

Hydrogeologic Evaluation Alta at River's Edge 490 Boston Post Road

.

Wayland, MA

••••••

Prepared by GeoHydroCycle, Inc.

Prepared for: Onsite Engineering, Inc.

September 19, 2019

September 19, 2019

GEOHYDROCYCLE, INC.

WASTEWATER DISPOSAL WATER SUPPLY

Assessment Analyses Permitting Modeling Software Mr. Kevin Brander MassDEP Northeast Regional Office 205B Lowell Street Wilmington, MA 01887

> re: Hydrogeologic Evaluation and Groundwater Mounding Analyses Alta at River's Edge
> 490 Boston Post Road
> Wayland, Massachusetts 01776
> Transmittal No. X284361
> GHC #18008

Dear Mr. Brander:

GeoHydroCycle, Inc. (GHC) is pleased to present the results of our Hydrogeologic Evaluation and Groundwater Mounding Analyses in accordance with our Scope of Work dated 1/2/19 for the proposed discharge of treated wastewater at River's Edge, 490 Boston Post Road, Wayland, Massachusetts 01776 (the Site), see Figure 1 in Enclosure 1 for Site location. This Hydrogeologic Evaluation was done in support of a Groundwater Discharge Permit Application (GWDPA) for the Site. As part of the investigation, GHC completed a groundwater model to conduct a Groundwater Mounding Analyses.

1.0 Introduction

GHC's Scope of Work for the Hydrogeologic Evaluation and Groundwater Mounding included: 1) a review of the available hydrogeologic data including: USGS topographic and hydrogeologic maps; and hydrogeologic work conducted by others; 2) a site reconnaissance; 3) observation of selected soil borings and the installation of monitoring wells conducted by others at the Site; 4) performance of single well aquifer tests in three monitoring wells to estimate aquifer hydraulic conductivity; 5) a groundwater mounding analyses to estimate the increase in groundwater due to the discharge of 37,380 gallons per day of treated wastewater into a 100 foot x 159 foot leach field with a disposal area footprint of 15,900 square feet; 6) preparation of a Groundwater Monitoring Plan; and 7) preparation of this report.

2.0 Site Description

The proposed Alta at River's Edge project is planned to be located at 490 Boston Post Road in Wayland, Massachusetts, see Figures 1 and 2. Alta at River's Edge is a proposed multi-family residential community planned for the site. The total parcel area to be included in the development is approximately 8.25 Acres. The project will be comprised of two buildings, a leasing office, an onsite wastewater treatment facility, underground resident parking garages, and other site amenities such as a pool and gym. The project will consist of 216 units, of which, 99 will be one bedroom and 117 will be two bedrooms. In total, there will be 333 bedrooms at the site plus a small leasing office with three full time staff. This corresponds to an anticipated Title 5 wastewater flow of 37,380 gallons per day.

The project is a proposed redevelopment of the old Wayland town septage treatment facility parcel on Boston Road (Route 20) along the Wayland/Sudbury Town line. The current uses of the site include the abandoned septage treatment facility and open sand beds, school bus storage, a sand and gravel pit and a police shooting/firing range. The Town has an agreement in place with the applicant, WP East Acquisitions, LLC of 91 Hartwell Avenue, Lexington for them to purchase the site from the Town and develop it in accordance with the Town's master planning for this area. As part of the redevelopment, the applicant will remove the existing infrastructure and materials and dispose of it according to applicable regulations.

3.0 Site Reconnaissance

On January 15, 2019 site reconnaissance, GHC conducted a limited reconnaissance of the Site. At the time of GHC's reconnaissance most of the area of the proposed leach field was covered by fill which had little to no vegetative cover, which prevented observation of existing conditions. Some fill was removed before Haley & Aldrich conducted a boring/well installation program in and around the leach field area.

4.0 Test Pits

During our January 15, 2019 visit, GHC was also able to observe test pit excavations being conducted by Onsite Engineering, Inc., see Figure 3. The test pits were also being observed by Joseph Cerutti and Tenzin Lama of the Massachusetts DEP. For the Town of Wayland the test pits were observed by Darren MacCaughey and Julia Junghanns. Onsite Engineering also conducted a second round of test pitting on May 17, 2019 when they excavated three additional test pits and one percolation test. One soil boring was also completed at that time to confirm soil depth. These test pits were not observed by GHC, but were observed by Joseph Cerutti and Tenzin Lama of the Massachusetts DEP. For the Town of Wayland the test pits were observed by Julia Junghanns.

Based on the test pit logs obtained from Onsite Engineering, Inc., the excavations encountered between 4 and 6 feet of fill in test pits TP-1 through TP-5. In TP-6 12 feet of fill was observed. Below the fill the excavations encountered sands and sands and gravels down to depths between 10 and 13 feet. Two percolation tests both revealed rates of less than 2 minutes per inch. Test pit data are presented in Enclosure 2.

5.0 Soil Boring and Well Installation

GHC did not conduct any soil borings or monitoring well installations at the Site but relied upon data collected by Haley & Aldrich and Vertex. Also, GHC was provided access to the H&A and Vertex monitoring wells to obtain groundwater levels and to conduct slug tests. H&A and Vertex borings and well logs are presented in Enclosure 3.

GHC reviewed the H&A borings and well logs for the three monitoring wells in the vicinity of the proposed leach field, HA19-1, HA19-13 and HA19-14. These logs showed that H&A encountered primarily sands and sand and gravels consistent with what was found in the test pits.

Environmental drilling logs prepared by H&A and Vertex describing the soil samples, the drilling process, and the construction of the wells are included in Enclosure 3. Based on the logs, GHC prepared Figure 4 showing a schematic profile of the H&A and Vertex monitoring wells.

6.0 Local Hydrogeology

The River's Edge property is located on the eastern slopes of a sand hill that grades down to the Sudbury River, located approximately 1,700 feet to the east of the proposed leach field, see Figure 1. Figure 5 shows a surficial geology map obtained from MassGIS digital survey. This map depicts the surficial geology beneath River's Edge as being sands and gravels. This description of the geology is consistent with GHC's review of the H&A and Vertex well logs.

The surficial geology beneath River's edge consist of sands that readily allow groundwater movement. Other significant hydrologic features in the area are wetlands that almost surround the project and serve as surface water expressions of the local water table acting as groundwater discharge areas.

GHC personnel were at the Site on 8/1/19 to obtain groundwater depth measurements in the Site monitoring wells. Using the surveyed top of well (TOC) elevations provided by the site civil engineer, Allen & Major, GHC converted the 8/1/19 groundwater depth measurements to water table elevations, see Table 6.0.1.

Table 6.0.1. Subsurface Evaluation Data.

GEOHYDROCYCLE, INC.

Well	Measuring Point Elevation (feet, MSL)	Depth to Groundwater from TOC, 8/1/19 (feet, MSL)	Groundwater Elevation, 8/1/19 (feet, MSL)
V-101	130.74	14.45	116.29
V-104	148.81	32.03	116.78
V-106	151.83	34.65	117.18
HA19-1	134.92	18.57	116.35
HA19-13	138.53	21.95	116.58
HA19-14	138.76	22.40	116.36

Based on the groundwater elevation data presented in Table 6.0.1, GHC has prepared Figure 6. As this figure illustrates, groundwater flows in an easterly direction toward the Sudbury River and adjoining wetlands at a gradient of 0.00129 feet per foot (1.3 feet in 1,000 feet). This relatively flat gradient indicates that little force is needed to move groundwater beneath the Site due to an aquifer with a high aquifer transmissivity.

7.0 Seasonal High Groundwater

Because test pits completed did not encounter soil mottling, as a basis to determine seasonal high groundwater elevation (SHGW), GHC used the Frimpter Method¹. The following Table 7.0.1 presents the Frimpter parameters and results.

Table 7.0.1. Frimpter Method.

	Depths	
Parameter	(feet)	Notes
Measured Depth to Groundwater (Sc)	13.80	V-101 on 4/18/19
Range in GW levels in similar topography (Sr)	10.50	Hillside - 10%
Measured depth to GW at similar time (OWc)	4.83	USGS 4/18/19
Measured depth of max GW level (OWmax)	1.19	
Maximum GW range (OWr)	10.18	
Predicted depth to SHGW (Sh)	10.05	
Difference between measured and predicted	3.75	Frimpter Adjustment

GHC estimated Seasonal High Groundwater by adding the Frimpter Adjustment of 3.75 feet to the groundwater elevations for the six monitoring wells, and the results are presented in Table 7.02

Table 7.0.2. Estimated SHGW in Monitoring Wells.

GEOHYDROCYCLE, INC.

	Groundwater Elevations 8/1/19	Estimated SHGW Elevation
Well	(feet, MSL)	(feet, MSL)
V-101	116.29	120.04
V-104	116.78	120.53
V-106	117.18	120.93
HA19-1	116.35	120.10
HA19-13	116.58	120.33
HA19-14	116.36	120.11

GHC prepared a groundwater contour map for SHGW using the elevations calculated in Table 7.0.2, see Figure 7.

8.0 Saturated Thickness

The saturated thickness for the aquifer was determined by subtracting the bottom elevation of the Haley & Aldrich borings from the SHGW elevations and averaging the results. Table 8.0.1 below demonstrates these calculations.

Table 8.0.1. Saturated Thickness.

Well	SHGW Elevation (feet, MSL)	Bottom Elevation (feet, MSL)	Saturated Thickness (feet)
HA19-1	120.1	106.8	13.3
HA19-13	120.3	108.0	12.3
HA19-14	120.1	103.7	16.4
		Average:	14.0

The resulting average saturated thickness that was used in the groundwater mounding model was <u>14.0 feet</u>.

9.0 Aquifer Testing

To estimate aquifer hydraulic conductivity, GHC conducted slug tests in the three Haley & Aldrich monitoring wells at the property on 8/5/19. GHC used both rising and falling head tests for each well.

The falling head/rising head slug test protocol involved: 1) measuring the depths to groundwater in the well; 2) installing a pressure transducer in the well to be tested; 3) connecting the transducer cable to the data storage unit; 4) recording the static depth of the transducer as the initial reference level; 5) inserting a solid slug into the well and electronically recording a falling head test; 6) allowing the water level to recover to at least 95 percent of pretest level; 7) beginning the rising head test by removing the solid slug from the well and electronically recording the data.

10.0 Aquifer Testing Results

To determine a representative value of hydraulic conductivity for the outwash sands beneath the Site, GHC used a statistical method published by the Connecticut DEP². The method calculates the statistics of the hydraulic conductivity data and determines whether the results are within confidence limits and eliminates statistical outliers. Using this analysis resulted in a geometric mean hydraulic conductivity of <u>209</u> feet per day for the outwash sands. This value is within the range of expected hydraulic conductivity for outwash sands. A table presenting the hydraulic conductivity analyses and statistics is shown in Enclosure 4.

11.0 Groundwater Model Development and Simulation

GHC accomplished the groundwater mounding analyses for the Site with the widely used and accepted numeric groundwater model, MODFLOW. Input parameters to the model were obtained from GHC's environmental drilling logs, field observations and testing data, and the grain size curves.

Information concerning the design of the SAS was obtained from Onsite Engineering, Inc. and included: 1) the wastewater application rate of 37,380 gallons per day, and 2) the location and layout of the 15,900 square foot (footprint) leach field.

11.1 Conceptual Model

In developing the groundwater model to predict the mounding height beneath the proposed leach field, GHC prepared a conceptual model of the aquifer. Features of the conceptual model include:

- 1. The aquifer is unconfined with the water table as the upper surface;
- 2. Seasonal high groundwater can be estimated by adding to contours an adjustment calculated using the Frimpter Method;
- 3. The aquifer lower surface is not known, but can be estimated using the difference between seasonal high groundwater and the depth of monitoring wells in the vicinity of the leach field;
- 4. Aquifer hydraulic conductivity can be estimated using single well tests (slug tests);
- 5. A geometric mean hydraulic conductivity can be used in the model to be representative of the aquifer; and

(617) 527-8074 (v)

³²¹ Walnut Street #450 Newton, Massachusetts 02460

6. The simulation can be achieved by modeling the proposed leach field on a flat water table with the resulting groundwater mound superimposed onto the seasonal high groundwater.

11.2 MODFLOW Setup

The following paragraphs describe the MODFLOW model input parameters. Figures 8a and 8b shows the MODFLOW features

11.2.1 Grid Definition

The MODFLOW model was designed to represent the overburden aquifer as described above using a 4,096 foot by 4096 foot grid and one unconfined layer. In plan view, the aquifer was gridded using a variable node spacing consisting of 64 by 64 feet at the edges of the model and telescoping to 8 by 8 feet in the area of the leach field. The smaller grid spacing was used in the area directly around the leach field where discharge to groundwater causes steeper gradients. Higher resolution allows for a more accurate model prediction of groundwater flow around SAS areas.

11.2.2 Wastewater Recharge

To simulate the application of 37,380 gallons per day of treated septic wastewater into the 15,900 square foot leach field, GHC designated 241 nodes in the model to simulate the wastewater recharge into the leach field. This results in a SAS area in the model of 15,424 square feet which is smaller than the design leach field. To account for the difference in areas, values of the simulated recharge to these nodes were increased by the ratio of the design area divided by the modeled area. The result was that the model accurately simulated the proposed wastewater discharge. Also, as allowed by DEP guidelines³, the applications rate was reduced to 80% of the daily rate.

11.3 MODFLOW Simulation

To predict the groundwater mounding beneath the proposed soil absorption system, GHC ran a steady-state MODFLOW simulation. Table 11.3.1 summarizes the parameters used in the model.

Table 11.3.1. MODFLOW Model Input Parameters.

Parameter	Value	Unit
Disposal Rate (100%):	37,380	gallons per day
Model Soil Absorption Area :	15,424	square feet
Model Recharge Rate (80%):	0.259197	cubic feet per day per square ft
Hydraulic Conductivity:	209	feet per day
Saturated Thickness:	14.0	feet
Mounding Time	90	days

321 Walnut Street #450 Newton, Massachusetts 02460

(617) 527-8074 (v)

³ Massachusetts DEP. November 2014. Guidelines for the Design, Construction, Operation, and Maintenance of Small Wastewater Treatment Facilities with Land Disposal.

12.0 MODFLOW Mounding Results

Results of the MODFLOW groundwater mounding simulation indicated that the increase in groundwater elevations due to the application of treated wastewater into the 15,900 square foot leach field would be <u>0.80 feet</u>, see Figure 9. Superimposing the mound onto Seasonal High Groundwater yields simulated groundwater elevations beneath the proposed leach field, see Figure 10. This figure demonstrates that the predicted mounded groundwater elevation at the Site beneath the SAS will be <u>121.2</u> <u>feet, MSL</u> beneath the proposed leach field.

Figure 10A presents a cross-section showing the separation distance between mounded seasonal high groundwater and the proposed bottom of the leach field. As the figure shows the design elevation of the leach field bottom at a minimum elevation of 133 allows for at least 11.9 feet of separation above the mounded groundwater, which more than meets the state requirement of 4 feet.

13.0 Sensitive Receptors and Natural Resource Protection

GHC's review of the Priority Resources Map from MassGIS, see Figure 11A and 11B, show the following Priority Resources within one mile of the proposed leach fields:

	Compass	
Resource	Direction	Distance (ft)
Wetlands	N, E, S	Nearest 230 ft N
PWS 3315000-06G	NE	4,840
Baldwin Pond Wells (2.27 MGD)		
NHESP Potential Vernal Pool	NNW	2,400
NHESP Potential Vernal Pool	ENE	3,700
NHESP Potential Vernal Pool	ESE	3,480
NHESP Potential Vernal Pool	SE	2,520
NHESP Potential Vernal Pool	SSW	2,630
NHESP Potential Vernal Pool	WSW	2,590

Groundwater flow under mounded conditions beneath the proposed leach field is to the east toward the Sudbury River and Associated wetlands. Under these flow conditions and moderate amounts, it is unlikely that any of the above resource areas will be adversely impacted by the proposed wastewater discharge.

14.0 Groundwater Monitoring Plan

In accordance with 314 CMR 5.00, long-term groundwater monitoring activities are required for groundwater discharges with design flows greater than or equal to 10,000 gallons per day.

The objective of the long-term groundwater monitoring plan (GWMP) is to establish background water quality for the new discharge, and to establish long-term groundwater quality at points near sensitive receptors and/or downgradient property boundaries. To accomplish this objective GHC proposes: 1) three groundwater monitoring wells, 2) monitoring well construction details, 3) groundwater quality sampling parameters, and 4) groundwater sampling frequency.

14.1 Compliance Monitoring Well Locations

Proposed compliance monitoring well locations are based on Groundwater Discharge Permit guidelines, and from our hydrogeologic evaluation and groundwater modeling at Alta at River's Edge in Wayland, MA such that one well will monitor groundwater quality upgradient and two wells downgradient of the leach field.

Unstressed groundwater in the vicinity of the proposed leach fields will flow to the east, see Figure 6. The objective of an upgradient compliance monitoring well is to monitor groundwater quality outside of the influence of the proposed discharge. Based on GHCs hydrogeologic evaluation and mounding analysis of the Site, discharge of treated groundwater from the leach fields creates a groundwater flow field as shown in Figure 10. To monitor groundwater quality upgradient of the fields, GHC proposes compliance monitoring well CMW-1, and to monitor groundwater quality downgradient of the discharge, compliance wells CMW-2, and CMW-3, see Figure 12.

