80 Runoff=1.09 cfs 0.088 af
SubcatchmentPost 3: Post 3	Runoff Area=10,681 sf 23.03% Impervious Runoff Depth>1.05"
Flow Length=174'	Slope=0.0200 '/' Tc=12.1 min CN=51 Runoff=0.22 cfs 0.021 af
SubcatchmentPost 4: Post 4	Runoff Area=27,176 sf 11.78% Impervious Runoff Depth>0.57"
Flow Length=207	I' Slope=0.0900 '/' Tc=7.8 min CN=43 Runoff=0.32 cfs 0.030 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af 167.0' S=0.0299 '/' Capacity=35.30 cfs Outflow=0.00 cfs 0.000 af
Reach Post: Post	Inflow=1.54 cfs 0.212 af Outflow=1.54 cfs 0.212 af
Reach Post Front of Site: Post Front of S	ite Inflow=0.76 cfs 0.069 af Outflow=0.76 cfs 0.069 af
Reach Post South: South Wetlands	Inflow=1.54 cfs 0.212 af Outflow=1.54 cfs 0.212 af
Reach Post West: West Abutters	Inflow=0.52 cfs 0.051 af Outflow=0.52 cfs 0.051 af

16011 Pre-Post	Type III 24-hr 10-YR-Cornell Rainfall=4.80" Printed 6/26/2016
Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software So	
	=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af 3 '/' Capacity=60.96 cfs Outflow=0.00 cfs 0.000 af
	v=178.56' Storage=739 cf Inflow=0.78 cfs 0.101 af ndary=0.00 cfs 0.000 af Outflow=0.37 cfs 0.101 af
Pond AD's 1&2: AD's 1&2Peak ElevDiscarded=0.29 cfs0.090 afPrimary=0.00 cfs0.000 afSecondSecondSecondSecond	v=178.42' Storage=521 cf Inflow=0.58 cfs 0.090 af ndary=0.00 cfs 0.000 af Outflow=0.29 cfs 0.090 af
Pond AD's 3&4: AD's 3&4Peak EleDiscarded=0.03 cfs0.017 afPrimary=0.04 cfs0.002 afSecond	ev=178.52' Storage=65 cf Inflow=0.08 cfs 0.018 af ndary=0.00 cfs 0.000 af Outflow=0.07 cfs 0.018 af
Pond Basin 1: Basin 1Peak ElevDiscarded=0.21 cfs0.056 afPrimary=0.00 cfs0.000 afSecond	v=184.75' Storage=538 cf Inflow=0.59 cfs 0.056 af ndary=0.00 cfs 0.000 af Outflow=0.21 cfs 0.056 af
Pond Basin 2: Basin 2Peak ElevDiscarded=0.27 cfs0.066 afPrimary=0.00 cfs0.000 afSecond	v=185.55' Storage=571 cf Inflow=0.82 cfs 0.066 af ndary=0.00 cfs 0.000 af Outflow=0.27 cfs 0.066 af
Pond Basin 3: Basin 3Peak ElevDiscarded=0.38 cfs0.088 afPrimary=0.00 cfs0.000 afSecond	v=186.22' Storage=845 cf Inflow=1.09 cfs 0.088 af ndary=0.00 cfs 0.000 af Outflow=0.38 cfs 0.088 af
	lev=181.50' Storage=0 cf Inflow=0.00 cfs 0.000 af ndary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
	181.17' Storage=0.033 af Inflow=1.12 cfs 0.084 af mary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.081 af
	Volume = 0.713 af Average Runoff Depth = 0.75" ious = 9.644 ac 15.38% Impervious = 1.753 ac

Summary for Subcatchment Post 1a: Post 1a

Runoff = 0.44 cfs @ 12.40 hrs, Volume= 0.092 af, Depth> 0.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	rea (sf)	CN	Description				
	6,649	98	Paved park	ing, HSG A	N Contraction of the second seco		
	554	96	Gravel surfa	Gravel surface, HSG A			
1	46,589	39	>75% Gras	•75% Grass cover, Good, HSG A			
	14,698	30	Woods, Go	oods, Good, HSG A			
1	68,490	41 Weighted Average					
1	161,841	38	96.05% Per	rvious Area	l		
	6,649	98	3.95% Impervious Area				
_							
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
30.2	408	0.0210	0.23		Lag/CN Method, Post 1a		
			-				

Summary for Subcatchment Post 1b: Post 1b

Runoff = 1.12 cfs @ 12.07 hrs, Volume= 0.084 a	, Depth> 4.24"
--	----------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Ar	ea (sf)	CN	Description			
10,363 98 Paved parking, HSG A			Paved park	ing, HSG A		
	0	96	96 Gravel surface, HSG A			
	0 39 >75% Grass cover, Good, HSG A				ood, HSG A	
	0 30 Woods, Good, HSG A					
	10,363	3 98 Weighted Average				
	10,363	98	100.00% Im	pervious A	rea	
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-	
0.1	25	0.3000	2.90		Lag/CN Method, Post 1b	
0.1	25	Total, Increased to minimum Tc = 5.0 min				

Summary for Subcatchment Post 1c: Post 1c

Runoff = 0.55 cfs @ 12.35 hrs, Volume= 0.088 af, Depth> 0.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Printed 6/26/2016

Page 37

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Ar	rea (sf)	CN	Description				
	8,429	98	Paved park	ing, HSG A	A		
	0	96	Gravel surfa	ace, HSG A	A		
	87,097	39	>75% Gras	s cover, Go	bod, HSG A		
	689	30	Woods, Go	od, HSG A			
	96,215	44	Weighted A	verage			
	87,786	39	91.24% Pei	vious Area	1		
	8,429	98	8.76% Impervious Area				
Тс	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)			
26.4	507	0.0330	0.32		Lag/CN Method, Post c		

Summary for Subcatchment Post 1d: Post 1d

Runoff	=	0.08 cfs @	12.29 hrs,	Volume=	0.018 af,	Depth> 0.	.25"
			,		•••••••••		

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	vrea (sf)	CN	Description					
	1,190	98	Paved park	ing, HSG A	N Contraction of the second seco			
	0	96	Gravel surfa	ace, HSG A	4			
	36,524	39 :	>75% Gras	s cover, Go	bod, HSG A			
	0	30	30 Woods, Good, HSG A					
	37,714	41	Weighted A	verage				
	36,524	39	96.84% Pei	vious Area	l			
	1,190	98	3.16% Impe	ervious Are	а			
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
22.5	199	0.0120	0.15		Lag/CN Method, Post 1d			

Summary for Subcatchment Post 1e: Post 1e

Runoff = 0.78 cfs @ 12.27 hrs, Volume= 0.101 af, Depth> 0.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Area (sf)	CN	Description
10,669	98	Paved parking, HSG A
0	96	Gravel surface, HSG A
63,474	39	>75% Grass cover, Good, HSG A
0	30	Woods, Good, HSG A
74,143	47	Weighted Average
63,474	39	85.61% Pervious Area
10,669	98	14.39% Impervious Area

16011	Pre-Pos	st			Type III 24-hr	10-YR-Cornell Rainfall=4.80"	
Prepare	d by {en	ter your	e}	Printed 6/26/2016			
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC Page							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
20.5	216	0.0120	0.18		Lag/CN Method, Post 1e)	
		S	Summary	y for Sub	catchment Post 2a: P	ost 2a	

0.069 af, Depth> 1.90" Runoff 0.76 cfs @ 12.14 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	rea (sf)	CN	I Description				
	8,219	98	Paved park	ing, HSG A	N		
	0	96	Gravel surfa	ace, HSG A	A		
	8,852	39	>75% Gras	s cover, Go	bod, HSG A		
	1,840	30	Woods, Go	od, HSG A			
	18,911	64	Weighted A	verage			
	10,692	37	56.54% Pei	vious Area	l de la constante d		
	8,219	98	43.46% Imp	pervious Ar	ea		
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
10.4	198	0.0170	0.32		Lag/CN Method, Post 2a		

Summary for Subcatchment Post 2b: Post 2b

Runoff 0.59 cfs @ 12.16 hrs, Volume= 0.056 af, Depth> 1.47" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	rea (sf)	CN	Description					
	6,610	98	Paved park	ing, HSG A	Α			
	0	96	Gravel surfa	ace, HSG A	4			
	10,148	39	>75% Gras	s cover, Go	bod, HSG A			
	3,185	30	Woods, Go	od, HSG A				
	19,943	57	Weighted Average					
	13,333	37	66.86% Pervious Area					
	6,610	98	33.14% Imp	pervious Ar	ea			
_								
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
11.6	200	0.0200	0.29		Lag/CN Method, Post 2b			

Summary for Subcatchment Post 2c: Post 2c

Runoff = 0.82 cfs @ 12.09 hrs, Volume= 0.066 af, Depth> 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	rea (sf)	CN	Description					
	7,910	98	Paved park	ing, HSG A	A			
	0	96	Gravel surfa	ace, HSG A	Α			
	6,910	39	>75% Gras	s cover, Go	bod, HSG A			
	2,490	30	Woods, Go	od, HSG A				
	17,310	65	Weighted A	verage				
	9,400	37	54.30% Per	vious Area	1			
	7,910	98	45.70% Imp	pervious Ar	ea			
-		~		A				
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.4	102	0.0150	0.27		Lag/CN Method, Post 2c			

Summary for Subcatchment Post 2d: Post 2d

Runoff = 1.09 cfs @ 12.10 hrs, Volume= 0.08	8 af, Depth> 2.95"
---	--------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

A	rea (sf)	CN	Description					
	10,672	98	Paved park	ing, HSG A	A			
	0	96	Gravel surf	ace, HSG A	4			
	4,865	39	>75% Gras	s cover, Go	bod, HSG A			
	0	30	Woods, Go	od, HSG A				
	15,537	80	Weighted A	verage				
	4,865	39	31.31% Pervious Area					
	10,672	98	68.69% Impervious Area					
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
7.3	204	0.015	0.47		Lag/CN Method, Post 2d			

Summary for Subcatchment Post 3: Post 3

Runoff = 0.22 cfs @ 12.16 hrs, Volume= 0.021 af, Depth> 1.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Type III 24-hr 10-YR-Cornell Rainfall=4.80" Printed 6/26/2016

Page 40

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	2,460	98	Paved park	ing, HSG A	N			
	0	96	Gravel surfa	ace, HSG A	A			
	6,420	39	>75% Gras	s cover, Go	bod, HSG A			
	1,801	30	Woods, Good, HSG A					
	10,681	51	51 Weighted Average					
	8,221	37	76.97% Pei					
	2,460	98	23.03% Imp	pervious Ar	ea			
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft	(ft/sec)	(cfs)				
12.1	174	0.0200	0.24		Lag/CN Method, Post 3			

Summary for Subcatchment Post 4: Post 4

Runoff = 0.32 cfs @ 12.11 hrs, Volume= 0.030 af, Depth> 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR-Cornell Rainfall=4.80"

Area (st) CN	Description						
3,20	0 98	Paved parking, HSG A						
	0 96	Gravel surface, HSG A						
15,76	2 39	>75% Grass cover, Good, HSG A						
8,21	4 30	Woods, Good, HSG A						
27,17	6 43	Weighted Average						
23,97	6 36	88.22% Pervious Area						
3,20	0 98	11.78% Impervious Area						
Tc Leng	th Slo	pe Velocity Capacity Description						
(min) (fee	et) (ft	ft) (ft/sec) (cfs)						

7.8 201 0.0900 0.43

Lag/CN Method, Post 4

Summary for Reach 1R: Eastern Reach around barn

Inflow Area =	1.702 ac, 14.39% Impervious, Inf	flow Depth = 0.00" for 10-YR-Cornell event
Inflow =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Outflow =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 5.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 10.0 sf, Capacity= 35.30 cfs

