

March 26, 2021

55 Walkers Brook Drive, Suite 100, Reading, MA 01867 Tel: 978.532.1900

Linda Hansen Conservation Administrator Town of Wayland 41 Cochituate Road Wayland, MA 01778

Re: Order of Conditions and Chapter 194 Permit for 264 Old Connecticut Path, Wayland MA

May 2020 Water Quality Results

DEP File #: 322-928

Dear Ms. Hansen:

Pursuant of the Town of Wayland's request, Weston & Sampson Engineers, Inc. (Weston & Sampson) is pleased to provide a summary of water quality results from the monthly sampling round performed in May at the Wayland High School Athletic Facilities in Wayland, Massachusetts. As discussed in our initial baseline sampling report, the sampling and subsequent reporting was developed to comply with the Order of Conditions (OOC) letter issued by the Wayland Conservation Commission on November 16, 2018. Per the Order of Conditions, Weston & Sampson was instructed to sample from existing monitoring well locations (MW-1 and MW-5), all available cleanout locations (Cleanout 1, Cleanout 2, Cleanout 3 and Cleanout 4) and the overflow discharge pipe (Figure 1) for the following compounds: total benzene, arsenic, styrene, cadmium, chromium, copper, lead, silica, zinc, hardness and Semi Volatile Organic Compounds (SVOCs), including the phthalates BBP, DBP, and DEHP. After extensive research, it was discovered that DIBP, one of the requested phthalates is not being tested for in commercial laboratories due to the discontinuation of EPA's Integrated Risk Information System (IRIS). As a result, no toxicity value is available, and the compound was not sampled for in this study.

At the request of the town, Weston & Sampson mobilized to Wayland High School on May 27^{th} , 2020 to collect water quality results for the month of May. The sampling protocol was conducted using the following methodology. In an effort to obtain a representative sample, three (3) well volumes were purged using a Waterra hydralift pump and high density polyethene (HDPE) tubing to remove stagnant water from the well immediately prior to sampling in accordance with EPA standards. Groundwater was then sampled using the Waterra hydralift pump from the HDPE tubing. The samples collected for the May 2020 round of sampling include:

- Monitoring wells MW-1 and MW-5
- The overflow discharge pipe. Samples from the discharge pipe were collected directly with the standard sampling container(s) from the overflow of the discharge pipe.
- Cleanout locations (Cleanout 1, Cleanout 2, Cleanout 3 and Cleanout 4). Samples from the cleanout locations were taken using a masterflex peristaltic pump and low density polyethene (LDPE) tubing. Samples were collected directly from the LDPE tubing.

The samples were collected by a qualified Weston & Sampson technician and analyzed by a Massachusetts and EPA certified laboratory, Alpha Analytical (Alpha). All sample results collected are summarized in Table 1 (Attachment A) and compared to the National Ambient Water Quality Criteria of MCP Method 1 GW-3. The laboratory report can be found in Attachment B.

The compounds detected at MW-1 were Copper (0.00136 mg/l), Silica (8.69 mg/l), and Hardness (109 mg/l). Benzene, Styrene, Arsenic, Cadmium, Chromium, Lead, Zinc, and all SVOC's were not detected. All detections are below Method 1- GW-3 Standards.

The compounds detected at MW-5 were Arsenic (0.00351 mg/l), Chromium (0.00629 mg/l), Copper (0.00696 mg/l), Lead (0.00223 mg/l), Silica (25.4 mg/l), Zinc (0.01958 mg/l), and Hardness (242 mg/l). Benzene, Styrene, Cadmium, and all SVOC's were not detected. All detections are below Method 1- GW-3 Standards.

The compounds detected in the **discharge pipe** were Copper (0.00202 mg/l), Lead (0.00109 (mg/l), Silica (5.13 mg/l), Zinc (0.03025 mg/l), and Hardness (106 mg/l). Benzene, Arsenic, Styrene, Cadmium, Chromium, and all SVOC's were not detected. **All detections are below Method 1- GW-3 Standards**.

The compounds detected at **Cleanout Location 1** were Arsenic (0.00103 mg/l), Copper (0.00236 mg/l), Silica (2.28 mg/l), Zinc (0.05993 mg/l), and Hardness (33.0 mg/l). Benzene, Styrene, Cadmium, Chromium, Lead, and all SVOC's were not detected. **All detections are below Method 1- GW-3 Standards.**

The compounds detected at **Cleanout Location 2** were Styrene (0.0043 mg/l), Arsenic (0.00094 mg/l), Copper (0.00165 mg/l), Silica (2.73 mg/l), Zinc (0.18930 mg/l), and Hardness (56.3 mg/l). Benzene, Cadmium, Chromium, Lead, and all SVOC's were not detected. **All detections are below Method 1- GW-3 Standards**.

The compounds detected at Cleanout Location 3 were Arsenic (0.00221 mg/l), Copper (0.00595 mg/l), Silica (5.04 mg/l), Zinc (0.1289 mg/l), and Hardness (56.9 mg/l). Benzene, Styrene, Cadmium, Chromium, Lead, and all SVOC's were not detected. All detections are below Method 1- GW-3 Standards.

The compounds detected at **Cleanout Location 4** were Arsenic (0.00228 mg/l), Copper (0.00356 mg/l), Silica (4.93 mg/l), Zinc (0.08808 mg/l), and Hardness (49.0 mg/l). Benzene, Styrene, Cadmium, Chromium, Lead and all SVOC's were not detected. **All detections are below Method 1- GW-3 Standards.**

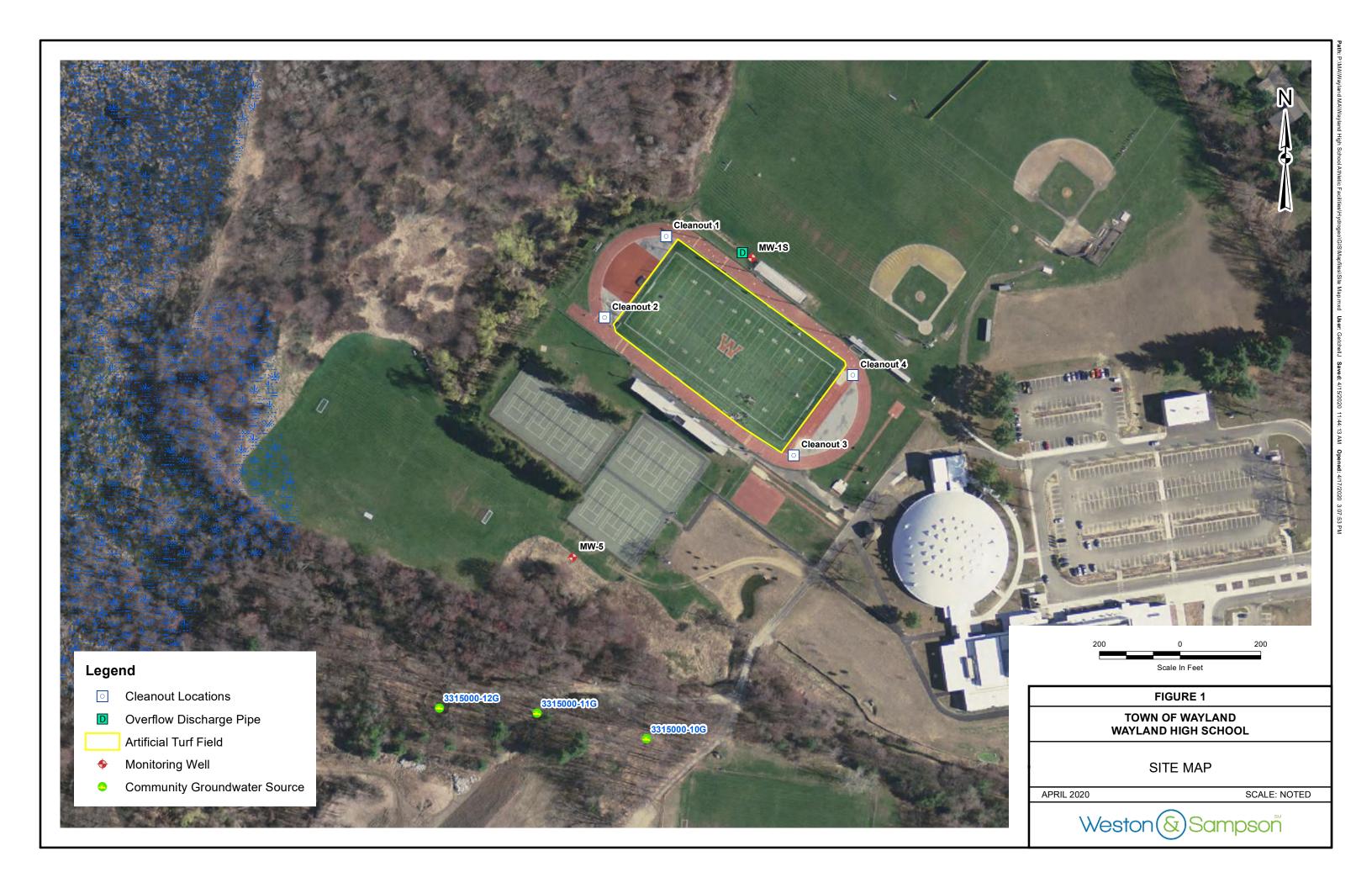
Please feel free to call the undersigned if you have any questions.