Massachusetts DEP may require additional compliance monitoring wells depending upon the Site's hydrogeologic complexity and the type, number, and proximity of sensitive receptors. These locations will be revised as necessary.

14.2 Monitoring Well Construction

Compliance monitoring wells installed at the Site have been constructed in accordance with the MADEP's Standard Reference for Monitoring Wells⁴.

14.3 Groundwater Quality Sampling

The following parameters will be sampled in upgradient and down gradient compliance monitoring wells on the following schedule:

Table 14.3.1. Compliance Sampling.

GEOHYDROCYCLE, INC.

Parameter	Schedule
static water level	monthly
pH	monthly
specific conductance	monthly
nitrate nitrogen	quarterly
total nitrogen (nitrate, nitrite, TKN)	quarterly
total phosphorus	quarterly
orthophosphate	quarterly
volatile organic compounds (Method 624)	annually

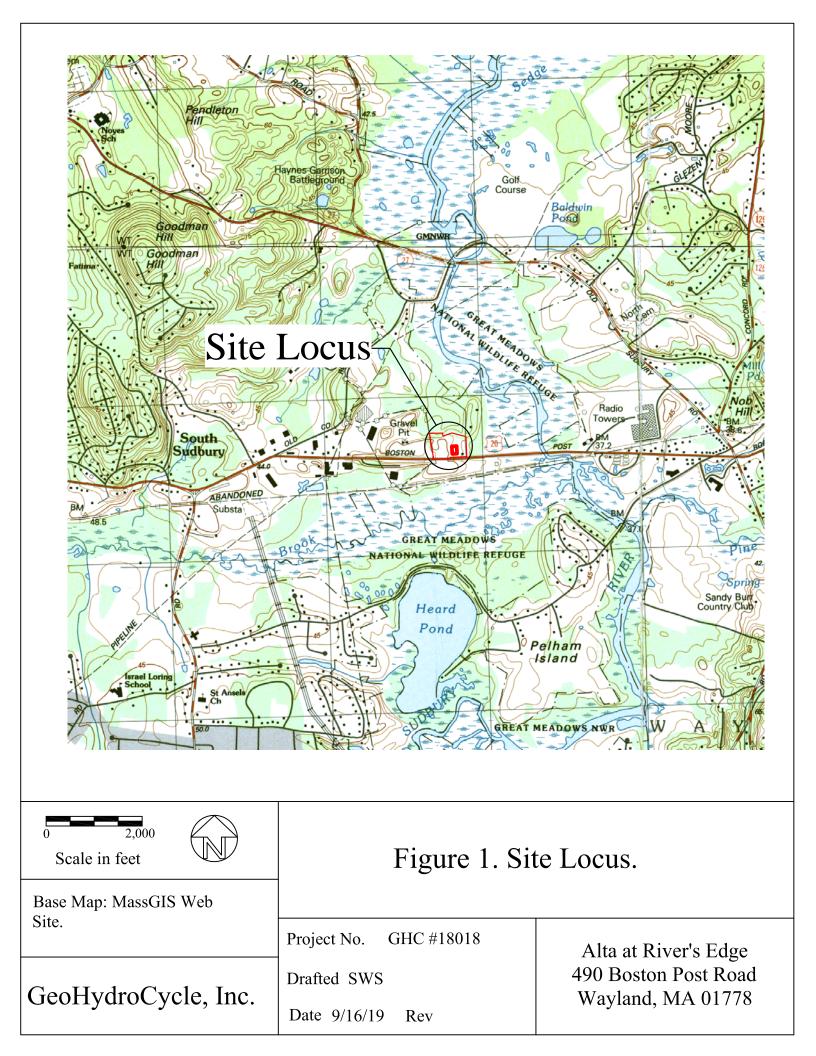
To establish background water quality, all compliance monitoring wells will be sampled for the parameters of concern before the startup of the wastewater discharge. Monthly results of water quality sampling will be reported to the MADEP Northeast Regional Office.

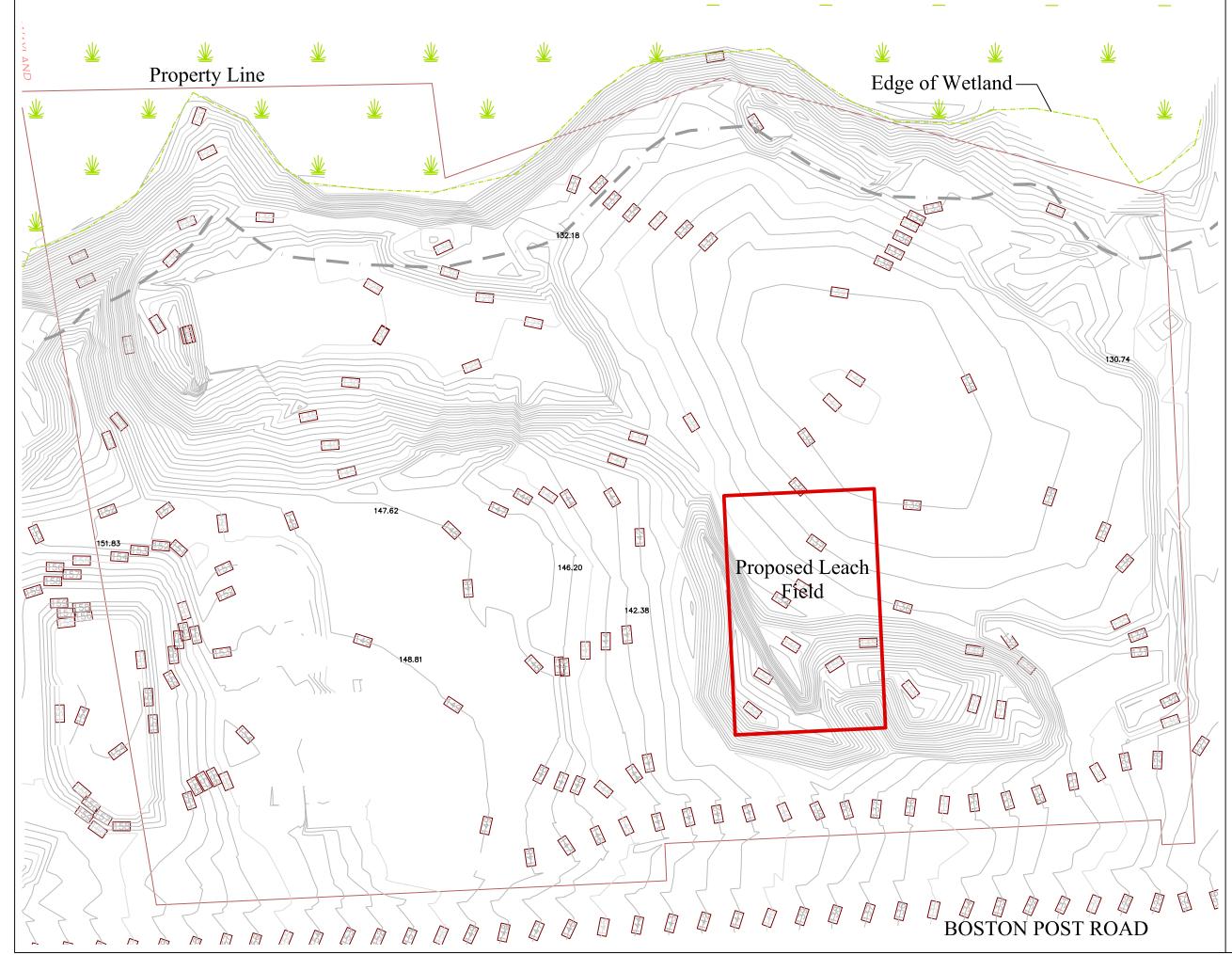
If you have any questions, please call me.

Sincerely, GeoHydroCycle, Inc.

W. Amita

Stephen W. Smith, P.E., P.HGW.

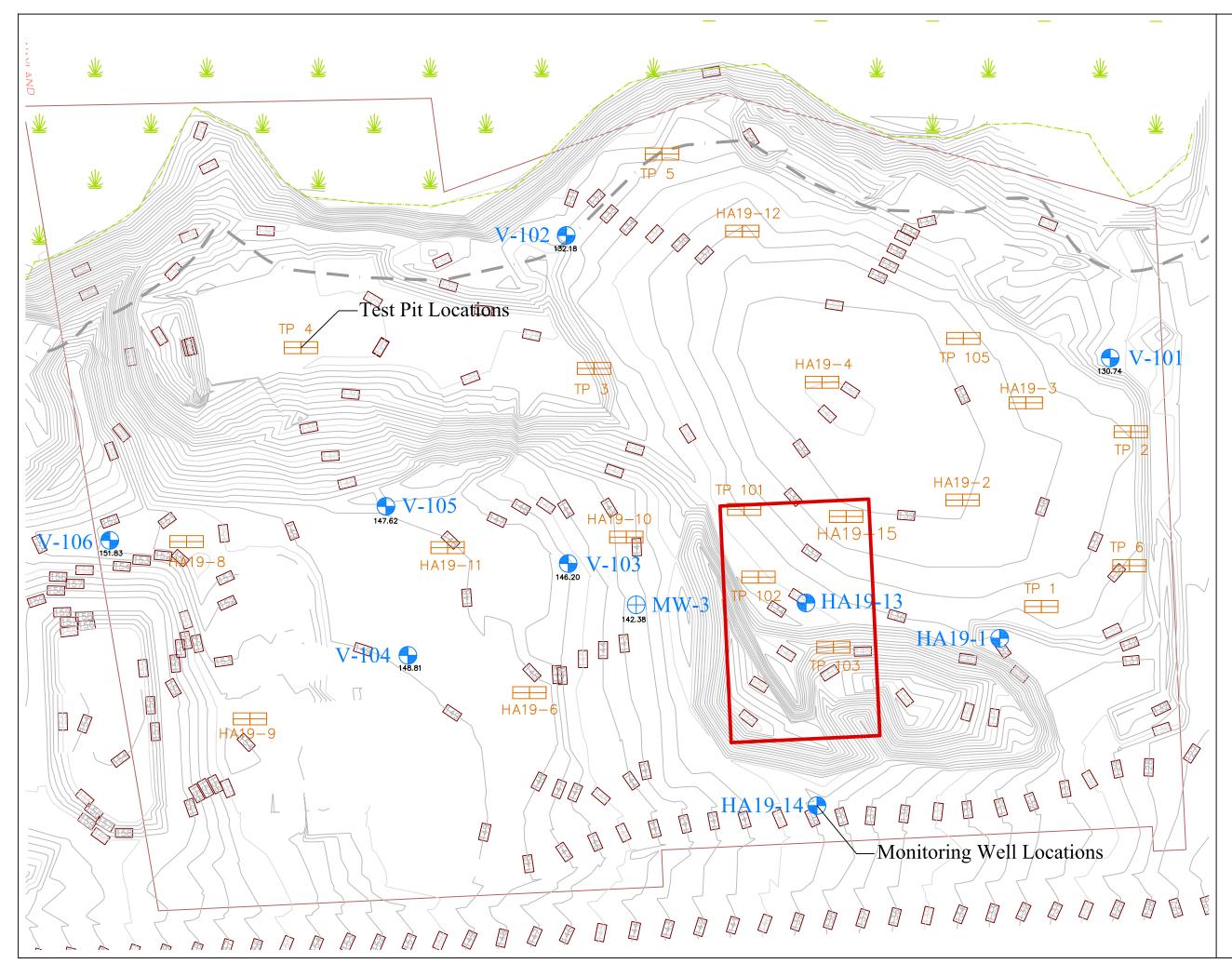

Enclosures: 1 - Figures


- 2 Test Pit Logs
- 3 Environmental Drilling Logs
- 4 Slug Test Analyses Summaries
- 5 Transmittal Form X284361 and BRP WP 83

cc: Mr. David Formato, Onsite Engineering, Inc.