16011 Pre-PostType III 24-hr10-YR-Cornell Rainfall=4.80"Prepared by {enter your company name here}Printed 6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 41

30.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 167.0' Slope= 0.0299 '/' Inlet Invert= 180.00', Outlet Invert= 175.00'

Summary for Reach Post: Post

Inflow Area =	11.398 ac, 15.38% Impervious, Inflow D	Depth > 0.22" for 10-YR-Cornell event
Inflow =	1.54 cfs @ 12.15 hrs, Volume=	0.212 af
Outflow =	1.54 cfs @ 12.15 hrs, Volume=	0.212 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post Front of Site: Post Front of Site

Inflow Area =	1.646 ac, 46.60% Impervious, Inflow D	Depth > 0.50" for 10-YR-Cornell event
Inflow =	0.76 cfs @ 12.14 hrs, Volume=	0.069 af
Outflow =	0.76 cfs $\overline{@}$ 12.14 hrs, Volume=	0.069 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post South: South Wetlands

Inflow Area =	11.398 ac, 15.38% Impervious, Inflow I	Depth > 0.22" 1	for 10-YR-Cornell event
Inflow =	1.54 cfs @ 12.15 hrs, Volume=	0.212 af	
Outflow =	1.54 cfs @12.15 hrs, Volume=	0.212 af, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post West: West Abutters

Inflow Area =	0.869 ac, 14.95% Impervious, Inflow I	Depth > 0.71" for 10-YR-Cornell event
Inflow =	0.52 cfs @ 12.12 hrs, Volume=	0.051 af
Outflow =	0.52 cfs @ 12.12 hrs, Volume=	0.051 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Western Reach thru Post 1a: Western Reach thru Post 1a

Inflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min

16011 Pre-PostType III 24-hr10-YR-Cornell Rainfall=4.80"Prepared by {enter your company name here}Printed 6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 42

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 5.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 20.0 sf, Capacity= 60.96 cfs

60.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 269.0' Slope= 0.0223 '/' Inlet Invert= 181.00', Outlet Invert= 175.00'

‡

Summary for Pond AD 6 & Trench: AD 6 & Trench

Inflow Area =	1.702 ac, 14.39% Impervious, Inflow De	epth > 0.71" for 10-YR-Cornell event
Inflow =	0.78 cfs @ 12.27 hrs, Volume=	0.101 af
Outflow =	0.37 cfs @ 12.50 hrs, Volume=	0.101 af, Atten= 53%, Lag= 13.9 min
Discarded =	0.37 cfs @ 12.50 hrs, Volume=	0.101 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 178.56' @ 12.63 hrs Surf.Area= 1,920 sf Storage= 739 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 13.9 min (789.7 - 775.8)

Volume	Invert A	vail.Storage	Storage Description
#1	178.50'	322 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
			1,440 cf Overall - 636 cf Embedded = 804 cf x 40.0% Voids
#2	179.00'	636 cf	18.0" Round Pipe Storage Inside #1
	470.001	4 000 5	L= 360.0'
#3	178.00'	1,060 cf	18.0" Round Pipe Storage Inside #4
#4	177.50'	776 cf	L= 600.0' Custom Stage Data (Prismatic)Listed below (Recalc)
#4	177.50	770 01	3,000 cf Overall - 1,060 cf Embedded = 1,940 cf x 40.0% Voids
		0.704 of	
		2,794 CI	Total Available Storage
Elevation	Surf.Are	a Ind	c.Store Cum.Store
(5 1)	1	4) (l.	

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
178.50	720	0	0
180.50	720	1,440	1,440

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
177.5 180.0		1,200 1,200	0 3,000	0 3,000	
100.0		1,200	3,000	3,000	
Device	Routing	Invert	Outlet Devices		
#1 #2	Discarded Secondary	177.50' 180.30'	Head (feet) 0.2 2.50 3.00	0' breadth Br 0 0.40 0.60 2.69 2.72 2.	Surface area oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.37 cfs @ 12.50 hrs HW=178.53' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.37 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=180.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 1&2: AD's 1&2

Inflow Area =	3.075 ac,	7.18% Impervious, I	nflow Depth > 0.35" for 10-YR-Cornell event
Inflow =	0.58 cfs @	12.39 hrs, Volume=	0.090 af
Outflow =	0.29 cfs @	12.77 hrs, Volume=	0.090 af, Atten= 50%, Lag= 22.4 min
Discarded =	0.29 cfs @	12.77 hrs, Volume=	0.090 af
Primary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 178.42' @ 12.77 hrs Surf.Area= 1,500 sf Storage= 521 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 9.1 min (805.0 - 795.9)

Volume	Invert Av	ail.Storage	Storage Description
#1	178.00'	141 cf	12.0" Round Pipe Storage L= 180.0'
#2	177.50'	288 cf	Custom Stage Data (Prismatic) Listed below (Recalc) 720 cf Overall x 40.0% Voids
#3	178.00'	2 cf	1.00'D x 2.60'H Vertical Cone/Cylinder
#4	180.60'	618 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
#5	178.00'	442 cf	18.0" Round Pipe Storage
			L= 250.0'
#6	177.50'	500 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
			1,250 cf Overall x 40.0% Voids
		1,991 cf	Total Available Storage
Elevation	Surf.Area	a Inc	c.Store Cum.Store
(feet)	(sq-ft		ic-feet) (cubic-feet)
177.50	360		0 0
179.50	360		720 720
	000	•	0

Page 44

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
180.60	10	0	0
181.10	2,462	618	618
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
177.50	625	0	0
179.50	625	1,250	1,250

Device	Routing	Invert	Outlet Devices
#1	Discarded	177.50'	8.270 in/hr Exfiltration over Surface area
#2	Primary	178.75'	6.0" Vert. Orifice/Grate C= 0.600
#3	Secondary	180.90'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32

Discarded OutFlow Max=0.29 cfs @ 12.77 hrs HW=178.42' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.29 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=0.00' (Dynamic Tailwater) ←2=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=181.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 3&4: AD's 3&4

Inflow Area =	0.866 ac,	3.16% Impervious, Inflow I	Depth > 0.25" for 10-YR-Cornell event
Inflow =	0.08 cfs @	12.29 hrs, Volume=	0.018 af
Outflow =	0.07 cfs @	12.45 hrs, Volume=	0.018 af, Atten= 15%, Lag= 9.4 min
Discarded =	0.03 cfs @	14.30 hrs, Volume=	0.017 af
Primary =	0.04 cfs @	12.45 hrs, Volume=	0.002 af
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 178.52' @ 12.45 hrs Surf.Area= 137 sf Storage= 65 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 18.3 min (860.8 - 842.5)

Type III 24-hr 10-YR-Cornell Rainfall=4.80" Printed 6/26/2016 tions LLC Page 45

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stora	age	Storage D	escription	
#1	177.90'	30	6 cf			
#2	177.40'	74	4 cf		Stage Data (Pr erall_x 40.0%	rismatic) Listed below (Recalc) Voids
#3	180.60'	39	7 cf			rismatic)Listed below (Recalc)
		50			lable Storage	
Elevation (feet) 177.40 179.40 Elevation (feet) 180.60	Sur	f.Area (sq-ft) (92 92 f.Area	Inc. (cubic	Store <u>-feet)</u> 0 184 Store <u>-feet)</u> 0	Cum.Store (cubic-feet) 0 184 Cum.Store (cubic-feet) 0	
181.10		1,579		397	397	
#1 E #2 F	Routing Discarded Primary Secondary	Invert 177.40' 178.40' 180.90'	8.270 6.0" 5.0' I Head 2.50 Coef	Vert. Orific ong x 1.0 d (feet) 0.2 3.00	20 0.40 0.60 2.69 2.72 2.	

Discarded OutFlow Max=0.03 cfs @ 14.30 hrs HW=178.40' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.04 cfs @ 12.45 hrs HW=178.52' TW=178.25' (Dynamic Tailwater) 2=Orifice/Grate (Orifice Controls 0.04 cfs @ 1.19 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.40' TW=181.00' (Dynamic Tailwater) —3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 1: Basin 1

Inflow Area =	1.212 ac, 47.72% Impervious, Inflow D	Depth > 0.55" for 10-YR-Cornell event
Inflow =	0.59 cfs @ 12.16 hrs, Volume=	0.056 af
Outflow =	0.21 cfs @ 12.51 hrs, Volume=	0.056 af, Atten= 65%, Lag= 21.0 min
Discarded =	0.21 cfs @ 12.51 hrs, Volume=	0.056 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.75' @ 12.51 hrs Surf.Area= 1,081 sf Storage= 538 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 17.1 min (765.3 - 748.2)

 Type III 24-hr
 10-YR-Cornell Rainfall=4.80"

 Printed
 6/26/2016

 tions LLC
 Page 46

Prepared by {enter your company name here}	
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LL	LC

Volume	Invert	Avail.Stor	rage Storage	Description	
#1	184.00'	1,62	8 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	et)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
184.0	-	359	0	0	
185.5	50	1,811	1,628	1,628	
Device #1	Routing Discarded	Invert 184.00'	Outlet Device 8.270 in/hr E	s xfiltration over	Surface area
#2	Primary	184.75'	6.0" Vert. Ori	ifice/Grate C=	0.600
#3	Secondary	185.30'	30.0' long x Head (feet) 0 2.50 3.00	1.0' breadth Br 0.20 0.40 0.60 n) 2.69 2.72 2.	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.21 cfs @ 12.51 hrs HW=184.75' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=184.00' TW=181.50' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=184.00' TW=0.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 2: Basin 2

Inflow Area =	0.754 ac, 56.57% Impervious, Inflow D	Depth > 1.05" for 10-YR-Cornell event
Inflow =	0.82 cfs @ 12.09 hrs, Volume=	0.066 af
Outflow =	0.27 cfs @ 12.39 hrs, Volume=	0.066 af, Atten= 68%, Lag= 17.9 min
Discarded =	0.27 cfs @ 12.39 hrs, Volume=	0.066 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.55' @ 12.39 hrs Surf.Area= 1,398 sf Storage= 571 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 12.0 min (752.8 - 740.8)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	185.00'		1,874 cf	Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)		.Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
185.00 186.25		685 2,313		0 1,874	0 1,874	

Type III 24-hr 10-YR-Cornell Rainfall=4.80" Printed 6/26/2016

Page 47

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Routing	Invert	Outlet Devices
Discarded	185.00'	8.270 in/hr Exfiltration over Surface area
Primary	186.00'	6.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
Secondary	186.20'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
		2.50 3.00
		Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
		3.30 3.31 3.32
	Primary	Discarded 185.00' Primary 186.00'

Discarded OutFlow Max=0.27 cfs @ 12.39 hrs HW=185.55' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.27 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater) ←2=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater) —3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 3: Basin 3

Inflow Area =	0.357 ac, 68.69% Impervious, Inflow	Depth > 2.95" for 10-YR-Cornell event
Inflow =	1.09 cfs @ 12.10 hrs, Volume=	0.088 af
Outflow =	0.38 cfs @ 12.39 hrs, Volume=	0.088 af, Atten= 65%, Lag= 17.3 min
Discarded =	0.38 cfs @ 12.39 hrs, Volume=	0.088 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.22' @ 12.39 hrs Surf.Area= 1,968 sf Storage= 845 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 15.3 min (754.3 - 739.0)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	185.50'	5,93	39 cf Custom	n Stage Data (Prisr	natic)Listed below (Recalc)
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
185.5	50	377	0	0	
186.5	51	2,605	1,506	1,506	
187.3	30	8,618	4,433	5,939	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	186.50'	8.0" Horiz. O	prifice/Grate C= 0.	600 Limited to weir flow at low heads
#2	Discarded	185.50'	8.270 in/hr E	xfiltration over Su	rface area
#3	Secondary	187.25'	10.0' long x	1.0' breadth Broad	d-Crested Rectangular Weir
	-		Head (feet) (0.20 0.40 0.60 0.8	0 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00		
					2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.	32	