Sincerely,

WESTON & SAMPSON ENGINEERS, INC.

Kevin MacKinnon, P.G., C.G., PH-GW Senior Technical Leader, Hydrogeology

Attachments/Enclosures


- Figures
- Attachment A Table 1: Water Quality Results
- Attachment B Laboratory Report of May Quality Results

cc: Ben Keefe, Town of Wayland Facilities Director Brandon Kunkel, Weston & Sampson

Figures

Attachment A

						Metals				Volatile Organi	c Compounds								Ser	ni-Volatile O	ganic Comp	unds							
Well L.D.	Date Collected	Total Arsenic	Total Cadmium	Total Chromiuim	Total Copper	Total Lead	Total Silica	Total Zinc	Hardness	Berzene	Styrene	Acenaphthene	Benzidine	1,2,4-Trichlorobenzene	Hexachlorobenzene	Bis(2-chloroethyl)ether	2-Chloronaphthalene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	3,3'-Dichlorobenzidine	2,4-Dinitrotoluene	2,6-Dinitrotoluene	Azobenzene	Fluoranthene	4-Chlorophenyl phenyl ether	4-Bromophenyl phenyl ether	Bis(2-chloroisopropyl)ether	Bis(2-chloroethoxy)methane
Method 1- GW-3 Standards (310 CMR 40.0974(2): Table 1	mg/l	0.9	0.004	0.3	Not Listed	0.01	Not Listed	0.9	Not Listed	10	6	10	Not Listed	50	6	50	Not Listed	2	50	8	2	50	Not Listed	Not Listed	0.2	Not Listed	Not Listed	50	Not Listed
Massachusetts Maximum Contaminant Level (MMCLs)/Secondary Contaminant Level (SMCLs) ¹	mg/l	0.01	0.01	0.1	1.3	0.015	Not Listed	5	Not Listed	0.01	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed
MW-1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	0.047 0.02304 0.00195 0.00699 ND ND	ND 0.00022 ND ND ND ND ND	0.083 0.02742 0.0025 0.01043 ND	0.00646	0.04 0.01972 0.00196 0.00677 ND ND	114 48.2 12.5 27.6 10.5 8.69	0.13 0.04325 ND 0.03923 ND ND	155 127 82.1 121 111 109	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND
MW-5	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	0.051 0.009 0.00404 0.00249 0.02023 0.00351	ND ND ND ND 0.00031	0.048 0.01103 0.00374 0.00393 0.02520 0.00629	0.00978 0.00563 0.04852	0.056 0.00753 0.00479 0.00216 0.01720 0.00223	98.4 33.6 50 29 55.3 25.4	0.15 0.028 0.01518 ND 0.056 0.01958	301 250 276 254 280 242	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
Discharge Pipe	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* 0.00298 ND ND ND ND ND	ND ND ND ND ND	* 0.043 ND ND ND ND ND	* 0.00856 ND ND 0.00137 0.00202	* 0.01175 ND ND ND ND 0.00109	* 7.8 5.29 5.01 5.46 5.13	* 0.2596 ND 0.02353 ND 0.03025	* 72.8 104 104 104 106	* ND ND ND ND ND ND	* ND ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND ND
Cleanout 1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* 0.00135 * 0.0005 0.00103	* ND ND ND	* ND ND ND	* 0.00122 * ND 0.00236	* ND * ND ND	* 2.6 * 1.35 2.28	* 0.01807 * 0.02697 0.05993	* * 31.4 * 18.7 33	* * ND * ND ND	* ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND
Cleanout 2	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* 0.00085 0.00068 0.00070 0.00094	* ND ND ND ND ND	* ND ND ND ND ND	*	* ND ND ND ND	* 1.76 1.45 1.64 2.73	* ND 0.0195 0.03587 0.1893	* 21.3 17.4 20.5 56.3	* * ND ND ND ND	* 0.0032 0.0021 NID 0.0043	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND
Cleanout 3	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* * * 0.00108 0.00221	* * * ND ND	* * * ND ND	* * * ND 0.00595	* * * ND	* * * 2.33 5.04	* * * ND 0.1289	* * * 23.9 56.9	* * * * ND ND	* * * ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND	* * * ND ND	* * * ND	* * * ND ND	* * * ND	* * * ND ND	* * * ND	* * * ND ND	* * * ND ND
Cleanout 4	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* 0.00171 0.00114 0.00122 0.00228	ND	*	* 0.00224 ND ND 0.00356	* ND ND ND ND ND	* 3.68 2.81 2.97 4.93	* 0.01728 0.07212 ND 0.08808	* 35.6 32.9 28.9 49.0	* ND ND ND ND	* 0.0034 ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND

^{1.} Drinking Water Standards
2. All results recorded in mg/l
3. NS- Not Sampled
4. ND- Not Detected
5. *- Insufficient amount of water for sample

	ļ														Sei	ni-Volatile O	rganic Compu	inds													
Well I.D.	Date Collected	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Isophorone	Naphthalene	Nitrobenzene	NDPA/DPA	n-Nitrosodi-n-propylamine	Bis(2-ethylhexyl)phthalate	Butyl benzyl phthalate	Di-n-buty/phthalate	Di-n-octylphthalate	Diethyl phthalate	Dimethyl phthalate	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoramhene	Chrysene	Acenaphthylene	Anthracene	Benzo(ghi)perylene	Fluorene	Phenanthrene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Pyrene	Biphenyl	Aniline	4-Chloroaniline
Method 1- GW-3 Standards (310 CMR 40.0974(2): Table 1	mg/l	3	Not Listed	50	Not Listed	20	Not Listed	Not Listed	Not Listed	50	Not Listed	Not Listed	Not Listed	9	50	1	0.5	0.4	0.1	0.07	0.04	0.03	0.02	0.04	10	0.04	0.1	0.02	Not Listed	Not Listed	0.3
Massachusetts Maximum Contaminant Level (MMCLs)/Secondary Contaminant Level (SMCLs) ¹	mg/I	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed
MW-1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
MW-5	05/27/20 09/26/19 12/30/19 02/28/20	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
Discharge Pipe	03/26/20 04/22/20 05/27/20 09/26/19	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
3 1	12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
Cleanout 1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND
Cleanout 2	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* * ND ND ND ND	* ND ND ND ND	* * ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* * ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* * ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* * ND ND ND ND	* * ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* * ND ND ND ND	* * ND ND ND ND ND	* 0.0022 ND ND ND	* * ND ND ND ND ND
Cleanout 3	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* * * ND	* * * ND	* * * ND	* * * ND	* * * ND	* * * ND	* * * ND ND	* * * ND ND	* * * ND	* * * ND ND	* * * ND ND	* * * ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND														
Cleanout 4	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND

^{1.} Drinking Water Standards
2. All results recorded in mg/l
3. NS- Not Sampled
4. ND- Not Detected
5. *- Insufficient amount of water for sample

			1		1								Semi-Vola	tile Organic (Compunds							,				
Well L.D.	Date Collected	I-Methylnaphthalene	2-Nitroaniline	3-Nitroaniline	4-Nitroaniline	Dibenzofuran	2-Methylnaphthalene	n-Nitrosodimethylamine	2,4,6-Trichlorophenol	p-Chloro-m-cresol	2-Chlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2-Nitrophenol	4-Nitrophenol	2,4-Dinitrophenol	4,6-Dinitro-o-cresol	Pentachlorophenol	Phenol	2-Methylphenol	3-Methylphenol/4-Methylphenol	2,4,5-Trichlorophenol	Benzoic Acid	Benzyl Alcohol	Carbazole	Pyridine
Method 1- GW-3 Standards (310 CMR 40.0974(2): Table 1	mg/l	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	20	Not Listed	0.5	Not Listed	7	2	50	Not Listed	Not Listed	20	Not Listed	0.2	2	Not Listed	Not Listed	3	Not Listed	Not Listed	Not Listed	Not Listed
Massachusetts Maximum Contaminant Level (MMCLs)/Secondary Contaminant Level (SMCLs) ¹	mg/l	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed	Not Listed
MW-1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND
MW-5	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND						
Discharge Pipe	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND ND	ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND
Cleanout 1	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND
Cleanout 2	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND
Cleanout 3	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* * * ND ND	* * * ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND	* * * ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND	* * * ND ND
Cleanout 4	09/26/19 12/30/19 02/28/20 03/26/20 04/22/20 05/27/20	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND	* ND ND ND ND ND	* ND ND ND ND ND

Drinking Water Standards
 All results recorded in mg/l
 NS- Not Sampled
 ND- Not Detected
 *- Insufficient amount of water for sample

Attachment B

ANALYTICAL REPORT

Lab Number: L2021754

Client: Weston & Sampson

55 Walkers Brook Drive

Suite 100

Reading, MA 01867

ATTN: Kevin MacKinnon Phone: (978) 532-1900

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 06/03/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

 Lab Number:
 L2021754

 Report Date:
 06/03/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2021754-01	MW-1	WATER	WAYLAND, MA	05/27/20 10:10	05/27/20
L2021754-02	MW-5	WATER	WAYLAND, MA	05/27/20 09:20	05/27/20
L2021754-03	DISCHARGE PIPE	WATER	WAYLAND, MA	05/27/20 10:20	05/27/20
L2021754-04	CLEANOUT 1	WATER	WAYLAND, MA	05/27/20 10:40	05/27/20
L2021754-05	CLEANOUT 2	WATER	WAYLAND, MA	05/27/20 11:10	05/27/20
L2021754-06	CLEANOUT 3	WATER	WAYLAND, MA	05/27/20 11:40	05/27/20
L2021754-07	CLEANOUT 4	WATER	WAYLAND, MA	05/27/20 12:10	05/27/20
L2021754-08	TB-01	WATER	WAYLAND, MA	05/27/20 00:00	05/27/20

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:WAYLAND HIGH SCHOOLLab Number:L2021754Project Number:ENG20-0296Report Date:06/03/20

Case Narrative (continued)

Semivolatile Organics

The WG1375442-2/-3 LCS/LCSD recoveries, associated with L2021754-01 through -07, are below the acceptance criteria for benzidine (1%/0%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

Total Metals

The WG1375275-3 MS recovery for silica (70%), performed on L2021754-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/03/20

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-01 Date Collected: 05/27/20 10:10

Client ID: MW-1

Date Received: 05/27/20 Field Prep: Sample Location: WAYLAND, MA Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/30/20 14:18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	122	70-130
Toluene-d8	92	70-130
4-Bromofluorobenzene	91	70-130
Dibromofluoromethane	119	70-130

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-02 Date Collected: 05/27/20 09:20

Client ID: Date Received: 05/27/20 MW-5 Field Prep: Sample Location: WAYLAND, MA Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/30/20 14:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	120	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	121	70-130

L2021754

06/03/20

Project Name: Lab Number: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

L2021754-03

DISCHARGE PIPE

WAYLAND, MA

SAMPLE RESULTS

Date Collected:

05/27/20 10:20

Report Date:

Date Received: 05/27/20 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/30/20 15:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	ab					
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	123	70-130	

L2021754

Project Name: WAYLAND HIGH SCHOOL Lab Number:

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-04 Date Collected: 05/27/20 10:40

Client ID: CLEANOUT 1 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/30/20 15:24

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	93	70-130
Dibromofluoromethane	118	70-130

L2021754

06/03/20

Project Name: Lab Number: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Date Collected: 05/27/20 11:10

Report Date:

Lab ID: L2021754-05 Client ID: Date Received: 05/27/20 CLEANOUT 2 Field Prep: Sample Location: Not Specified WAYLAND, MA

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/30/20 15:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	0.50		1
Styrene	43		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	119	70-130	

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-06 Date Collected: 05/27/20 11:40

Client ID: Date Received: 05/27/20 CLEANOUT 3 Field Prep: Sample Location: Not Specified WAYLAND, MA

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/30/20 16:08

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	118	70-130

L2021754

Not Specified

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

SAMPLE RESULTS

Report Date: 06/03/20

Lab Number:

Field Prep:

Lab ID: L2021754-07

Client ID: **CLEANOUT 4** Sample Location: WAYLAND, MA Date Collected: 05/27/20 12:10 Date Received: 05/27/20

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/30/20 16:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	119	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	90	70-130
Dibromofluoromethane	126	70-130

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-08 Date Collected: 05/27/20 00:00

Client ID: Date Received: TB-01

05/27/20 Field Prep: Sample Location: WAYLAND, MA Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/29/20 14:42

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	.ab					
Benzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	111	70-130

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/29/20 07:45

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough Lab	for sample	e(s): 08	Batch:	WG1376262-5	
Benzene	ND		ug/l	0.50		
Styrene	ND		ug/l	1.0		

	Accepta					
Surrogate	%Recovery Qualifie	er Criteria				
1.2-Dichloroethane-d4	108	70-130				
Toluene-d8	96	70-130				
4-Bromofluorobenzene	96	70-130				
Dibromofluoromethane	109	70-130				

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/30/20 08:48

Analyst: MKS

Parameter	Result	Qualifier Uni	its	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s)	: 01-07	Batch:	WG1376297-5
Benzene	ND	uç	g/l	0.50	
Styrene	ND	uç	g/l	1.0	

	Acceptance						
Surrogate	%Recovery Qualific	er Criteria					
1,2-Dichloroethane-d4	112	70-130					
Toluene-d8	95	70-130					
4-Bromofluorobenzene	96	70-130					
Dibromofluoromethane	104	70-130					

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND HIGH SCHOOL

Project Number:

ENG20-0296

Lab Number:

L2021754

Report Date:	06/03/20
--------------	----------

<u>Pa</u>	rameter	LCS %Recovery	Qual		.CSD ecovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Vo	latile Organics by GC/MS - Westborough La	ab Associated	sample(s):	08 Ba	tch: W	/G1376262-3	WG1376262-4				
	Benzene	110			110		70-130	0		25	
	Styrene	100			100		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	99	70-130
Toluene-d8	95	97	70-130
4-Bromofluorobenzene	94	97	70-130
Dibromofluoromethane	108	107	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: WAYLAND HIGH SCHOOL

Project Number:

ENG20-0296

Lab Number:

L2021754

Report Date:

06/03/20

<u>Pa</u>	rameter	LCS %Recovery	Qual		LCSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Vo	latile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-07	Batch:	WG1376297-3	WG1376297-4				
	Benzene	97			97		70-130	0		25	
	Styrene	90			90		70-130	0		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	98	101	70-130
Toluene-d8	98	94	70-130
4-Bromofluorobenzene	97	97	70-130
Dibromofluoromethane	106	106	70-130