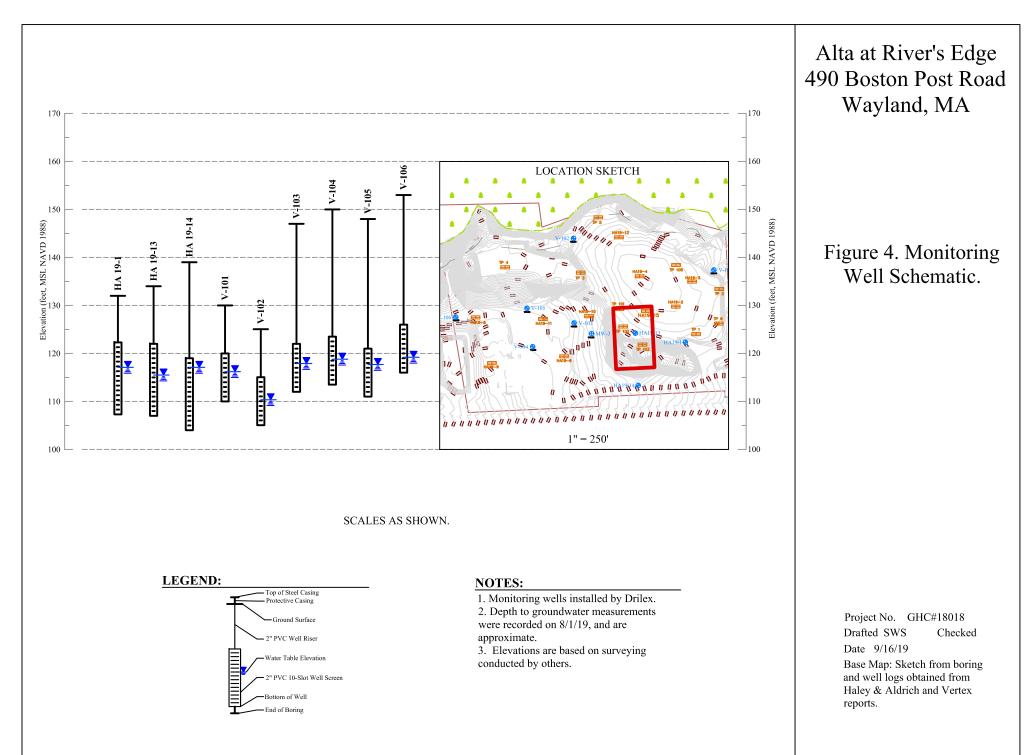
Alta at Rivers Edge HER.lwp

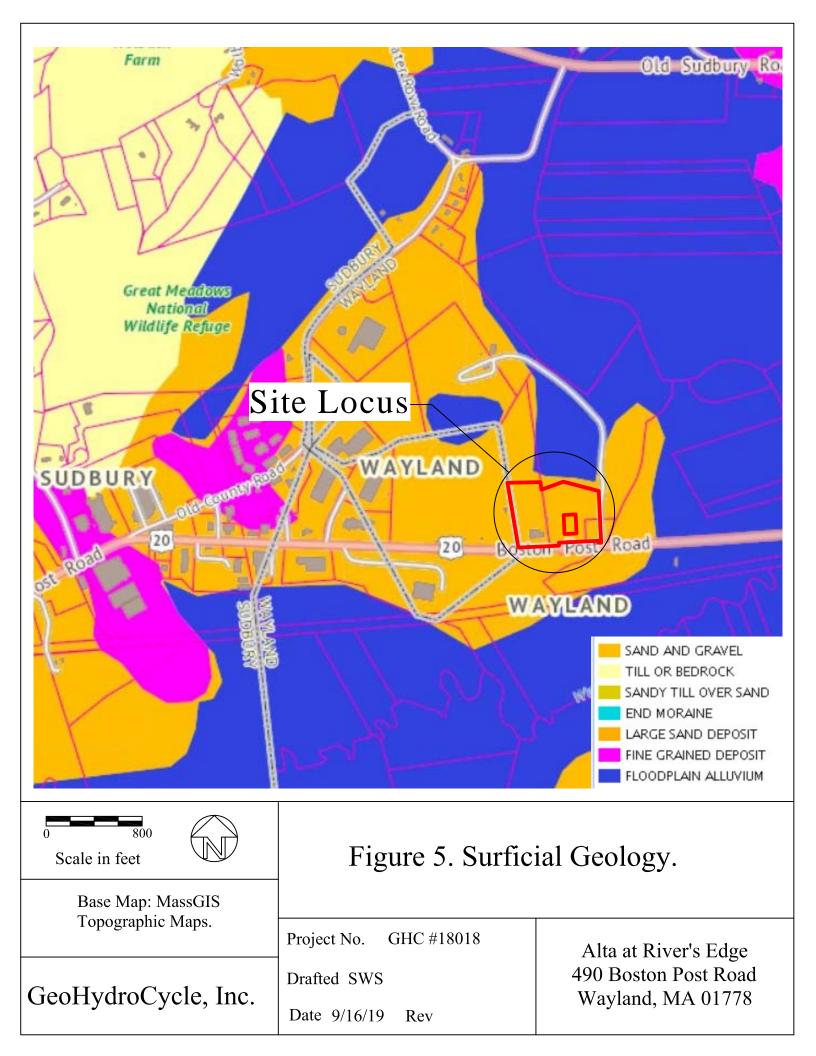
Enclosure 1 - Figures

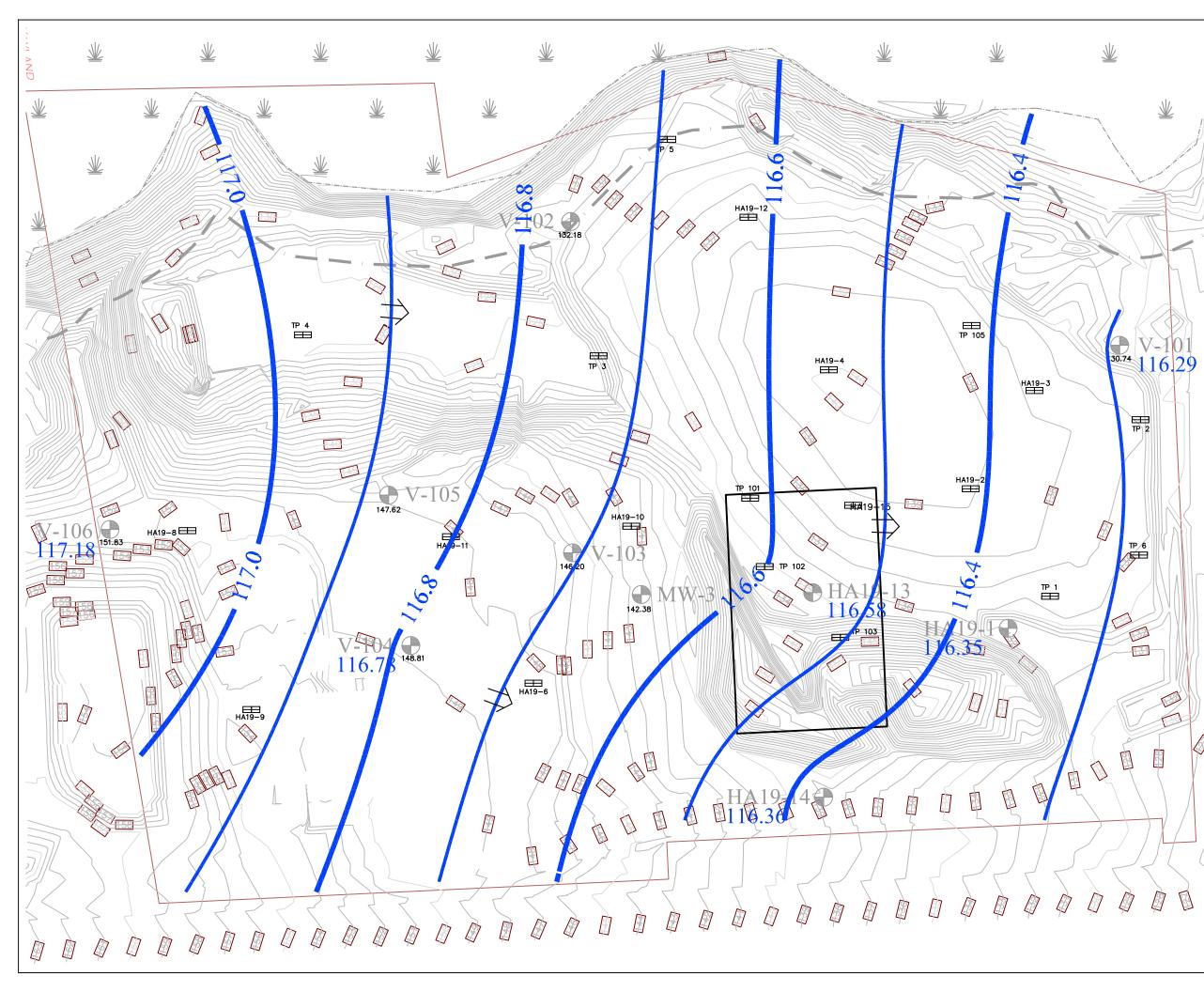

Figure 2 Site Features.

Scale in feet

Project No. GHC#18004 Drafted SWS Checked Date 9/6/19 Rev Base Map: CAD File provided by Onsite Engineering, Inc.


Figure 3 Subsurface Explorations.





Scale in feet

Project No. GHC#18004 Drafted SWS Checked Date 9/6/19 Rev Base Map: CAD File provided by Onsite Engineering, Inc.

Figure 6. Groundwater Elevation Contours, 8/1/19.

LEGEND:

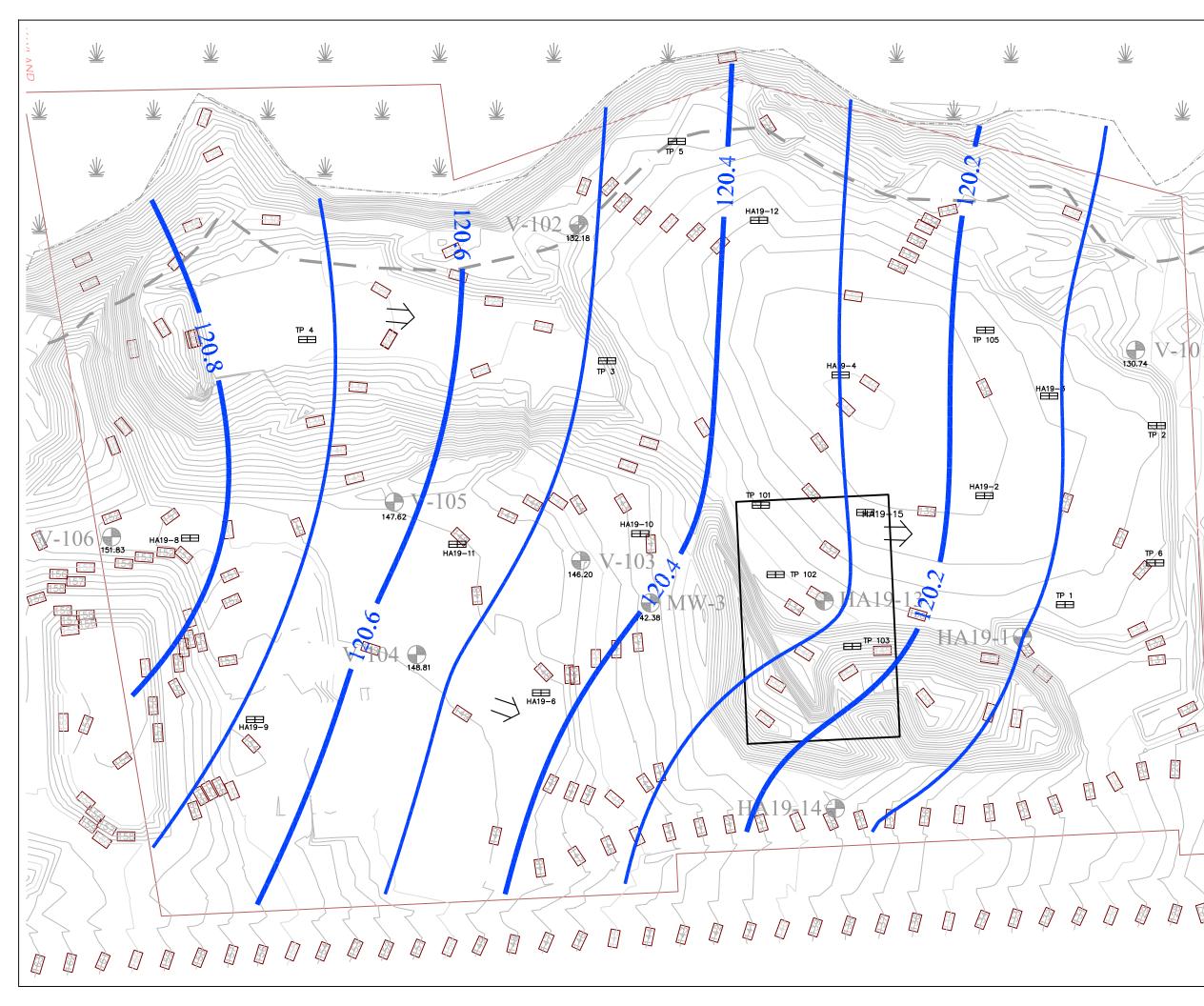
306	Ground Interva
$\overline{\nabla}$	Inferre

- Groundwater Elevation Contours. Interval = 0.1 foot.
- Inferred Groundwater Flow Direction.
- Groundwater Monitoring Well Locations.

NOTES:

 Groundwater contour data are calculated and interpreted as described in the text.
 Groundwater contours are based on widely

spaced well locations and may not reflect actual groundwater elevations.


3. Groundwater contours are presented for the purposes of this report only.

Scale in feet

Project No. GHC#18004 Drafted SWS Checked Date 9/4/19 Rev 9/18/19 Base Map: CAD File provided by Onsite Engineering, Inc.

Figure 7. Estimated Seasonal High Groundwater Elevation Contours.

LEGEND:

 $\overline{\nabla}$

4

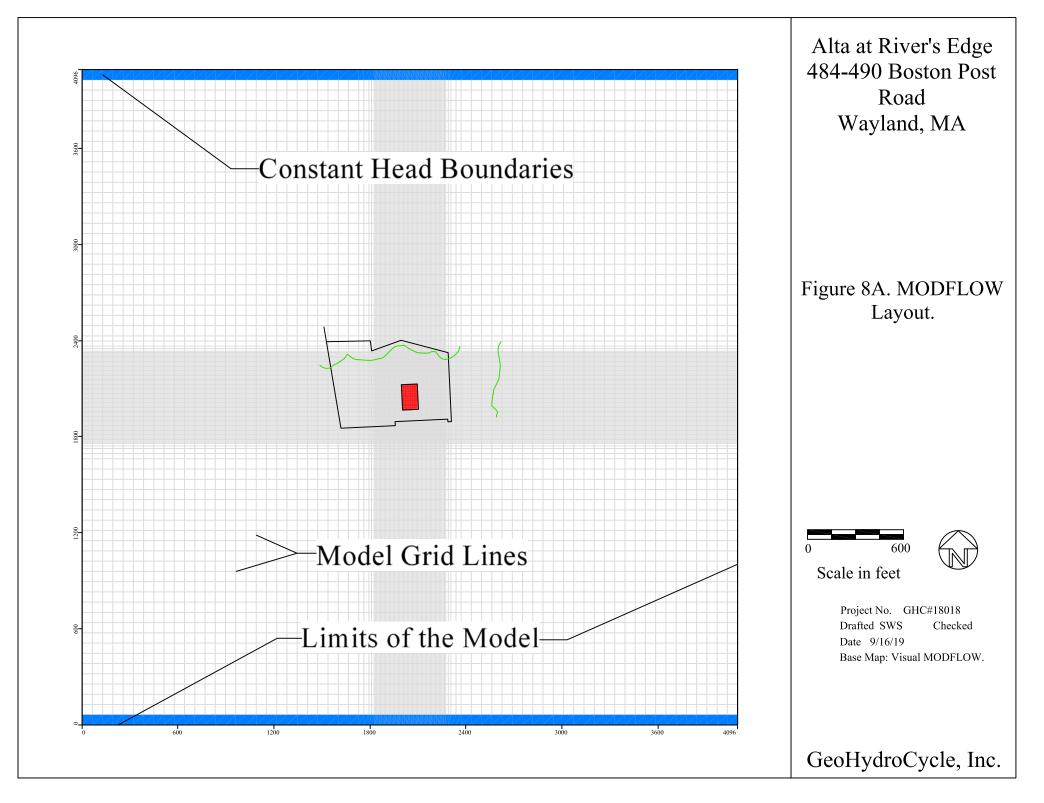
~ 306 ~	Groundwater Elevation Contours.
	Interval = 0.1 foot.


- Inferred Groundwater Flow Direction.
- Groundwater Monitoring Well Locations.

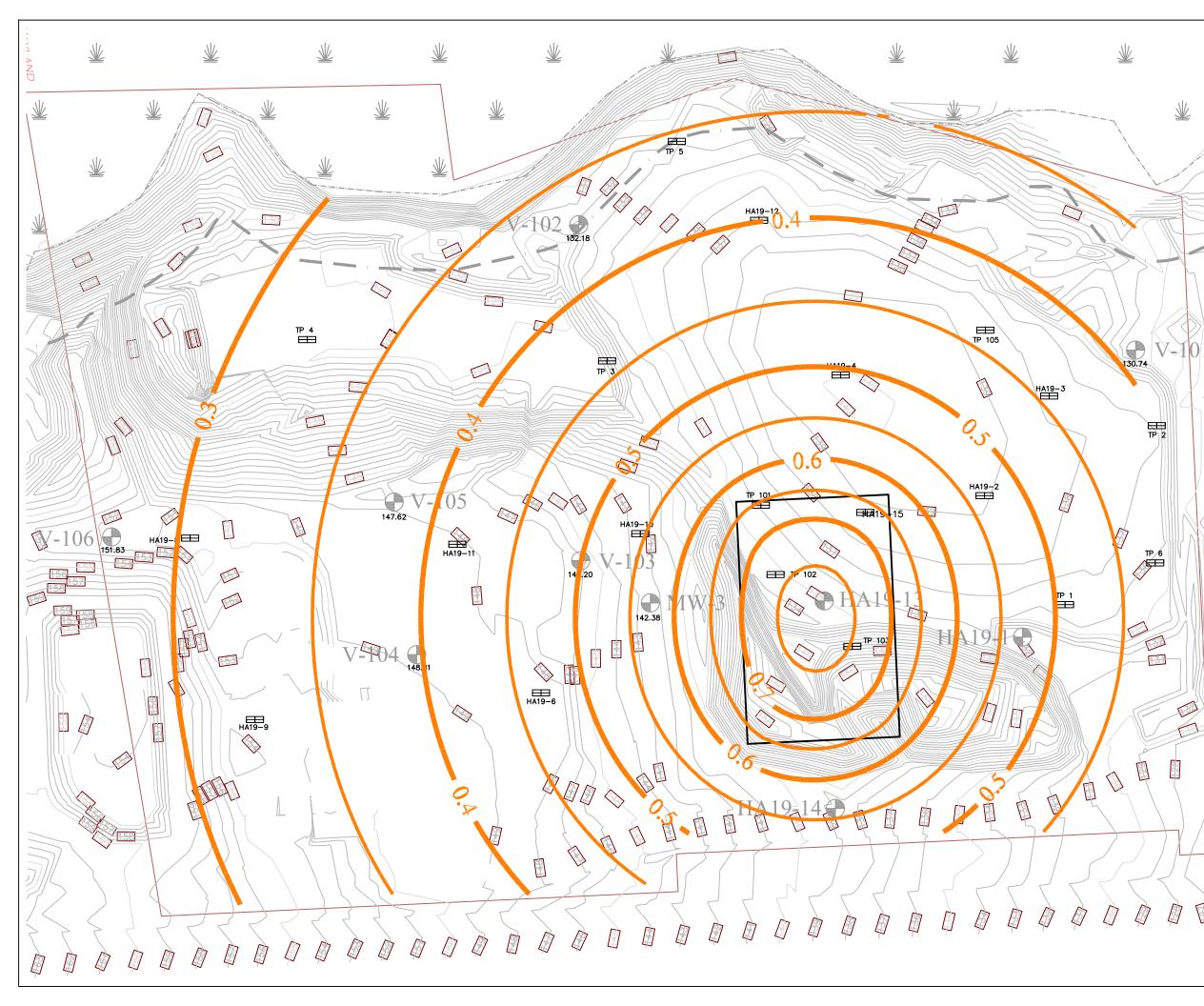
NOTES:

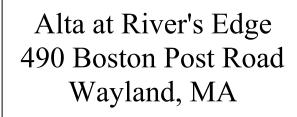
 Groundwater contour data are calculated and interpreted as described in the text.
 Groundwater contours are based on widely

spaced well locations and may not reflect actual groundwater elevations.


3. Groundwater contours are presented for the purposes of this report only.






Scale in feet

Project No. GHC#18004 Drafted SWS Checked Date 9/4/19 Rev 9/18/19 Base Map: CAD File provided by Onsite Engineering, Inc.

Figure 9. Simulated Groundwater Mound Height, 80% of 37,380 GPD Discharge.

LEGEND:

1.0	Groundwater Elevation Contours. Interval = 0.05 foot.
$\overline{\nabla}$	Inferred Groundwater Flow Direction.
	Groundwater Monitoring Well Locations

NOTES:

[]]

 Groundwater contour data are calculated and interpreted as described in the text.
 Treated wastewater discharge = 37,380 gallons

per day.

3. Total Leach Field footprint = 15,900 square feet.

Scale in feet

Project No. GHC#18004 Drafted SWS Checked Date 9/4/19 Rev 9/18/19 Base Map: CAD File provided by Onsite Engineering, Inc.