Discarded OutFlow Max=0.38 cfs @ 12.39 hrs HW=186.22' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.38 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=185.00' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Perforated Pipe: 12" Perforated Pipe

Inflow Area =	1.212 ac, 47	7.72% Impervious, Inflow D	epth = 0.00" fe	or 10-YR-Cornell event
Inflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten	= 0%, Lag= 0.0 min
Discarded =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	-
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 181.50' @ 5.00 hrs Surf.Area= 361 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avail.Stor	age Stor	age Description
#1	182.00'	14		Round Pipe Storage Inside #2
#2	181.50'	23	1 cf Cus	80.0' t om Stage Data (Prismatic) Listed below (Recalc) cf Overall - 141 cf Embedded = 579 cf_x 40.0% Voids
#3	181.50'	:	3 cf 1.00	D x 3.75'H Vertical Cone/Cylinder
		37	6 cf Tota	I Available Storage
Elevatic (fee 181.5 183.5	t) 50	rf.Area <u>(sq-ft)</u> 360 360	Inc.Store (cubic-feet (720) (cubic-feet)) 0
Device	Routing	Invert	Outlet De	vices
#1	Discarded	181.50'		r Exfiltration over Surface area
#2	Secondary	185.20'	Head (fee 2.50 3.00	t) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 glish) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
#1 #2	Discarded Secondary	181.50' 185.20'	8.270 in/f 40.0' long Head (fee 2.50 3.00 Coef. (En 3.30 3.31	In Exfiltration over Surface area In X 1.0' breadth Broad-Crested Rectangular Weir t) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 glish) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.00 cfs @ 5.00 hrs HW=181.50' (Free Discharge) **1=Exfiltration** (Passes 0.00 cfs of 0.07 cfs potential flow)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=181.50' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Post Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow De	epth > 4.24" for 10-YR-Cornell event
Inflow =	1.12 cfs @ 12.07 hrs, Volume=	0.084 af
Outflow =	0.09 cfs @ 11.60 hrs, Volume=	0.081 af, Atten= 92%, Lag= 0.0 min
Discarded =	0.09 cfs @ 11.60 hrs, Volume=	0.081 af
Primary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 181.17' @ 13.06 hrs Surf.Area= 0.010 ac Storage= 0.033 af

Plug-Flow detention time= 128.5 min calculated for 0.081 af (96% of inflow) Center-of-Mass det. time= 114.8 min (849.4 - 734.6)

Volume	Invert	Avail.Storage	e Storage Description				
#1	178.00'	0.083 a	af 8.00'D x 8.00'H Vertical Cone/Cylinderx 9				
Device	Routing	Invort (Dutlet Devices				
Device	Rouling	inven (
#1	Discarded	178.00' 8	3.270 in/hr Exfiltration over Surface area				
#2	Primary	186.00' 1	2.0" Vert. Orifice/Grate C= 0.600				
Discarded OutFlow Max=0.09 cfs @ 11.60 hrs HW=178.10' (Free Discharge)							

1=Exfiltration (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=178.00' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Controls 0.00 cfs)

16011 Pre-Post	Type III 24-hr 25-YR Cornell Rainfall=6.00"
Prepared by {enter your company name here}	Printed 6/26/2016
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Sol	utions LLC Page 50

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 1a: Post 1a	Runoff Area=168,490 sf 3.95% Impervious Runoff Depth>0.55"
Flow Length=408	Slope=0.0210 '/' Tc=30.2 min CN=41 Runoff=0.84 cfs 0.177 af
SubcatchmentPost 1b: Post 1b	Runoff Area=10,363 sf 100.00% Impervious Runoff Depth>5.33"
Flow Length=2	5' Slope=0.3000 '/' Tc=5.0 min CN=98 Runoff=1.41 cfs 0.106 af
SubcatchmentPost 1c: Post 1c	Runoff Area=96,215 sf 8.76% Impervious Runoff Depth>0.80"
Flow Length=507	Slope=0.0330 '/' Tc=26.4 min CN=44 Runoff=0.82 cfs 0.147 af
SubcatchmentPost 1d: Post 1d	Runoff Area=37,714 sf 3.16% Impervious Runoff Depth>0.52"
Flow Length=199	Slope=0.0120 '/' Tc=22.5 min CN=41 Runoff=0.19 cfs 0.038 af
SubcatchmentPost 1e: Post 1e	Runoff Area=74,143 sf 14.39% Impervious Runoff Depth>1.08"
Flow Length=216	Slope=0.0120 '/' Tc=20.5 min CN=47 Runoff=1.05 cfs 0.153 af
SubcatchmentPost 2a: Post 2a	Runoff Area=18,911 sf 43.46% Impervious Runoff Depth>2.49"
Flow Length=198	Slope=0.0170 '/' Tc=10.4 min CN=64 Runoff=0.96 cfs 0.090 af
SubcatchmentPost 2b: Post 2b	Runoff Area=19,943 sf 33.14% Impervious Runoff Depth>1.96"
Flow Length=200	Slope=0.0200 '/' Tc=11.6 min CN=57 Runoff=0.75 cfs 0.075 af
SubcatchmentPost 2c: Post 2c	Runoff Area=17,310 sf 45.70% Impervious Runoff Depth>2.59"
Flow Length=10	2' Slope=0.0150 '/' Tc=6.4 min CN=65 Runoff=1.04 cfs 0.086 af
SubcatchmentPost 2d: Post 2d	Runoff Area=15,537 sf 68.69% Impervious Runoff Depth>3.78"
Flow Length=20	4' Slope=0.0150 '/' Tc=7.3 min CN=80 Runoff=1.36 cfs 0.112 af
SubcatchmentPost 3: Post 3	Runoff Area=10,681 sf 23.03% Impervious Runoff Depth>1.46"
Flow Length=174	Slope=0.0200 '/' Tc=12.1 min CN=51 Runoff=0.28 cfs 0.030 af
SubcatchmentPost 4: Post 4	Runoff Area=27,176 sf 11.78% Impervious Runoff Depth>0.86"
Flow Length=20	1' Slope=0.0900 '/' Tc=7.8 min CN=43 Runoff=0.41 cfs 0.045 af
Reach 1R: Eastern Reach around barn n=0.035 L=	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af 167.0' S=0.0299 '/' Capacity=35.30 cfs Outflow=0.00 cfs 0.000 af
Reach Post: Post	Inflow=1.97 cfs 0.360 af Outflow=1.97 cfs 0.360 af
Reach Post Front of Site: Post Front of S	Site Inflow=0.96 cfs 0.090 af Outflow=0.96 cfs 0.090 af
Reach Post South: South Wetlands	Inflow=1.97 cfs 0.360 af Outflow=1.97 cfs 0.360 af
Reach Post West: West Abutters	Inflow=0.67 cfs 0.074 af Outflow=0.67 cfs 0.074 af

16011 Pre-Post Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solu	Type III 24-hr 25-YR Cornell Rainfall=6.00" Printed 6/26/2016
	tions LLC Page 51
	0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af /' Capacity=60.96 cfs Outflow=0.00 cfs 0.000 af
	79.04' Storage=1,372 cf Inflow=1.05 cfs 0.153 af ary=0.00 cfs 0.000 af Outflow=0.37 cfs 0.153 af
Pond AD's 1&2: AD's 1&2Peak Elev=17Discarded=0.29 cfs0.145 afPrimary=0.37 cfs0.019 afSecond	′9.16' Storage=1,161 cf Inflow=0.98 cfs 0.164 af ary=0.00 cfs 0.000 af Outflow=0.62 cfs 0.164 af
Pond AD's 3&4: AD's 3&4Peak Elev=Discarded=0.03 cfs0.020 afPrimary=0.16 cfs0.017 afSecond	179.17' Storage=101 cf Inflow=0.19 cfs 0.038 af ary=0.00 cfs 0.000 af Outflow=0.18 cfs 0.037 af
Pond Basin 1: Basin 1Peak Elev=Discarded=0.24 cfs0.073 afPrimary=0.07 cfs0.002 afSecond	184.91' Storage=727 cf Inflow=0.75 cfs 0.075 af ary=0.00 cfs 0.000 af Outflow=0.31 cfs 0.075 af
Pond Basin 2: Basin 2Peak Elev=Discarded=0.31 cfs0.086 afPrimary=0.00 cfs0.000 afSecond	185.72' Storage=823 cf Inflow=1.04 cfs 0.086 af ary=0.00 cfs 0.000 af Outflow=0.31 cfs 0.086 af
Pond Basin 3: Basin 3Peak Elev=18Discarded=0.44 cfs0.112 afPrimary=0.00 cfs0.000 afSecond	36.37' Storage=1,164 cf Inflow=1.36 cfs 0.112 af ary=0.00 cfs 0.000 af Outflow=0.44 cfs 0.112 af
	v=181.51' Storage=2 cf Inflow=0.07 cfs 0.002 af ary=0.00 cfs 0.000 af Outflow=0.07 cfs 0.002 af
	2.39' Storage=0.046 af Inflow=1.41 cfs 0.106 af ary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.086 af
Total Runoff Area = 11.398 ac Runoff Vo 84.62% Pervio	lume = 1.058 af Average Runoff Depth = 1.11" us = 9.644 ac 15.38% Impervious = 1.753 ac

Summary for Subcatchment Post 1a: Post 1a

Runoff = 0.84 cfs @ 12.56 hrs, Volume= 0.177 af, Depth> 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description					
	6,649	98	Paved park	ing, HSG A	N Contraction of the second seco			
	554	96	Gravel surfa	ace, HSG A	4			
1	46,589	39	>75% Gras	s cover, Go	bod, HSG A			
	14,698	30	Woods, Go	od, HSG A				
1	68,490	41	Weighted Average					
1	161,841	38	96.05% Per	rvious Area	l			
	6,649	98	3.95% Impe	ervious Are	а			
_				• •	— • • •			
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
30.2	408	0.0210	0.23		Lag/CN Method, Post 1a			

Summary for Subcatchment Post 1b: Post 1b

Runoff = 1.41 cfs @ 12.07 hrs, Volume= 0.106 af,	Depth> 5.33"
--	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

Area (s	f) C	CN D	Description					
10,36	63	98 P	aved parki	ng, HSG A				
	0	96 G	ravel surfa	ace, HSG A				
	0	39 >	75% Grass	s cover, Go	od, HSG A			
	0	30 W	loods, Goo	od, HSG A				
10,36	63	98 Weighted Average						
10,36	63	98 10	00.00% Im	pervious A	rea			
Tc Lenç (min) (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
0.1	25 0	.3000	2.90		Lag/CN Method, Post 1b			
0.1	25 T	otal, Ir	ncreased t	o minimum	Tc = 5.0 min			

Summary for Subcatchment Post 1c: Post 1c

Runoff = 0.82 cfs @ 12.43 hrs, Volume= 0.147 af, Depth> 0.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

Type III 24-hr 25-YR Cornell Rainfall=6.00" Printed 6/26/2016

Page 53

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	8,429	98	Paved park	ing, HSG A	A Contraction of the second se			
	0	96	Gravel surfa	ace, HSG A	4			
	87,097	39	>75% Gras	s cover, Go	bod, HSG A			
	689	30	Woods, Go	od, HSG A				
	96,215	44	Weighted Average					
	87,786	39	91.24% Pervious Area					
	8,429	98	8.76% Impervious Area					
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
26.4	507	0.0330	0.32		Lag/CN Method, Post c			

