

March 26, 2021

55 Walkers Brook Drive, Suite 100, Reading, MA 01867 Tel: 978.532.1900

Linda Hansen Conservation Administrator Town of Wayland 41 Cochituate Road Wayland, MA 01778

Re: Order of Conditions and Chapter 194 Permit for 264 Old Connecticut Path, Wayland MA

June 2020 Water Quality Results

DEP File #: 322-928

Dear Ms. Hansen:

Pursuant of the Town of Wayland's request, Weston & Sampson Engineers, Inc. (Weston & Sampson) is pleased to provide a summary of water quality results from the monthly sampling round performed in <u>June</u> at the Wayland High School Athletic Facilities in Wayland, Massachusetts. As discussed in our initial baseline sampling report, the sampling and subsequent reporting was developed to comply with the Order of Conditions (OOC) letter issued by the Wayland Conservation Commission on November 16, 2018. Per the Order of Conditions, Weston & Sampson was instructed to sample from existing monitoring well locations (MW-1 and MW-5), all available cleanout locations (Cleanout 1, Cleanout 2, Cleanout 3 and Cleanout 4) and the overflow discharge pipe (Figure 1) for the following compounds: total benzene, arsenic, styrene, cadmium, chromium, copper, lead, silica, zinc, hardness and Semi Volatile Organic Compounds (SVOCs), including the phthalates BBP, DBP, and DEHP. After extensive research, it was discovered that DIBP, one of the requested phthalates is not being tested for in commercial laboratories due to the discontinuation of EPA's Integrated Risk Information System (IRIS). As a result, no toxicity value is available, and the compound was not sampled for in this study.

At the request of the town, Weston & Sampson mobilized to Wayland High School on June 29th, 2020 to collect water quality results for the month of June. The sampling protocol was conducted using the following methodology. In an effort to obtain a representative sample, three (3) well volumes were purged using a Waterra hydralift pump and high density polyethene (HDPE) tubing to remove stagnant water from the well immediately prior to sampling in accordance with EPA standards. Groundwater was then sampled using the Waterra hydralift pump from the HDPE tubing. The samples collected for the <u>June 2020</u> round of sampling include:

- Monitoring wells MW-1 and MW-5
- The overflow discharge pipe. Samples from the discharge pipe were collected directly with the standard sampling container(s) from the overflow of the discharge pipe.
- Cleanout locations (Cleanout 1, Cleanout 2, Cleanout 3 and Cleanout 4). Samples from the cleanout locations were taken using a masterflex peristaltic pump and low density polyethene (LDPE) tubing. Samples were collected directly from the LDPE tubing.

The samples were collected by a qualified Weston & Sampson technician and analyzed by a Massachusetts and EPA certified laboratory, Alpha Analytical (Alpha). All sample results collected are summarized in Table 1 (Attachment A) and compared to the National Ambient Water Quality Criteria of MCP Method 1 GW-3. The laboratory report can be found in Attachment B.

The compounds detected at MW-1 were Copper (0.00173 mg/l), Silica (13.2 mg/l), Zinc (0.01010 mg/l), and Hardness (140 mg/l). Benzene, Styrene, Arsenic, Cadmium, Chromium, Lead, and all SVOC's were not detected. All detections are below Method 1- GW-3 Standards.

The compounds detected at MW-5 were Arsenic (0.00494 mg/l), Chromium (0.00347 mg/l), Copper (0.01064 mg/l), Lead (0.00496 mg/l), Silica (22.0 mg/l), Zinc (0.02162 mg/l), and Hardness (228 mg/l). Benzene, Styrene, Cadmium, and all SVOC's were not detected. All detections are below Method 1- GW-3 Standards.

The compounds detected in the **discharge pipe** were Copper (0.00111 mg/l), Silica (6.18 mg/l), Zinc (0.02105 mg/l), and Hardness (112 mg/l). Benzene, Styrene, Arsenic, Cadmium, Chromium, Lead, and all SVOC's were not detected. **All detections are below Method 1- GW-3 Standards**.

The compounds detected at Cleanout Location 1 were Arsenic (0.00088 mg/l), Copper (0.00105 mg/l), Silica (1.78 mg/l), Zinc (0.04296 mg/l), Hardness (25.1 mg/l) and Aniline (0.0032 mg/l). Benzene, Styrene, Cadmium, Chromium, Lead, and all SVOC's, with the exception of Aniline, were not detected. Currently, Aniline has no state or federal standard. All other detections are below Method 1- GW-3 Standards.

The compounds detected at **Cleanout Location 2** were Arsenic (0.00072 mg/l), Silica (1.49 mg/l), Zinc (0.0825 mg/l), Hardness (19.1 mg/l) and Aniline (0.0023 mg/l). Benzene, Styrene, Cadmium, Chromium, Copper, Lead, and all SVOC's, with the exception of Aniline, were not detected. **Currently, Aniline has no state or federal standard. All other detections are below Method 1- GW-3 Standards.**

The compounds detected at Cleanout Location 3 were Styrene (0.0011 mg/l), Arsenic (0.00102 mg/l), Copper (0.00114 mg/l), Silica (2.34 mg/l), Zinc (0.03504 mg/l), Hardness (23.0 mg/l) and Aniline (0.0024 mg/l). Benzene, Cadmium, Chromium, Lead, and all SVOC's, with the exception of Aniline, were not detected. Currently, Aniline has no state or federal standard. All other detections are below Method 1- GW-3 Standards.

The compounds detected at Cleanout Location 4 were Styrene (0.0021 mg/l), Arsenic (0.00068 mg/l), Silica (1.89 mg/l), Zinc (0.07908 mg/l), Hardness (16.7 mg/l) and Aniline (0.0031 mg/l). Benzene, Cadmium, Chromium, Copper, Lead and all SVOC's, with the exception of Aniline, were not detected. Currently, Aniline has no state or federal standard. All other detections are below Method 1- GW-3 Standards.

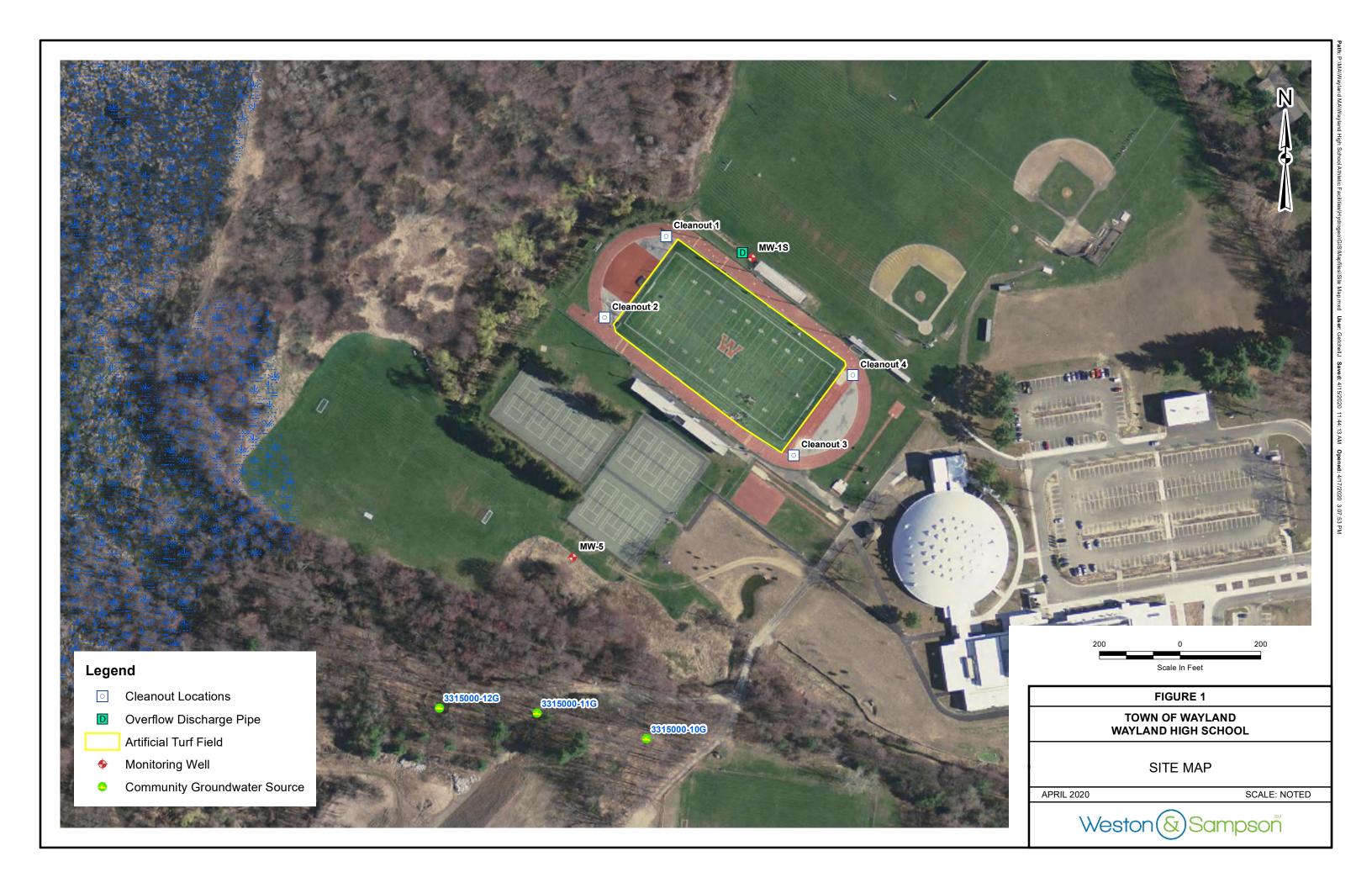
Please feel free to call the undersigned if you have any questions.