SEMIVOLATILES

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: Date Collected: 05/27/20 10:10 L2021754-01

Date Received: Client ID: MW-1 05/27/20

Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 05/29/20 07:46 Analytical Method: 1,8270D

Analytical Date: 06/03/20 10:58

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-01 Date Collected: 05/27/20 10:10

Client ID: MW-1 Date Received: 05/27/20

Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-01 Date Collected: 05/27/20 10:10

Client ID: MW-1 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Phenol	ND		ug/l	5.0		1		
2-Methylphenol	ND		ug/l	5.0		1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1		
2,4,5-Trichlorophenol	ND		ug/l	5.0		1		
Benzoic Acid	ND		ug/l	50		1		
Benzyl Alcohol	ND		ug/l	2.0		1		
Carbazole	ND		ug/l	2.0		1		
Pyridine	ND		ug/l	3.5		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	42	21-120
Phenol-d6	34	10-120
Nitrobenzene-d5	52	23-120
2-Fluorobiphenyl	57	15-120
2,4,6-Tribromophenol	48	10-120
4-Terphenyl-d14	60	41-149

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: Date Collected: 05/27/20 09:20 L2021754-02

Date Received: Client ID: MW-5 05/27/20

Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 05/29/20 07:46

Analytical Method: 1,8270D Analytical Date: 06/03/20 11:22

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-02 Date Collected: 05/27/20 09:20

Client ID: MW-5 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-02

Client ID: MW-5

Sample Location: WAYLAND, MA

Date Collected: 05/27/20 09:20

Date Received: 05/27/20

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	49	21-120	
Phenol-d6	40	10-120	
Nitrobenzene-d5	62	23-120	
2-Fluorobiphenyl	66	15-120	
2,4,6-Tribromophenol	54	10-120	
4-Terphenyl-d14	68	41-149	

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-03 Date Collected: 05/27/20 10:20

Date Received: Client ID: DISCHARGE PIPE 05/27/20 Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 05/29/20 07:46

Analytical Method: 1,8270D Analytical Date: 06/03/20 11:46

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-03 Date Collected: 05/27/20 10:20

Client ID: DISCHARGE PIPE Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	Semivolatile Organics by GC/MS - Westborough Lab						
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Benzo(a)anthracene	ND		ug/l	2.0		1	
Benzo(a)pyrene	ND		ug/l	2.0		1	
Benzo(b)fluoranthene	ND		ug/l	2.0		1	
Benzo(k)fluoranthene	ND		ug/l	2.0		1	
Chrysene	ND		ug/l	2.0		1	
Acenaphthylene	ND		ug/l	2.0		1	
Anthracene	ND		ug/l	2.0		1	
Benzo(ghi)perylene	ND		ug/l	2.0		1	
Fluorene	ND		ug/l	2.0		1	
Phenanthrene	ND		ug/l	2.0		1	
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1	
Pyrene	ND		ug/l	2.0		1	
Biphenyl	ND		ug/l	2.0		1	
Aniline	ND		ug/l	2.0		1	
4-Chloroaniline	ND		ug/l	5.0		1	
1-Methylnaphthalene	ND		ug/l	2.0		1	
2-Nitroaniline	ND		ug/l	5.0		1	
3-Nitroaniline	ND		ug/l	5.0		1	
4-Nitroaniline	ND		ug/l	5.0		1	
Dibenzofuran	ND		ug/l	2.0		1	
2-Methylnaphthalene	ND		ug/l	2.0		1	
n-Nitrosodimethylamine	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	10		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
4,6-Dinitro-o-cresol	ND		ug/l	10		1	
Pentachlorophenol	ND		ug/l	10		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-03 Date Collected: 05/27/20 10:20

Client ID: DISCHARGE PIPE Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	53	21-120	
Phenol-d6	44	10-120	
Nitrobenzene-d5	75	23-120	
2-Fluorobiphenyl	80	15-120	
2,4,6-Tribromophenol	74	10-120	
4-Terphenyl-d14	77	41-149	

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-04 Date Collected: 05/27/20 10:40

Date Received: Client ID: **CLEANOUT 1** 05/27/20 Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 05/29/20 07:46

Analytical Method: 1,8270D Analytical Date: 06/03/20 12:11

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-04 Date Collected: 05/27/20 10:40

Client ID: CLEANOUT 1 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Di-n-butylphthalate	ND		ua/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		<u>'</u> 1
	ND		ug/l	2.0	 	1
Benzo(a)anthracene	ND ND		ug/l			
Benzo(a)pyrene			ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-04 Date Collected: 05/27/20 10:40

Client ID: CLEANOUT 1 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	72	15-120
2,4,6-Tribromophenol	80	10-120
4-Terphenyl-d14	76	41-149

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-05 Date Collected: 05/27/20 11:10

Client ID: CLEANOUT 2 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 05/29/20 07:46

Analytical Method: 1,8270D Extraction Date: 05/29/20
Analytical Date: 06/03/20 12:35

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	orough Lab					
Acenaphthene	ND		ug/l	2.0		1
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Hexachlorobenzene	ND		ug/l	2.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
2-Chloronaphthalene	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
Fluoranthene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorobutadiene	ND		ug/l	2.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Hexachloroethane	ND		ug/l	2.0		1
Isophorone	ND		ug/l	5.0		1
Naphthalene	ND		ug/l	2.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-05 Date Collected: 05/27/20 11:10

Client ID: CLEANOUT 2 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Di-n-butylphthalate	ND		ua/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		<u>'</u> 1
	ND		ug/l	2.0	 	1
Benzo(a)anthracene	ND ND		ug/l			
Benzo(a)pyrene			ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-05 Date Collected: 05/27/20 11:10

Client ID: CLEANOUT 2 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	52	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	73	10-120
4-Terphenyl-d14	67	41-149

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-06 Date Collected: 05/27/20 11:40

Client ID: CLEANOUT 3 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 05/29/20 07:46

Analytical Date: 06/03/20 12:59

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-06 Date Collected: 05/27/20 11:40

Client ID: CLEANOUT 3 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westl	oorough Lab					
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-06 Date Collected: 05/27/20 11:40

Client ID: CLEANOUT 3 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	60	15-120
2,4,6-Tribromophenol	64	10-120
4-Terphenyl-d14	61	41-149

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754

Project Number: Report Date: ENG20-0296 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-07 Date Collected: 05/27/20 12:10

Date Received: Client ID: **CLEANOUT 4** 05/27/20 Sample Location: Field Prep: WAYLAND, MA Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 05/29/20 07:46 Analytical Method: 1,8270D

Analytical Date: 05/30/20 13:04

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/l	2.0		1	
Benzidine	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Hexachlorobenzene	ND		ug/l	2.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
1,2-Dichlorobenzene	ND		ug/l	2.0		1	
1,3-Dichlorobenzene	ND		ug/l	2.0		1	
1,4-Dichlorobenzene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene	ND		ug/l	2.0		1	
Fluoranthene	ND		ug/l	2.0		1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene	ND		ug/l	20		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Naphthalene	ND		ug/l	2.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-07 Date Collected: 05/27/20 12:10

Client ID: CLEANOUT 4 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Benzo(a)anthracene	ND		ug/l	2.0		1
Benzo(a)pyrene	ND		ug/l	2.0		1
Benzo(b)fluoranthene	ND		ug/l	2.0		1
Benzo(k)fluoranthene	ND		ug/l	2.0		1
Chrysene	ND		ug/l	2.0		1
Acenaphthylene	ND		ug/l	2.0		1
Anthracene	ND		ug/l	2.0		1
Benzo(ghi)perylene	ND		ug/l	2.0		1
Fluorene	ND		ug/l	2.0		1
Phenanthrene	ND		ug/l	2.0		1
Dibenzo(a,h)anthracene	ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		1
Pyrene	ND		ug/l	2.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
1-Methylnaphthalene	ND		ug/l	2.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
2-Methylnaphthalene	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Pentachlorophenol	ND		ug/l	10		1