Summary for Subcatchment Post 1d: Post 1d

Runoff = 0.19 cfs @ 12.50 hrs, Volume= 0.038 af, Depth> 0.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description					
	1,190	98	Paved park	ing, HSG A	N			
	0	96	Gravel surfa	ace, HSG A	A			
	36,524	39	>75% Gras	s cover, Go	bod, HSG A			
	0	30	Woods, Go	od, HSG A				
	37,714	41	Weighted Average					
	36,524	39	96.84% Pe	vious Area	l de la constante d			
	1,190	98	3.16% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
22.5	199	0.0120	0.15		Lag/CN Method, Post 1d			

Summary for Subcatchment Post 1e: Post 1e

Runoff = 1.05 cfs @ 12.30 hrs, Volume= 0.153 af, Depth> 1.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

Area (sf)	CN	Description
10,669	98	Paved parking, HSG A
0	96	Gravel surface, HSG A
63,474	39	>75% Grass cover, Good, HSG A
0	30	Woods, Good, HSG A
74,143	47	Weighted Average
63,474	39	85.61% Pervious Area
10,669	98	14.39% Impervious Area

				name here	e} oftware Solutions LLC	Printed 6/26/2016 Page 54
IIJUIOOA		3/11 01 10	1 @ 20101			i age 54
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
20.5	216	0.0120	0.18		Lag/CN Method, Post 1e	
			_			

Type III 24-hr 25-YR Cornell Rainfall=6.00"

Summary for Subcatchment Post 2a: Post 2a

Runoff = 0.96 cfs @ 12.14 hrs, Volume= 0.090 af, Depth> 2.49"

16011 Pre-Post

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description		
	8,219	98	Paved park	ing, HSG A	N
	0	96	Gravel surfa	ace, HSG A	A
	8,852	39	>75% Gras	s cover, Go	bod, HSG A
	1,840	30	Woods, Go	od, HSG A	
	18,911	64	Weighted A	verage	
	10,692	37	56.54% Pei	vious Area	l de la constante d
	8,219	98	43.46% Imp	pervious Ar	ea
ŢĊ	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.4	198	0.0170	0.32		Lag/CN Method, Post 2a

Summary for Subcatchment Post 2b: Post 2b

Runoff = 0.75 cfs @ 12.16 hrs, Volume= 0.075 af, Depth> 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description		
	6,610	98	Paved park	ing, HSG A	Α
	0	96	Gravel surfa	ace, HSG A	4
	10,148	39	>75% Gras	s cover, Go	bod, HSG A
	3,185	30	Woods, Go	od, HSG A	
	19,943	57	Weighted A	verage	
	13,333	37	66.86% Pei	vious Area	l
	6,610	98	33.14% Imp	pervious Ar	ea
_					
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.6	200	0.0200	0.29		Lag/CN Method, Post 2b

Summary for Subcatchment Post 2c: Post 2c

Runoff = 1.04 cfs @ 12.09 hrs, Volume= 0.086 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description		
	7,910	98	Paved park	ing, HSG A	N Contraction of the second seco
	0	96	Gravel surfa	ace, HSG A	4
	6,910	39	>75% Gras	s cover, Go	bod, HSG A
	2,490	30	Woods, Go	od, HSG A	
	17,310	65	Weighted A	verage	
	9,400	37	54.30% Pe	rvious Area	l
	7,910	98	45.70% Imp	pervious Ar	ea
Та	l a narth	Class	Volocity	Consolt	Description
Tc	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.4	102	0.0150	0.27		Lag/CN Method, Post 2c

Summary for Subcatchment Post 2d: Post 2d

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description		
	10,672	98	Paved park	ing, HSG A	A
	0	96	Gravel surf	ace, HSG A	4
	4,865	39	>75% Gras	s cover, Go	bod, HSG A
	0	30	Woods, Go	od, HSG A	
	15,537	80	Weighted A	verage	
	4,865	39	31.31% Pe	rvious Area	1
	10,672	98	68.69% Imp	pervious Ar	ea
Тс	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
7.3	204	0.015	0.47		Lag/CN Method, Post 2d

Summary for Subcatchment Post 3: Post 3

Runoff = 0.28 cfs @ 12.17 hrs, Volume= 0.030 af, Depth> 1.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

Type III 24-hr 25-YR Cornell Rainfall=6.00" Printed 6/26/2016

Page 56

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,460	98	Paved park	ing, HSG A	N
	0	96	Gravel surfa	ace, HSG A	A
	6,420	39	>75% Gras	s cover, Go	bod, HSG A
	1,801	30	Woods, Go	od, HSG A	
	10,681	51	Weighted A	verage	
	8,221	37	76.97% Pei	vious Area	
	2,460	98	23.03% Imp	pervious Ar	ea
Тс	Length	Slope	,	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.1	174	0.0200	0.24		Lag/CN Method, Post 3

Summary for Subcatchment Post 4: Post 4

12.1113, 00000 = 0.040 a, Deptine 0.00000000000000000000000000000000000	Runoff =	0.41 cfs @	12.11 hrs, Volume=	0.045 af, Depth> 0.86"
---	----------	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Cornell Rainfall=6.00"

A	rea (sf)	CN	Description
	3,200	98	Paved parking, HSG A
	0	96	Gravel surface, HSG A
	15,762	39	>75% Grass cover, Good, HSG A
	8,214	30	Woods, Good, HSG A
	27,176	43	Weighted Average
	23,976	36	88.22% Pervious Area
	3,200	98	11.78% Impervious Area
Та	Longth	Slor	No. Valasity Canasity Description
Tc	Length	Slop	
(min)	(feet)	(ft/f	t) (ft/sec) (cfs)

7.8	201	0.0900	0.43

Lag/CN Method, Post 4

Summary for Reach 1R: Eastern Reach around barn

Inflow Area =	1.702 ac, 14.39% Impervious, Inflow D	epth = 0.00" for 25-YR Cornell event
Inflow =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Outflow =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 5.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 10.0 sf, Capacity= 35.30 cfs

16011 Pre-PostType III 24-hr25-YR Cornell Rainfall=6.00"Prepared by {enter your company name here}Printed 6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 57

30.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 167.0' Slope= 0.0299 '/' Inlet Invert= 180.00', Outlet Invert= 175.00'

Summary for Reach Post: Post

Inflow Area =	11.398 ac, 15.38% Impervious, Inflow D	Depth > 0.38" for 25-YR Cornell event
Inflow =	1.97 cfs @ 12.15 hrs, Volume=	0.360 af
Outflow =	1.97 cfs @ 12.15 hrs, Volume=	0.360 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post Front of Site: Post Front of Site

Inflow Area =	1.646 ac, 46.60% Impervious, Inflow D	epth > 0.66" for 25-YR Cornell event
Inflow =	0.96 cfs @ 12.14 hrs, Volume=	0.090 af
Outflow =	0.96 cfs @ 12.14 hrs, Volume=	0.090 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post South: South Wetlands

Inflow Area =	11.398 ac, 15.38% Impervious, Inflow	Depth > 0.38"	for 25-YR Cornell event
Inflow =	1.97 cfs @ 12.15 hrs, Volume=	0.360 af	
Outflow =	1.97 cfs @ 12.15 hrs, Volume=	0.360 af, Atte	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post West: West Abutters

Inflow Area =	0.869 ac, 14.95% Impervious, Inflow D	Depth > 1.03" for 25-YR Cornell event
Inflow =	0.67 cfs @ 12.13 hrs, Volume=	0.074 af
Outflow =	0.67 cfs @ 12.13 hrs, Volume=	0.074 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Western Reach thru Post 1a: Western Reach thru Post 1a

Inflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min

16011 Pre-PostType III 24-hr25-YR Cornell Rainfall=6.00"Prepared by {enter your company name here}Printed 6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 58

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 5.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 20.0 sf, Capacity= 60.96 cfs

60.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 269.0' Slope= 0.0223 '/' Inlet Invert= 181.00', Outlet Invert= 175.00'

‡

Summary for Pond AD 6 & Trench: AD 6 & Trench

Inflow Area =	1.702 ac, 14.39% Impervious, Inflow D	Depth > 1.08" for 25-YR Cornell event
Inflow =	1.05 cfs @ 12.30 hrs, Volume=	0.153 af
Outflow =	0.37 cfs @ 12.35 hrs, Volume=	0.153 af, Atten= 65%, Lag= 3.0 min
Discarded =	0.37 cfs @ 12.35 hrs, Volume=	0.153 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 179.04' @ 12.87 hrs Surf.Area= 1,920 sf Storage= 1,372 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 25.6 min (815.5 - 789.8)

Invert Av	ail.Storage	Storage Description
178.50'	322 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
		1,440 cf Overall - 636 cf Embedded = 804 cf x 40.0% Voids
179.00'	636 cf	18.0" Round Pipe Storage Inside #1
470.001	1 000 . (L= 360.0'
178.00	1,060 Cf	18.0" Round Pipe Storage Inside #4 L= 600.0'
177 50'	776 cf	
177.50	110 01	3,000 cf Overall - 1,060 cf Embedded = 1,940 cf x 40.0% Voids
	2,794 cf	Total Available Storage
		c.Store Cum.Store
	178.50' 179.00' 178.00' 177.50' Surf.Area	178.50' 322 cf 179.00' 636 cf 178.00' 1,060 cf 177.50' 776 cf 2,794 cf

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
178.50	720	0	0
180.50	720	1,440	1,440

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
177.5	-	1,200	0	0	
180.0	00	1,200	3,000	3,000	
<u>Device</u> #1 #2	Routing Discarded Secondary	Invert 177.50' 180.30'		0' breadth Br	Surface area oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 ´ Coef. (English) 3.30 3.31 3.32		75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.37 cfs @ 12.35 hrs HW=178.60' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.37 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=180.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 1&2: AD's 1&2

Inflow Area =	3.075 ac,	7.18% Impervious, Inflow	Depth > 0.64" for 2	5-YR Cornell event
Inflow =	0.98 cfs @	12.44 hrs, Volume=	0.164 af	
Outflow =	0.62 cfs @	12.81 hrs, Volume=	0.164 af, Atten= 36	%, Lag= 22.3 min
Discarded =	0.29 cfs @	14.60 hrs, Volume=	0.145 af	
Primary =	0.37 cfs @	12.81 hrs, Volume=	0.019 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 179.16' @ 12.81 hrs Surf.Area= 1,300 sf Storage= 1,161 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 23.8 min (837.6 - 813.8)

Volume	Invert Av	ail.Storage	Storage Description
#1	178.00'	141 cf	12.0" Round Pipe Storage L= 180.0'
#2	177.50'	288 cf	Custom Stage Data (Prismatic) Listed below (Recalc) 720 cf Overall x 40.0% Voids
#3	178.00'	2 cf	1.00'D x 2.60'H Vertical Cone/Cylinder
#4	180.60'	618 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
#5	178.00'	442 cf	18.0" Round Pipe Storage
			L= 250.0'
#6	177.50'	500 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
			1,250 cf Overall x 40.0% Voids
		1,991 cf	Total Available Storage
Elevation	Surf.Area	a Inc	c.Store Cum.Store
(feet)	(sq-ft) (cubi	ic-feet) (cubic-feet)
177.50	360)	0 0
179.50	360)	720 720

Page 60

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
180.60	10	0	0
181.10	2,462	618	618
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
177.50	625	0	0
179.50	625	1,250	1,250