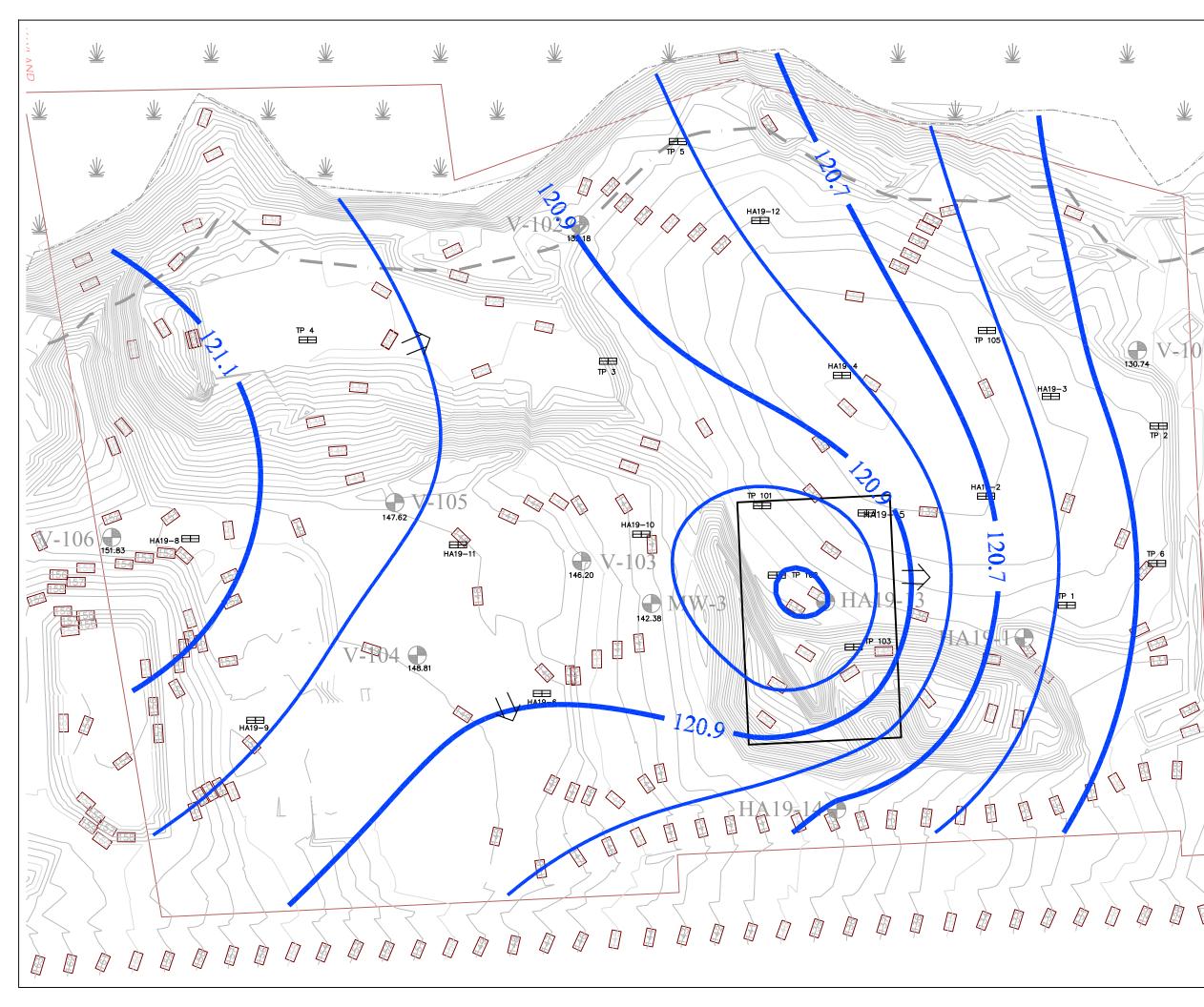


Figure 10. Simulated Mounded Seasonal High Groundwater Elevations, 80% of 37,380 GPD Discharge.

LEGEND:

Groundwater Elevation Contours. Interval = 0.1 foot.

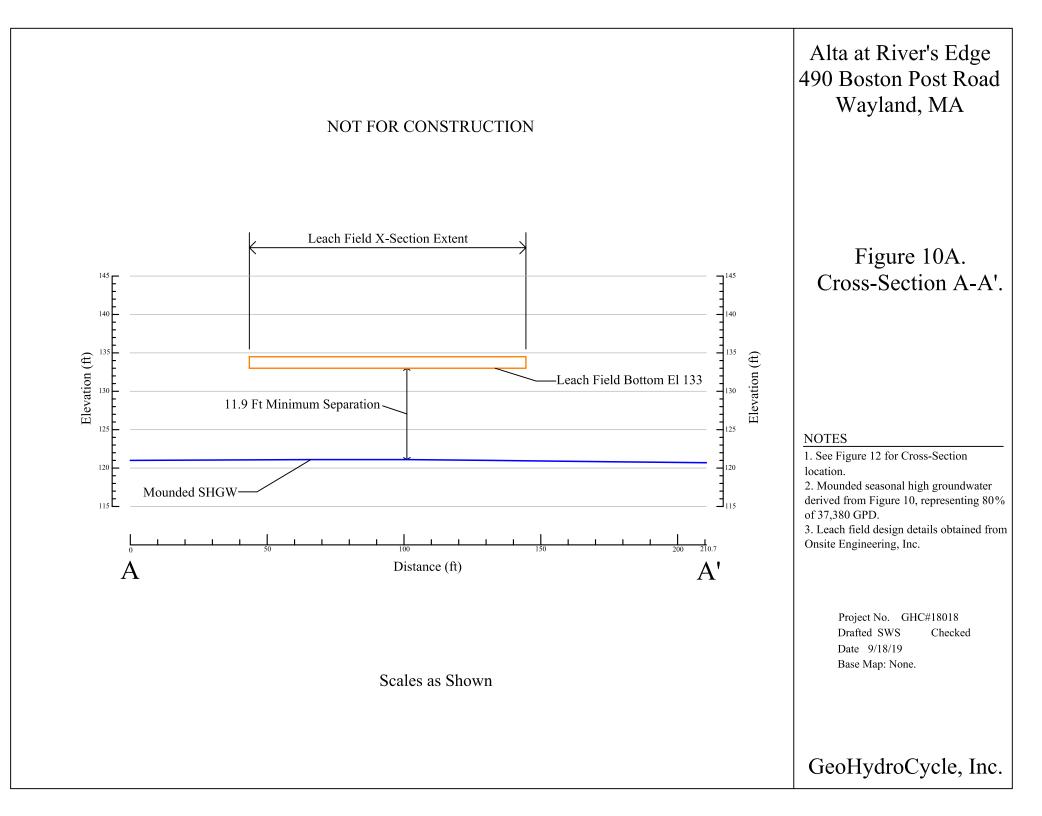
Inferred Groundwater Flow Direction.

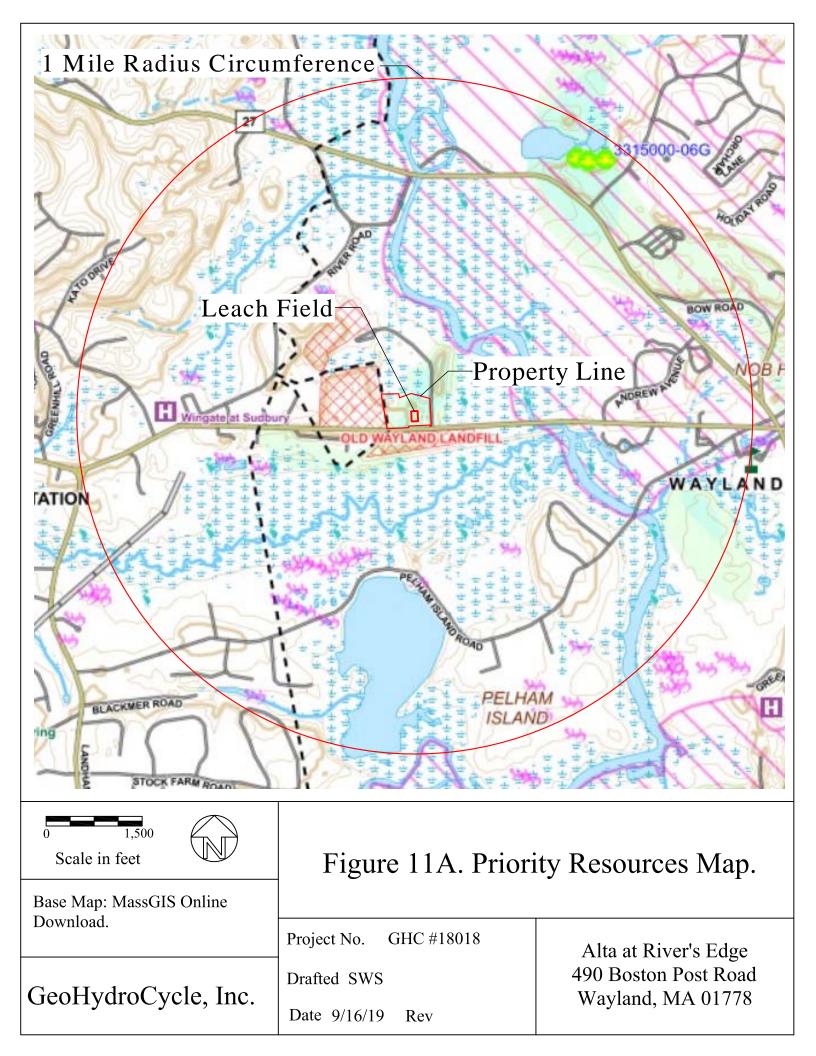
Groundwater Monitoring Well Locations.

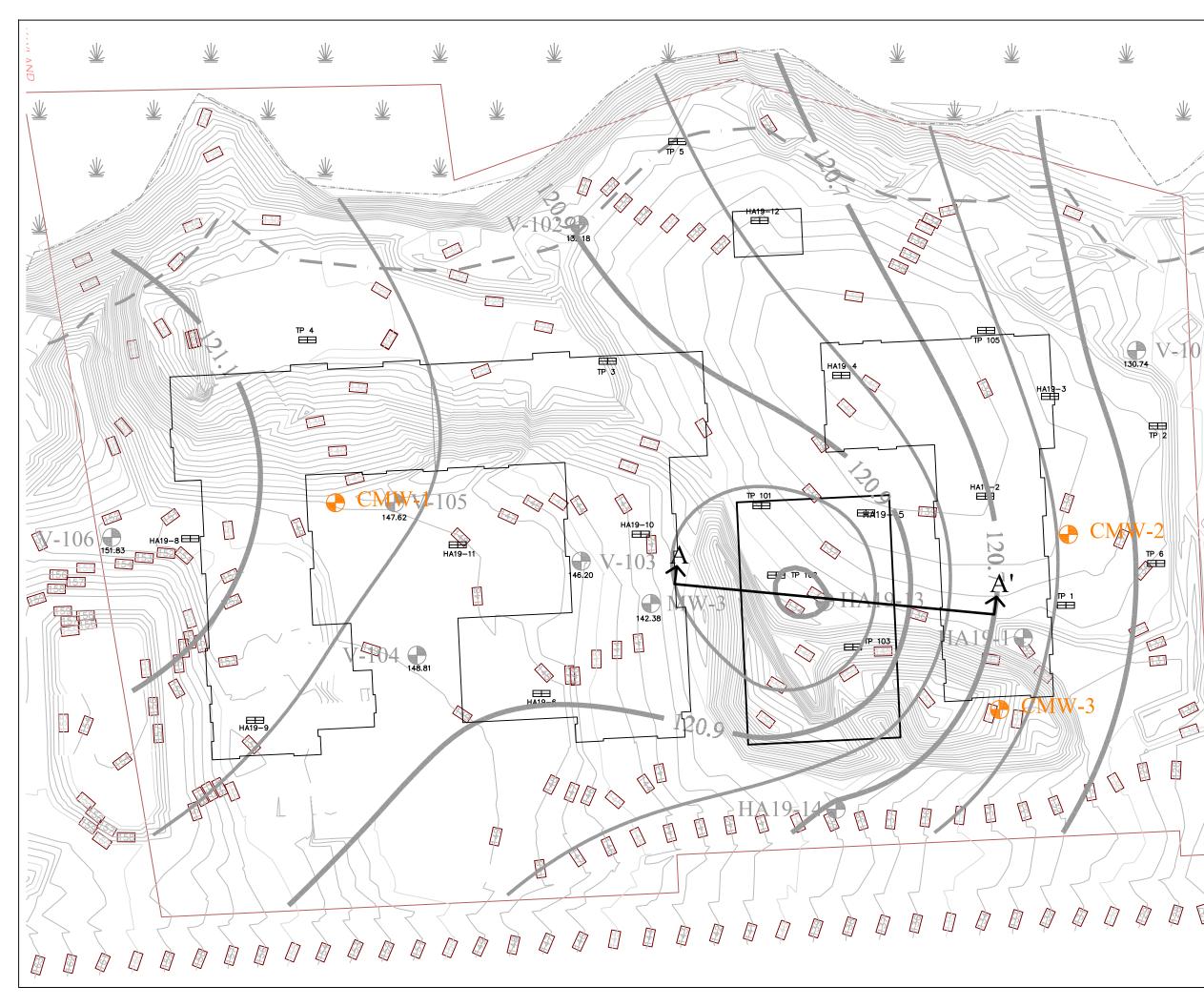
NOTES:

1. Groundwater contour data are calculated and interpreted as described in the text.

2. Treated wastewater discharge = 37,380 gallons per day.


3. Total SAS footprint = 15,900 square feet.
 4. Groundwater contours are presented for the purposes of this report only.




Scale in feet

Project No. GHC#18004 Drafted SWS Checked Date 9/4/19 Rev 9/18/19 Base Map: CAD File provided by Onsite Engineering, Inc.

	MassDE	p				
-dk	Massachusetts Dep	artment o	f Environmental Protection			
			Map Lege	nd		
54-5	NHESP Potential Vernal Pool	· Tov	wn and State Boundary		Interim Wellhead F	Protection Area (IMPA)
945	NHESP Certified Vernal Pool	DE	P Region Boundary		Approved Wellhea	ad Protection Area (Zone II)
0	Community Groundwater Well	Pe	rennial Stream or Shoreline		Solid Waste Land:	<u><u></u></u>
0	Community Surface Water Intake	Inte	ermittent Stream		Surface Water Su	pply Watershed Boundary
•	Emergency Surface Water Intake	Inte	ermittent Shoreline		15 Meter Contour	Interval
0	Non-Community Groundwater Well	Ma	ann ade Shoreline		3 Meter Contour II	nterval
1	School	Dit	ch or Canal		Protected Open S	pace
ω	Hospital	s-s-s-Aq	ueduct		High and Medium	Density Residential
00	Long Term Care Residence	Da	n		Forested	
⊕	Prison	· Ch	annel in Water		Commercial, Indu	strial and Mining
	Pipeline	Op	en Water		Waste Disposal, J	lunkyard
HH	Powerline	Pu	blic Water Supply Reservoir		Recreation Area,	Golf Course
	MBTA Blue Line	Tid	lai Flat		Agricultural Land,	Orchard, Nursery
	MBTA Green Line	inu	Indated Area			
	MBTA Orange Line		esh Water Wetland			
	MBTARed Line	Cre	anberry Bog			
	Active Rail Lines		It Water Wetland			
	Major Highway - Limited Access	Su	rface Water Supply Protection Area (Zone A)			
	Major Road - Not Limited Access	Su	rface Water Supply Protection Area (Zone B)			
	Local Street or Road	Su	rface Water Supply Protection Area (Zone C)			
	No Scale		Figure 11 Legend.	B. 1	Priori	ty Resources Map
	Map: MassGIS On	line				
Mapp	ıng.		Project No. GHC	#1801	8	Alta at River's Edge
			Drafted SWS			490 Boston Post Road
eoH	ydroCycle,]	Inc				Wayland, MA 01778
icorryurocycle, me.		Date 9/16/19 Re				

Figure 12. Proposed Compliance Monitoring Well Locations.

LEGEND:

306	Groundwater Elevation Contours.
	Interval = 0.01 foot.
$\overline{\langle}$	Inferred Groundwater Flow Direction.
	Proposed Compliance Monitoring Well
	Locations.
A A'	Cross-Section A-A', Figure 10A.

NOTES:

Ĩ

 Groundwater contour data are calculated and interpreted as described in the text.
 Groundwater contours represent mounded seasonal high groundwater, see Figure10.
 Groundwater contours are presented for the purposes of this report only.

Scale in feet

Project No. GHC#18004 Drafted SWS Checked Date 9/4/19 Rev 9/18/19 Base Map: CAD File provided by Onsite Engineering, Inc.