Project Name: WAYLAND HIGH SCHOOL Lab Number: L2021754

Project Number: ENG20-0296 Report Date: 06/03/20

SAMPLE RESULTS

Lab ID: L2021754-07 Date Collected: 05/27/20 12:10

Client ID: CLEANOUT 4 Date Received: 05/27/20 Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	
Benzoic Acid	ND		ug/l	50		1	
Benzyl Alcohol	ND		ug/l	2.0		1	
Carbazole	ND		ug/l	2.0		1	
Pyridine	ND		ug/l	3.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	51	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	61	15-120
2,4,6-Tribromophenol	71	10-120
4-Terphenyl-d14	79	41-149

L2021754

06/03/20

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

1,8270D

05/29/20 13:12

Project Number: ENG20-0296 Report Date:

Method Blank Analysis Batch Quality Control

Batch Quality Control

Analyst: JG

Analytical Method:

Analytical Date:

Extraction Method: EPA 3510C Extraction Date: 05/28/20 18:20

emivolatile Organics by GC/MS - V Acenaphthene Benzidine 1,2,4-Trichlorobenzene	Vestborough ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l	01-07 2.0 20 5.0	Batch: WG1375442-1	
Benzidine 1,2,4-Trichlorobenzene	ND ND ND	ug/l ug/l	20		
1,2,4-Trichlorobenzene	ND ND	ug/l			
	ND		5.0		
Harris de La carlo a característico de la caracterí		ua/l			
Hexachlorobenzene	ND	ug/i	2.0		
Bis(2-chloroethyl)ether		ug/l	2.0		
2-Chloronaphthalene	ND	ug/l	2.0		
1,2-Dichlorobenzene	ND	ug/l	2.0		
1,3-Dichlorobenzene	ND	ug/l	2.0		
1,4-Dichlorobenzene	ND	ug/l	2.0		
3,3'-Dichlorobenzidine	ND	ug/l	5.0		
2,4-Dinitrotoluene	ND	ug/l	5.0		
2,6-Dinitrotoluene	ND	ug/l	5.0		
Azobenzene	ND	ug/l	2.0		
Fluoranthene	ND	ug/l	2.0		
4-Chlorophenyl phenyl ether	ND	ug/l	2.0		
4-Bromophenyl phenyl ether	ND	ug/l	2.0		
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0		
Bis(2-chloroethoxy)methane	ND	ug/l	5.0		
Hexachlorobutadiene	ND	ug/l	2.0		
Hexachlorocyclopentadiene	ND	ug/l	20		
Hexachloroethane	ND	ug/l	2.0		
Isophorone	ND	ug/l	5.0		
Naphthalene	ND	ug/l	2.0		
Nitrobenzene	ND	ug/l	2.0		
NDPA/DPA	ND	ug/l	2.0		
n-Nitrosodi-n-propylamine	ND	ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0		
Butyl benzyl phthalate	ND	ug/l	5.0		
Di-n-butylphthalate	ND	ug/l	5.0		

L2021754

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 06/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/29/20 13:12

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 05/28/20 18:20

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/N	S - Westborough	Lab for s	ample(s):	01-07	Batch:	WG1375442-1
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Benzo(a)anthracene	ND		ug/l	2.0		
Benzo(a)pyrene	ND		ug/l	2.0		
Benzo(b)fluoranthene	ND		ug/l	2.0		
Benzo(k)fluoranthene	ND		ug/l	2.0		
Chrysene	ND		ug/l	2.0		
Acenaphthylene	ND		ug/l	2.0		
Anthracene	ND		ug/l	2.0		
Benzo(ghi)perylene	ND		ug/l	2.0		
Fluorene	ND		ug/l	2.0		
Phenanthrene	ND		ug/l	2.0		
Dibenzo(a,h)anthracene	ND		ug/l	2.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		
Pyrene	ND		ug/l	2.0		
Biphenyl	ND		ug/l	2.0		
Aniline	ND		ug/l	2.0		
4-Chloroaniline	ND		ug/l	5.0		
1-Methylnaphthalene	ND		ug/l	2.0		
2-Nitroaniline	ND		ug/l	5.0		
3-Nitroaniline	ND		ug/l	5.0		
4-Nitroaniline	ND		ug/l	5.0		
Dibenzofuran	ND		ug/l	2.0		
2-Methylnaphthalene	ND		ug/l	2.0		
n-Nitrosodimethylamine	ND		ug/l	2.0		
2,4,6-Trichlorophenol	ND		ug/l	5.0		
p-Chloro-m-cresol	ND		ug/l	2.0		
2-Chlorophenol	ND		ug/l	2.0		

L2021754

Lab Number:

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296 Report Date: 06/03/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/29/20 13:12

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 05/28/20 18:20

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - '	Westborough	Lab for s	ample(s):	01-07	Batch:	WG1375442-1
2,4-Dichlorophenol	ND		ug/l	5.0		
2,4-Dimethylphenol	ND		ug/l	5.0		
2-Nitrophenol	ND		ug/l	10		
4-Nitrophenol	ND		ug/l	10		
2,4-Dinitrophenol	ND		ug/l	20		
4,6-Dinitro-o-cresol	ND		ug/l	10		
Pentachlorophenol	ND		ug/l	10		
Phenol	ND		ug/l	5.0		
2-Methylphenol	ND		ug/l	5.0		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		
2,4,5-Trichlorophenol	ND		ug/l	5.0		
Benzoic Acid	ND		ug/l	50		
Benzyl Alcohol	ND		ug/l	2.0		
Carbazole	ND		ug/l	2.0		
Pyridine	ND		ug/l	3.5		

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
2-Fluorophenol	36	21-120
Phenol-d6	28	10-120
Nitrobenzene-d5	50	23-120
2-Fluorobiphenyl	49	15-120
2,4,6-Tribromophenol	39	10-120
4-Terphenyl-d14	50	41-149

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2021754

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s):	: 01-07	Batch:	WG137	5442-2 WG13754	142-3			
Acenaphthene	77		76			37-111	1		30	
Benzidine	1	Q	0		Q	10-75	NC		30	
1,2,4-Trichlorobenzene	76		71			39-98	7		30	
Hexachlorobenzene	78		76			40-140	3		30	
Bis(2-chloroethyl)ether	84		77			40-140	9		30	
2-Chloronaphthalene	76		75			40-140	1		30	
1,2-Dichlorobenzene	77		69			40-140	11		30	
1,3-Dichlorobenzene	71		64			40-140	10		30	
1,4-Dichlorobenzene	74		64			36-97	14		30	
3,3'-Dichlorobenzidine	57		56			40-140	2		30	
2,4-Dinitrotoluene	80		80			48-143	0		30	
2,6-Dinitrotoluene	84		82			40-140	2		30	
Azobenzene	86		85			40-140	1		30	
Fluoranthene	88		89			40-140	1		30	
4-Chlorophenyl phenyl ether	76		75			40-140	1		30	
4-Bromophenyl phenyl ether	80		79			40-140	1		30	
Bis(2-chloroisopropyl)ether	103		95			40-140	8		30	
Bis(2-chloroethoxy)methane	90		86			40-140	5		30	
Hexachlorobutadiene	70		66			40-140	6		30	
Hexachlorocyclopentadiene	65		61			40-140	6		30	
Hexachloroethane	77		70			40-140	10		30	
Isophorone	94		93			40-140	1		30	
Naphthalene	75		71			40-140	5		30	