Sincerely,

WESTON & SAMPSON ENGINEERS, INC.

Kevin MacKinnon, P.G., C.G., PH-GW Senior Technical Leader, Hydrogeology

Attachments/Enclosures


- Figures
- Attachment A Table 1: Water Quality Results
- Attachment B Laboratory Report of June Quality Results

cc: Ben Keefe, Town of Wayland Facilities Director Brandon Kunkel, Weston & Sampson

Figures

Attachment A

						Metals				Volatile Organi	Compounds								Sen	ni-Volatile On	rganic Compt	unds							
Well I.D.	Date Collected	Total Arsenic	Total Cadmium	Total Chromiuim	Total Copper	Total Lead	Total Silica	Total Zinc	Hardness	Benzene	Styrene	Acenaphthene	Benzidine	1,2,4-Trichlorobenzene	Hexachlorobenzene	Bis(2-chloroethyl)ether	2-Chloronaphthalene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	3,3'-Dichlorobenzidine	2,4-Dinitrotoluene	2,6-Dinitrotoluene	Azobenzene	Fluoranthene	4-Chlorophenyl phenyl ether	4-Bromophenyl phenyl ether	Bis(2-chloroisopropyl)ether	Bis(2-chloroethoxy)methane
Method 1- GW-3 Standards (310 CMR 40.0974(2): Table 1	mg/l	0.9	0.004	0.3	Not Listed	0.01	Not Listed	0.9	Not Listed	10	6	10	Not Listed	50	6	50	Not Listed	2	50	8	2	50	Not Listed	Not Listed	0.2	Not Listed	Not Listed	50	Not Listed
Massachusetts Maximum Contaminant Level (MMCLs)/Secondary Contaminant Level (SMCLs) ¹	mg/l	0.01	0.005	0.1	1.3	0.015	Not Listed	5	Not Listed	0.01	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed
MW-1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	0.047 0.02304 0.00195 0.00699 ND ND ND	ND 0.00022 ND ND ND ND ND ND ND	0.083 0.02742 0.0025 0.01043 ND ND	0.12 0.06543 0.00646 0.05741 0.00131 0.00136 0.00173	0.04 0.01972 0.00196 0.00677 ND ND	114 48.2 12.5 27.6 10.5 8.69 13.2	0.13 0.04325 ND 0.03923 ND ND ND	155 127 82.1 121 111 109 140	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
MW-5	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	0.051 0.009 0.00404 0.00249 0.02023 0.00351 0.00494	ND ND ND ND 0.00031 ND	0.048 0.01103 0.00374 0.00393 0.02520 0.00629 0.00347	0.16 0.02287 0.00978 0.00563 0.04852 0.00696 0.01064	0.056 0.00753 0.00479 0.00216 0.01720 0.00223 0.00496	98.4 33.6 50 29 55.3 25.4 22.0	0.15 0.028 0.01518 ND 0.056 0.01958 0.02162	301 250 276 254 280 242 228	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
Discharge Pipe	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* 0.00298 ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* 0.043 ND ND ND ND ND ND ND	* 0.00856 ND ND 0.00137 0.00202 0.00111	* 0.01175 ND ND ND ND ND 0.00109 ND	* 7.8 5.29 5.01 5.46 5.13 6.18	* 0.2596 ND 0.02353 ND 0.03025 0.02105	* 72.8 104 104 104 106 112	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND
Cleanout 1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* 0.00135 * 0.0005 0.00103 0.00088	* ND * ND ND ND	* ND * ND ND ND	* 0.00122 * ND 0.00236 0.00105	* ND * ND ND ND	* 2.6 * 1.35 2.28 1.78	* 0.01807 * 0.02697 0.05993 0.04296	* 31.4 * 18.7 33 25.1	* * ND * ND ND ND	* ND * ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND
Cleanout 2	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* 0.00085 0.00068 0.00070 0.00094 0.00072	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND O.00165 ND	* ND ND ND ND ND ND	* 1.76 1.45 1.64 2.73 1.49	* ND 0.0195 0.03587 0.1893 0.0825	* 21.3 17.4 20.5 56.3 19.1	* * ND ND ND ND ND ND ND	* 0.0032 0.0021 ND 0.043 ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND
Cleanout 3	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* * * 0.00108 0.00221 0.00102	* * * ND ND ND	* * * ND ND ND	* * ND 0.00595 0.00114	* * * ND ND ND	* * * 2.33 5.04 2.34	* * * ND 0.1289 0.03504	* * * 23.9 56.9 23	* * * ND ND	* * * ND ND O.0011	* * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * ND ND ND	* * ND ND ND	* * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * ND ND ND	* * ND ND ND	* * ND ND ND	* * ND ND ND	* * ND ND ND	* * * ND ND ND
Cleanout 4	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* 0.00171 0.00114 0.00122 0.00228 0.00068		* ND 0.00144 ND ND ND ND	* 0.00224 ND ND 0.00356 ND	* ND ND ND ND ND ND	* 3.68 2.81 2.97 4.93 1.89	* 0.01728 0.07212 ND 0.08808 0.07908	* 35.6 32.9 28.9 49.0 16.7	* ND ND ND ND ND ND	* 0.0034 ND ND ND 0.0021	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND

Drinking Water Standards
 All results recorded in mg/l
 NS- Not Sampled
 ND- Not Detected
 *- Insufficient amount of water for sample

															Sei	mi-Volatile C	rganic Compi	inds													
Well I.D.	Date Collected	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Isophorone	Naphthalene	Nitrobenzene	NDPA/DPA	n-Nitrosodi-n-propylamine	Bis(2-ethylhexyl)phthalate	Butyl benzyl phthalate	Di-n-butyiphthalate	Di-n-octylphthalate	Diethyl phthalate	Dimethyl phthalate	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Acenaphthylene	Anthracene	Benzo(ghi)perylene	Fluorene	Phenanthrene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Pyrene	Biphenyl	Aniline	4-Chloroaniine
Method 1- GW-3 Standards (310 CMR 40.0974(2): Table 1	mg/l	3	Not Listed	50	Not Listed	20	Not Listed	Not Listed	Not Listed	50	Not Listed	Not Listed	Not Listed	9	50	1	0.5	0.4	0.1	0.07	0.04	0.03	0.02	0.04	10	0.04	0.1	0.02	Not Listed	Not Listed	0.3
Massachusetts Maximum Contaminant Level (MMCLs)/Secondary Contaminant Level (SMCLs) ¹		Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed
MW-1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND
MW-5	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
Discharge Pipe	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND
Cleanout 1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	*	* ND ND ND ND ND ND
Cleanout 2	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* 0.0022 ND ND ND ND 0.0023	* ND ND ND ND ND ND
Cleanout 3	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND	* * * ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * ND ND O.0024	* * * ND ND ND
Cleanout 4	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND O.0031	* ND ND ND ND ND ND

Drinking Water Standards
 All results recorded in mg/l
 NS- Not Sampled
 ND- Not Detected
 *- Insufficient amount of water for sample

			1	ı							ı	1	Semi-Vola	tile Organic (Compunds		1	ı	1	1	1	1		T		
Well I.D.	Date Collected	I-Methylnaphthalene	2-Nitroaniline	3-Nitroaniline	4-Nitroaniline	Dibenzofuran	2-Methylnaphthalene	n-Nitrosodimethylamine	2,4,6-Trichlorophenol	p-Chloro-m-cresol	2-Chlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2-Nitrophenol	4-Nitrophenol	2,4-Dinitrophenol	4,6-Dinitro-o-cresol	Pentachlorophenol	Phenol	2-Methylphenol	3-Methylphenol/4-Methylphenol	2,4,5-Trichlorophenol	Benzoic Acid	Benzyl Alcohol	Carbazole	Pyridine
Method 1- GW-3 Standards (310 CMR 40.0974(2): Table 1	mg/l	Not Listed	20	Not Listed	0.5	Not Listed	7	2	50	Not Listed	Not Listed	20	Not Listed	0.2	2	Not Listed	Not Listed	3	Not Listed	Not Listed	Not Listed	Not Listed				
Massachusetts Maximum Contaminant Level (MMCLs)/Secondary Contaminant Level (SMCLs) ¹	mg/l	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed					
MW-1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND
MW-5	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
Discharge Pipe	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND
Cleanout 1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND
Cleanout 2	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND					
Cleanout 3	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * ND ND ND	* * * ND ND ND	* * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND	* * * ND ND ND
Cleanout 4	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20 06/29/20	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND			

^{1.} Drinking Water Standards
2. All results recorded in mg/l
3. NS- Not Sampled
4. ND- Not Detected
5. *- Insufficient amount of water for sample