Enclosure 2 - Test Pit Logs

Commonwealth of Massachusetts

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A. Facility Information

	Town of Wayland			
	Owner Name			
	484 Boston Post Road		22-6	
	Street Address		Map/Lot #	
	Wayland	MA	01778	
	City	State	Zip Code	
B.	Site Information			
1.	(Check one) X New Construction Upg	grade 🗌 Repair		
2.	Soil Survey Available? 🛛 Yes 🗌 No	If yes:	MassGIS	
	,	2	Source	Soil Map Unit
	Udorthents	N/A		
	Soil Name	Soil Limitations		
	Proglacial Outwash	Outwash Plain		
	Soil Parent material	Landform		
3.	Surficial Geological Report Available? 🗌 Yes 🏹 No	If yes:		
		Year Published	/Source Map Unit	
	Description of Geologic Map Unit:			
4.	Flood Rate Insurance Map Within a regulator	y floodway? 🗌 Yes 🛛 N	0	
5.	Within a velocity zone? Yes X No			
6.	Within a Mapped Wetland Area?	No If yes, Mass	GIS Wetland Data Layer:	
1.	Current Water Resource Conditions (USGS):	January 2019 Month/Day/ Year	Range: 🛛 Above Normal	🗌 Normal 🗌 Below Normal
8.	Other references reviewed:			

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep	Observation	n Hole Numb	er: OSE-TP-1	1/15/201	19	AM		20's Cle	ar	42d 21' 49'	"	<u>71d 22'</u> 53"
-			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use Vacant	Lot			None							0-3%
I. Lanu	03e (e.g., wo	odland, agricult	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	es (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
Des	scription of Lo	ocation: <u>\</u>	/acant Lot									
2. Soil P	arent Materia	al: Proglacia	al Outwash		0	utwash Pla	in	Bott	om of slope, flat	area		
					La	ndform		Posi	tion on Landscap	be (SU, SH, BS,	, FS, TS)	
3. Distar	nces from:	Oper	n Water Body	<u>> 100</u> fee	et	D	rainage W	/ay <u>> 50</u>	feet	We	tlands	<u>> 100</u> feet
			Property Line	<u>> 10</u> fee	t	Drinkin	g Water W	/ell <u>> 100</u>	feet	(Other	feet
4. Unsuita	able Materials	s Present: X] Yes 🗌 No	If Yes:	Disturbed S	Soil 🛛	Fill Material	ı _ ı	Weathered/Fra	ctured Rock	🗌 Bed	drock
5. Grour	ndwater Obse	erved: 🗌 Yes	s 🛛 No		If yes	s:	Depth Wee	ping from Pit	_	Depth S	standing W	/ater in Hole
						Soil Log	J					
	Soil Horizon	Soil Texture	Soil Matrix: Color-	Redo	ximorphic Fea	tures		Fragments Volume		Soil		•
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	(Moist)		Other
0-59	Fill											
		Coarse Sand										
59-120	C1	& Gravel	2.5 Y 5/4				> 10%		Single Grain	Loose	Caving	

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

	Deep (Observatior	h Hole Numb	Der: OSE-TP-2 Hole #	1/1 <u>5/2</u> Da		AM Time	20's C	lear ather	42 <u>d 21' 49"</u> Latitude		_ <u>71d 22'</u> 53" Longitude:
		Vac	ant Lot		Da		one	VVC6		Latitude		0-3%
1.	Land L	100		cultural field, va	cant lot, etc		getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	
	Descri	ption of Loca	ation:	Vacant Lot								
2.	Soil Pa	arent Materia	al: Proglad	cial Outwash				Outwash Plai	n		Bottom of slope, Position on Lands	flat area scape (SU, SH, BS, FS, TS)
3.	Distand	ces from:	Open Water	r Body <u>> 1</u>	<u>00</u> feet		Drain	nage Way <u>></u>	• 50 feet	Wetla	nds <u>> 100</u> fe	
I		s Present: [y Line <u>> 10</u> No lf Yes: s □ No			💢 Fill Mat		Weathered/	Ot Fractured Rock g from Pit		et Standing Water in Hole
							So	il Log				
	epth (in)	Soil Horizon		Soil Matrix:	Redo	kimorphic F	eatures		Fragments Volume	Soil Structure	Soil Consistence	Other
	-pui (iii)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
0-	59	Fill										
59	9-156	c1	Stratified Sand & Gravel	2.5 Y 5/4				> 5%		Single Grain	Loose	Caving

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Dee	p Observatio	on Hole Numl	ber: <u>OSE-T</u> P-3	1/15/2	019	PM		20's C	lear	42d 21' 4	.9"	71d 22' 53"
			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Vacant	Lot			None							0-3%
I. Lanu	03e (e.g., w	odland, agricultu	ural field, vacant lot, e	etc.)	Vegetation			Surface Stone	es (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
De	scription of Lo	ocation: <u>v</u>	acant Lot									
2. Soil I	Parent Materia	al: Proglacia	al Outwash			utwash Pla	in		om of slope, flat			
					Lai	ndform		Posi	tion on Landscap	be (SU, SH, BS,	, FS, TS)	
3. Dista	nces from:	Oper	n Water Body	> 100 fee	et	D	rainage W	'ay <u>> 50</u>	feet	We	etlands	<u>> 100</u> feet
		F	Property Line	<u>> 10</u> fee	et	Drinkin	g Water W	/ell <u>> 100</u>	feet	(Other	feet
4. Unsuit	able Material] Yes 🗌 No								🗌 Bed	rock
5 Grou	ndwater Obse		No		lf vor							
5. Giu								ping from Pit	-	Depth S	Standing W	ater in Hole
						Soil Log	J					
Danth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Rede	oximorphic Fea	tures		Fragments Volume	Soil Structure	Soil		Other
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	(Moist)		Other
0-72	Fill											
		Coarse Sand										
72-156	C1	& Gravel/ Medium Sand	2.5 Y 6/4				> 10		Single Grain	Loose	Caving	
		Wealdin Band										
	1	1									1	

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Dee	o Observatio	n Hole Numb	Der: OSE-TP-4 Hole #	1/1 <u>5/2</u> Da		PM Time	20's C Wea	lear ather	42 <u>d 21' 49"</u> Latitude		_ <u>71d 22'</u> 53" Longitude:
	Va	cant Lot			No	ne					0-3%
1. Land	I Use: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Veç	getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Des	cription of Loc	ation:	Vacant Lot								
2 Soil	Parent Materia	al· <u>Progla</u>	<u>cial Outwash</u>				Outwash Plair	n		Bottom of slope,	
							Landform				scape (SU, SH, BS, FS, TS)
3. Dista	ances from:	•	r Body <u>> 1</u>			Drair	nage Way <u>></u>	• <u>50</u> feet	Wetla	nds <u>> 100</u> fe	et
4. Unsui	able	Propert	ty Line ≥ 10	feet	[Drinking W	/ater Well	<u>> 100</u> feet	Ot	her fe	et
Mater	als Present:	X Yes 🗌 🛛	No If Yes:	🗌 Distu	rbed Soil	💢 Fill Mat	erial [Weathered/	Fractured Rock	Bedrock	
5. Grou	Indwater Obse	erved: 🛛 Ye	s 🗌 No			I	f yes:	_ Depth Weepin	g from Pit	<u>156"</u> Depth \$	Standing Water in Hole
						So	il Log				
Depth (ii	Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic Fe	atures		Fragments Volume	Soil Structure	Soil Consistence	Other
Deptil (il	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Son Structure	(Moist)	Other
0-60	Fill										
60-162	C1	Medium- Coarse Sand	2.5 Y 6/4				> 10%		Single Grain	Loose	Caving

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:		Obs. Hole # OSE-TP	-4 Obs. I	Hole # <u>OSE-</u> TP-2	
	X Depth observed standing water in observation I	hole	<u>156</u> inches	<u>150</u>	_inches	
	Depth weeping from side of observation hole		inches		inches	
	Depth to soil redoximorphic features (mottles)		inches		inches	
	 Depth to adjusted seasonal high groundwater ((USGS methodology) 	S _h)	inches		_inches	
	Index Well Number	Reading Date				
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$					
	Obs. Hole/Well# S _c	S _r	OW _c	OW _{max}	OW _r	S _h
2.	Estimated Depth to High Groundwater: inches	6				

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🕅 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude A and O	Upper boundary:	59	Lower boundary:	162
Ho	rizons)?		inches		inches
C.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	
			inches		inches

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

15.107 17 17 Jun TTE

Mayor Church 2	2/4/2019
Signature of Soil Evaluator	Date
Raymond Willis/SE 2612	6/30/2019
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joseph Cerutti, Tenzin Lama, Darren MacCaughey, Jullia Junghanns	MassDEP/Town of Wayland
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

Commonwealth of Massachusetts City/Town of Wayland **Percolation Test** Form 12

Percolation test results must be submitted with the Soil Suitability Assessment for On-site Sewage Disposal. DEP has provided this form for use by local Boards of Health. Other forms may be used, but the information must be substantially the same as that provided here. Before using this form, check with the local Board of Health to determine the form they use.

A. Site Information

Owner Name 484 Boston Post Road				
Street Address or Lot #				
Wayland		MA	01778	2
City/Town		State	Zip Coc	
Contact Person (if different from Owner)		Telephone Number		
. Test Results				
	1/15/2019	PM		
	Date	Time	Date	Time
Observation Hole #	OSE-TP-2			
Depth of Perc	61"-79"			
Start Pre-Soak	12:27 PM			
End Pre-Soak	12:42 PM			
Time at 12"	12:42 PM			
Time at 9"	12:44 PM			
Time at 6"	12:47 PM			
Time (9"-6")	3 minutes			
Rate (Min./Inch)	< 2 min/inch			
	Test Passed: Test Failed:	\square	Test Passed: Test Failed:	
Raymond Willis	root railod.		i oot i unou.	
Test Performed By:				
Joseph Cerutti, Tenzin Lama, Da	rren MacCaughe	v. Julia Junghanns	5	

Commonwealth of Massachusetts

City/Town of Wayland

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

A. Facility Information

	Town of Wayland			
	Owner Name			
	484 Boston Post Road		22-6	
	Street Address		Map/Lot #	
	Wayland	МА	01778	
		State	Zip Code	
B	Site Information			
1.	(Check one) X New Construction Upg	grade 🗌 Repair		
2.	Soil Survey Available? 🛛 Yes 🗌 No	If yes:	Mass	GIS
		y	Source	e Soil Map Unit
	Udorthents	N/A		
	Soil Name	Soil Limitations		
	Proglacial Outwash	Outwash Plain		
	Soil Parent material	Landform		
3.	Surficial Geological Report Available? 🗌 Yes 🏹 No	If yes:		
	·	Year Published	d/Source Map Uni	t
	Description of Geologic Map Unit:			
4.	Flood Rate Insurance Map Within a regulator	y floodway? 🗌 Yes 🕅 N	0	
5.	Within a velocity zone? Yes X No			
6.	Within a Mapped Wetland Area?	No If yes, Mass	sGIS Wetland Data Layer:	
-				
1.	Current Water Resource Conditions (USGS):	May 2019 Month/Day/ Year	Range: 🛛 Above Norm	al 🗌 Normal 🔲 Below Normal
8.		wonth Day I cal		
υ.				

Commonwealth of Massachusetts City/Town of Wayland

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deej	p Observatio	n Hole Numl	ber: <u>OSE-T</u> P-5	5/17/2	019	AM		50's R	ain	42d 21' 49)"	<u>71d 22'</u> 53"
			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use <u>Vacant</u>	Lot			Light Underbru	sh						3-8%
	(e.g., wo	odland, agricultu	ural field, vacant lot, e	tc.)	Vegetation			Surface Stone	s (e.g., cobbles,	stones, boulder	rs, etc.)	Slope (%)
Des	scription of Lo	ocation: <u>v</u>	acant Lot									
2. Soil P	arent Materia	al: Proglacia	al Outwash		0	utwash Pla	in	From	nt of site near ac	cess drive		
					Lar	ndform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Distar	nces from:	Oper	n Water Body	<u>> 100</u> fee	et	D	rainage W	/ay <u>> 50</u>	feet	We	tlands	<u>> 100</u> feet
		I	Property Line	<u>> 10</u> fee	et	Drinkin	g Water W	/ell <u>> 100</u>	feet	(Other	feet
4. Unsuita	able Materials	s Present: X] Yes 🗌 No	If Yes: [Disturbed S	ioil 🛛	Fill Material	I 🗆 '	Neathered/Fra	ctured Rock	🗌 Bed	Irock
5. Grour	ndwater Obse	erved: 🗌 Yes	No		If yes		Depth Wee	ping from Pit	_	Depth S	itanding W	ater in Hole
						Soil Log	•					
Donth (in)	Soil Horizon	Soil Texture	Soil Matrix: Color-	Red	oximorphic Fea	tures		Fragments Volume	Soil Structure	Soil		Other
Depth (in)	/Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	(Moist)		Other
0-48	Fill											
48-96	C1	Sand	2.5 Y 6/3				< 10%		Single Grain	Loose	Caving	
96-158	C2	Sand	2.5 Y 6/6						Single Grain	Loose	Caving	

Additional Notes:

Commonwealth of Massachusetts City/Town of Wayland

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatio	n Hole Numb	Der: OSE-TP-5 Hole #	÷	ate	AM Time	We	Rain ather	4 <u>2d 21' 49"</u> Latitude		<u>71d 22'</u> 53" Longitude:
1. Land		cant Lot			Lię	ght Underbrus	sh				3-5%
I. Lanu	0se. (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Ve	getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Desc	ription of Loca	ation:	Vacant Lot								
2 Soil F	Parent Materia	Progla	<u>cial Outwash</u>				Outwash Plai	n		Front of site nea	
2. 0011	arent materia	ai.					Landform			Position on Land	scape (SU, SH, BS, FS, TS)
3. Dista	nces from:	Open Wate	r Body <u>> 1</u>	<u>00</u> feet		Drair	nage Way 😕	<u>50</u> feet	Wetla	inds <u>> 100</u> fe	eet
		Propert	ty Line > 10	feet		Drinking W	/ater Well	<u>> 100</u> feet	Ot	her fe	et
4. Unsuita				_		_	_	_		_	
	als Present: [Distu	rbed Soil	Fill Mat	erial [Weathered/	Fractured Rock	Bedrock	
5. Grou	ndwater Obse	erved: 🗌 Ye	s 🛛 No			l	lf yes:	_ Depth Weepin	g from Pit	Depth 3	Standing Water in Hole
						So	oil Log				
Depth (in	Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic Fe	eatures		Fragments Volume	Soil Structure	Soil Consistence	Other
Depth (III	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soli Structure	(Moist)	Other
0-9	Ар										
9-120	C1	Sand	2.5 Y 6/3				< 10%		Single Grain	Loose	Caving

Additional Notes:

Commonwealth of Massachusetts City/Town of Wayland

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Deep Observation Hole Number: OSE-TP-6 Hole # 5/17/2019 AM 50's Rain 42d 21 49 71d 22' 53" Longitude: 1. Land Use Vacant Lot (e.g., woodland, agricultural field, vacant lot, etc.) Light Underbrush Vegetation Weather 42d 21 49 71d 22' 53" Longitude: 0-3% Description of Location: Vacant Lot Vegetation Surface Stones (e.g., cobbles, stones, boulders, etc.) 0-3%
1. Land Use (e.g., woodland, agricultural field, vacant lot, etc.) Vegetation Surface Stones (e.g., cobbles, stones, boulders, etc.) Slope (%) Description of Location: Vacant Lot Vacant Lot Vegetation Vegetation
Description of Location: <u>Vacant Lot</u>
0. Or il Devent Mathematical Outbreach
2. Soil Parent Material: Proglacial Outwash Outwash Plain Front of site along access drive
Landform Position on Landscape (SU, SH, BS, FS, TS)
3. Distances from: Open Water Body > 100 feet Drainage Way > 50 feet Wetlands > 100 feet
Property Line <u>> 10</u> feet Drinking Water Well <u>> 100</u> feet Other feet
4. Unsuitable Materials Present: 🛛 Yes 🗌 No If Yes: 🗋 Disturbed Soil 🖾 Fill Material 🗌 Weathered/Fractured Rock 🗌 Bedrock
5. Groundwater Observed: Yes X No If yes: Depth Weeping from Pit Depth Standing Water in Hole
Soil Log
Depth (in) Soil Horizon (USDA Soil Matrix: Color-Maintein Maintein
Depth (in) Soil Honzon Soil Honzon Soil Matrix. Color /Layer (USDA Moist (Munsell) Depth Color Percent Gravel Cobbles & Stones Soil Structure Consistence (Moist)
0-144 Fill
144-216 C1 Medium Sand 2.5 Y 6/6 <10% Single Grain Loose Caving

Additional Notes:

Commonwealth of Massachusetts City/Town of Wayland

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:		Obs. Hole #	Obs.	Hole #	
	Depth observed standing water in observati	on hole	inches		inches	
	Depth weeping from side of observation hol	9	inches		inches	
	Depth to soil redoximorphic features (mottle	es)	inches		inches	
	 Depth to adjusted seasonal high groundwat (USGS methodology) 	er (S _h)	inches		inches	
	Index Well Number	Reading Date				
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$					
	Obs. Hole/Well# S _c	S _r	OW _c	OW _{max}	OW _r	S _h
2. E	stimated Depth to High Groundwater: > 216 inc	hes				

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

🗶 Yes 🗌 No	Depth of material varies	s by hole, greater than 48 inches w	vas observed in each test pit.
b. If yes, at what depth was it observed (exclude A and O Horizons)?	TP 6 Upper boundary:	144 Lower boundary:	216 inches
c. If no, at what depth was impervious material observed?	Upper boundary:	Lower boundary:	inches

Commonwealth of Massachusetts ² City/Town of Wayland

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

15.107 17 17 Jun TE

Royal Courses	5/20/2019
Signature of Soil Evaluator	Date
Raymond Willis/SE 2612	6/30/2019
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Joseph Cerutti, Tenzin Lama, Jullia Junghanns	MassDEP/Town of Wayland
Name of Approving Authority Witness	Approving Authority

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:

Important: When

filling out forms on the computer, use only the tab key to move your cursor - do not use the return

key.