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2021754

Parameter	LCS %Recovery	Qual	LCSE %Recov		%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	iated sample(s):	01-07	Batch:	WG1375442-2 WG13	75442-3	
Nitrobenzene	83		78		40-140	6	30
NDPA/DPA	83		82		40-140	1	30
n-Nitrosodi-n-propylamine	95		92		29-132	3	30
Bis(2-ethylhexyl)phthalate	99		99		40-140	0	30
Butyl benzyl phthalate	99		97		40-140	2	30
Di-n-butylphthalate	94		96		40-140	2	30
Di-n-octylphthalate	99		101		40-140	2	30
Diethyl phthalate	88		87		40-140	1	30
Dimethyl phthalate	86		84		40-140	2	30
Benzo(a)anthracene	80		81		40-140	1	30
Benzo(a)pyrene	86		88		40-140	2	30
Benzo(b)fluoranthene	79		80		40-140	1	30
Benzo(k)fluoranthene	94		97		40-140	3	30
Chrysene	87		90		40-140	3	30
Acenaphthylene	80		79		45-123	1	30
Anthracene	87		86		40-140	1	30
Benzo(ghi)perylene	81		84		40-140	4	30
Fluorene	81		80		40-140	1	30
Phenanthrene	79		79		40-140	0	30
Dibenzo(a,h)anthracene	86		86		40-140	0	30
Indeno(1,2,3-cd)pyrene	79		81		40-140	3	30
Pyrene	83		85		26-127	2	30
Biphenyl	81		80		40-140	1	30

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2021754

arameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Wes	stborough Lab Assoc	iated sample(s):	01-07	Batch: WG13	375442-2 WG13754	142-3			
Aniline	30	Q	21	Q	40-140	35	Q	30	
4-Chloroaniline	74		72		40-140	3		30	
1-Methylnaphthalene	77		74		41-103	4		30	
2-Nitroaniline	82		82		52-143	0		30	
3-Nitroaniline	67		67		25-145	0		30	
4-Nitroaniline	70		72		51-143	3		30	
Dibenzofuran	75		74		40-140	1		30	
2-Methylnaphthalene	75		72		40-140	4		30	
n-Nitrosodimethylamine	60		58		22-74	3		30	
2,4,6-Trichlorophenol	74		74		30-130	0		30	
p-Chloro-m-cresol	89		86		23-97	3		30	
2-Chlorophenol	81		76		27-123	6		30	
2,4-Dichlorophenol	82		80		30-130	2		30	
2,4-Dimethylphenol	71		55		30-130	25		30	
2-Nitrophenol	79		75		30-130	5		30	
4-Nitrophenol	84	Q	87	Q	10-80	4		30	
2,4-Dinitrophenol	88		87		20-130	1		30	
4,6-Dinitro-o-cresol	84		86		20-164	2		30	
Pentachlorophenol	74		75		9-103	1		30	
Phenol	59		57		12-110	3		30	
2-Methylphenol	84		80		30-130	5		30	
3-Methylphenol/4-Methylphenol	88		84		30-130	5		30	
2,4,5-Trichlorophenol	82		82		30-130	0		30	

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2021754

Report Date:

06/03/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboroo	ugh Lab Associ	ated sample(s)	: 01-07 Batc	h: WG1375	5442-2 WG13754	42-3			
Benzoic Acid	76		72		10-164	5		30	
Benzyl Alcohol	80		77		26-116	4		30	
Carbazole	86		86		55-144	0		30	
Pyridine	20		13		10-66	42	Q	30	

Surrogate	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria
Surroyate	%Recovery Qu	al /Mecovery Quar	
2-Fluorophenol	65	61	21-120
Phenol-d6	56	56	10-120
Nitrobenzene-d5	78	71	23-120
2-Fluorobiphenyl	64	66	15-120
2,4,6-Tribromophenol	72	72	10-120
4-Terphenyl-d14	82	82	41-149

METALS

05/27/20 10:10

Not Specified

05/27/20

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754 **Report Date:** 06/03/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2021754-01

Client ID: MW-1

Sample Location: WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	ND		mg/l	0.00050		1	05/29/20 03:00	06/03/20 11:31	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/29/20 03:00	06/03/20 11:31	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:31	EPA 3005A	1,6020B	AM
Copper, Total	0.00136		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:31	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:31	EPA 3005A	1,6020B	AM
Silica, Total	8.69		mg/l	0.500		1	05/29/20 03:00	06/02/20 11:21	EPA 3005A	1,6010D	LC
Zinc, Total	ND		mg/l	0.01000		1	05/29/20 03:00	06/03/20 11:31	EPA 3005A	1,6020B	AM
Total Hardness by	/ SM 2340E	3 - Mansfield	d Lab								
Hardness	109		mg/l	0.660	NA	1	05/29/20 03:00	06/02/20 11:21	EPA 3005A	1,6010D	LC

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754 **Report Date:** 06/03/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2021754-02

Client ID: MW-5

Sample Location: WAYLAND, MA

Sample Depth:

Matrix: Water

Date Collected: 05/27/20 09:20

Date Received:

05/27/20

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	ınsfield Lab										
Arsenic, Total	0.00351		mg/l	0.00050		1	05/29/20 03:00	06/03/20 11:36	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/29/20 03:00	06/03/20 11:36	EPA 3005A	1,6020B	AM
Chromium, Total	0.00629		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:36	EPA 3005A	1,6020B	AM
Copper, Total	0.00696		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:36	EPA 3005A	1,6020B	AM
Lead, Total	0.00223		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:36	EPA 3005A	1,6020B	AM
Silica, Total	25.4		mg/l	0.500		1	05/29/20 03:00	06/02/20 12:02	EPA 3005A	1,6010D	LC
Zinc, Total	0.01958		mg/l	0.01000		1	05/29/20 03:00	06/03/20 11:36	EPA 3005A	1,6020B	AM
Total Hardness b	y SM 2340E	3 - Mansfiel	ld Lab								
Hardness	242		mg/l	0.660	NA	1	05/29/20 03:00	06/02/20 12:02	EPA 3005A	1,6010D	LC

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754 **Report Date:** 06/03/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2021754-03 Date Collected: 05/27/20 10:20 Client ID: DISCHARGE PIPE Date Received: 05/27/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	ND		mg/l	0.00050		1	05/29/20 03:00	06/03/20 11:41	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/29/20 03:00	06/03/20 11:41	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:41	EPA 3005A	1,6020B	AM
Copper, Total	0.00202		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:41	EPA 3005A	1,6020B	AM
Lead, Total	0.00109		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:41	EPA 3005A	1,6020B	AM
Silica, Total	5.13		mg/l	0.500		1	05/29/20 03:00	06/02/20 12:06	EPA 3005A	1,6010D	LC
Zinc, Total	0.03025		mg/l	0.01000		1	05/29/20 03:00	06/03/20 11:41	EPA 3005A	1,6020B	AM
Total Hardness by S	SM 2340B	- Mansfield	Lab								
Hardness	106		mg/l	0.660	NA	1	05/29/20 03:00	06/02/20 12:06	EPA 3005A	1,6010D	LC

Project Name:WAYLAND HIGH SCHOOLLab Number:L2021754Project Number:ENG20-0296Report Date:06/03/20

SAMPLE RESULTS

Lab ID:L2021754-04Date Collected:05/27/20 10:40Client ID:CLEANOUT 1Date Received:05/27/20Sample Location:WAYLAND, MAField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00103		mg/l	0.00050		1	05/29/20 03:00	06/03/20 11:46	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/29/20 03:00	06/03/20 11:46	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:46	EPA 3005A	1,6020B	AM
Copper, Total	0.00236		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:46	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:46	EPA 3005A	1,6020B	AM
Silica, Total	2.28		mg/l	0.500		1	05/29/20 03:00	06/02/20 12:11	EPA 3005A	1,6010D	LC
Zinc, Total	0.05993		mg/l	0.01000		1	05/29/20 03:00	06/03/20 11:46	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340B	s - Mansfield	l Lab								
Hardness	33.0		mg/l	0.660	NA	1	05/29/20 03:00	06/02/20 12:11	EPA 3005A	1,6010D	LC

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754 **Report Date:** 06/03/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2021754-05 Date Collected: 05/27/20 11:10 Client ID: **CLEANOUT 2** Date Received: 05/27/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	0.00094		mg/l	0.00050		1	05/29/20 03:00	06/03/20 13:35	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/29/20 03:00	06/03/20 13:35	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:35	EPA 3005A	1,6020B	AM
Copper, Total	0.00165		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:35	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:35	EPA 3005A	1,6020B	AM
Silica, Total	2.73		mg/l	0.500		1	05/29/20 03:00	06/02/20 12:16	EPA 3005A	1,6010D	LC
Zinc, Total	0.1893		mg/l	0.01000		1	05/29/20 03:00	06/03/20 13:35	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340B	3 - Mansfiel	d Lab								
Hardness	56.3		mg/l	0.660	NA	1	05/29/20 03:00	06/02/20 12:16	EPA 3005A	1,6010D	LC