Attachment B

ANALYTICAL REPORT

Lab Number: L2027386

Client: Weston & Sampson

55 Walkers Brook Drive

Suite 100

Reading, MA 01867

ATTN: Kevin MacKinnon Phone: (978) 532-1900

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 07/07/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

 Lab Number:
 L2027386

 Report Date:
 07/07/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2027386-01	MW-1	WATER	WAYLAND, MA	06/29/20 10:20	06/29/20
L2027386-02	MW-5	WATER	WAYLAND, MA	06/29/20 09:40	06/29/20
L2027386-03	DISCHARGE PIPE	WATER	WAYLAND, MA	06/28/20 10:00	06/29/20
L2027386-04	CLEANOUT 1	WATER	WAYLAND, MA	06/28/20 11:25	06/29/20
L2027386-05	CLEANOUT 2	WATER	WAYLAND, MA	06/29/20 11:50	06/29/20
L2027386-06	CLEANOUT 3	WATER	WAYLAND, MA	06/29/20 12:15	06/29/20
L2027386-07	CLEANOUT 4	WATER	WAYLAND, MA	06/28/20 11:00	06/29/20
L2027386-08	TB-01	WATER	WAYLAND, MA	06/28/20 00:00	06/29/20

L2027386

Project Name: WAYLAND HIGH SCHOOL Lab Number:

Project Number: ENG20-0296 Report Date: 07/07/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:WAYLAND HIGH SCHOOLLab Number:L2027386Project Number:ENG20-0296Report Date:07/07/20

Case Narrative (continued)

Sample Receipt

L2027386-01: The collection date and time on the chain of custody was 28-JUN-20 10:20; however, the collection date/time on the container label was 29-JUN-20 10:20. At the client's request, the collection date/time is reported as 29-JUN-20 10:20.

L2027386-02: The collection date and time on the chain of custody was 28-JUN-20 09:40; however, the collection date/time on the container label was 29-JUN-20 09:40. At the client's request, the collection date/time is reported as 29-JUN-20 09:40.

L2027386-05: The collection date and time on the chain of custody was 28-JUN-20 11:50; however, the collection date/time on the container label was 29-JUN-20 11:50. At the client's request, the collection date/time is reported as 29-JUN-20 11:50.

L2027386-06: The collection date and time on the chain of custody was 28-JUN-20 12:15; however, the collection date/time on the container label was 29-JUN-20 12:15. At the client's request, the collection date/time is reported as 29-JUN-20 12:15.

Semivolatile Organics

The WG1387420-2/-3 LCS/LCSD recoveries, associated with L2027386-03, -04, and -07, are below the acceptance criteria for benzidine (0%/4%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

The WG1387758-2/-3 LCS/LCSD recoveries, associated with L2027386-01, -02, -05, and -06, are below the acceptance criteria for benzidine (3%/4%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/07/20

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L2027386

06/29/20 10:20

Not Specified

06/29/20

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

110port Dato: 07/07/20

Report Date: 07/07/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

OAIIII EE RESOI

Lab ID: L2027386-01 Client ID: MW-1

Sample Location: WAYLAND, MA

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/01/20 20:26

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	.ab					
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery		ptance iteria
1,2-Dichloroethane-d4	108	7	70-130
Toluene-d8	105	7	70-130
4-Bromofluorobenzene	100	7	70-130
Dibromofluoromethane	98	7	70-130

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

L2027386

Report Date: 07/07/20

Lab Number:

Lab ID: L2027386-02

Client ID: MW-5

Sample Location: WAYLAND, MA

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/01/20 20:48

Date Collected:	06/29/20 09:40
Date Received:	06/29/20
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	98	70-130	

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Lab Number: L2027386

Report Date: 07/07/20

Lab ID: L2027386-03 Date Collected: 06/28/20 10:00

Client ID: DISCHARGE PIPE Date Received: 06/29/20 Field Prep: Sample Location: Not Specified WAYLAND, MA

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/01/20 21:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	.ab					
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	94	70-130

L2027386

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Report Date: 07/07/20

Lab Number:

Lab ID: L2027386-04

Client ID: **CLEANOUT 1** Sample Location: WAYLAND, MA Date Collected: 06/28/20 11:25 Date Received: 06/29/20 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/01/20 21:32

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	97	70-130

L2027386

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Report Date:

Lab Number:

Date Collected:

07/07/20

Lab ID: L2027386-05 Client ID: CLEANOUT 2 Sample Location: WAYLAND, MA

06/29/20 11:50 Date Received: 06/29/20 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/01/20 21:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	95	70-130	

L2027386

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Report Date: 07/07/20

Lab Number:

Lab ID: Date Collected: 06/29/20 12:15 L2027386-06

Client ID: CLEANOUT 3 Date Received: 06/29/20 Field Prep: Sample Location: Not Specified WAYLAND, MA

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/01/20 22:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	0.50		1
Styrene	1.1		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	95	70-130

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Lab Number: L2027386

Report Date: 07/07/20

Lab ID: L2027386-07 Date Collected: 06/28/20 11:00

Client ID: Date Received: 06/29/20 CLEANOUT 4 Field Prep: Sample Location: Not Specified WAYLAND, MA

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 07/01/20 22:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	0.50		1
Styrene	2.1		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	91	70-130	

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL Lab Number:

Project Number: ENG20-0296

SAMPLE RESULTS

Date Collected: 06/28/20 00:00

Report Date:

Lab ID: L2027386-08

Client ID: TB-01 Date Received: 06/29/20

Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 07/01/20 19:42

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	95	70-130	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2027386

Project Number: ENG20-0296 Report Date: 07/07/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 07/01/20 19:09

Analyst: TMS

Parameter	Result Q	ualifier Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lab fo	r sample(s): 01-08	Batch:	WG1388575-5
Benzene	ND	ug/l	0.50	
Styrene	ND	ug/l	1.0	

		Acceptance	
Surrogate	%Recovery Qualific	er Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	92	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2027386

Report Date:

07/07/20

<u>Pa</u>	rameter	LCS %Recovery	Qual		LCSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Vo	latile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-08	Batch:	WG1388575-3	WG1388575-4				
	Benzene	82			78		70-130	5		25	
	Styrene	90			90		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	114	104	70-130
Toluene-d8	102	104	70-130
4-Bromofluorobenzene	98	101	70-130
Dibromofluoromethane	96	93	70-130

SEMIVOLATILES

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386

Project Number: Report Date: ENG20-0296 07/07/20

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/20 10:20 L2027386-01

Date Received: Client ID: MW-1 06/29/20

Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/01/20 09:31

Analytical Method: 1,8270D Analytical Date: 07/02/20 00:19

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL

L2027386-01

WAYLAND, MA

MW-1

Project Number: ENG20-0296

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

06/29/20 10:20 Date Received: 06/29/20

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Benzo(a)anthracene	ND		ug/l	2.0		1	
Benzo(a)pyrene	ND		ug/l	2.0		1	
Benzo(b)fluoranthene	ND		ug/l	2.0		1	
Benzo(k)fluoranthene	ND		ug/l	2.0		1	
Chrysene	ND		ug/l	2.0		1	
Acenaphthylene	ND		ug/l	2.0		1	
Anthracene	ND		ug/l	2.0		1	
Benzo(ghi)perylene	ND		ug/l	2.0		1	
Fluorene	ND		ug/l	2.0		1	
Phenanthrene	ND		ug/l	2.0		1	
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1	
Pyrene	ND		ug/l	2.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	
1-Methylnaphthalene	ND		ug/l	2.0		1	
2-Nitroaniline	ND		ug/l	5.0		1	
3-Nitroaniline	ND		ug/l	5.0		1	
4-Nitroaniline	ND		ug/l	5.0		1	
Dibenzofuran	ND		ug/l	2.0		1	
2-Methylnaphthalene	ND		ug/l	2.0		1	
n-Nitrosodimethylamine	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	10		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
4,6-Dinitro-o-cresol	ND		ug/l	10		1	
Pentachlorophenol	ND		ug/l	10		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2027386

Project Number: ENG20-0296 Report Date: 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-01 Date Collected: 06/29/20 10:20

Client ID: MW-1 Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	38	21-120	
Phenol-d6	30	10-120	
Nitrobenzene-d5	52	23-120	
2-Fluorobiphenyl	44	15-120	
2,4,6-Tribromophenol	62	10-120	
4-Terphenyl-d14	72	41-149	

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 06/29/20 09:40 L2027386-02

Client ID: MW-5

Date Received: 06/29/20 Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/01/20 09:31 Analytical Method: 1,8270D

Analytical Date: 07/01/20 23:56

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

L2027386

Project Name: Lab Number: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-02 Date Collected: 06/29/20 09:40

Client ID: Date Received: 06/29/20 MW-5 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westl	oorough Lab					
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2027386

Project Number: ENG20-0296 Report Date: 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-02 Date Collected: 06/29/20 09:40

Client ID: MW-5 Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	59	21-120
Phenol-d6	46	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	62	10-120
4-Terphenyl-d14	73	41-149

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386

Project Number: Report Date: ENG20-0296 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-03 Date Collected: 06/28/20 10:00