Commonwealth of Massachusetts City/Town of Wayland **Percolation Test** Form 12

Percolation test results must be submitted with the Soil Suitability Assessment for On-site Sewage Disposal. DEP has provided this form for use by local Boards of Health. Other forms may be used, but the information must be substantially the same as that provided here. Before using this form, check with the local Board of Health to determine the form they use.

A. Site Information

484 Boston Post Road Street Address or Lot #				
Wayland		МА	01778	2
City/Town		State	Zip Coo	
Contact Person (if different from Owner)		Telephone Number		
Test Results				
	5/17/2019	PM		
	Date	Time	Date	Time
Observation Hole #	OSE-TP-5P			
Depth of Perc	32"-50"			
Start Pre-Soak				
End Pre-Soak				
Time at 12"				
Time at 9"				
Time at 6"				
Time (9"-6")				
Rate (Min./Inch)	< 2 min/inch			
	Test Passed: Test Failed:		Test Passed: Test Failed:	
Raymond Willis Test Performed By:				
	ia lunghanna			
Joseph Cerutti, Tenzin Lama, Jul Board of Health Witness	ia Juliyilalilis			

Enclosure 3 - Environmental Drilling Logs

Pro	ject		er's					n Post Ro	oad, Wayland, MA 01778						991		02			
Clie	ent htracto				isitior			ONTRAC				neet art			of 16 A		20	19		
COI	macic										- Fi	nisł	ı		16 A					
				Casi	ng S	Samp	bler	Barrel	C	t and Procedures		iller			Cro					
Тур	е			ΗV	/	S			Rig Make & Model: Mol Bit Type: Roller Bit	oile Drill B53, ATV			Rep atior			Sh				_
		meter	` ´	4		1 3/			Drill Mud: None			atur		I		31.5 AVE		5		
		Neight		300		14(-	Casing: HW Drive to 29 Hoist/Hammer: Cat-Hea		Lo	ocat	tion	S	See	Pla	n			
Han		Fall (in	.)	24		30		-	PID Make & Model: NA							1				_
(L	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	ele €	Well Diagram	Stratum Change	th (ft	Symbol	VI	SUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION		avel		San E	1	-		ield ss		Ι
Depth (ft)	oler E er 6 i	aldr ec.	Sample	Diag	tratu	Dep	s sy	(Dens	sity/consistency, color, GROL structure, odor, moisture,		oarse	ne	% Coarse	% Medium	ne	nes	Dilatancy	Toughness	ticity	•
De	Samp	& R	Ϋ́ς	Vell N	00	Elev	nscs		GEOLOGIC INTER		% Coarse	% Fine	Ŭ %	W %	% Fine	% Fines	Dilat	Touç	Plasticity	
- 0 -	88 15 12	S1 13	0.0 2.0	Δ	۵ ۵		SM		dense dark gray brown silty S tructure, no odor, moist	AND with gravel (SM), mps 2.		-	+	20	35					Ŧ
	30 50 54	S2	4.0	0 0	949.09.09.00.00.00.00		SM	Similar to	o above except very dense		5	10	15	20	35	15				
- 5 -	54 54 46	19	6.0	- <u>-</u> 0 01	- <u>0</u> 07															
									-FILL-											
					123	.5 _		Note: Diff	ficult to determine top of natu	ral soils									 	
	11 12	S3 6	9.0	- T - T - F			sw		dense brown well graded SA coarse gravel lodged in spoo	ND (SW), mps 3.4 cm., a single	e 5		35	30	30					
- 10 –	13	0	11.(piece or c		r up										
	24	S4	14.0				SW	Medium o	dense olive brown well grade	d SAND with gravel (SW), mps	5	15	25	30	25					
- 15 -	11 7 6	8	16.0	1. I. I.					single grain structure, no odc											
									-GLACIOFLUVIAL	DEPOSITS-										
	8 7	S5 1	19.0 21.0					Medium o	dense, a single piece of coar	se gravel	100	D								
- 20 -		-		_evel	Data				Sample ID	Well Diagram		<u>ا</u>	⊥ Sun	⊥ nma	arv	I			=	1
П	ate	Time	Ela	apsed			n (ft) i Bettern		O - Open End Rod	Riser Pipe	/erbur				-	31.5	5			
			Tim	e (hr.) Botto of Cas		Bottom of Hole		T - Thin Wall Tube	Filter Sand Ro	ock Co	orec) (f	t)		-				
4/16	/2019	1123		0.1	24.	ן נ	26.0	15.0	U - Undisturbed Sample S - Split Spoon Sample	ণ প প Cuttings Sa	mples	S		S	67					
											oring	N	о.		HA	\19	-1(٥V	/)	
Field	d Tests	•	1	Dila	atancy:	R - F	Rapid	S - Slow	N - None Plasti	city: N - Nonplastic L - Low M rength: N - None L - Low M -	- Medi	um	н-	Hig	h					-

н	IÀLE	RIC				-	TEST BORING REPORT		Bor i	-				19	-1(C)W)	
			H		1			5	Shee	et N	0.	2	of	2			
(#)	slows n.	No. (in.)	(ft)	gram	не Ц	loqu	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel		San F				ield ഗ്ല		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)		Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Mediur	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
-	4 2						-GLACIOFLUVIAL DEPOSITS-										
- - - 25 - -	12 4 2 1	S6 6	24.0 26.0		107.5 24.0	- <u>G</u> W	Note: Massive water loss at 24 ft No recovery 1st attempt. Recovered 6 in. of soil using 3 in. diameter split spoon at same interval, mps 7 cm., loose well graded GRAVEL with sand	40	40	20							
-					104.5 27.0		Note: 6 in. cobble at 29 ft	+-									
							-GLACIOFLUVIAL DEPOSITS-										
- 30 -	9 7 12 13	S7 12	29.5 31.5			SP	Medium dense olive brown poorly graded SAND (SP), mps 4 mm., stratified, no odor, wet			5	20	70	5				
					100.0 31.5		-BOTTOM OF EXPLORATION AT 31.5-										
	NOTE:	Soil id	lentifica	tion b	ased on ¹	visual-r	nanual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No	•	H	A19	-1(0	W)	

H&A-TEST BORING-09 HA-LIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:/128915 - 484 BOS POST RD/GINT/129915-002-TBOW.GPJ 23 Apr 19

ALDRICH	G			OBSER TION RE	ATION WELL	Well No.	HA19-1(OW)
Client WP East Contractor NEW	Boston Pos t Aquisition, ENGLAND	st Road, Wayland, LLC BORING CONTR			Well Diagram Riser Pipe Screen Filter Sand Cuttings Grout 	File No. 1299 Date Installed H&A Rep. S. Location See	16 Apr 2019 Shay
Driller B. Cro					Concrete Bentonite Sea	-	131.5
Initial Water Level) 15.0	ft T		Dentonite Sea	I Datum NAVI	D 88
SOIL/RC		WELL DETAILS	DEPTH (ft.)	ELEVATION (ft.)	WELL CONSTR	UCTION DE	ETAILS
					Type of protective cover	Pa	dlock #3376
0			0.0	131.5	Height of Steel Guard Pipe a	bove ground surf	ace 3.3 ft
0				130.5	Height of top of riser above (ground surface	3.0 ft
		0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	o. o.		Type of protective casing	Stee	I Guard Pipe
FILL		۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰ ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰ ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰۰، ۲۰۰	ė. . c		Length		5.0 ft
5			6.0	125.5	Inside diameter		4.0 in.
			8.0	123.5	Depth of bottom of Steel	Guard Pipe	1.7 ft
	8.0		0.0	120.0	Type of riser pipe	Scheo	dule 40 PVC
10					Inside diameter of riser p	ipe	2.0 in
					Depth of bottom of riser p	oipe	9.7 ft
					Type of Seals Top o	<u>f Seal (ft)</u> <u>TI</u>	hickness (ft)
					Concrete 0	0.0	1.0
15					Bentonite 6	<u>.0 </u>	2.0
						<u> </u>	-
							-
					Diameter of borehole		4.5 in
20					Depth to top of well screen		9.7 ft
					Type of screen	Machine s	slotted Sch 40 PVC
					Screen gauge or size of	openings	0.010 in
25			24.7	106.8	Diameter of screen		2.0 in.
					Type of Backfill around S	creen	Filter Sand
					Depth to bottom of well s	creen	24.7 ft
GLACIOFLUVIA					Bottom of silt trap		N/A
30 GLACIOFLUVIA DEPOSITS	\L				Depth of bottom of well		24.7 ft
			-1 -	1			

HZ		RIC	н			٦	EST BORING REPORT			Во	rin	g١	No.	HA	19-	13(ow
Proje Clien Cont		WF	P East	Aqu	isition, L	LC	Post Road, Wayland, MA 01778 NTRACTORS		Sł St	neet art	No	o. 1		3 pril	2019		
				Casir	ng Sar	mpler	Barrel Drilling Equipment an	d Procedures		nish iller			9 A Cros		2019	9	
Туре				нw	<u> </u>	s	Rig Make & Model: Mobile D	Drill B53, Track	-	SA I				Sh	ay		
		neter ((in.)	4		3/8	Bit Type: Roller Bit Drill Mud: None			eva		ı		4.1			
		Veight	` ´	300		40	Casing: HW Drive to 49.0 ft			atun ocat		9	N/ ee) 88 7		
		all (in	.)	24		30	Hoist/Hammer: Cat-Head S PID Make & Model: NA	Safety Hammer		Joan	.011	U					
(tt)	lows	No.	e (‡	ram	e e f(f)	Symbol	VISUAL-MANUAL IDENTIFICATION	AND DESCRIPTION	-	avel	-	San	d			eld T ∞∣	est
Depth (ft)	r 6 ir	ple ec. (Sample Depth (ft)	Diag	Deptl	syr	(Density/consistency, color, GROUP NA		arse	e	arse	diun	e	les	ancy	nnes	city
Del	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sa Del	Well Diagram	Stratum Change Elev/Depth (ft)	nscs	structure, odor, moisture, option GEOLOGIC INTERPRE		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0	2 5 5 4	S1 6	0.0 2.0		4	SP- SM	oose dark brown poorly graded SAND wit nps 3 cm., no structure, no odor, moist	h silt and gravel (SP-SM),	5				35	10			_
5 -	10 10 4 15	S2 8	4.0 6.0	-	131.1 3.0	SM	Medium dense dark brown to black silty SA .5 cm., no structure, no odor, wet from dri sphalt coarse sand sized	S	5	10	15	15	40	15			
					126.6		-FILL-										
- 10	53 78 40	S3 16	9.0 10.5	71111111111111111111111111111111111111	7.5	SP- SM	Very dense dark brown to black poorly graded SAND with silt and gravel (SP-SM), mps 2.8 cm., friable top 8 in., no odor, wet Note: Extra jar sample collected				20	25	30	10		_	
					121.1		lote: Wash water color change at 13.0 ft.										
15 -	22 24 15	S4 12	14.0 16.0			SP	ense olive brown poorly graded SAND (S tratified, no odor, moist, 10-15% orange b		5	5	20	30	40				
	11						-GLACIOFLUVIAL DEF	POSITS-									
20	11 11	S5 9	19.0 21.0			SP	1edium dense olive brown poorly graded S /eakly stratified, no odor, wet	SAND (SP), mps 3 cm.,	5	5	15	15	55	5			
	1	Wa	ater Le			th (ft)	Sample ID	Well Diagram		S	Sun	nma	iry				
Dat	te	Time	Elap	sed (hr.)	Bottom	oth (ft) Botton		Screen Ove			``	,	ł	51.0)		
4/9/2	010	1400		· ·	of Casing		U - Undisturbed Sample	Filter Sand Roc			l (fl	:) S'	11	-			
4/9/20 071		1400 0710		.1 6	49.0 49.0	51.0 51.0	15.0 S - Split Spoon Sample 17.5	Grout Concrete Bor	•) .			19-	13(OW)
Field [·]	Tests	:						Bentonite Seal N - Nonplastic L - Low M -	Medi	um	н-						
			particle	Tou	ghness:	L - Low	- Medium H - High Dry Streng d by direct observation within the limitati	th: N - None L - Low M - M ons of sampler size	ediur	n H	<u> - H</u>	igh	V - '	Very	High		

Н	Ά-F	RIC	u			-	TEST BORING REPORT		Bor	-			HA		13(0	OW)	
			Η					S	She	et N	lo.	2	of	3			
(H	lows.	No.)	e (III)	Jram	h (ft)	lodr	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	avel	-	San				ŝ	Test	_
_	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 20 -	11 12																
- - 25	18 34 25 16	S6 3	24.0 26.0		110.6 23.5	GP	Very dense brown poorly graded GRAVEL with sand (GP), mps 3 cm., no structure, no odor, wet Note: Low recovery, difficult to fully characterize	15	50	10	10	15					
-	16 13	S7 6	29.0 31.0			SW	Note: Common gravel 30 ft indicated by drilling effort Medium dense brown well graded SAND with gravel (SW), mps 3 cm., single grain structure, no odor, wet	10	30	20	20	20					
- 30 -	12				101.6 32.5		-GLACIOFLUVIAL DEPOSITS-			-							
- 35 -	16 19 27 19	S8 4	34.0 36.0			GW	Dense multicolored from various well graded GRAVEL (GW), mps 3 cm., no structure, no odor, wet, trace orange brown coloring in soil present, low recovery -GLACIOFLUVIAL DEPOSITS-	50	40	10							
- - 40	15 13 13 13	S9 12	39.0 41.0		96.6 37.5	SP	Medium dense gray poorly graded SAND (SP), mps 3 mm., stratified, single grain structure, no odor, wet			5	20	70	5				
-							Note: Borehole collapsed at 42.0 ft										
- 45 -	7 9 26	S10 8	44.0 46.0	-		SP	Similar to above, except dense				20	75	5				
-	11			-			-GLACIOFLUVIAL DEPOSITS-										
-	9	S11	49.0	-		SP	Similar to above, medium dense				5	90	5				
_	NOTE:	Soil id	entifica	tion b	ased on	visual-r	nanual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No	•	H/	\19- ′	13(C	W)	

H&A-TEST BORING-09 HA-LIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:/128915 - 484 BOS POST RD/GINT/129915-002-TBOW.GPJ 23 Apr 19

ŀ			H				TEST BORING REPORT	F	ile	No.	Nc 1 Io.	299	HA 15-0 of)02	13(0	SW)
	ws.	o`∵		m	(ft)	loc	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra		-	San	d			ield	Tes	;t
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 50 -	11 12 14	13	51.0														
	NOTE	Soil id	lentifica	tion b	83.1 51.0	visual-r	-BOTTOM OF EXPLORATION AT 51.0 FT-	В	ori	ng	Νο		HA	119-	13(0	(///	

HALEY ALDRICH	ROUNDWATER INSTALLA		Woll No.	HA19-13(OW)
ProjectRiver's EdgeLocation484-490 Boston PoClientWP East AquisitionContractorNEW ENGLANDDrillerB. CrossInitial Water Level (depth bgs	, LLC BORING CONTRACTOR		Well Diagram File No. 12991 Image: Riser Pipe Date Installed Image: Screen H&A Rep. S. Streen Image: Filter Sand Location See Image: Grout Grout Image: Grout Ground El. 10 Image: Grout Ground El. 10 Image: Grout Ground El. 10 Image: Grout Datum NAVD	9 Apr 2019 Shay Plan 134.1
	WELL DETAILS (±) DETAILS	ELEVATION (ft.)	WELL CONSTRUCTION DE	TAILS
-0	0.0 ^a . ^a _n ^b . ^a _n 1.0	<u>134.1</u> <u>133.1</u>	Type of protective coverf Height of Steel above ground surface Height of top of riser above ground surface Type of protective casing	Padlock 3.2 ft 2.7 ft Steel
-5 	<u>8.5</u>	125.6 123.1	Length Inside diameter Depth of bottom of Steel	5.0 ft 4.0 in. 1.8 ft
-15 -20 -25	27.0	107.1	Inside diameter of riser pipe Depth of bottom of riser pipe	ule 40 PVC
-30 -35			Screen gauge or size of openings	 4.5 in. 12.0 ft lotted Sch 40 PVC 0.010 in.
40 -40 -40 -45 GLACIOFLUVIAL DEPOSITS -50 -50 -51.0	42.0	92.1	Diameter of screen Type of Backfill around Screen Depth to bottom of well screen Bottom of silt trap Depth of bottom of well Depth of bottom of borehole	2.0 in. Filter Sand 27.0 ft N/A 27.0 ft 51.0 ft