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754 **Report Date:** 06/03/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2021754-06 Date Collected: 05/27/20 11:40 Client ID: CLEANOUT 3 Date Received: 05/27/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	0.00221		mg/l	0.00050		1	05/29/20 03:00	06/03/20 13:40	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/29/20 03:00	06/03/20 13:40	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:40	EPA 3005A	1,6020B	AM
Copper, Total	0.00595		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:40	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:40	EPA 3005A	1,6020B	AM
Silica, Total	5.04		mg/l	0.500		1	05/29/20 03:00	06/02/20 12:20	EPA 3005A	1,6010D	LC
Zinc, Total	0.1289		mg/l	0.01000		1	05/29/20 03:00	06/03/20 13:40	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340E	- Mansfiel	d Lab								
Hardness	56.9		mg/l	0.660	NA	1	05/29/20 03:00	06/02/20 12:20	EPA 3005A	1,6010D	LC

Project Name: Lab Number: WAYLAND HIGH SCHOOL L2021754 **Report Date:** 06/03/20

Project Number: ENG20-0296

SAMPLE RESULTS

Lab ID: L2021754-07 Date Collected: 05/27/20 12:10 Client ID: **CLEANOUT 4** Date Received: 05/27/20 Sample Location: Field Prep: Not Specified WAYLAND, MA

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	0.00228		mg/l	0.00050		1	05/29/20 03:00	06/03/20 13:46	EPA 3005A	1,6020B	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/29/20 03:00	06/03/20 13:46	EPA 3005A	1,6020B	AM
Chromium, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:46	EPA 3005A	1,6020B	AM
Copper, Total	0.00356		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:46	EPA 3005A	1,6020B	AM
Lead, Total	ND		mg/l	0.00100		1	05/29/20 03:00	06/03/20 13:46	EPA 3005A	1,6020B	AM
Silica, Total	4.93		mg/l	0.500		1	05/29/20 03:00	06/02/20 12:25	EPA 3005A	1,6010D	LC
Zinc, Total	0.08808		mg/l	0.01000		1	05/29/20 03:00	06/03/20 13:46	EPA 3005A	1,6020B	AM
Total Hardness by	SM 2340B	s - Mansfield	l Lab								
Hardness	49.0		mg/l	0.660	NA	1	05/29/20 03:00	06/02/20 12:25	EPA 3005A	1,6010D	LC

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2021754

Report Date:

06/03/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01-07 E	Batch: WO	G13752	75-1				
Silica, Total	ND	mg/l	0.500		1	05/29/20 03:00	06/02/20 11:07	1,6010D	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	for samp	le(s):	01-07 E	Batch: WG1	375275-1			
Hardness	ND	mg/l	0.660	NA	1	05/29/20 03:00	06/02/20 11:07	1,6010D	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01-07 E	Batch: Wo	G13752	277-1				
Arsenic, Total	ND	mg/l	0.00050		1	05/29/20 03:00	06/03/20 11:06	1,6020B	AM
Cadmium, Total	ND	mg/l	0.00020		1	05/29/20 03:00	06/03/20 11:06	1,6020B	AM
Chromium, Total	ND	mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:06	1,6020B	AM
Copper, Total	ND	mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:06	1,6020B	AM
Lead, Total	ND	mg/l	0.00100		1	05/29/20 03:00	06/03/20 11:06	1,6020B	AM
Zinc, Total	ND	mg/l	0.01000		1	05/29/20 03:00	06/03/20 11:06	1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2021754

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-07 Bato	ch: WG1375	5275-2					
Silica, Total	97		-		80-120	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-07	Batch: WG137	5275-2				
Hardness	107		-		80-120	-		
otal Metals - Mansfield Lab Associated sample Arsenic, Total	e(s): 01-07 Bate	ch: WG1375	5277-2		80-120	-		
Cadmium, Total	111		-		80-120	-		
Chromium, Total	105		-		80-120	-		
Copper, Total	102		•		80-120	-		
Lead, Total	110		-		80-120	-		
Zinc, Total	108		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2021754

Report Date:

06/03/20

Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ual Limits	RPD Qual	RPD Limits
Associated sam	ple(s): 01-07	QC Bat	ch ID: WG137	5275-3	QC Sam	ple: L2021754-01	Client ID: MW	<i>I</i> -1	
8.69	2.14	10.2	70	Q	-	-	75-125	-	20
- Mansfield Lab	Associated	sample(s)	: 01-07 QC	Batch ID	: WG1375	275-3 QC Samp	ole: L2021754-01	Client ID:	MW-1
109	66.2	175	100		-	-	75-125	-	20
Associated sam	ple(s): 01-07	QC Bat	ch ID: WG137	5277-3	QC Sam	ple: L2021754-01	Client ID: MW	<i>I</i> -1	
ND	0.12	0.1277	106		-	-	75-125	-	20
ND	0.051	0.05704	112		-	-	75-125	-	20
ND	0.2	0.2091	104		-	-	75-125	-	20
0.00136	0.25	0.2543	101		-	-	75-125	-	20
ND	0.51	0.5662	111		-	-	75-125	-	20
ND	0.5	0.5388	108		-	-	75-125	-	20
	Sample Associated sam 8.69 - Mansfield Lab 109 Associated sam ND ND ND ND ND 0.00136 ND	Sample Added Associated sample(s): 01-07 8.69 2.14 - Mansfield Lab Associated 109 66.2 Associated sample(s): 01-07 ND 0.12 ND 0.051 ND 0.25 ND 0.51	Sample Added Found Associated sample(s): 01-07 QC Bat 8.69 2.14 10.2 - Mansfield Lab Associated sample(s) 109 66.2 175 Associated sample(s): 01-07 QC Bat ND 0.12 0.1277 ND 0.051 0.05704 ND 0.2 0.2091 0.00136 0.25 0.2543 ND 0.51 0.5662	Sample Added Found %Recovery Associated sample(s): 01-07 QC Batch ID: WG137 8.69 2.14 10.2 70 - Mansfield Lab Associated sample(s): 01-07 QC Incomplete QC	Sample Added Found %Recovery Qual Associated sample(s): 01-07 QC Batch ID: WG1375275-3 8.69 2.14 10.2 70 Q - Mansfield Lab Associated sample(s): 01-07 QC Batch ID QC Batch ID: WG1375277-3 ND 0.12 0.1277 106 ND 0.051 0.05704 112 ND 0.25 0.2091 104 0.00136 0.25 0.2543 101 ND 0.51 0.5662 111	Sample Added Found %Recovery Qual Found Associated sample(s): 01-07 QC Batch ID: WG1375275-3 QC Sam 8.69 2.14 10.2 70 Q - - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG13752 WG13752 - 109 66.2 175 100 - Associated sample(s): 01-07 QC Batch ID: WG1375277-3 QC Sam ND 0.12 0.1277 106 - ND 0.051 0.05704 112 - ND 0.2 0.2091 104 - 0.00136 0.25 0.2543 101 - ND 0.51 0.5662 111 -	Sample Added Found %Recovery Qual Found %Recovery Qual Associated sample(s): 01-07 QC Batch ID: WG1375275-3 QC Sample: L2021754-01 8.69 2.14 10.2 70 Q - - - - - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG1375275-3 QC Sample: L2021754-01 QC Sample: L2021754-01 -	Sample Added Found %Recovery Qual Found %Recovery Qual Limits Associated sample(s): 01-07 QC Batch ID: WG1375275-3 QC Sample: L2021754-01 Client ID: MW 8.69 2.14 10.2 70 Q - - 75-125 - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG1375275-3 QC Sample: L2021754-01 L2021754-01 109 66.2 175 100 - - 75-125 Associated sample(s): 01-07 QC Batch ID: WG1375277-3 QC Sample: L2021754-01 Client ID: MW ND 0.12 0.1277 106 - - 75-125 ND 0.051 0.05704 112 - - 75-125 ND 0.2 0.2091 104 - - 75-125 ND 0.51 0.5662 111 - - 75-125	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Qual Associated sample(s): 01-07 QC Batch ID: WG1375275-3 QC Sample: L2021754-01 Client ID: MW-1 - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG1375275-3 QC Sample: L2021754-01 Client ID: MW-1 - Mansfield sample(s): 01-07 QC Batch ID: WG1375277-3 QC Sample: L2021754-01 Client ID: MW-1 - Associated sample(s): 01-07 QC Batch ID: WG1375277-3 QC Sample: L2021754-01 Client ID: MW-1 - ND 0.12 0.1277 106 - - 75-125 - ND 0.051 0.05704 112 - - - 75-125 - ND 0.25 0.2543 101 - - 75-125 - ND 0.51 0.5662 111 - - 75-125 -