Date Received: Client ID: DISCHARGE PIPE 06/29/20 Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/01/20 07:36

Analytical Method: 1,8270D Analytical Date: 07/02/20 02:16

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL

L2027386-03

DISCHARGE PIPE

WAYLAND, MA

Project Number: ENG20-0296

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 06/28/20 10:00

Date Received: 06/29/20 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

MDL Result Qualifier Units RL **Dilution Factor Parameter** Semivolatile Organics by GC/MS - Westborough Lab Di-n-butylphthalate ND 5.0 1 ug/l Di-n-octylphthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Dimethyl phthalate ND 5.0 1 ug/l --Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(b)fluoranthene ND ug/l 2.0 --1 Benzo(k)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 --1 Acenaphthylene ND ug/l 2.0 --1 Anthracene ND ug/l 2.0 1 ND 2.0 1 Benzo(ghi)perylene ug/l ND Fluorene 2.0 1 ug/l ND Phenanthrene ug/l 2.0 --1 ND Dibenzo(a,h)anthracene 2.0 1 ug/l --ND 2.0 1 Indeno(1,2,3-cd)pyrene ug/l Pyrene ND ug/l 2.0 --1 ND 2.0 1 Biphenyl ug/l Aniline ND 2.0 1 ug/l 4-Chloroaniline ND 1 ug/l 5.0 ND 2.0 1-Methylnaphthalene 1 ug/l --2-Nitroaniline ND 5.0 1 ug/l 1 3-Nitroaniline ND 5.0 ug/l 4-Nitroaniline ND 5.0 1 ug/l Dibenzofuran ND 2.0 1 ug/l ND 2.0 1 2-Methylnaphthalene ug/l -n-Nitrosodimethylamine ND 2.0 1 ug/l 2,4,6-Trichlorophenol ND 5.0 1 ug/l ND 2.0 1 p-Chloro-m-cresol ug/l --ND 2.0 1 2-Chlorophenol ug/l 2,4-Dichlorophenol ND ug/l 5.0 --1 2,4-Dimethylphenol ND 5.0 1 ug/l --2-Nitrophenol ND 10 1 ug/l ND 10 1 4-Nitrophenol ug/l --ND 20 1 2,4-Dinitrophenol ug/l 4,6-Dinitro-o-cresol ND 10 1 ug/l Pentachlorophenol ND 10 1 ug/l --

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2027386

Project Number: ENG20-0296 Report Date: 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-03 Date Collected: 06/28/20 10:00

Client ID: DISCHARGE PIPE Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Phenol	ND		ug/l	5.0		1			
2-Methylphenol	ND		ug/l	5.0		1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1			
2,4,5-Trichlorophenol	ND		ug/l	5.0		1			
Benzoic Acid	ND		ug/l	50		1			
Benzyl Alcohol	ND		ug/l	2.0		1			
Carbazole	ND		ug/l	2.0		1			
Pyridine	ND		ug/l	3.5		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	56	21-120	
Phenol-d6	45	10-120	
Nitrobenzene-d5	84	23-120	
2-Fluorobiphenyl	62	15-120	
2,4,6-Tribromophenol	77	10-120	
4-Terphenyl-d14	77	41-149	

L2027386

Project Name: Lab Number: WAYLAND HIGH SCHOOL

Project Number: Report Date: ENG20-0296 07/07/20

SAMPLE RESULTS

Lab ID: Date Collected: 06/28/20 11:25 L2027386-04

Client ID: Date Received: **CLEANOUT 1** 06/29/20 Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/01/20 07:36

Analytical Method: 1,8270D Analytical Date: 07/02/20 03:02

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/l	2.0		1		
Benzidine	ND		ug/l	20		1		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1		
Hexachlorobenzene	ND		ug/l	2.0		1		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1		
2-Chloronaphthalene	ND		ug/l	2.0		1		
1,2-Dichlorobenzene	ND		ug/l	2.0		1		
1,3-Dichlorobenzene	ND		ug/l	2.0		1		
1,4-Dichlorobenzene	ND		ug/l	2.0		1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1		
2,4-Dinitrotoluene	ND		ug/l	5.0		1		
2,6-Dinitrotoluene	ND		ug/l	5.0		1		
Azobenzene	ND		ug/l	2.0		1		
Fluoranthene	ND		ug/l	2.0		1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1		
Hexachlorobutadiene	ND		ug/l	2.0		1		
Hexachlorocyclopentadiene	ND		ug/l	20		1		
Hexachloroethane	ND		ug/l	2.0		1		
Isophorone	ND		ug/l	5.0		1		
Naphthalene	ND		ug/l	2.0		1		
Nitrobenzene	ND		ug/l	2.0		1		
NDPA/DPA	ND		ug/l	2.0		1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1		
Butyl benzyl phthalate	ND		ug/l	5.0		1		

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL

L2027386-04

CLEANOUT 1

WAYLAND, MA

Project Number: ENG20-0296

SAMPLE RESULTS

Date Collected: 06/28/20 11:25

Date Received: 06/29/20

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westl	borough Lab					
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	3.2		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2027386

Project Number: ENG20-0296 Report Date: 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-04 Date Collected: 06/28/20 11:25

Client ID: CLEANOUT 1 Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	66	21-120	
Phenol-d6	56	10-120	
Nitrobenzene-d5	95	23-120	
2-Fluorobiphenyl	66	15-120	
2,4,6-Tribromophenol	83	10-120	
4-Terphenyl-d14	80	41-149	

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386

Project Number: Report Date: ENG20-0296 07/07/20

SAMPLE RESULTS

Lab ID: Date Collected: 06/29/20 11:50 L2027386-05

Date Received: Client ID: 06/29/20 **CLEANOUT 2** Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/01/20 09:31

Analytical Method: 1,8270D Analytical Date: 07/02/20 01:52

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

L2027386

07/07/20

Project Name: Lab Number: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

L2027386-05

CLEANOUT 2

WAYLAND, MA

SAMPLE RESULTS

Date Collected: 06/29/20 11:50

Date Received: 06/29/20

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Benzo(a)anthracene	ND		ug/l	2.0		1	
Benzo(a)pyrene	ND		ug/l	2.0		1	
Benzo(b)fluoranthene	ND		ug/l	2.0		1	
Benzo(k)fluoranthene	ND		ug/l	2.0		1	
Chrysene	ND		ug/l	2.0		1	
Acenaphthylene	ND		ug/l	2.0		1	
Anthracene	ND		ug/l	2.0		1	
Benzo(ghi)perylene	ND		ug/l	2.0		1	
Fluorene	ND		ug/l	2.0		1	
Phenanthrene	ND		ug/l	2.0		1	
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1	
Pyrene	ND		ug/l	2.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	2.3		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	
1-Methylnaphthalene	ND		ug/l	2.0		1	
2-Nitroaniline	ND		ug/l	5.0		1	
3-Nitroaniline	ND		ug/l	5.0		1	
4-Nitroaniline	ND		ug/l	5.0		1	
Dibenzofuran	ND		ug/l	2.0		1	
2-Methylnaphthalene	ND		ug/l	2.0		1	
n-Nitrosodimethylamine	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	10		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
4,6-Dinitro-o-cresol	ND		ug/l	10		1	
Pentachlorophenol	ND		ug/l	10		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2027386

Project Number: ENG20-0296 Report Date: 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-05 Date Collected: 06/29/20 11:50

Client ID: CLEANOUT 2 Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	56	21-120	
Phenol-d6	45	10-120	
Nitrobenzene-d5	85	23-120	
2-Fluorobiphenyl	58	15-120	
2,4,6-Tribromophenol	66	10-120	
4-Terphenyl-d14	64	41-149	

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Date Collected: 06/29/20 12:15

Lab Number:

Report Date:

L2027386-06 **CLEANOUT 3** Date Received: 06/29/20 WAYLAND, MA Field Prep: Not Specified

JG

Lab ID:

Client ID:

Analyst:

Sample Location:

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/01/20 09:31 Analytical Method: 1,8270D

Analytical Date: 07/02/20 03:25

Qualifier Units RL MDL **Dilution Factor Parameter** Result Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene ND 2.0 1 ug/l Benzidine ND 20 ug/l 1,2,4-Trichlorobenzene ND ug/l 5.0 1 Hexachlorobenzene ND ug/l 2.0 1 Bis(2-chloroethyl)ether ND ug/l 2.0 1 2-Chloronaphthalene ND ug/l 2.0 1 ND 2.0 1,2-Dichlorobenzene ug/l 1 --1,3-Dichlorobenzene ND 2.0 1 ug/l 1,4-Dichlorobenzene ND ug/l 2.0 --1 ND 5.0 1 3,3'-Dichlorobenzidine ug/l 2,4-Dinitrotoluene ND 5.0 1 ug/l 2,6-Dinitrotoluene ND ug/l 5.0 --1 Azobenzene ND 2.0 1 ug/l --Fluoranthene ND 2.0 1 ug/l 4-Chlorophenyl phenyl ether ND 2.0 1 ug/l --4-Bromophenyl phenyl ether ND 2.0 1 ug/l ND Bis(2-chloroisopropyl)ether ug/l 2.0 1 ND Bis(2-chloroethoxy)methane 5.0 1 ug/l --Hexachlorobutadiene ND 2.0 1 ug/l ND 20 1 Hexachlorocyclopentadiene ug/l Hexachloroethane ND 1 2.0 ug/l Isophorone ND ug/l 5.0 1 ND Naphthalene 2.0 1 ug/l --Nitrobenzene ND 2.0 1