HALE	PRIC	н			٦	EST BORING REPORT			Bo	rin	g١	lo.H	A1	9-14	4(O	W
Project Client Contracto	WF	P East	Aquis	sition, L	LC	n Post Road, Wayland, MA 01778 ONTRACTORS		Sł St	neet art	No	• 1 1	9915- of 2 5 Ap 5 Ap	<u>2</u> ril 2	019		
		0	Casin	g San	npler	Barrel Drilling Equipment and Proc	edures		nish iller			Cross		019		
Туре			HW		S	Rig Make & Model: Mobile Drill B53	3, ATV		SA F			S. S		/		
Inside Dia	meter	(in.)	4		3/8	Bit Type: Roller Bit			eva		I	138				
Hammer \		` '	300		40	 Drill Mud: None Casing: HW Drive to 24.0 ft 			atun ocati		6	NA\ ee Pl		38		
Hammer	Fall (in	.)	24		30	Hoist/Hammer: Cat-Head Safety H	lammer		Joan		0	6611	an			
ft) lows	, Č	e (‡	ram	n e r	Symbol	VISUAL-MANUAL IDENTIFICATION AND D	ESCRIPTION	-	avel	-	Sano	ł		Field		st
Depth (ft) Sampler Blows	Sample No. & Rec. (in.)	Sample Depth (ft)	Well Diagram	Stratum Change Elev/Depth (ft)	USCS Syr	(Density/consistency, color, GROUP NAME, ma structure, odor, moisture, optional desc GEOLOGIC INTERPRETATION	criptions	% Coarse	% Fine	% Coarse	% Medium	% Fine		Toughness	Plasticity	
0						-ASPHALT-		•		0	0				-	f
4	S1	0.5	o. • • • •	138.5 0.4 137.9 137.4 1.5	SP	0.4-1.0 - Dark brown sandy GRAVEL road base							T	Ţ.		L
89	14	2.5	÷- ₽ 0, -0 ÷- 0 0, -0 •- 0	137:4 1.5	SP 	1.0-1.5 - 100% fill SAND layer		 -	┣-	<u>-</u>		-+	+	+-	+-	╀
7			- <u>-</u>		SP	Medium dense olive brown poorly graded SAND (SP), mps 1 cm, no		10	15	15	60				
				135.9 3.0		structure, no odor, wet FILL-	/						+		-	╞
11 17 5 - 12	S2 9	4.0 6.0	ۥ ؞؞ٷ؞ؚ؞؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋؋ ؆ۺٷ <u>؞؋؋؋؋؋؋</u> ؋؋؋؋؋؋؋؋؋؋؋؋؋؋	0.0	SP	Medium dense olive brown poorly graded SAND (single piece of coarse gravel, single grain structure		5		10	25	60				
5 7 10 - 5	S3 8	9.0 11.0	<u>ڡؖڹ؈ڟؚؖۦ؈ؚڡڹ؈؆؈؈ڡڡ</u> ٵڡ؈ڗٷۯڹؿڝ؋ڽ؞ٷؚ ڡڹ؈ڟؚۦڡۅؽڹ؋؆ؚؿٷ؉؈ڡڟٵ؋؆ڗٷۯڹؿڝ؋ؽٷ؇ؚ	131.4 7.5		Medium dense olive brown well graded SAND (SV single grain structure, no odor, wet from drilling	V), mps 4 mm.,			30	35	35				
0 - 5 10																
8 9	S4 10	14.0 16.0			SW	Similar to above, mps 2.8 cm., a single piece of co	oarse gravel			30	35	35				
15-9 13		10.0														
						-GLACIOFLUVIAL DEPOSITS	-									
12 11 20	S5 10	19.0 21.0			sw	Similar to above, mps 1 cm., a single piece of fine					35					
	Wa	ater Le			th (ft)		Diagram Riser Pipe				ima	-				
Date	Time	Elap Time	(hr)	Bottom	oth (ft) i Bottom	Water T - Thin Wall Tube S	creen Over			`	,	36	6.0			
4/16/2019	0653		<u>```</u> (c	f Casing	of Hole		ilter Sand Rock			(ft) S	8	-			
TI IUIZU IY		*Read	in com	pleted v	vell	S - Split Spoon Sample وَعَنْ مُعَالَمُ اللَّهُ اللَّ	Brout Concrete Bentonite Seal) .		。 1A19	9-1 [,]	4(0	W)	
Field Tests	: ;	1	Dilata	ancy: R	- Rapid	S - Slow N - None Plasticity: N - Nor	nplastic L - Low M - N	1edi	um	Н-	High	1		lia-		-
						M - Medium H - High Dry Strength: N - I ned by direct observation within the limitations of s	None L-Low M-Me	ulur	n H	- HI	gn	v - Ve	ry ⊢	ngn		_

H&A-TEST BORING-09 HA-LIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G://29915 - 484 BOS POST RD/GINT/129915-002-TBOW.GPJ 23 Apr 19

Н	<u>ALE</u>	RIC				-	TEST BORING REPORT		Bori	-			HA 15-0		14(0	w)
			H					S	shee	et N	0.	2	of	2			
(ft)	3lows n.	No. (in.)	le (ft)	gram	т Даран Ц	loqu	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel		San E	-			ield ගූ		
Depth (ft)	Sampler Blows ber 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)		Stratum Change Elev/Depth (ft)	USCS Symbol	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
25 -	12 10 11 13 15	S6 2	24.0 26.0			sw	Similar to above, mps 3.2 cm., as coarse gravel lodged in spoon tip, poor recovery -GLACIOFLUVIAL DEPOSITS-	50				50					
30 -	14 12 12 11	S7 6	29.0 31.0		106.4	SW	Medium dense olive brown well graded SAND (SW), mps 3.2 cm., single grain structure, no odor, wet	5		30	35	30					
- 35 -	13 18 18 24	S8 18	34.0 36.0				Dense olive brown poorly graded SAND (SP), mps 2.8 cm., single grain structure with interbedded silty fine sand lenses and occasional well defined gray clay seams, no odor, wet	5	5	20	30	35	5				
					102.9		-BOTTOM OF EXPLORATION AT 36.0 FT-										
	NOTE	Soil id	lentifica	tion b		visual -	nanual methods of the USCS as practiced by Haley & Aldrich, Inc.	R	ori		No		HA	\ 19-	14(0	OW)	

H&A-TEST BORING-09 HA-LIB09-BOS.GLB HA-TB+CORE+WELL-07-1.GDT G:/128915 - 484 BOS POST RD/GINT/129915-002-TBOW.GPJ 23 Apr 19

HALE	RICH	G	GRC				RVATION WELL	Vell No. HA19-14(OW)
Client Contract	WP East A or NEW E	Aquisitior	n, LLC	oad, Wayland, M C RING CONTRA			Riser Pipe Dat	e No. 129915-002 te Installed 15 Apr 2019 A Rep. S. Shay tation See Plan
Driller	B. Cros		c)	* ft				ound El. 138.9 tum NAVD 88
	SOIL/RO		s)			7		
	DITIONS	DEPTH (ft.)	GRAPHIC	WELL DETAILS	DEPTH (ft.)	ELEVATION (ft.)	WELL CONSTRUCT	ION DETAILS
							Type of protective cover	Compression - pent. bolt
					0.0	138.9	Depth of Roadway Box below grour	nd surface 0.0 ft
-0	ASPHALT	0.4	i,	Λ 4 Λ Δ ο α θ α θ α α α υ το φ α α α α α υ το φ α α α α α α α α α α α α α α α α α α	0.5	_138.4_	Height of top of riser above ground	
	FILL	— 3.0		'qlo' 'qlo' ?lo' ?lo' lo' ?lo' lo' lo' lo			Type of protective casing	Roadway Box
-5				- 0, - , d a g 10, d 10, - , d a g 10, d a g 1			Length	0.9 ft
5				۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰ ۵.۵۰۰،۰۰۰،۰۰۰ ۵.۵۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰ ۵.۵۰۰،۰۰۰،۰۰۰،۰۰۰،۰۰۰			Inside diameter	6.0 in.
				10 (0 10 (0 01 0:0 01 0:0 02 0:0 01 0:0 03 0:0 01 0:0 04 0:0 01 0:0 05 0:0 01 0:0			Depth of bottom of Roadway Bo	ox0.9 ft
- -10			Ĩ	ବିର୍ବିଣ ବିର୍ବିଣ ଗୁରୁସ୍ପ ଗୁରୁସ୍ପ ଗୁରୁସ୍ପ ଗୁରୁସ୍ପ			Type of riser pipe	Schedule 40 PVC
				· · · · · · · · · · · · · · · · · · ·	12.5	126.4	Inside diameter of riser pipe	2.0 in
-					14.0	124.9	Depth of bottom of riser pipe	20.0 ft
- -15					11.0	121.0	Type of Seals Top of Seal	(ft) Thickness (ft)
							Concrete 0.0	0.5
					17.5	121.4	Bentonite 14.0	3.5
~~								
-20			-				Diameter of borehole	4.5 in.
							Depth to top of well screen	20.0 ft
-25							Type of screen	Machine slotted Sch 40 PVC
			•				Screen gauge or size of openin	gs0.010 in
							Diameter of screen	2.0 in
-30							Type of Backfill around Screen	Filter Sand
							Depth to bottom of well screen	20.0 ft
							Bottom of silt trap	N/A
					35.0	103.9	Depth of bottom of well	35.0 ft
-35 GL	ACIOFLUVIAL DEPOSITS				36.0	103.9	Depth of bottom of borehole	36.0 ft
СОММ								30.0 II

SOIL BORI	NG/MONITORING W	ELL CONSTRUCTION L	OGS	\/_1	01(M	۱۸/۱	
Project: <u>Rive</u>	rs Edge Wayland	City: Wayland	State: MA			vv)	
BOF	RING INFORMATION	WELL CONST	RUCTION DETAILS	Y			V ®
Start Date:	03/26/2019	Well Depth (ft):	0.0	_			
Completion Date	03/26/2019	Boring Depth (ft): 2	0.0				
Personnel:	Kristen Sarson	Well Diameter (in): <u>2</u>	00				
Drilling Co.:	Geosearch	Screen Length (ft): <u>'1</u>	0-20	_			
Method:	Geoprobe		010				
			oadbox		LOC	ATION	
Refusal (Y/N):	N	Casing Diameter (in): 2	0	Lat	: 42.3	3640	
NOTES 1. Soil are visually clas	sified in general accordance with the M	Addified Burmister Soil Classification System		Lor	ng: <u>-71</u> .	3811	
2. The soil was screen	ed in the field using an photoionizatior	detector (PID) with a 10.6 electron volt lamp ca		у то	C (ft):		
	lene standard to report total organic ve omv, <1 readings are indicative of read	platiles (TOVs) as isobutylene equivalents with a ings of 0.1 ppmv TVOCs or less.	a response factor of 1. The PID has	GS	Elev (ft):		
				_			
(ii) (c	H			5			- -
Depth (ft) enetration (in Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4) Strata		Soil	Well Construction	Moisture	5	PID (ppm)
Depth (ft) enetration tecovere in/sleeve	low Cou (6 in) (1,2,3,4) Strata	Des	cription	Well	Nois	Odor	DI (
Depth (ft) Penetration (in) Recovered (in/sleeve in)				Cor	~		
50	Sand and Silt	Dark brown and black fine SAND an	d SILT. some medium to	0 feet	Dry		0.1
		coarse sand and f-c gravel, trace de	bris (brick, concrete).				
	Coarse to Fin	e Tan f-c SAND.			🐮 Damp	-	
	Sand						
5-32		Tan f-c SAND, some f-c gravel, trace	e silt.		Damp		0.1
10-29		Tan f-c SAND, some f-c gravel.	•		Damp	-	0.1
		Ton fo SAND, some fo group			Wet	-	
15 46		Tan f-c SAND, some f-c gravel. Tan f-c SAND, some f-c gravel, trace	e silt.	- 🗏	Wet		0.0
20							
						05/50/202	10

Page 1 of 1

SOIL BORI	NG/MONIT	FORING WE	LL CONSTRUCTION	N LOGS	V	_1()2(M	۱۸/۱	
Project: <u>Rive</u>	rs Edge Wa	yland	City: <u>Wayland</u>	State: MA	V	- 10	שברואו	vv)	
BOF	RING INFOR	RMATION	WELL CON	ISTRUCTION DETAILS					V [®]
Start Date:	03/26/2019		Well Depth (ft):	20.0					
Completion Date:	03/26/2019		Boring Depth (ft):	20.0					
Personnel:	Kristen Sarso	on	Well Diameter (in):	2.00					
Drilling Co.:	Geosearch		Screen Length (ft):	'10-20					
Method:	Geoprobe		Slot Size (in):	0.010					
	N		Completion Type:	Roadbox			LOC	ATION	
Refusal (Y/N):			—— Casing Diameter (in): <u>2.0</u>		Lat:	<u>42.3</u>	642	
NOTES	sified in general acc	cordance with the Modi	ified Burmister Soil Classification Syste	em		Long:	-71.	3824	
2. The soil was screene	ed in the field using	an photoionization det	ector (PID) with a 10.6 electron volt la	mp calibrated to a 100 parts per million I		тос	(ft):		
			les (TOVs) as isobutylene equivalents s of 0.1 ppmv TVOCs or less.	with a response factor of 1. The PID has	за	GS E			
			1						
(ii) (c	ŧ					Ę			e
Depth (ft) enetration (in Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	27		Soil	=	Construction	Moisture	5	PID (ppm)
Depth (ft) enetration tecovere in/sleeve	low Cou (6 in) (1,2,3,4)	Strata		Description	Well	Istri	Nois	Odor	DI (
Depth (ft) Penetration (in) Recovered (in/sleeve in)						^o	-		
24		Medium to Fine	Dark brown fine to medium SAN	ND, some silt, trace organics	0 fe	et	Damp		0.1
		Sand	(roots).	-		,			
						00000			
						00000			
5 28		Sand and Silt	Dark brown fine SAND and SIL	T, some organics (wood and			Damp		0.1
		0	roots).						
						00000			
			Tan fine to coarse SAND, layer				Deri		
		Coarse to Fine Sand	Tan fine to coarse SAND, layer	of crushed stong at 8 feet bgs.	000000	000000	Dry		
		8							
		8							
10-30		Sand and Gravel	Tan f-c SAND and f-c GRAVEL,	, trace silt.			Dry		0.0
		0							
	00								
	0								
15-60									
15 60	000		Tan f-c SAND and f-c GRAVEL	, trace silt.			Wet		0.0
		0							
		0							
	0.0								
	00	0							
20-		0							
Page 1 of 1		-1						05/50/201	9

SOIL BORII	NG/MONITORING WE	LL CONSTRUCTION	LOGS	V	<u>_</u> 10)3(M	۱۸/۱	
Project: <u>Rive</u>	rs Edge Wayland	City: Wayland	State: MA	V	- 10		vv)	
BOF	RING INFORMATION	WELL CON	STRUCTION DETAILS	;				V ®
Start Date:	03/27/2019	Well Depth (ft):	35.0					
Completion Date:	03/27/2019	Boring Depth (ft):	35.0					
Personnel:	Kristen Sarson	Well Diameter (in):	2.00					
Drilling Co.:	Geosearch	Screen Length (ft):	'25-35					
Method:	Geoprobe	Slot Size (in):	0.010					
Refusal (Y/N):	N	Completion Type:	Roadbox			LOC	ATION	
		—— Casing Diameter (in)	: 2.0		Lat:	<u>42.3</u>	636	
NOTES 1. Soil are visually class	sified in general accordance with the Mod	ified Burmister Soil Classification Syste	m		Long:	<u>-71.</u>	3825	
	ed in the field using an photoionization det				тос	(ft):		
	ene standard to report total organic volati mv, <1 readings are indicative of readings		with a response factor of 1. The PID ha	is a	GS E	lev (ft):		
		1						
li (z				5			- -
Depth (ft) Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4) Strata		Soil		Construction	Moisture	2	PID (ppm)
Depth (ft) enetration tecovered in/sleeve	ow Co (6 in (1,2,3,4		Description	Well	ıstrı	Aois	Odor	<u> </u>
De De Rec (in/s					Co	E		
42	Fine Sands	TOPSOIL - Brown fine sand and	silt, some organics (roots).	0 fe	et	Dry		44.3
	Sand and Silt	Light brown fine to medium SAN		_		Dry		
		-g,	<u>-</u> , <u>-</u>			,		
	<u>د د</u> د د ک د د ک Gravel	Brown f-c SAND and coarse GR	AVEL, some crushed stone.			Dry		
	0.0 0.0							
5 43	Coarse to Fine	Tan f-c SAND.				Damp		2.0
	Sand				00000			
		•						
10-29		Tan f-c SAND, little coarse grave	els and silt.		00000	Damp		6.3
-								
15-60					00000			6.2
								0.2
$ \neg $								
-								
$ \neg $								
20-55					00000	Damp		2.2
							05/50/20	10

		RING/MON		LL CONSTRUCTION LOGS City: <u>Wayland</u> State: <u>MA</u>	V-10)3(M	W)	
Depth (ft)	Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Well Construction	Moisture	Odor	PID (ppm)
-	55		Coarse to Fine Sand	Tan f-c SAND, little coarse gravel.		Damp		2.2
25—	60			Tan f-c SAND, little coarse gravel.		Damp		0.6
30-	60		Medium to Fine Sand	Tan fine to medium SAND, little coarse sand.		Wet		0.1
35—								
40								
-								
45—								
							05/50/201	