Device	Routing	Invert	Outlet Devices
#1	Discarded	177.50'	8.270 in/hr Exfiltration over Surface area
#2	Primary	178.75'	6.0" Vert. Orifice/Grate C= 0.600
#3	Secondary	180.90'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32

Discarded OutFlow Max=0.29 cfs @ 14.60 hrs HW=178.62' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.29 cfs)

Primary OutFlow Max=0.37 cfs @ 12.81 hrs HW=179.16' TW=0.00' (Dynamic Tailwater) ←2=Orifice/Grate (Orifice Controls 0.37 cfs @ 2.17 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.50' TW=181.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 3&4: AD's 3&4

Inflow Area =	0.866 ac,	3.16% Impervious, Infle	ow Depth > 0.52"	for 25-YR Cornell event
Inflow =	0.19 cfs @	12.50 hrs, Volume=	0.038 af	
Outflow =	0.18 cfs @	12.44 hrs, Volume=	0.037 af, Atte	en= 3%, Lag= 0.0 min
Discarded =	0.03 cfs @	18.12 hrs, Volume=	0.020 af	
Primary =	0.16 cfs @	12.44 hrs, Volume=	0.017 af	
Secondary =	0.00 cfs @	5.00 hrs, Volume=	0.000 af	

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 179.17' @ 12.85 hrs Surf.Area= 92 sf Storage= 101 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 12.7 min (863.9 - 851.2)

Type III 24-hr 25-YR Cornell Rainfall=6.00" Printed 6/26/2016 tions LLC Page 61

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stor	age	Storag	e Description	
#1	177.90'	3	6 cf	12.0"	Round Pipe Stor	rage
	477 401		4.5	L= 46.0		
#2	177.40'	/	4 cf		M Stage Data (P) Overall x 40.0%	rismatic)Listed below (Recalc) Voids
#3	180.60'	39	7 cf		• • • • • • • • • • • • • • • •	rismatic)Listed below (Recalc)
		50	7 cf		vailable Storage	
	0	E A	I	0	0	
Elevation		rf.Area		.Store	Cum.Store	
(feet)		(sq-ft)	(cubic	c-feet)	(cubic-feet)	
177.40)	92		0	0	
179.40)	92		184	184	
Elevation	n Su	rf.Area	Inc	.Store	Cum.Store	
(feet))	(sq-ft)	(cubio	c-feet)	(cubic-feet)	
180.60)	10		0	0	
181.10		1,579		397	397	
		,				
Device	Routing	Invert	Outle	et Devic	es	
#1	Discarded	177.40'	8.27	0 in/hr	Exfiltration over	Surface area
	Primary	178.40'	6.0"	Vert O	rifice/Grate C=	0.600
	Secondary	180.90'				ad-Crested Rectangular Weir
#0	occontrally	100.30				0.80 1.00 1.20 1.40 1.60 1.80 2.00
				3.00	0.20 0.40 0.00	0.00 1.00 1.20 1.40 1.00 1.00 2.00
					ab) 260 272 2	75 2 05 2 00 2 00 2 20 2 20 2 24
						75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30	3.31 3	0.32	

Discarded OutFlow Max=0.03 cfs @ 18.12 hrs HW=178.40' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.10 cfs @ 12.44 hrs HW=178.64' TW=178.58' (Dynamic Tailwater) **2=Orifice/Grate** (Orifice Controls 0.10 cfs @ 1.13 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=177.40' TW=181.00' (Dynamic Tailwater) —3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 1: Basin 1

Inflow Area =	1.212 ac, 47.72% Impervious, Inflow D	epth > 0.74" for 25-YR Cornell event
Inflow =	0.75 cfs @ 12.16 hrs, Volume=	0.075 af
Outflow =	0.31 cfs @ 12.49 hrs, Volume=	0.075 af, Atten= 59%, Lag= 19.7 min
Discarded =	0.24 cfs @ 12.49 hrs, Volume=	0.073 af
Primary =	0.07 cfs @ 12.49 hrs, Volume=	0.002 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 184.91' @ 12.49 hrs Surf.Area= 1,240 sf Storage= 727 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 20.1 min (774.4 - 754.3)

Type III 24-hr 25-YR Cornell Rainfall=6.00" Printed 6/26/2016 Page 62

Prepared by {ent	er your compa	any name here}	
HydroCAD® 10.00	s/n 01151 © 20	13 HydroCAD Software Solution	ns LLC

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	184.00'	1,62	28 cf Custom	n Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio (fee 184.0 185.5	et) 00	f.Area <u>(sq-ft)</u> 359 1,811	Inc.Store (cubic-feet) 0 1,628	Cum.Store (cubic-feet) 0 1,628	
Device #1 #2 #3	Routing Discarded Primary Secondary	Invert 184.00'	Outlet Device 8.270 in/hr E 6.0" Vert. Or 30.0' long x Head (feet) 0 2.50 3.00	xfiltration over ifice/Grate C= 1.0' breadth Bro 0.20 0.40 0.60 h) 2.69 2.72 2.	

Discarded OutFlow Max=0.24 cfs @ 12.49 hrs HW=184.91' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.24 cfs)

Primary OutFlow Max=0.07 cfs @ 12.49 hrs HW=184.91' TW=181.51' (Dynamic Tailwater) **1**-2=Orifice/Grate (Orifice Controls 0.07 cfs @ 1.36 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=184.00' TW=0.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 2: Basin 2

Inflow Area =	0.754 ac, 56.57% Impervious, Inflow D	epth > 1.37" for 25-YR Cornell event
Inflow =	1.04 cfs @ 12.09 hrs, Volume=	0.086 af
Outflow =	0.31 cfs @ 12.44 hrs, Volume=	0.086 af, Atten= 70%, Lag= 20.9 min
Discarded =	0.31 cfs @ 12.44 hrs, Volume=	0.086 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.72' @ 12.44 hrs Surf.Area= 1,617 sf Storage= 823 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 16.5 min (760.7 - 744.1)

Volume	Invert	Avail.	Storage	Storage	e Description	
#1	185.00'		1,874 cf	Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)		.Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
185.00 186.25	4	685 2,313		0 1,874	0 1,874	

Type III 24-hr 25-YR Cornell Rainfall=6.00" Printed 6/26/2016

Page 63

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	185.00'	8.270 in/hr Exfiltration over Surface area
#2	Primary	186.00'	6.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Secondary	186.20'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.31 cfs @ 12.44 hrs HW=185.71' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.31 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater) 2=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 3: Basin 3

Inflow Area =	0.357 ac, 68.69% Impervious, Inflow D	epth > 3.78" for 25-YR Cornell event
Inflow =	1.36 cfs @ 12.10 hrs, Volume=	0.112 af
Outflow =	0.44 cfs @ 12.43 hrs, Volume=	0.112 af, Atten= 68%, Lag= 19.4 min
Discarded =	0.44 cfs @ 12.43 hrs, Volume=	0.112 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.37' @ 12.43 hrs Surf.Area= 2,297 sf Storage= 1,164 cf

Plug-Flow detention time= 19.3 min calculated for 0.112 af (100% of inflow) Center-of-Mass det. time= 19.2 min (759.1 - 739.9)

Volume	Invert	Avail.Stor	age Storage	Description		
#1	185.50'	5,93	9 cf Custom	n Stage Data (Prism	matic)Listed below (Recalc)	
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
185.5	50	377	0	0		
186.5	51	2,605	1,506	1,506		
187.3	30	8,618	4,433	5,939		
Device	Routing	Invert	Outlet Device	-		
#1	Primary	186.50'	8.0" Horiz. O	orifice/Grate C= 0.6	.600 Limited to weir flow at low heads	s
#2	Discarded	185.50'	8.270 in/hr E	xfiltration over Sur	rface area	
#3	Secondary	187.25'			d-Crested Rectangular Weir	
			Head (feet) (0.20 0.40 0.60 0.80	30 1.00 1.20 1.40 1.60 1.80 2.00	
			2.50 3.00			
			Coef. (English 3.30 3.31 3.	,	2.85 2.98 3.08 3.20 3.28 3.31	

Discarded OutFlow Max=0.44 cfs @ 12.43 hrs HW=186.37' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.44 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=185.00' (Dynamic Tailwater)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Perforated Pipe: 12" Perforated Pipe

Inflow Area =	1.212 ac, 47.72% Impervious, Inflow D	Depth = 0.02" for 25-YR Cornell event
Inflow =	0.07 cfs @ 12.49 hrs, Volume=	0.002 af
Outflow =	0.07 cfs @ 12.55 hrs, Volume=	0.002 af, Atten= 6%, Lag= 3.8 min
Discarded =	0.07 cfs @ 12.55 hrs, Volume=	0.002 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 181.51' @ 12.54 hrs Surf.Area= 361 sf Storage= 2 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (752.1 - 751.9)

Volume	Invert	Avail.Stor	age S	Storage Description			
#1	182.00'	14		12.0" Round Pipe Storage Inside #2			
#2	181.50'	23	1 cf C	L= 180.0' Custom Stage Data (Prismatic) Listed below (Recalc) 720 cf Overall - 141 cf Embedded = 579 cf x 40.0% Voids			
#3	181.50'			1.00'D x 3.75'H Vertical Cone/Cylinder			
		37	′6 cf T	Total Available Storage			
Elevatio (fee 181.5 183.5	et) 50	rf.Area (sq-ft) 360 360	Inc.S (cubic-f	StoreCum.Storec-feet)(cubic-feet)00720720			
Device	Routing	Invert	Outlet	et Devices			
#1 #2	Discarded	181.50'		0 in/hr Exfiltration over Surface area			
#2	Secondary	185.20'	Head (2.50 3 Coef. (Iong x 1.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 .00 .00 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.31 3.32			

Discarded OutFlow Max=0.07 cfs @ 12.55 hrs HW=181.51' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.07 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=181.50' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Post Existing House: Drywells

Inflow Area =	0.238 ac,100.00% Impervious, Inflow De	epth > 5.33" for 25-YR Cornell event
Inflow =	1.41 cfs @ 12.07 hrs, Volume=	0.106 af
Outflow =	0.09 cfs @ 11.30 hrs, Volume=	0.086 af, Atten= 94%, Lag= 0.0 min
Discarded =	0.09 cfs @ 11.30 hrs, Volume=	0.086 af
Primary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 182.39' @ 13.61 hrs Surf.Area= 0.010 ac Storage= 0.046 af

Plug-Flow detention time= 151.2 min calculated for 0.085 af (81% of inflow) Center-of-Mass det. time= 99.0 min (832.4 - 733.4)

Volume	Invert	Avail.Storag	ge Storage Description				
#1	178.00'	0.083	af 8.00'D x 8.00'H Vertical Cone/Cylinderx 9				
Device	Routing	Invert	Outlet Devices				
#1	Discarded	178.00'	8.270 in/hr Exfiltration over Surface area				
#2	Primary	186.00'	12.0" Vert. Orifice/Grate C= 0.600				
Discarded OutFlow Max=0.09 cfs @ 11.30 hrs HW=178.09' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.09 cfs)							

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=178.00' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Controls 0.00 cfs)

16011 Pre-Post	Type III 24-hr	100-YR-Cornell Rainfall=8.50"
Prepared by {enter your company name here}		Printed 6/26/2016
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software So	olutions LLC	Page 66