ND

ND

ND

ND

ug/l

ug/l

ug/l

ug/l

ug/l

1

1

1

1

--

--

2.0

5.0

3.0

5.0

NDPA/DPA

n-Nitrosodi-n-propylamine

Bis(2-ethylhexyl)phthalate

Butyl benzyl phthalate

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL

L2027386-06

CLEANOUT 3

WAYLAND, MA

Project Number: ENG20-0296

SAMPLE RESULTS

Date Collected: 06/29/20 12:15

Date Received: 06/29/20

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westl	oorough Lab					
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	2.4		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2027386

Project Number: ENG20-0296 Report Date: 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-06 Date Collected: 06/29/20 12:15

Client ID: CLEANOUT 3 Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	67	21-120	
Phenol-d6	54	10-120	
Nitrobenzene-d5	99	23-120	
2-Fluorobiphenyl	68	15-120	
2,4,6-Tribromophenol	78	10-120	
4-Terphenyl-d14	82	41-149	

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL

07/02/20 02:39

Project Number: ENG20-0296

SAMPLE RESULTS

Date Collected: 06/28/20 11:00

Lab Number:

Report Date:

Lab ID: L2027386-07 Date Received: Client ID: **CLEANOUT 4** 06/29/20 Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/01/20 07:36 Analytical Method: 1,8270D

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

L2027386

07/07/20

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

L2027386-07

CLEANOUT 4

WAYLAND, MA

SAMPLE RESULTS

Date Collected: 06/28/20 11:00 Date Received: 06/29/20

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Di-n-butylphthalate	ND		ua/I	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
	ND		ug/l	5.0		1
Directly I phthalate	ND		ug/l	5.0		
Dimethyl phthalate			ug/l			1
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	3.1		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1
•			•			

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2027386

Project Number: ENG20-0296 Report Date: 07/07/20

SAMPLE RESULTS

Lab ID: L2027386-07 Date Collected: 06/28/20 11:00

Client ID: CLEANOUT 4 Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	56	21-120	
Phenol-d6	47	10-120	
Nitrobenzene-d5	78	23-120	
2-Fluorobiphenyl	57	15-120	
2,4,6-Tribromophenol	70	10-120	
4-Terphenyl-d14	69	41-149	

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 07/07/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/01/20 01:03

Analyst: WR

Extraction Method: EPA 3510C Extraction Date: 06/30/20 07:54

arameter	Result	Qualifier	Units	RL	M	DL
emivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	03-04,07	Batch:	WG1387420-1
Acenaphthene	ND		ug/l	2.0	-	-
Benzidine	ND		ug/l	20	-	-
1,2,4-Trichlorobenzene	ND		ug/l	5.0	-	-
Hexachlorobenzene	ND		ug/l	2.0	-	-
Bis(2-chloroethyl)ether	ND		ug/l	2.0	-	-
2-Chloronaphthalene	ND		ug/l	2.0	-	-
1,2-Dichlorobenzene	ND		ug/l	2.0	-	-
1,3-Dichlorobenzene	ND		ug/l	2.0	-	-
1,4-Dichlorobenzene	ND		ug/l	2.0	-	-
3,3'-Dichlorobenzidine	ND		ug/l	5.0	-	-
2,4-Dinitrotoluene	ND		ug/l	5.0	-	-
2,6-Dinitrotoluene	ND		ug/l	5.0	-	-
Azobenzene	ND		ug/l	2.0	-	-
Fluoranthene	ND		ug/l	2.0	-	-
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	-	-
4-Bromophenyl phenyl ether	ND		ug/l	2.0	-	-
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	-	-
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	-	-
Hexachlorobutadiene	ND		ug/l	2.0	-	-
Hexachlorocyclopentadiene	ND		ug/l	20	-	-
Hexachloroethane	ND		ug/l	2.0	-	-
Isophorone	ND		ug/l	5.0	-	-
Naphthalene	ND		ug/l	2.0	-	-
Nitrobenzene	ND		ug/l	2.0	-	-
NDPA/DPA	ND		ug/l	2.0	-	-
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	-	-
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	-	-
Butyl benzyl phthalate	ND		ug/l	5.0	-	-
Di-n-butylphthalate	ND		ug/l	5.0	-	-

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 07/07/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/01/20 01:03

Analyst: WR

Extraction Method: EPA 3510C Extraction Date: 06/30/20 07:54

Parameter	Result	Qualifier	Units	RL	MI	DL
Semivolatile Organics by GC/MS -	- Westborough	Lab for s	ample(s):	03-04,07	Batch:	WG1387420-1
Di-n-octylphthalate	ND		ug/l	5.0	-	-
Diethyl phthalate	ND		ug/l	5.0	-	·-
Dimethyl phthalate	ND		ug/l	5.0	•	-
Benzo(a)anthracene	ND		ug/l	2.0	-	·-
Benzo(a)pyrene	ND		ug/l	2.0	-	-
Benzo(b)fluoranthene	ND		ug/l	2.0	-	
Benzo(k)fluoranthene	ND		ug/l	2.0	-	-
Chrysene	ND		ug/l	2.0	-	-
Acenaphthylene	ND		ug/l	2.0	-	-
Anthracene	ND		ug/l	2.0	-	-
Benzo(ghi)perylene	ND		ug/l	2.0	-	-
Fluorene	ND		ug/l	2.0	-	-
Phenanthrene	ND		ug/l	2.0	-	-
Dibenzo(a,h)anthracene	ND		ug/l	2.0	-	-
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0	-	-
Pyrene	ND		ug/l	2.0	-	-
Biphenyl	ND		ug/l	2.0	-	-
Aniline	ND		ug/l	2.0	-	-
4-Chloroaniline	ND		ug/l	5.0	-	-
1-Methylnaphthalene	ND		ug/l	2.0	-	-
2-Nitroaniline	ND		ug/l	5.0	-	-
3-Nitroaniline	ND		ug/l	5.0	-	-
4-Nitroaniline	ND		ug/l	5.0	-	-
Dibenzofuran	ND		ug/l	2.0	-	-
2-Methylnaphthalene	ND		ug/l	2.0	-	-
n-Nitrosodimethylamine	ND		ug/l	2.0	-	·-
2,4,6-Trichlorophenol	ND		ug/l	5.0	-	-
p-Chloro-m-cresol	ND		ug/l	2.0	-	-
2-Chlorophenol	ND		ug/l	2.0	-	-

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 07/07/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/01/20 01:03

Analyst: WR

Extraction Method: EPA 3510C Extraction Date: 06/30/20 07:54

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	03-04,07	Batch: WG1387420-1	
2,4-Dichlorophenol	ND		ug/l	5.0		
2,4-Dimethylphenol	ND		ug/l	5.0		
2-Nitrophenol	ND		ug/l	10		
4-Nitrophenol	ND		ug/l	10		
2,4-Dinitrophenol	ND		ug/l	20		
4,6-Dinitro-o-cresol	ND		ug/l	10		
Pentachlorophenol	ND		ug/l	10		
Phenol	ND		ug/l	5.0		
2-Methylphenol	ND		ug/l	5.0		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		
2,4,5-Trichlorophenol	ND		ug/l	5.0		
Benzoic Acid	ND		ug/l	50		
Benzyl Alcohol	ND		ug/l	2.0		
Carbazole	ND		ug/l	2.0		
Pyridine	ND		ug/l	3.5		

Surrogate	%Recovery Qua	Acceptance alifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	59	15-120
2,4,6-Tribromophenol	48	10-120
4-Terphenyl-d14	62	41-149

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 07/07/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/01/20 08:49

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 06/30/20 18:45

Acenaphthene Benzidine	Westborough ND ND ND ND ND	Lab for sa	ug/l ug/l	01-02,05-06	Batch:	WG1387758-1
Benzidine	ND ND			2.0		
	ND		ua/l			
4047:11			ug/i	20		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		
Hexachlorobenzene	110		ug/l	2.0		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		
2-Chloronaphthalene	ND		ug/l	2.0		
1,2-Dichlorobenzene	ND		ug/l	2.0		
1,3-Dichlorobenzene	ND		ug/l	2.0		
1,4-Dichlorobenzene	ND		ug/l	2.0		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		
2,4-Dinitrotoluene	ND		ug/l	5.0		
2,6-Dinitrotoluene	ND		ug/l	5.0		
Azobenzene	ND		ug/l	2.0		
Fluoranthene	ND		ug/l	2.0		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		
Hexachlorobutadiene	ND		ug/l	2.0		
Hexachlorocyclopentadiene	ND		ug/l	20		
Hexachloroethane	ND		ug/l	2.0		
Isophorone	ND		ug/l	5.0		
Naphthalene	ND		ug/l	2.0		
Nitrobenzene	ND		ug/l	2.0		
NDPA/DPA	ND		ug/l	2.0		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 07/07/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/01/20 08:49