Lab Duplicate Analysis Batch Quality Control

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number:

L2021754

Report Date:

06/03/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	7 QC Batch ID:	WG1375275-4 QC Sample:	L2021754-01	Client ID:	MW-1	
Silica, Total	8.69	8.57	mg/l	1		20
Total Hardness by SM 2340B - Mansfield Lab Associated	I sample(s): 01-07	QC Batch ID: WG1375275	-4 QC Samp	le: L2021	754-01 C	lient ID: MW-1
Hardness	109	107	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01-0	7 QC Batch ID:	WG1375277-4 QC Sample:	L2021754-01	Client ID:	MW-1	
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00136	0.00134	mg/l	1		20
Lead, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20

WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Lab Number: L2021754 **Report Date:** 06/03/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2021754-01A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-01B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-01C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-01D	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-01E	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-01F	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Υ	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),SO-TI(180),AS- 6020T(180),CD-6020T(180),HARDT(180)
L2021754-02A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-02B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-02C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-02D	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-02E	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-02F	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Υ	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),SO-TI(180),AS- 6020T(180),CD-6020T(180),HARDT(180)
L2021754-03A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-03B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-03C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-03D	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-03E	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-03F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Υ	Absent		CR-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),SO-TI(180),CD-6020T(180),HARDT(180)
L2021754-04A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-04B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)

Lab Number: L2021754

Report Date: 06/03/20

Project Name: WAYLAND HIGH SCHOOL

Project Number: ENG20-0296

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2021754-04D	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-04E	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Y	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),SO-TI(180),AS- 6020T(180),CD-6020T(180),HARDT(180)
L2021754-05A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-05B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-05C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-05D	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-05E	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-05F	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Y	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),SO-TI(180),AS- 6020T(180),CD-6020T(180),HARDT(180)
L2021754-06A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-06B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-06C	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-06D	Plastic 250ml HNO3 preserved	Α	<2	<2	4.0	Υ	Absent		CR-6020T(180),ZN-6020T(180),CU- 6020T(180),PB-6020T(180),SO-TI(180),AS- 6020T(180),CD-6020T(180),HARDT(180)
L2021754-07A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-07B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-07C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-07D	Amber 250ml unpreserved	Α	7	7	4.0	Υ	Absent		8270TCL-LVI(7)
L2021754-07E	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		CR-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),AS-6020T(180),SO-TI(180),CD-6020T(180),HARDT(180)
L2021754-08A	Vial HCI preserved	Α	NA		4.0	Υ	Absent		8260(14)
L2021754-08B	Vial HCI preserved	Α	NA		4.0	Υ	Absent		8260(14)

Project Name:WAYLAND HIGH SCHOOLLab Number:L2021754Project Number:ENG20-0296Report Date:06/03/20

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

SRM

Report Format: Data Usability Report

Project Name:WAYLAND HIGH SCHOOLLab Number:L2021754Project Number:ENG20-0296Report Date:06/03/20

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:WAYLAND HIGH SCHOOLLab Number:L2021754Project Number:ENG20-0296Report Date:06/03/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:WAYLAND HIGH SCHOOLLab Number:L2021754Project Number:ENG20-0296Report Date:06/03/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Published Date: 4/28/2020 9:42:21 AM Title: Certificate/Approval Program Summary Page 1 of 1

ID No.:17873

Revision 17

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

	CHAIN OF C	LISTO	DV	,		2					Sena	I_N0.06032015.14	
ΔLPHA	CHAIN OF C	THE PERSON NAMED IN		PAGE_	OF		ate Rec'd i	n Lab: 5/	27/	20	ALPHA J	ob#: 12021	701
8 Walkup Driv Westboro, MA	A 01581 ManaGald Managara	ect Informa			MPS Y	F	Report Info	ormation - Da				formation	139
Client Informat	Froje	ct Name: (voylai	nd Hx	9n8	hodi	ADEx	D'EMAI		- 10	☐ Same as		
	Proje	ct Location:	MONIC	ind.	AM	R	egulatory	Requiremen	ts & P	roiect In	formation I	Requirements	PERMIT
Address: CC	STATE OF THE Proje	ct#: EN	620	-02	96		res LINO	MA MCP Analy	ical Mathad	en.	400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- V 5 - 5 - 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Methode
Sudalos	COMPOSE SINGLE IN PROJE	ct Manager:		1.6.				Ser i Granudius	quired on the	is SDG? red for Me			Methods
Phone: 020	Reading MA ALP	HA Quote #:				100	100 - 140	NPDES RGP /Fed Program			-23	AND THE PROPERTY OF THE PARTY O	
Email: 0000CK	5322-1900 Tur	n-Around Ti	me				13	1 1 1	7 7	1 1	Crite	ria	_
GRETCH	innkawseinc.com	andard r) Bueu	WAREN BE		7	Renge	CRCP 1	Timo Timo	/ / ,	3/	////	
Additional F	Project Information:	e Due:	RUSH	y confirmed if pre-	approved!)	444.	DSM2 Renze	100	nges /	/ = /		/ / / /	
Flod bon	H) so O					1 3	2 2 2	2 8 / S	0 0	lud.je	#//	///	9
FINED W	other for electrons	1,3	an	d4		18	D 624	O A State	Bets	OLL B.	4 / /	SAMPLE	100
our it ice	Sincity of the	10 +OL	nlo t	r 611	GU	1	0 3	CP 13	15 2 /	19	//	/ / Filtration ☐ Field	
	Ompetell.		Die 1	OFIL	dil	1/	# ABN	D P C P	D Pu	13	///	/ Lab to	В
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ection Time	Sample Matrix	in the sec	ن این	SVOC.	METALS: DRCP 13 DMCP 14 DRCP 15 EPH: DRanges & Targets VPH: CT	C PCB C PEST TPH: CQuan.C	A /	/ / /	Preservati	
1754-01	mw-1	5/27/20		DW	Initials	1	0 1	\$ \ \tilde{\pi} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				Sample Comm	nents s
02	MW-6	3,000	1010	200	JAG	HA	X)				6
703	Discharge Pipe		0920	STE amuce	ex.	+	+						6
-024			1620										
20	Cleanous I		1040										6
06	Deanout 2		1110										6
	Cleanout 3		1140								++		6
707	Cleanait 4		1210	1	1			+++		-	+++		6
80.	TB-01	4	-	_	CAG	V		+++	1	1	+++		6
					OFF			+++	++	++	+++		2
							-		++	-			
Container Type P= Plastic	Preservative A= None			Contain			++-		+				
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D≈ H ₂ SO ₄		\vdash		ner Type ervative	-							
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH	ished By:		Date/									
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₂	W)		5/27/20	100000	,	Rece	ived By:		Date/Time		umples as for the	
	J = NH ₄ Cl K= Zn Acetate O= Other	Al-		5/22/0	0	6	TEMI	MAL	5/	7-10 17	- CA TAIona	imples submitted are sub a's Terms and Conditions	iject to
Page 67 of 67	pu / v			5.77.21	(900	_		An		77-1		everse side. NO: 01-01 (rev. 12-Mar-2012)	