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPost 1a: Post 1a	Runoff Area=168,490 sf 3.95% Impervious Runoff Depth>1.40"
Flow Length=40	8' Slope=0.0210 '/' Tc=30.2 min CN=41 Runoff=3.00 cfs 0.451 af
SubcatchmentPost 1b: Post 1b	Runoff Area=10,363 sf 100.00% Impervious Runoff Depth>7.60"
Flow Length=	25' Slope=0.3000 '/' Tc=5.0 min CN=98 Runoff=2.00 cfs 0.151 af
SubcatchmentPost 1c: Post 1c	Runoff Area=96,215 sf 8.76% Impervious Runoff Depth>1.75"
Flow Length=50	7' Slope=0.0330 '/' Tc=26.4 min CN=44 Runoff=2.32 cfs 0.322 af
SubcatchmentPost 1d: Post 1d	Runoff Area=37,714 sf 3.16% Impervious Runoff Depth>1.40"
Flow Length=19	9' Slope=0.0120 '/' Tc=22.5 min CN=41 Runoff=0.76 cfs 0.101 af
SubcatchmentPost 1e: Post 1e	Runoff Area=74,143 sf 14.39% Impervious Runoff Depth>2.12"
Flow Length=21	6' Slope=0.0120 '/' Tc=20.5 min CN=47 Runoff=2.42 cfs 0.301 af
SubcatchmentPost 2a: Post 2a	Runoff Area=18,911 sf 43.46% Impervious Runoff Depth>3.91"
Flow Length=19	8' Slope=0.0170 '/' Tc=10.4 min CN=64 Runoff=1.53 cfs 0.141 af
SubcatchmentPost 2b: Post 2b	Runoff Area=19,943 sf 33.14% Impervious Runoff Depth>3.20"
Flow Length=20	D' Slope=0.0200 '/' Tc=11.6 min CN=57 Runoff=1.26 cfs 0.122 af
SubcatchmentPost 2c: Post 2c	Runoff Area=17,310 sf 45.70% Impervious Runoff Depth>4.02"
Flow Length=1	02' Slope=0.0150 '/' Tc=6.4 min CN=65 Runoff=1.63 cfs 0.133 af
SubcatchmentPost 2d: Post 2d	Runoff Area=15,537 sf 68.69% Impervious Runoff Depth>5.60"
Flow Length=2	04' Slope=0.0150 '/' Tc=7.3 min CN=80 Runoff=2.04 cfs 0.166 af
SubcatchmentPost 3: Post 3	Runoff Area=10,681 sf 23.03% Impervious Runoff Depth>2.55"
Flow Length=17	4' Slope=0.0200 '/' Tc=12.1 min CN=51 Runoff=0.51 cfs 0.052 af
SubcatchmentPost 4: Post 4	Runoff Area=27,176 sf 11.78% Impervious Runoff Depth>1.73"
Flow Length=2	01' Slope=0.0900 '/' Tc=7.8 min CN=43 Runoff=0.93 cfs 0.090 af
	Avg. Flow Depth=0.12' Max Vel=1.32 fps Inflow=1.73 cfs 0.044 af =167.0' S=0.0299 '/' Capacity=35.30 cfs Outflow=1.53 cfs 0.044 af
Reach Post: Post	Inflow=7.32 cfs 0.954 af Outflow=7.32 cfs 0.954 af
Reach Post Front of Site: Post Front of	Site Inflow=1.53 cfs 0.147 af Outflow=1.53 cfs 0.147 af
Reach Post South: South Wetlands	Inflow=7.32 cfs 0.954 af Outflow=7.32 cfs 0.954 af
Reach Post West: West Abutters	Inflow=1.41 cfs 0.142 af Outflow=1.41 cfs 0.142 af

16011 Pre-Post Prepared by {enter your company name here}	Type III 24-hr 100-YR-Cornell Rainfall=8.50" Printed 6/26/2016
HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Softwa	are Solutions LLC Page 67
	Depth=0.04' Max Vel=0.53 fps Inflow=0.49 cfs 0.005 af 0.0223 '/' Capacity=60.96 cfs Outflow=0.21 cfs 0.005 af
	Elev=180.45' Storage=2,776 cf Inflow=2.42 cfs 0.301 af Secondary=1.73 cfs 0.044 af Outflow=2.10 cfs 0.301 af
Pond AD's 1&2: AD's 1&2 Peak Discarded=0.60 cfs 0.219 af Primary=1.35 cfs 0.164 af	Elev=181.03' Storage=1,838 cf Inflow=2.95 cfs 0.386 af Secondary=0.27 cfs 0.002 af Outflow=2.20 cfs 0.384 af
Pond AD's 3&4: AD's 3&4 Pea Discarded=0.28 cfs 0.033 af Primary=0.79 cfs 0.064 af	k Elev=181.04' Storage=416 cf Inflow=0.76 cfs 0.101 af Secondary=0.27 cfs 0.003 af Outflow=0.79 cfs 0.100 af
Pond Basin 1: Basin 1PeakDiscarded=0.30 cfs0.106 afPrimary=0.45 cfs0.021 af	Elev=185.22' Storage=1,162 cf Inflow=1.26 cfs 0.128 af Secondary=0.00 cfs 0.000 af Outflow=0.74 cfs 0.128 af
Pond Basin 2: Basin 2PeakDiscarded=0.41 cfs0.133 afPrimary=0.21 cfs0.006 af	Elev=186.12' Storage=1,584 cf Inflow=1.63 cfs 0.139 af Secondary=0.00 cfs 0.000 af Outflow=0.62 cfs 0.139 af
Pond Basin 3: Basin 3PeakDiscarded=0.63 cfs0.161 afPrimary=0.21 cfs0.006 af	Elev=186.60' Storage=1,764 cf Inflow=2.04 cfs 0.166 af Secondary=0.00 cfs 0.000 af Outflow=0.84 cfs 0.166 af
	k Elev=185.23' Storage=376 cf Inflow=0.45 cfs 0.021 af Secondary=0.54 cfs 0.006 af Outflow=0.61 cfs 0.021 af
	Elev=185.36' Storage=0.076 af Inflow=2.00 cfs 0.151 af af Primary=0.00 cfs 0.000 af Outflow=0.09 cfs 0.093 af
	noff Volume = 2.031 af Average Runoff Depth = 2.14" Pervious = 9.644 ac 15.38% Impervious = 1.753 ac

Summary for Subcatchment Post 1a: Post 1a

Runoff = 3.00 cfs @ 12.51 hrs, Volume= 0.451 af, Depth> 1.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

f) CN	De	escription					
9 98	Pa	aved parki	ing, HSG A	N N N N N N N N N N N N N N N N N N N			
64 96	G	ravel surfa	ace, HSG A	A Contraction of the second seco			
39 39	>7	75% Grass	s cover, Go	bod, HSG A			
8 30	W	oods, Goo	od, HSG A				
168,490 41 Weighted Average							
161,841 38			96.05% Pervious Area				
9 98	98 3.95% Impervious Area			a			
		,		Description			
et) (f	t/ft)	(ft/sec)	(cfs)				
08 0.02	210	0.23		Lag/CN Method, Post 1a			
	54 96 39 39 98 30 90 41 41 38 49 98 gth Slo eet) (f	49 98 Pa 54 96 G 39 39 >7 98 30 W 90 41 W 90 41 38 96 41 38 96 41 W 49 98 3. . . gth Slope . . . gth Slope . . .	19 98 Paved parki 54 96 Gravel surfa 39 39 >75% Grass 38 30 Woods, God 30 41 Weighted A 41 38 96.05% Per 49 98 3.95% Impe 98 Slope Velocity 99 (ft/ft) (ft/sec)	4998Paved parking, HSG A5496Gravel surface, HSG A3939>75% Grass cover, Go3830Woods, Good, HSG A3041Weighted Average413896.05% Pervious Area49983.95% Impervious Area99SlopeVelocity94SlopeVelocity95(ft/ft)(ft/sec)96(ft/ft)(ft/sec)			

Summary for Subcatchment Post 1b: Post 1b

Runoff = 2.00 cfs @ 12.07 hrs, Volume= 0.151 af, Depth> 7.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Ar	rea (sf)	CN	Description		
	10,363	98	Paved park	ing, HSG A	
	0	96	Gravel surfa	ace, HSG A	N N N N N N N N N N N N N N N N N N N
	0	39	>75% Gras	s cover, Go	ood, HSG A
	0	30	Woods, Go	od, HSG A	
	10,363	98	Weighted A	verage	
	10,363	98	100.00% Im	pervious A	rea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-
0.1	25	0.3000	2.90		Lag/CN Method, Post 1b
0.1	25	Total,	Increased t	o minimum	Tc = 5.0 min

Summary for Subcatchment Post 1c: Post 1c

Runoff = 2.32 cfs @ 12.43 hrs, Volume= 0.322 af, Depth> 1.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Type III 24-hr 100-YR-Cornell Rainfall=8.50" Printed 6/26/2016

Page 69

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Are	ea (sf)	CN	Description				
	8,429	98	Paved park	ing, HSG A	A Contraction of the second se		
	0	96	Gravel surfa	ace, HSG A	4		
8	7,097	39	>75% Gras	s cover, Go	bod, HSG A		
	689	30	Woods, Go	od, HSG A			
9	6,215	44	Weighted A	verage			
8	7,786	39	91.24% Per	vious Area	l		
	8,429	98	98 8.76% Impervious Area				
	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
26.4	507	0.0330	0.32		Lag/CN Method, Post c		

Summary for Subcatchment Post 1d: Post 1d

Runoff	=	0.76 cfs @	12.39 hrs,	Volume=	0.101 af, Depth> 1.40	"
--------	---	------------	------------	---------	-----------------------	---

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

A	rea (sf)	CN I	Description				
	1,190	98 I	Paved park	ing, HSG A	A		
	0	96 (Gravel surfa	ace, HSG A	4		
	36,524	39 >	>75% Gras	s cover, Go	bod, HSG A		
	0	30 \	Noods, Go	od, HSG A			
	37,714	41 \	Neighted A	verage			
	36,524	39 9	39 96.84% Pervious Area				
	1,190	98 3	3.16% Impe	ervious Are	a		
Тс	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
22.5	199	0.0120	0.15		Lag/CN Method, Post 1d		
					-		

Summary for Subcatchment Post 1e: Post 1e

Runoff = 2.42 cfs @ 12.32 hrs, Volume= 0.301 af, Depth> 2.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Area (sf)	CN	Description
10,669	98	Paved parking, HSG A
0	96	Gravel surface, HSG A
63,474	39	>75% Grass cover, Good, HSG A
0	30	Woods, Good, HSG A
74,143	47	Weighted Average
63,474	39	85.61% Pervious Area
10,669	98	14.39% Impervious Area

16011 Pre-Post Prepared by {enter your company name he <u>HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD</u>						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
20.5	216	0.0120	0.18		Lag/CN Method, Post 1e	
		5	Summary	y for Sub	ocatchment Post 2a: Post 2a	
Runoff	=	1.53 cfs	a @ 12.18	5 hrs, Volu	ume= 0.141 af, Depth> 3.91"	
	Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"					
Δ	rea (sf)		escription			

_	A	rea (sf)	CN	Description		
		8,219	98	Paved park	ing, HSG A	N Contraction of the second seco
		0	96	Gravel surfa	ace, HSG A	4
		8,852	39	>75% Gras	s cover, Go	bod, HSG A
_		1,840	30	Woods, Go	od, HSG A	
		18,911	64	Weighted A	verage	
		10,692	37	56.54% Pe	rvious Area	l
		8,219	98	43.46% Imp	pervious Ar	ea
	Тс	Length	Slop	,	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	10.4	198	0.017	0 0.32		Lag/CN Method, Post 2a

Summary for Subcatchment Post 2b: Post 2b

Runoff = 1.26 cfs @ 12.16 hrs, Volume= 0.122 af, Depth> 3.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