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 06/30/20 18:45

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-02,05-06	Batch:	WG1387758-1
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Benzo(a)anthracene	ND		ug/l	2.0		
Benzo(a)pyrene	ND		ug/l	2.0		
Benzo(b)fluoranthene	ND		ug/l	2.0		
Benzo(k)fluoranthene	ND		ug/l	2.0		
Chrysene	ND		ug/l	2.0		
Acenaphthylene	ND		ug/l	2.0		
Anthracene	ND		ug/l	2.0		
Benzo(ghi)perylene	ND		ug/l	2.0		
Fluorene	ND		ug/l	2.0		
Phenanthrene	ND		ug/l	2.0		
Dibenzo(a,h)anthracene	ND		ug/l	2.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		
Pyrene	ND		ug/l	2.0		
Biphenyl	ND		ug/l	2.0		
Aniline	ND		ug/l	2.0		
4-Chloroaniline	ND		ug/l	5.0		
1-Methylnaphthalene	ND		ug/l	2.0		
2-Nitroaniline	ND		ug/l	5.0		
3-Nitroaniline	ND		ug/l	5.0		
4-Nitroaniline	ND		ug/l	5.0		
Dibenzofuran	ND		ug/l	2.0		
2-Methylnaphthalene	ND		ug/l	2.0		
n-Nitrosodimethylamine	ND		ug/l	2.0		
2,4,6-Trichlorophenol	ND		ug/l	5.0		
p-Chloro-m-cresol	ND		ug/l	2.0		
2-Chlorophenol	ND		ug/l	2.0		

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 07/07/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D
Analytical Date: 07/01/20 08:49

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 06/30/20 18:45

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/MS	S - Westborough	Lab for sample	(s): 01-02,05-06	Batch:	WG1387758-1
2,4-Dichlorophenol	ND	ug/l	5.0		
2,4-Dimethylphenol	ND	ug/l	5.0		
2-Nitrophenol	ND	ug/l	10		
4-Nitrophenol	ND	ug/l	10		
2,4-Dinitrophenol	ND	ug/l	20		
4,6-Dinitro-o-cresol	ND	ug/l	10		
Pentachlorophenol	ND	ug/l	10		
Phenol	ND	ug/l	5.0		
2-Methylphenol	ND	ug/l	5.0		
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0		
2,4,5-Trichlorophenol	ND	ug/l	5.0		
Benzoic Acid	ND	ug/l	50		
Benzyl Alcohol	ND	ug/l	2.0		
Carbazole	ND	ug/l	2.0		
Pyridine	ND	ug/l	3.5		

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	47	10-120
4-Terphenyl-d14	72	41-149

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2027386

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s)	: 03-04,07 E	Batch: WG1	387420-2 WG13	87420-3	
Acenaphthene	70		70		37-111	0	30
Benzidine	0	Q	4	Q	10-75	NC	30
1,2,4-Trichlorobenzene	69		67		39-98	3	30
Hexachlorobenzene	68		68		40-140	0	30
Bis(2-chloroethyl)ether	67		65		40-140	3	30
2-Chloronaphthalene	69		68		40-140	1	30
1,2-Dichlorobenzene	70		70		40-140	0	30
1,3-Dichlorobenzene	66		64		40-140	3	30
1,4-Dichlorobenzene	66		64		36-97	3	30
3,3'-Dichlorobenzidine	46		52		40-140	12	30
2,4-Dinitrotoluene	78		76		48-143	3	30
2,6-Dinitrotoluene	80		82		40-140	2	30
Azobenzene	70		68		40-140	3	30
Fluoranthene	72		72		40-140	0	30
4-Chlorophenyl phenyl ether	69		68		40-140	1	30
4-Bromophenyl phenyl ether	66		60		40-140	10	30
Bis(2-chloroisopropyl)ether	81		77		40-140	5	30
Bis(2-chloroethoxy)methane	66		64		40-140	3	30
Hexachlorobutadiene	64		62		40-140	3	30
Hexachlorocyclopentadiene	65		66		40-140	2	30
Hexachloroethane	75		70		40-140	7	30
Isophorone	79		76		40-140	4	30
Naphthalene	66		66		40-140	0	30

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2027386

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	03-04,07 B	atch: WG1	387420-2 WG13	87420-3		
Nitrobenzene	79		77		40-140	3	30	
NDPA/DPA	65		65		40-140	0	30	
n-Nitrosodi-n-propylamine	78		76		29-132	3	30	
Bis(2-ethylhexyl)phthalate	87		88		40-140	1	30	
Butyl benzyl phthalate	81		84		40-140	4	30	
Di-n-butylphthalate	77		76		40-140	1	30	
Di-n-octylphthalate	89		87		40-140	2	30	
Diethyl phthalate	79		77		40-140	3	30	
Dimethyl phthalate	76		76		40-140	0	30	
Benzo(a)anthracene	75		72		40-140	4	30	
Benzo(a)pyrene	72		70		40-140	3	30	
Benzo(b)fluoranthene	76		72		40-140	5	30	
Benzo(k)fluoranthene	81		78		40-140	4	30	
Chrysene	83		79		40-140	5	30	
Acenaphthylene	71		70		45-123	1	30	
Anthracene	71		70		40-140	1	30	
Benzo(ghi)perylene	83		80		40-140	4	30	
Fluorene	70		69		40-140	1	30	
Phenanthrene	70		69		40-140	1	30	
Dibenzo(a,h)anthracene	79		77		40-140	3	30	
Indeno(1,2,3-cd)pyrene	76		73		40-140	4	30	
Pyrene	73		73		26-127	0	30	
Biphenyl	79		78		40-140	1	30	

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2027386

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s)	: 03-04,07 B	satch: WG1	387420-2 WG138	37420-3		
Aniline	20	Q	34	Q	40-140	52	Q	30
4-Chloroaniline	48		50		40-140	4		30
1-Methylnaphthalene	72		69		41-103	4		30
2-Nitroaniline	73		72		52-143	1		30
3-Nitroaniline	54		51		25-145	6		30
4-Nitroaniline	50	Q	50	Q	51-143	0		30
Dibenzofuran	67		67		40-140	0		30
2-Methylnaphthalene	64		62		40-140	3		30
n-Nitrosodimethylamine	42		37		22-74	13		30
2,4,6-Trichlorophenol	66		66		30-130	0		30
p-Chloro-m-cresol	71		68		23-97	4		30
2-Chlorophenol	71		68		27-123	4		30
2,4-Dichlorophenol	76		71		30-130	7		30
2,4-Dimethylphenol	51		72		30-130	34	Q	30
2-Nitrophenol	87		85		30-130	2		30
4-Nitrophenol	58		54		10-80	7		30
2,4-Dinitrophenol	84		76		20-130	10		30
4,6-Dinitro-o-cresol	92		89		20-164	3		30
Pentachlorophenol	78		76		9-103	3		30
Phenol	43		41		12-110	5		30
2-Methylphenol	68		68		30-130	0		30
3-Methylphenol/4-Methylphenol	70		56		30-130	22		30
2,4,5-Trichlorophenol	71		71		30-130	0		30

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2027386

Report Date:

07/07/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associ	ated sample(s)	: 03-04,07 B	atch: WG1:	387420-2 WG138	37420-3			
Benzoic Acid	78		55		10-164	35	Q	30	
Benzyl Alcohol	53		47		26-116	12		30	
Carbazole	62		62		55-144	0		30	
Pyridine	10		26		10-66	89	Q	30	

Surragata	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qua	al %Recovery Qual	
2-Fluorophenol	51	45	21-120
Phenol-d6	46	41	10-120
Nitrobenzene-d5	86	83	23-120
2-Fluorobiphenyl	64	62	15-120
2,4,6-Tribromophenol	68	69	10-120
4-Terphenyl-d14	64	61	41-149

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2027386

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	iated sample(s):	01-02,05-06	Batch:	WG1387758-2 \	NG1387758-3	
Acenaphthene	69		65		37-111	6	30
Benzidine	3	Q	4	Q	10-75	14	30
1,2,4-Trichlorobenzene	66		65		39-98	2	30
Hexachlorobenzene	63		60		40-140	5	30
Bis(2-chloroethyl)ether	69		66		40-140	4	30
2-Chloronaphthalene	74		68		40-140	8	30
1,2-Dichlorobenzene	64		64		40-140	0	30
1,3-Dichlorobenzene	64		62		40-140	3	30
1,4-Dichlorobenzene	64		63		36-97	2	30
3,3'-Dichlorobenzidine	62		59		40-140	5	30
2,4-Dinitrotoluene	92		85		48-143	8	30
2,6-Dinitrotoluene	82		79		40-140	4	30
Azobenzene	77		70		40-140	10	30
Fluoranthene	74		67		40-140	10	30
4-Chlorophenyl phenyl ether	71		64		40-140	10	30
4-Bromophenyl phenyl ether	66		62		40-140	6	30
Bis(2-chloroisopropyl)ether	72		69		40-140	4	30
Bis(2-chloroethoxy)methane	74		69		40-140	7	30
Hexachlorobutadiene	64		60		40-140	6	30
Hexachlorocyclopentadiene	64		60		40-140	6	30
Hexachloroethane	66		66		40-140	0	30
Isophorone	69		66		40-140	4	30
Naphthalene	69		66		40-140	4	30