A	rea (sf)	CN	Description			
	6,610	98	Paved park	ing, HSG A	N	
	0	96	Gravel surfa	ace, HSG A	A	
	10,148	39	>75% Gras	s cover, Go	bod, HSG A	
	3,185	30	, ,			
	19,943	57	Weighted A	verage		
	13,333	37	66.86% Pei	vious Area	l de la constante d	
	6,610	98	33.14% Imp	pervious Ar	ea	
Tc	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
11.6	200	0.0200	0.29		Lag/CN Method, Post 2b	

Summary for Subcatchment Post 2c: Post 2c

Runoff = 1.63 cfs @ 12.10 hrs, Volume= 0.133 af, Depth> 4.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Are	a (sf)	CN	Description		
	7,910	98	Paved park	ing, HSG A	N
	0	96	Gravel surfa	ace, HSG A	A
(6,910	39	>75% Gras	s cover, Go	bod, HSG A
	2,490	30	Woods, Go	od, HSG A	
1	7,310	65	Weighted A	verage	
9	9,400	37	54.30% Pe	rvious Area	
•	7,910	98	45.70% Imp	pervious Ar	ea
	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.4	102	0.015	0.27		Lag/CN Method, Post 2c

Summary for Subcatchment Post 2d: Post 2d

Runoff = 2.	.04 cfs @ 12.10 hrs, Volume:	= 0.166 af, Depth> 5.60"
-------------	------------------------------	--------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

A	rea (sf)	CN	Description		
	10,672	98	Paved park	ing, HSG A	Α
	0	96	Gravel surfa	ace, HSG A	4
	4,865	39	>75% Gras	s cover, Go	bod, HSG A
	0	30	Woods, Go	od, HSG A	
	15,537	80	Weighted A	verage	
	4,865	39	31.31% Pe	rvious Area	l
	10,672	98	68.69% Imp	pervious Ar	ea
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
7.3	204	0.015	0.47		Lag/CN Method, Post 2d

Summary for Subcatchment Post 3: Post 3

Runoff = 0.51 cfs @ 12.17 hrs, Volume= 0.052 af, Depth> 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Printed 6/26/2016

Page 72

16011 Pre-Post

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,460	98	Paved park	ing, HSG A	A
	0	96	Gravel surfa	ace, HSG A	Α
	6,420	39	>75% Gras	s cover, Go	bod, HSG A
	1,801	30	Woods, Go	od, HSG A	
	10,681	51	Weighted A	verage	
	8,221	37	76.97% Pei	vious Area	
	2,460	98	23.03% Imp	pervious Ar	ea
Тс	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft	(ft/sec)	(cfs)	
12.1	174	0.0200	0.24		Lag/CN Method, Post 3

Summary for Subcatchment Post 4: Post 4

Runoff = 0.93 cfs @ 12.12 hrs, Volume= 0.090 af, Depth> 1.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR-Cornell Rainfall=8.50"

Area (sf) CN	Description
3,200) 98	Paved parking, HSG A
() 96	Gravel surface, HSG A
15,762	2 39	>75% Grass cover, Good, HSG A
8,214	4 30	Woods, Good, HSG A
27,176	5 43	Weighted Average
23,976	5 36	88.22% Pervious Area
3,200) 98	11.78% Impervious Area
Tc Leng		
(min) (fee	et) (ft/	ft) (ft/sec) (cfs)

(min) (feet) (ft/ft) (ft/sec) (cfs) 7.8 201 0.0900 0.43

Lag/CN Method, Post 4

Summary for Reach 1R: Eastern Reach around barn

Inflow Area =	1.702 ac, 14.39% Impervious, Inflow Depth = 0.31" for 100-YR-Cornell event
Inflow =	1.73 cfs @ 12.52 hrs, Volume= 0.044 af
Outflow =	1.53 cfs @ 12.57 hrs, Volume= 0.044 af, Atten= 12%, Lag= 2.9 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.32 fps, Min. Travel Time= 2.1 min Avg. Velocity = 0.45 fps, Avg. Travel Time= 6.2 min

Peak Storage= 191 cf @ 12.57 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 0.50' Flow Area= 10.0 sf, Capacity= 35.30 cfs

16011 Pre-PostType III 24-hr100-YR-Cornell Rainfall=8.50"Prepared by {enter your company name here}Printed 6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 73

30.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 167.0' Slope= 0.0299 '/' Inlet Invert= 180.00', Outlet Invert= 175.00'

Summary for Reach Post: Post

Inflow Area =	11.398 ac, 15.38% Impervious, Inflow Depth > 1.00" for 100-YR-Cornell event
Inflow =	7.32 cfs @ 12.56 hrs, Volume= 0.954 af
Outflow =	7.32 cfs @ 12.56 hrs, Volume= 0.954 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post Front of Site: Post Front of Site

Inflow Area	a =	1.646 ac, 46.60% Impervious, Inflow Depth > 1.07" for 100-YR-Cornell event
Inflow	=	1.53 cfs @ 12.15 hrs, Volume= 0.147 af
Outflow	=	1.53 cfs @ 12.15 hrs, Volume= 0.147 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post South: South Wetlands

Inflow Area =	11.398 ac, 15.38% Impervious, Inflow D	Depth > 1.00" for 100-YR-Cornell event
Inflow =	7.32 cfs @ 12.56 hrs, Volume=	0.954 af
Outflow =	7.32 cfs @ 12.56 hrs, Volume=	0.954 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Post West: West Abutters

Inflow Area =	0.869 ac, 14.95% Impervious, Inf	low Depth > 1.96" for 100-YR-Cornell event
Inflow =	1.41 cfs @ 12.14 hrs, Volume=	0.142 af
Outflow =	1.41 cfs @ 12.14 hrs, Volume=	0.142 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach Western Reach thru Post 1a: Western Reach thru Post 1a

Inflow	=	0.49 cfs @ 12.55 hrs, Volume=	0.005 af
Outflow	=	0.21 cfs @ 12.62 hrs, Volume=	0.005 af, Atten= 58%, Lag= 4.2 min

16011 Pre-PostType III 24-hr100-YR-Cornell Rainfall=8.50"Prepared by {enter your company name here}Printed6/26/2016HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLCPage 74

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.53 fps, Min. Travel Time= 8.5 min Avg. Velocity = 0.19 fps, Avg. Travel Time= 23.8 min

Peak Storage= 105 cf @ 12.62 hrs Average Depth at Peak Storage= 0.04' Bank-Full Depth= 0.50' Flow Area= 20.0 sf, Capacity= 60.96 cfs

60.00' x 0.50' deep Parabolic Channel, n= 0.035 High grass Length= 269.0' Slope= 0.0223 '/' Inlet Invert= 181.00', Outlet Invert= 175.00'

‡

Summary for Pond AD 6 & Trench: AD 6 & Trench

Inflow Area =	1.702 ac, 14.39% Impervious, Inflow Depth > 2.12" for 100-YR-Cornell event
Inflow =	2.42 cfs @ 12.32 hrs, Volume= 0.301 af
Outflow =	2.10 cfs @ 12.52 hrs, Volume= 0.301 af, Atten= 13%, Lag= 12.3 min
Discarded =	0.37 cfs @ 12.20 hrs, Volume= 0.257 af
Secondary =	1.73 cfs @ 12.52 hrs, Volume= 0.044 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 180.45' @ 12.50 hrs Surf.Area= 1,920 sf Storage= 2,776 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 58.9 min (858.8 - 799.9)

Volume	Invert Av	/ail.Storage	Storage Description
#1	178.50'	322 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
			1,440 cf Overall - 636 cf Embedded = 804 cf x 40.0% Voids
#2	179.00'	636 cf	18.0" Round Pipe Storage Inside #1
	170.001	4 000 5	L= 360.0'
#3	178.00'	1,060 cf	18.0" Round Pipe Storage Inside #4
#4	177.50'	776 of	L= 600.0'
#4	177.50	770 01	Custom Stage Data (Prismatic) Listed below (Recalc) 3,000 cf Overall - 1,060 cf Embedded = 1,940 cf x 40.0% Voids
		2 701 cf	Total Available Storage
		2,7940	Total Available Storage
Elevation	Surf.Area	a Inc	c.Store Cum.Store
(feet)	(og ft		a fact) (aubia fact)

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
178.50 180.50	720	0 1.440	0

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Elevatio (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
177.5	50	1,200	0	0	
180.0	00	1,200	3,000	3,000	
<u>Device</u> #1 #2	Routing Discarded Secondary	Invert 177.50' 180.30'	10.0' long x 1. Head (feet) 0.2 2.50 3.00	0' breadth Br 0 0.40 0.60 2.69 2.72 2.	Surface area road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.37 cfs @ 12.20 hrs HW=178.68' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.37 cfs)

Secondary OutFlow Max=1.52 cfs @ 12.52 hrs HW=180.45' TW=180.09' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 1.52 cfs @ 1.03 fps)

Summary for Pond AD's 1&2: AD's 1&2

Inflow Area =	3.075 ac,	7.18% Impervious, Inflow I	Depth > 1.51" for 100-YR-Cornell event
Inflow =	2.95 cfs @	12.34 hrs, Volume=	0.386 af
Outflow =	2.20 cfs @	12.52 hrs, Volume=	0.384 af, Atten= 25%, Lag= 10.9 min
Discarded =	0.60 cfs @	12.64 hrs, Volume=	0.219 af
Primary =	1.35 cfs @	12.64 hrs, Volume=	0.164 af
Secondary =	0.27 cfs @	12.52 hrs, Volume=	0.002 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 181.03' @ 12.64 hrs Surf.Area= 3,120 sf Storage= 1,838 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 23.5 min (850.3 - 826.8)

Volume	Invert Av	/ail.Storage	Storage Description		
#1	178.00'	141 cf	12.0" Round Pipe Storage L= 180.0'		
#2	177.50'	288 cf	Custom Stage Data (Prismatic) Listed below (Recalc) 720 cf Overall x 40.0% Voids		
#3	178.00'	2 cf	1.00'D x 2.60'H Vertical Cone/Cylinder		
#4	180.60'	618 cf	Custom Stage Data (Prismatic)Listed below (Recalc)		
#5	178.00'	442 cf	18.0" Round Pipe Storage		
			L= 250.0'		
#6	177.50'	500 cf	Custom Stage Data (Prismatic)Listed below (Recalc)		
			1,250 cf Overall x 40.0% Voids		
		1,991 cf	Total Available Storage		
Elevation	Surf.Area	a Inc	c.Store Cum.Store		
(feet)	(sq-ft	t) (cubi	c-feet) (cubic-feet)		
177.50	36		0 0		
179.50	36	-	720 720		
	00	-			

Page 76

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
180.60	10	0	0
181.10	2,462	618	618
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
177.50	625	0	0
179.50	625	1,250	1,250

Device	Routing	Invert	Outlet Devices
#1	Discarded	177.50'	8.270 in/hr Exfiltration over Surface area
#2	Primary	178.75'	6.0" Vert. Orifice/Grate C= 0.600
#3	Secondary	180.90'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32

Discarded OutFlow Max=0.60 cfs @ 12.64 hrs HW=181.03' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.60 cfs)

Primary OutFlow Max=1.35 cfs @ 12.64 hrs HW=181.03' TW=0.00' (Dynamic Tailwater) ←2=Orifice/Grate (Orifice Controls 1.35 cfs @ 6.86 fps)

Secondary OutFlow Max=0.00 cfs @ 12.52 hrs HW=181.02' TW=181.02' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond AD's 3&4: AD's 3&4

Inflow Area =	0.866 ac,	3.16% Impervious, Infl	ow Depth > 1.40" for 100-YR-Cornell event
Inflow =	0.76 cfs @	12.39 hrs, Volume=	0.101 af
Outflow =	0.79 cfs @	12.33 hrs, Volume=	0.100 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.28 cfs @	12.67 hrs, Volume=	0.033 af
Primary =	0.79 cfs @	12.33 hrs, Volume=	0.064 af
Secondary =	0.27 cfs @	12.56 hrs, Volume=	0.003 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 181.04' @ 12.67 hrs Surf.Area= 1,479 sf Storage= 416 cf

Plug-Flow detention time= 11.8 min calculated for 0.100 af (99% of inflow) Center-of-Mass det. time= 6.9 min (848.3 - 841.4)

Type III 24-hr 100-YR-Cornell Rainfall=8.50" Printed 6/26/2016

Page 77

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stor	age S	Storage D	escription	
#1	177.90'	3			and Pipe Stor	rage
#2	177.40'	7	4 cf 🕻		tage Data (Presented as the second seco	rismatic) Listed below (Recalc) Voids
#3	180.60'	39				rismatic)Listed below (Recalc)
					able Storage	
Elevation (feet)	Sur	f.Area (sq-ft)	Inc.S	Store feet)	Cum.Store (cubic-feet)	
177.40		92	•	0	0	
179.40		92		184	184	
Elevation (feet) 180.60	Sur	f.Area (sq-ft) 10	Inc.S (cubic-	Store <u>feet)</u> 0	Cum.Store (cubic-feet) 0	
181.10		1,579		397	397	
Device R #1 D #2 P	couting hiscarded rimary econdary	Invert 177.40' 178.40' 180.90'	8.270 6.0" V 5.0' lo Head 2.50 Coef.	t Devices in/hr Exfi /ert. Orific ong x 1.0' (feet) 0.2 3.00	Itration over ce/Grate C= breadth Bro 0 0.40 0.60 2.69 2.72 2.	Surface area 0.600 ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.28 cfs @ 12.67 hrs HW=181.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.28 cfs)

Primary OutFlow Max=0.00 cfs @ 12.33 hrs HW=179.63' TW=180.26' (Dynamic Tailwater) **2=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 12.56 hrs HW=181.02' TW=181.03' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 1: Basin 1

Inflow Area =	1.212 ac, 47.72% Impervious, Inflow [Depth > 1.26" for 100-YR-Cornell event
Inflow =	1.26 cfs @ 12.16 hrs, Volume=	0.128 af
Outflow =	0.74 cfs @ 12.50 hrs, Volume=	0.128 af, Atten= 41%, Lag= 20.2 min
Discarded =	0.30 cfs @ 12.49 hrs, Volume=	0.106 af
Primary =	0.45 cfs @ 12.50 hrs, Volume=	0.021 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.22' @ 12.49 hrs Surf.Area= 1,542 sf Storage= 1,162 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 23.4 min (785.9 - 762.4)

Type III 24-hr 100-YR-Cornell Rainfall=8.50" Printed 6/26/2016

Page 78

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stor	age Storage	Description	
#1	184.00'	1,62	8 cf Custom	Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio (fee 184.0 185.5	et) 00	rf.Area (sq-ft) 359 1,811	Inc.Store (<u>cubic-feet)</u> 0 1,628	Cum.Store (cubic-feet) 0 1,628	
Device	Routing	Invert	Outlet Device	S	
#1	Discarded	184.00'		xfiltration over	
#2	Primary			ifice/Grate C=	
#3	Secondary	185.30'	Head (feet) 0 2.50 3.00	0.20 0.40 0.60 n) 2.69 2.72 2. ⁻	Dad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Discarded OutFlow Max=0.30 cfs @ 12.49 hrs HW=185.22' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.30 cfs)

Primary OutFlow Max=0.45 cfs @ 12.50 hrs HW=185.22' TW=183.32' (Dynamic Tailwater) **2=Orifice/Grate** (Orifice Controls 0.45 cfs @ 2.34 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=184.00' TW=0.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 2: Basin 2

Inflow Area =	0.754 ac, 56.57% Impervious, Inflow I	Depth > 2.21" for 100-YR-Cornell event
Inflow =	1.63 cfs @ 12.10 hrs, Volume=	0.139 af
Outflow =	0.62 cfs @ 12.47 hrs, Volume=	0.139 af, Atten= 62%, Lag= 22.4 min
Discarded =	0.41 cfs @ 12.47 hrs, Volume=	0.133 af
Primary =	0.21 cfs @ 12.47 hrs, Volume=	0.006 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.12' @ 12.47 hrs Surf.Area= 2,144 sf Storage= 1,584 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 26.0 min (775.7 - 749.6)

Volume	Invert	Avail.	Storage	Storage	Description	
#1	185.00'		1,874 cf	Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet)		.Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
185.00 186.25		685 2,313		0 1,874	0 1,874	

Type III 24-hr 100-YR-Cornell Rainfall=8.50" Printed 6/26/2016

Page 79

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 01151 © 2013 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	185.00'	8.270 in/hr Exfiltration over Surface area
#2	Primary	186.00'	6.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Secondary	186.20'	10.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31
			3.30 3.31 3.32

Discarded OutFlow Max=0.41 cfs @ 12.47 hrs HW=186.12' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.41 cfs)

Primary OutFlow Max=0.21 cfs @ 12.47 hrs HW=186.12' TW=185.22' (Dynamic Tailwater) 2=Orifice/Grate (Weir Controls 0.21 cfs @ 1.13 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.00' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Basin 3: Basin 3

Inflow Area =	0.357 ac, 68.69% Impervious, Inflow	Depth > 5.60" for 100-YR-Cornell event
Inflow =	2.04 cfs @ 12.10 hrs, Volume=	0.166 af
Outflow =	0.84 cfs @ 12.35 hrs, Volume=	0.166 af, Atten= 59%, Lag= 14.9 min
Discarded =	0.63 cfs @ 12.35 hrs, Volume=	0.161 af
Primary =	0.21 cfs @ 12.35 hrs, Volume=	0.006 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 186.60' @ 12.35 hrs Surf.Area= 3,274 sf Storage= 1,764 cf

Plug-Flow detention time= 23.7 min calculated for 0.166 af (100% of inflow) Center-of-Mass det. time= 23.7 min (765.4 - 741.7)

Volume	Invert	Avail.Stor	age Storage	Description	
#1	185.50'	5,93	9 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
185.5	50	377	0	0	
186.5	51	2,605	1,506	1,506	
187.3	30	8,618	4,433	5,939	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	186.50'	8.0" Horiz. O	rifice/Grate C= 0.600 Limited to weir flow at	low heads
#2	Discarded	185.50'	8.270 in/hr E	xfiltration over Surface area	
#3	Secondary	187.25'		1.0' breadth Broad-Crested Rectangular We	
			Head (feet) C	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.8	30 2.00
			2.50 3.00		
			(0	h) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28	3.31
			3.30 3.31 3.3	32	

Discarded OutFlow Max=0.63 cfs @ 12.35 hrs HW=186.60' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.63 cfs)

Primary OutFlow Max=0.21 cfs @ 12.35 hrs HW=186.60' TW=186.09' (Dynamic Tailwater) **1=Orifice/Grate** (Weir Controls 0.21 cfs @ 1.02 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=185.50' TW=184.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Pond Perforated Pipe: 12" Perforated Pipe

Inflow Area =	1.212 ac, 47.72% Impervious, Inflow Dep	oth = 0.21" for 100-YR-Cornell event
Inflow =	0.45 cfs @ 12.50 hrs, Volume= 0).021 af
Outflow =	0.61 cfs @ 12.85 hrs, Volume= 0).021 af, Atten= 0%, Lag= 21.0 min
Discarded =	0.07 cfs @ 12.20 hrs, Volume= 0).016 af
Secondary =	0.54 cfs $\overline{@}$ 12.85 hrs, Volume= 0).006 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.23' @ 12.85 hrs Surf.Area= 361 sf Storage= 376 cf

Plug-Flow detention time= 41.6 min calculated for 0.021 af (100% of inflow) Center-of-Mass det. time= 41.8 min (797.7 - 755.9)

Volume	Invert	Avail.Stora	ge Storage Description		
#1	182.00'	141	cf 12.0" Round Pipe Storage Inside #2		
#2	181.50'	231	L= 180.0' cf Custom Stage Data (Prismatic) Listed below (Recalc) 720 cf Overall - 141 cf Embedded = 579 cf x 40.0% Voids		
#3	181.50'	3	s cf 1.00'D x 3.75'H Vertical Cone/Cylinder		
		376	o cf Total Available Storage		
Elevatio (fee 181.5 183.5	et) 50 50	360 360	Inc.Store Cum.Store <u>cubic-feet) (cubic-feet)</u> 0 0 720 720		
Device	Routing		Outlet Devices		
#1 #2	Discarded		8.270 in/hr Exfiltration over Surface area		
#2	Secondary	 2 	40.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32		
Disservel	Recorded OutFlow Moved 07 of a 20 hrs. UN/-101 FOL (Free Discharge)				

Discarded OutFlow Max=0.07 cfs @ 12.20 hrs HW=181.59' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.07 cfs)

Secondary OutFlow Max=0.54 cfs @ 12.85 hrs HW=185.23' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 0.54 cfs @ 0.46 fps)

Summary for Pond Post Existing House: Drywells

Inflow Area = 0.2	.238 ac,100.00% Impervious, Inflow De	epth > 7.60" for 100-YR-Cornell event
Inflow = 2.0	00 cfs @ 12.07 hrs, Volume=	0.151 af
Outflow = 0.0	09 cfs @ 10.50 hrs, Volume=	0.093 af, Atten= 96%, Lag= 0.0 min
Discarded = 0.0	09 cfs $\overline{@}$ 10.50 hrs, Volume=	0.093 af
Primary = 0.0	00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 185.36' @ 14.64 hrs Surf.Area= 0.010 ac Storage= 0.076 af

Plug-Flow detention time= 154.0 min calculated for 0.093 af (61% of inflow) Center-of-Mass det. time= 74.4 min (806.6 - 732.2)

Volume	Invert	Avail.Storage	e Storage Description		
#1	178.00'	0.083 a	af 8.00'D x 8.00'H Vertical Cone/Cylinderx 9		
Device	Routing	Invert (Outlet Devices		
#1	Discarded	178.00' 8	3.270 in/hr Exfiltration over Surface area		
#2	Primary	186.00' 1	12.0" Vert. Orifice/Grate C= 0.600		
Discarded OutFlow Max=0.09 cfs @ 10.50 hrs HW=178.10' (Free Discharge)					

1=Exfiltration (Exfiltration Controls 0.09 cfs)

Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=178.00' TW=0.00' (Dynamic Tailwater) **2=Orifice/Grate** (Controls 0.00 cfs)

APPENDIX E

Stormwater Checklist

Carroll School Waltham Road Wayland, Massachusetts

Oak Consulting Group, LLC Project 16011

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

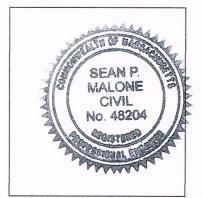
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

6-27-16

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provi	ded.
---------------------	------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static Static

Simple Dynamic Simple Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

	Property inclu	des a M.G.L. c	. 21E site or a so	olid waste landfil	ll and a mounding	analysis is included.
--	----------------	----------------	--------------------	--------------------	-------------------	-----------------------

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (continued)				
Standard 4: Water Quality (continued)				
\boxtimes The BMP is sized (and calculations provided) based on:				
The ½" or 1" Water Quality Volume or				
The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.				
☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.				
A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.				
Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)				
 The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior to</i> the discharge of stormwater to the post-construction stormwater BMPs. 				
The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.				
LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.				
All exposure has been eliminated.				
All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.				
The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.				

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Projec	t
----------------	---

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

APPENDIX F

Plans

Carroll School Waltham Road Wayland, Massachusetts

Oak Consulting Group, LLC Project 16011