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2027386

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s):	: 01-02,05-06	Batch:	WG1387758-2	WG1387758-3			
Nitrobenzene	78		76		40-140	3		30	
NDPA/DPA	73		66		40-140	10		30	
n-Nitrosodi-n-propylamine	70		68		29-132	3		30	
Bis(2-ethylhexyl)phthalate	91		82		40-140	10		30	
Butyl benzyl phthalate	77		71		40-140	8		30	
Di-n-butylphthalate	74		67		40-140	10		30	
Di-n-octylphthalate	82		73		40-140	12		30	
Diethyl phthalate	74		68		40-140	8		30	
Dimethyl phthalate	76		73		40-140	4		30	
Benzo(a)anthracene	78		68		40-140	14		30	
Benzo(a)pyrene	77		65		40-140	17		30	
Benzo(b)fluoranthene	80		67		40-140	18		30	
Benzo(k)fluoranthene	78		73		40-140	7		30	
Chrysene	78		69		40-140	12		30	
Acenaphthylene	71		70		45-123	1		30	
Anthracene	76		69		40-140	10		30	
Benzo(ghi)perylene	91		78		40-140	15		30	
Fluorene	71		66		40-140	7		30	
Phenanthrene	74		69		40-140	7		30	
Dibenzo(a,h)anthracene	81		70		40-140	15		30	
Indeno(1,2,3-cd)pyrene	81		68		40-140	17		30	
Pyrene	75		68		26-127	10		30	
Biphenyl	75		71		40-140	5		30	

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2027386

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	iated sample(s):	01-02,05-06	Batch:	WG1387758-2 \	WG1387758-3	
Aniline	24	Q	25	Q	40-140	4	30
4-Chloroaniline	54		53		40-140	2	30
1-Methylnaphthalene	69		66		41-103	4	30
2-Nitroaniline	81		77		52-143	5	30
3-Nitroaniline	73		67		25-145	9	30
4-Nitroaniline	75		64		51-143	16	30
Dibenzofuran	70		68		40-140	3	30
2-Methylnaphthalene	68		68		40-140	0	30
n-Nitrosodimethylamine	49		46		22-74	6	30
2,4,6-Trichlorophenol	68		68		30-130	0	30
p-Chloro-m-cresol	75		73		23-97	3	30
2-Chlorophenol	67		63		27-123	6	30
2,4-Dichlorophenol	71		69		30-130	3	30
2,4-Dimethylphenol	61		61		30-130	0	30
2-Nitrophenol	88		88		30-130	0	30
4-Nitrophenol	71		59		10-80	18	30
2,4-Dinitrophenol	102		97		20-130	5	30
4,6-Dinitro-o-cresol	98		91		20-164	7	30
Pentachlorophenol	70		68		9-103	3	30
Phenol	54		51		12-110	6	30
2-Methylphenol	67		63		30-130	6	30
3-Methylphenol/4-Methylphenol	70		69		30-130	1	30
2,4,5-Trichlorophenol	73		71		30-130	3	30

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2027386

Report Date:

07/07/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS -	Westborough Lab Associa	ated sample(s)	: 01-02,05-06	Batch:	WG1387758-2	WG1387758-3			
Benzoic Acid	42		50		10-164	17		30	
Benzyl Alcohol	62		60		26-116	3		30	
Carbazole	75		69		55-144	8		30	
Pyridine	16		16		10-66	0		30	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
	70.1000.01	, , , , , , , , , , , , , , , , , , ,	
2-Fluorophenol	57	56	21-120
Phenol-d6	54	50	10-120
Nitrobenzene-d5	84	85	23-120
2-Fluorobiphenyl	71	70	15-120
2,4,6-Tribromophenol	61	61	10-120
4-Terphenyl-d14	71	64	41-149

METALS

06/29/20 10:20

Date Collected:

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386 **Report Date:** 07/07/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2027386-01

Client ID: MW-1

Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	ND		mg/l	0.00050		1	07/01/20 10:25	07/02/20 09:20	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/01/20 10:25	07/02/20 09:20	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:20	EPA 3005A	1,6020B	AM
Copper, Total	0.00173		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:20	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:20	EPA 3005A	1,6020B	AM
Silica, Total	13.2		mg/l	0.500		1	07/01/20 10:25	07/06/20 13:37	EPA 3005A	1,6010D	BV
Zinc, Total	0.01010		mg/l	0.01000		1	07/01/20 10:25	07/02/20 09:20	EPA 3005A	1,6020B	AM
Total Hardness by SM 2340B - Mansfield Lab											
Hardness	140		mg/l	0.660	NA	1	07/01/20 10:25	07/06/20 13:37	EPA 3005A	1,6010D	BV

06/29/20 09:40

Date Collected:

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386 **Report Date:** 07/07/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2027386-02

Client ID: MW-5

Date Received: 06/29/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00494		mg/l	0.00050		1	07/01/20 10:25	07/02/20 09:54	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/01/20 10:25	07/02/20 09:54	EPA 3005A	1,6020B	AM
Chromium, Total	0.00347		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:54	EPA 3005A	1,6020B	AM
Copper, Total	0.01064		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:54	EPA 3005A	1,6020B	AM
Lead, Total	0.00496		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:54	EPA 3005A	1,6020B	AM
Silica, Total	22.0		mg/l	0.500		1	07/01/20 10:25	07/06/20 16:04	EPA 3005A	1,6010D	BV
Zinc, Total	0.02162		mg/l	0.01000		1	07/01/20 10:25	07/02/20 09:54	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340E	s - Mansfiel	d Lab								
Hardness	228		mg/l	0.660	NA	1	07/01/20 10:25	07/06/20 16:04	EPA 3005A	1,6010D	BV

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386 **Report Date:** 07/07/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2027386-03 Date Collected: 06/28/20 10:00 Client ID: DISCHARGE PIPE Date Received: 06/29/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	ND		mg/l	0.00050		1	07/01/20 10:25	07/02/20 09:59	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/01/20 10:25	07/02/20 09:59	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:59	EPA 3005A	1,6020B	AM
Copper, Total	0.00111		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:59	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 09:59	EPA 3005A	1,6020B	AM
Silica, Total	6.18		mg/l	0.500		1	07/01/20 10:25	07/06/20 18:27	EPA 3005A	1,6010D	BV
Zinc, Total	0.02105		mg/l	0.01000		1	07/01/20 10:25	07/02/20 09:59	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340B	3 - Mansfiel	d Lab								
Hardness	112		mg/l	0.660	NA	1	07/01/20 10:25	07/06/20 18:27	EPA 3005A	1,6010D	BV

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386 **Project Number: Report Date:** 07/07/20

ENG20-0296

SAMPLE RESULTS

Lab ID: L2027386-04 Date Collected: 06/28/20 11:25 Client ID: **CLEANOUT 1** Date Received: 06/29/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	0.00088		mg/l	0.00050		1	07/01/20 10:25	07/02/20 10:04	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/01/20 10:25	07/02/20 10:04	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:04	EPA 3005A	1,6020B	AM
Copper, Total	0.00105		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:04	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:04	EPA 3005A	1,6020B	AM
Silica, Total	1.78		mg/l	0.500		1	07/01/20 10:25	07/06/20 18:32	EPA 3005A	1,6010D	BV
Zinc, Total	0.04296		mg/l	0.01000		1	07/01/20 10:25	07/02/20 10:04	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340B	3 - Mansfiel	d Lab								
Hardness	25.1		mg/l	0.660	NA	1	07/01/20 10:25	07/06/20 18:32	EPA 3005A	1,6010D	BV

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386 **Project Number: Report Date:** 07/07/20

ENG20-0296

SAMPLE RESULTS

Lab ID: L2027386-05 Date Collected: 06/29/20 11:50 Client ID: CLEANOUT 2 Date Received: 06/29/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00072		mg/l	0.00050		1	07/01/20 10:25	07/02/20 10:09	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/01/20 10:25	07/02/20 10:09	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:09	EPA 3005A	1,6020B	AM
Copper, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:09	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:09	EPA 3005A	1,6020B	AM
Silica, Total	1.49		mg/l	0.500		1	07/01/20 10:25	07/06/20 18:37	EPA 3005A	1,6010D	BV
Zinc, Total	0.08250		mg/l	0.01000		1	07/01/20 10:25	07/02/20 10:09	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	19.1		mg/l	0.660	NA	1	07/01/20 10:25	07/06/20 18:37	EPA 3005A	1,6010D	BV

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386 **Project Number: Report Date:** 07/07/20

ENG20-0296

SAMPLE RESULTS

Lab ID: L2027386-06 Date Collected: 06/29/20 12:15 Client ID: CLEANOUT 3 Date Received: 06/29/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	nsfield Lab										
Arsenic, Total	0.00102		mg/l	0.00050		1	07/01/20 10:25	07/02/20 10:14	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/01/20 10:25	07/02/20 10:14	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:14	EPA 3005A	1,6020B	AM
Copper, Total	0.00114		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:14	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:14	EPA 3005A	1,6020B	AM
Silica, Total	2.34		mg/l	0.500		1	07/01/20 10:25	07/06/20 18:41	EPA 3005A	1,6010D	BV
Zinc, Total	0.03504		mg/l	0.01000		1	07/01/20 10:25	07/02/20 10:14	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	23.0		mg/l	0.660	NA	1	07/01/20 10:25	07/06/20 18:41	EPA 3005A	1,6010D	BV

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2027386 **Report Date:** 07/07/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2027386-07 Date Collected: 06/28/20 11:00 Client ID: **CLEANOUT 4** Date Received: 06/29/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	0.00068		mg/l	0.00050		1	07/01/20 10:25	07/02/20 10:19	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/01/20 10:25	07/02/20 10:19	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:19	EPA 3005A	1,6020B	AM
Copper, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:19	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	07/01/20 10:25	07/02/20 10:19	EPA 3005A	1,6020B	AM
Silica, Total	1.89		mg/l	0.500		1	07/01/20 10:25	07/06/20 18:55	EPA 3005A	1,6010D	BV
Zinc, Total	0.07908		mg/l	0.01000		1	07/01/20 10:25	07/02/20 10:19	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	16.7		mg/l	0.660	NA	1	07/01/20 10:25	07/06/20 18:55	EPA 3005A	1,6010D	BV

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2027386

Report Date: 07/07/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-07	Batch: Wo	G13877	26-1				
Arsenic, Total	ND	mg/l	0.00050		1	07/01/20 10:25	07/02/20 08:55	5 1,6020B	AM
Cadmium, Total	ND	mg/l	0.00020		1	07/01/20 10:25	07/02/20 08:55	1,6020B	AM
Chromium, Total	ND	mg/l	0.00100		1	07/01/20 10:25	07/02/20 08:55	5 1,6020B	AM
Copper, Total	ND	mg/l	0.00100		1	07/01/20 10:25	07/02/20 08:55	5 1,6020B	AM
Lead, Total	ND	mg/l	0.00100		1	07/01/20 10:25	07/02/20 08:55	5 1,6020B	AM
Zinc, Total	ND	mg/l	0.01000		1	07/01/20 10:25	07/02/20 08:55	5 1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01-07 E	Batch: Wo	G13877	28-1				
Silica, Total	ND	mg/l	0.500		1	07/01/20 10:25	07/06/20 13:28	1,6010D	BV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	· Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by	SM 2340B - Mansfield I	ab for sam	ple(s):	01-07 E	Batch: WG	1387728-1			
Hardness	ND	mg/l	0.660	NA	1	07/01/20 10:25	07/06/20 13:28	1,6010D	BV

Prep Information

Digestion Method: EPA 3005A

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2027386

Report Date:

07/07/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	(s): 01-07 Bate	ch: WG138	7726-2					
Arsenic, Total	100		-		80-120	-		
Cadmium, Total	100		-		80-120	-		
Chromium, Total	101		-		80-120	-		
Copper, Total	103		-		80-120	-		
Lead, Total	90		-		80-120	-		
Zinc, Total	108		-		80-120	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	le(s): 01-07	Batch: WG138	7728-2				
Hardness	103		-		80-120	-		
otal Metals - Mansfield Lab Associated sample	(s): 01-07 Bate	ch: WG138	7728-7					
Silica, Total	105		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2027386

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-07	QC Bat	ch ID: WG138	7726-3	QC Sam	nple: L2027386-0	01 Cli	ient ID: MV	V-1		
Arsenic, Total	ND	0.12	0.1248	104		-	-		75-125	-		20
Cadmium, Total	ND	0.051	0.05418	106		-	-		75-125	-		20
Chromium, Total	ND	0.2	0.2027	101		-	-		75-125	-		20
Copper, Total	0.00173	0.25	0.2563	102		-	-		75-125	-		20
Lead, Total	ND	0.51	0.5201	102		-	-		75-125	-		20
Zinc, Total	0.01010	0.5	0.5425	106		-	-		75-125	-		20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01-07	QC Bat	ch ID: WG138	7728-3	QC Sam	nple: L2027386-0)1 Cli	ient ID: MV	V-1		
Silica, Total	13.2	2.14	15.5	107		-	-		75-125	-		20
otal Hardness by SM 2340	3 - Mansfield La	b Associated	sample(s)	: 01-07 QC E	Batch ID	: WG1387	728-3 QC Sar	mple: L	.2027386-0	1 Clie	ent ID:	MW-1
Hardness	140	66.2	207	101		-	-		75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2027386

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RP	D Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	7 QC Batch ID: \	WG1387726-4 QC Sample:	L2027386-01	Client ID:	: MW-1	
Arsenic, Total	ND	0.00054	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00173	0.00174	mg/l	1		20
Lead, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01010	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01-0	7 QC Batch ID: \	WG1387728-4 QC Sample:	L2027386-01	Client ID:	: MW-1	
Silica, Total	13.2	13.0	mg/l	2		20
otal Hardness by SM 2340B - Mansfield Lab Associated	d sample(s): 01-07	QC Batch ID: WG1387728-	-4 QC Samp	le: L2027	386-01 Client II	D: MW-1
Hardness	140	136	mg/l	3		20

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2027386 **Report Date:** 07/07/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2027386-01A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-01B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-01C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-01D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Y	Absent		CR-6020T(180),CU-6020T(180),ZN- 6020T(180),PB-6020T(180),AS-6020T(180),SO- TI(180),CD-6020T(180),HARDT(180)
L2027386-01E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-01F	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-02A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-02B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-02C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-02D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),SO-TI(180),AS- 6020T(180),CD-6020T(180),HARDT(180)
L2027386-02E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-02F	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-03A	Vial HCI preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-03B	Vial HCI preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-03C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-03D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Y	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),AS-6020T(180),SO- TI(180),CD-6020T(180),HARDT(180)
L2027386-03E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-03F	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-04A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-04B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)

Lab Number: L2027386

Report Date: 07/07/20

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L2027386-04C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-04D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Υ	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),SO-TI(180),AS- 6020T(180),CD-6020T(180),HARDT(180)
L2027386-04E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-04F	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-05A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-05B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-05C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-05D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Y	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),AS-6020T(180),SO- TI(180),CD-6020T(180),HARDT(180)
L2027386-05E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-05F	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-06A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-06B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-06C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-06D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Y	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),AS-6020T(180),SO- TI(180),CD-6020T(180),HARDT(180)
L2027386-06E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-06F	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-07A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-07B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-07C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-07D	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Y	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),AS-6020T(180),SO- TI(180),CD-6020T(180),HARDT(180)
L2027386-07E	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-07F	Amber 250ml unpreserved	Α	7	7	3.6	Υ	Absent		8270TCL-LVI(7)
L2027386-08A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)
L2027386-08B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		8260(14)

Project Name:WAYLAND HIGH SCHOOLLab Number:L2027386Project Number:ENG20-0296Report Date:07/07/20

GLOSSARY

Acronyms

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an applyte when the ions most all of the identification griteria avecant the ion shundance ratio griteria. An EMPC is a warnt open

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:WAYLAND HIGH SCHOOLLab Number:L2027386Project Number:ENG20-0296Report Date:07/07/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:WAYLAND HIGH SCHOOLLab Number:L2027386Project Number:ENG20-0296Report Date:07/07/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:WAYLAND HIGH SCHOOLLab Number:L2027386Project Number:ENG20-0296Report Date:07/07/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 17

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Published Date: 4/28/2020 9:42:21 AM Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Address: 59 SUITE 100, R Phone: 978-0 Email: Mach	01581 Mansfield, MA 02048 0220 Tel: 508-822-9300	Project I Project I Project I ALPHA	Name: Vocation: #: ENGManager: Quote #: Around T	Naylar Waylar Wayla	nd High	ynsch 1A	Record	ADEX ADEX ADEX ADEX ADEX ADEX ADEX ADEX	No MA MO No Matrix No GW1 S No NPDE State /Fed	on - Dat EMAIL Irement CP Analyti Spike Rec Standards S RGP Program	s & cal Met quired (Projection this Sequired	ect Infor	Same as mation or Yes equired fis Sapph	nformati s Client in Requir • No C for MCP I	ements T RCP Analytic norganics) rgets) SAMP Filtrati □ Fiel □ Lab	PLE INFO	TOTAL #
ALPHA Lab ID (Lab Use Only)	Sample ID		Col	llection Time	Sample Matrix	Sampler Initials	Voc.		METALS: DMCP 13	EPH: CRan	D PCB	TPH: DQ	\$\f\	//		M	o to do	O T L E S
27386-01	MM-1		6/28/	0 1020	DW	OA6	X	X				×						6
a	mw-5			0940	1		1	İ				1						6
03	Discharge P	Pe		1000	Stormica	ar												6
04	Cleanult 1			1125			1											6
05-	aganout 2			1120														6
06	Cleanaut 3			1215														6
07	Cleanous 4			1100	A	V		4				1						b
08	TB-01		V	-			1		\perp			_		\perp				2
										-		+		++	-			
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 72 of 72	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O≈ Other	Relinia	Handay:		Pre	iner Type eservative e/Time	6/		Receive	A BY	h	6/	Date/Tim	014.	Alpha's T	eles submitted a Terms and Con- erse side. 01-01 (rev. 12-Mar-	nditions.	t to