SO	IL BO	RING/MO	NITORING WEL	L CONSTRUCTION	I LOGS	V	<u>/_10</u>	4(M	۱۸/۱	
Proj	ect: <u>Ri</u>	vers Edge	Wayland	City: <u>Wayland</u>	State: MA	V	-10	4(11)	vv)	
	В	ORING IN	FORMATION	WELL CON	ISTRUCTION DETAIL	S				V ®
Start D	Date:	03/26/20	019	Well Depth (ft):	36.5		•			
Comp	letion Da	ate: <u>03/26/20</u>	019	Boring Depth (ft):	36.5					
Perso	nnel:	Kristen S	Sarson	Well Diameter (in):	2.00					
Drilling	g Co.:	Geosea	rch		'26.5-36.5					
Metho	d:	Geoprob	De	Slot Size (in):	0.010					
Refus	al (Y/N):	N		Completion Type:	Roadbox			LOC	ATION	
NOTE				Casing Diameter (in): <u>2.0</u>		Lat:	<u>42.3</u>	8635	
		classified in gene	ral accordance with the Modifi	ed Burmister Soil Classification Syste	em		Long:	<u>-71.</u>	3828	
				ctor (PID) with a 10.6 electron volt la s (TOVs) as isobutylene equivalents			TOC (1	ft):		
			ngs are indicative of readings of			nuo u	GS Ele	ev (ft):		
	(i) _ (i	ŧ					ion	e		Ê
(t	tion erec eve	w Cou (6 in) ,2,3,4)	ata		Soil Description	Well	ruct	Moisture	Odor	PID (ppm)
Depth (ft)	Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata		Description	3	Construction	Moi	ő	DID
	(in Re	ß				0 fe				
	42		Sand and Silt	Grey fine SAND and SILT, trace	e f-c gravel.					46.1
-										
			Medium to Fine	Tan and orange fine to medium	SAND, trace f-c gravel and del	bris 8000				
			Sand	(asphalt).		00000				
				Crushed STONE.						
-			očo Sand and Silt	Grey fine SAND and SILT, trace	e debris (asphalt).					
5—			0 · 0 • 0 · • 0 ·							
	20		0 · 0 • 0 · • 0 ·	Tan and orange fine to medium	SAND and SILT, trace f-c grav	el				5.2
			0 · 0 • 0 · 0 • 0 ·	and debris (ašphalt).						
-										
			0`0 0`0							
10-	30		Coarse to Fine	Tan and grey f-c SAND.	•			Damp		12.6
			Sand							
-										
]	
15—	15			Tan f-c SAND, some f-c gravel.		00000		Dry		7.8
-										
1										
-]	
20—	15		Gravel	Crushed STONE.				Dry Dry		0.5
								y	05/50/20	

Page 1 of 2

		RING/MON		LL CONSTRUCTION LOGS City: <u>Wayland</u> State: <u>MA</u>	V-1(04(M	W)	
Depth (ft)	Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Well Construction	Moisture	Odor	PID (ppm)
-	15		0 Sand and 0 6	Tan and grey f-c SAND and f-c GRAVEL.		Dry		0.5
25	60		Coarse to Fine Sand	Tan and grey f-c SAND, trace f-c gravel and silt.		Dry	-	0.5
30-	60		Sand and Gravel Co Co Co Co Co Co Co Co Sand	Tan and grey f-c SAND and f-c GRAVEL. Tan f-c SAND.		Dry Wet	-	0.1
35—							-	
40								
-								

SOIL BORI	NG/MONITORING WE	LL CONSTRUCTION LOG	S 1	V-10	5/N/	۱۸/۱	
Project: Rive	rs Edge Wayland	City: Wayland	State: MA	v-10		vv)	
BOF	RING INFORMATION	WELL CONSTRUC	TION DETAILS				®
Start Date:	03/27/2019	Well Depth (ft): <u>37.0</u>					
Completion Date:	03/27/2019	Boring Depth (ft): <u>37.0</u>					
Personnel:	Kristen Sarson	Well Diameter (in): 2.00					
Drilling Co.:	Geosearch	Screen Length (ft): <u>'27-37</u>					
Method:	Geoprobe	Slot Size (in): <u>0.010</u>					
Refusal (Y/N):	N	Completion Type: Roadbo	ох		LOC	ATION	
		Casing Diameter (in): <u>2.0</u>		Lat:	42.3	637	
NOTES 1. Soil are visually clas	sified in general accordance with the Mo	lified Burmister Soil Classification System		Long:	<u>-71.</u>	3829	
		tector (PID) with a 10.6 electron volt lamp calibrated		TOC (f	t):		
	lene standard to report total organic vola omv, <1 readings are indicative of reading	iles (TOVs) as isobutylene equivalents with a respo is of 0.1 ppmv TVOCs or less.	nse factor of 1. The PID has a	GS Ele	ev (ft):		
Û. C	t			5			2
Depth (ft) Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4) Strata	Soil		Well Construction	Moisture	2	PID (ppm)
Depth (ft) <u>enetration</u> tecovered in/sleeve	(6 in (6 in (1,2,3,4)) (1,2,3,4)) (1,2,3,4)) (1,2,3,4)) (1,2,3,4)) (1,2,3,4) (1,2,4) (1,2,4) (1,	Descripti	on	Well	Aois	Odor) Q
De De Rec				Co	2		–
32	Fine Sands	TOPSOIL - Brown fine SAND and SILT, tra		feet	Damp		0.4
02	Coarse to Fine	Light brown f-c SAND, some silt, trace f-c			Damp		0.4
	Sand			0000000			
5-28		Light brown fine to medium SAND grading	to f-c SAND_trace f-c		Dry		0.4
		gravel and silt.			,		
10-48		Tan f-c SAND.			Dry		0.3
-							
15-60							0.3
-							
-							
20 60			0:00 0:00 0:00 0:00 0:00		Dry	05/50/20	0.1

Page 1 of 2

05/50/2019

		RING/MO Rivers Edge		LL CONSTRUCTION LOGS City: Wayland State: MA	V-1(05(M	W)	
Depth (ft)	Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Well Construction	Moisture	Odor	PID (ppm)
	60		Coarse to Fine Sand	Tan f-c SAND, trace f-c gravel.		Dry		0.1
-	60		Sand and Silt Gravel Medium to Fine Sand	Tan f-c SAND, trace f-c gravel. Tan fine SAND and SILT. Crushed STONE. Tan fine to medium SAND, some silt, trace coarse gravel.		Dry Dry Dry Dry		0.1
30-	49		Coarse to Fine Sand	Tan fine to medium SAND, some silt and coarse sand. Tan f-c SAND, little f-c gravel, trace fine gravel.		Dry Wet	-	0.0
35—							-	
40								
-								
							05/50/201	<u>ا</u>

SOIL BORI	NG/MONITORING WEI	L CONSTRUCTION L	LOGS	\/_	106(M	۱۸/۱	
Project: River	s Edge Wayland	City: <u>Wayland</u>	State: <u>MA</u>			vv)	
BOR	ING INFORMATION	WELL CONS	TRUCTION DETAILS				
Start Date:	03/27/2019	Well Depth (ft):	37.0	_ -			
Completion Date:	03/28/2019	Boring Depth (ft):	37.0	_			
Personnel:	Kristen Sarson	Well Diameter (in):	2.00	_			
Drilling Co.:	Geosearch		27-37	_			
Method:	Geoprobe		0.010	_			
Refusal (Y/N):	N		Roadbox	- [LOC	ATION	
NOTES		Casing Diameter (in):	2.0	L	.at: <u>42.3</u>	637	
 Soil are visually class The soil was screene volume (ppmv) isobutyli 	ified in general accordance with the Modif d in the field using an photoionization dete ene standard to report total organic volatile mv, <1 readings are indicative of readings	ector (PID) with a 10.6 electron volt lamp es (TOVs) as isobutylene equivalents with		y T	OC (ft):	3836	
Depth (ft) Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4) Strata	De	Soil scription	ag 0 B Construction		Odor	PID (ppm)
43	Asphalt Medium to Fine	ASPHALT. Tan fine to medium SAND, trace co	parse sand		Dry Damp		0.0
	Sand				o o o o o o o o o o o o o o o o o o o		
	Gravel	Crushed STONE. Tan medium to coarse SAND, trace	e fine sand		Dry Damp		
	Medium Sand	Tanifiedum to coarse oAND, trac	e line saliu.				
			1				
5-33		Tan medium to coarse SAND, trac	e fine sand		Damp		0.7
					0000 0000 0000		
					0000 0000 0000		
10							
10 60	Coarse to Fine	Tan f-c SAND.			Damp		1.3
$ \neg $							
15-49		Tan f-c SAND, some coarse grave	I.		Sector Damp		0.1
		C C					
					0000 0000 0000 0000		
$ \neg $							
-							
20					0000 0000 0000 0000		
20 50 Page 1 of 2				ୄୖ୶ୖୄ୶ୄୖ	Dry Dry	05/50/20	0.1

			RING/MOI		LL CONSTRUCTION LOGS City: <u>Wayland</u> State: <u>MA</u>	V-10	06(M	W)	
Depth (ft)	Penetration (in)	Kecovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Well Construction	Moisture	Odor	PID (ppm)
-		50		Coarse to Fine Sand	Tan f-c SAND, trace fine gravel.		Dry		0.1
25— — — —		52		Medium to Fine Sand	Orange fine to medium SAND. Orange fine to medium SAND, little coarse sand.		Damp Damp		0.0
30— — — — 35—		60			Orange fine to medium SAND, little coarse sand.		Wet		0.0
-									
40									
45		2 of						05/50/201	9

SOIL B	ORIN	IG				γ.	/-107		
Project:		s Edge Way		City: Wayla		V	107		
	BORI	ING INFOR	RMATION		LOCATION				B
Start Date:		03/27/2019		Lat:	-71.38259100				
		03/27/2019		Long:	42.36362300				
Personnel:		Kristen Sarso	on	GS Elev (ft):	0.0				
Drilling Co.	:	Geosearch							
Method:		Geoprobe							
Refusal (Y/	'N):	Ν							
Boring Dep	oth (ft):	10.0							
2. The soil was	screened	l in the field using a		PID) with a 10.6 elec	ation System tron volt lamp calibrated to a 100 parts per mill) has a detection limit of 0.1 ppmv, <1 readings				
(u	_								_
Depth (ft) Penetration (in)	Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata		Soil Description		Moisture	Odor	PID (ppm)
	25		Coarse to Fine Sand	Light brown f-c	SAND, some f-c gravel, trace silt.		Damp		0.6
-				1					
5	20		Sand and Gravel	Light brown f-c :	SAND and f-c GRAVEL		Damp		2.6
10-									
15—									
20—									
20-7								04/05/201	Ļ

SOIL BORII Project: <u>River</u>		land	_ City: Wayland	State: MA	V	-108		
	RING INFOR			ATION				V®
Start Date:	03/27/2019		Lat:71.3827	5400	V	M		
Completion Date:	03/27/2019		Long:42.36333	3100				
Personnel:	Kristen Sarso	n	GS Elev (ft):					
Drilling Co.:	Geosearch		_					
/lethod:	Geoprobe		_					
Refusal (Y/N):	Ν							
Boring Depth (ft):	10.0							
2. The soil was screene	ed in the field using a	an photoionization detecto	Burmister Soil Classification System (PID) with a 10.6 electron volt lamp ise factor of 1. The PID has a detect	calibrated to a 100 parts per millio	on by volume (ppmv are indicative of rea) isobutylene dings of 0.1 p	standard to repo pmv TVOCs or	ort less.
Depth (ff) Penetration (in) Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	De	Soil escription		Moisture	Odor	PID (mmn)
		Addum to Fine Addum to Fine	R	ium SAND, some coarse san		Dry		1.5

	rs Edge Wayla		City: <u>Way</u>		V	-109		
BOF		IATION		LOCATION				V®
Start Date:	03/27/2019		Lat:	-71.38290300				
Completion Date:	03/27/2019		Long:	42.36342700				
Personnel:	Kristen Sarson		GS Elev (ft)	: 0.0				
Prilling Co.:	Geosearch		_					
/lethod:	Geoprobe		_					
tefusal (Y/N):	N		_					
oring Depth (ft):	10.0		_					
. The soil was screene	ed in the field using an		r (PID) with a 10.6 ele	ication System ectron volt lamp calibrated to a 100 parts per mil ID has a detection limit of 0.1 ppmv, <1 reading				
Depth (ft) Penetration (in) Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata		Soil Description		Moisture	Odor	DID (nnm)
		Asphalt Medium to Fine Sand Sand Sand Sand Sand Sand Sand Sand	ASPHALT Tan and orang gravel.	e fine to medium SAND, some coarse sa	nd, trace coarse	Damp		2.1

Proj	ect:		s Edge V		City: <u>W</u>		V	/-110		
		BOR		ORMATION		LOCATION		BR		V ®
Start D			03/27/201		Lat:	-71.38295900				
			03/27/201			42.36345700				
Perso				arson	GS Elev	r (ft): <u>0.0</u>				
Drilling	g Co).: 	Geosearc							
Netho	d:		Geoprobe	!						
Refus	al (Y	′/N):	N							
Boring	g De	pth (ft):	10.0							
NOTE		ually class	ified in general	accordance with the Moo	lified Burmister Soil Cl	assification System				
		-	-			6 electron volt lamp calibrated to a 100 parts per mil	llion by volume (ppm)	/) isobutylene	standard to repo	ort
						he PID has a detection limit of 0.1 ppmv, <1 reading				
	<u>(i</u>	σ	÷					_		-
(¥	Penetration (in)	Recovered (in)	Blow Count (6 in) (1.2.3.4)	a l		Soil		Moisture	-	(maa) Old
Depth (ft)	etrat	ii)	low Cou (6 in) (1.2.3.4)	Strata		Description		Mois	Odor	
ă	Pen	Ω.	B							
		60		Asphalt	ASPHALT.		/	Dry	-	0.6
_				Medium to	Fine lan and or gravel.	ange fine to medium SAND, some coarse sa	and, trace coarse			
				160 19						
_										
5—		20								1.2
		20								
				000						
_				69						
-										
							*			
10-										
-										
4										
4										
15—										
1										
_										
				1 1 1					1	1

Projec	ct: <u>Rive</u>	rs Edge Wa	yland	City: <u>Wayland</u>	State: <u>MA</u>	V-	111		
	BOF	RING INFOR	RMATION	L	OCATION		BIR		V ®
Start Dat	ie:	03/27/2019		Lat:71.3	8289600				
Complet	ion Date:	03/27/2019		Long:42.36	6350500				
Personn	el:	Kristen Sars	on	GS Elev (ft): <u>0.0</u>					
Drilling C	Co.:	Geosearch							
Method:		Geoprobe							
Refusal	(Y/N):	N							
Boring D	epth (ft):	10.0							
NOTES									
	-	-		d Burmister Soil Classification Sy					
. The soil otal organi	was screene ic volatiles (⁻	ed in the field using FOVs) as isobutyle	an photoionization detection detection detection and the second sec	tor (PID) with a 10.6 electron volt ponse factor of 1. The PID has a c	lamp calibrated to a 100 parts per mil letection limit of 0.1 ppmv, <1 reading	llion by volume (ppmv) isc is are indicative of reading	obutylene s gs of 0.1 pp	tandard to repo mv TVOCs or I	ort less.
Ē									
Depth (ft) enetration (in)	Recovered (in)	Blow Count (6 in) (1,2,3,4)			Soil		ture	L	PID (ppm)
Depth (ft) enetration) (in	low Cou (6 in) (1,2,3,4)	itrata		Description		Moisture	Odor	
Del	R	Blo (1	o				2	-	–
	43		o/g Asphalt	ASPHALT.			Dry		1.2
			Medium to Fi	he Light brown fine to mee gravel.	lium SAND, some coarse sand a	and coarse	21,9		
			A CARACTER AND A CARACTER ANO CARACTER ANO CARACTER A						
_									
5									
	12								1.1
-			E C						
_									
_									
			10 10 10 10 10 10 10						
			e e e						
0—			267						
4									
5—									
-									
4									
-									
			1 1	1					1

	rs Edge Wayl			e: <u>MA</u>	/-112	•	
BOR		ATION	LOCATION		BR		V ®
Start Date:	03/27/2019		Lat:				
Completion Date:			Long: <u>42.36358200</u>				
ersonnel:	Kristen Sarson		GS Elev (ft):				
rilling Co.:	Geosearch		_				
lethod:	Geoprobe		_				
efusal (Y/N):	N		_				
oring Depth (ft):	10.0		_				
The soil was screene	ed in the field using an	photoionization detector	Burmister Soil Classification System (PID) with a 10.6 electron volt lamp calibrated to a 100 pa se factor of 1. The PID has a detection limit of 0.1 ppmv,				
Depth (ft) Penetration (in) Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description		Moisture	Odor	
		A Medum to Fine Sand Sand Sand Sand Sand Sand Sand Sand	Brown fine to medium SAND, trace coarse sar		Damp		0.7

	L BORI	NG rs Edge Wa	vland	City: Wayland State: MA	V-113		
1 TOJC							R
Start D		03/28/2019		Lat: -71.38351400	VBR	Λ Pλ	X°
		03/28/2019		Long:42.36347400			
Persor	nnel:	Kristen Sarse	on	GS Elev (ft): 0.0			
Drilling	Co.:	Geosearch					
Method	1:	Geoprobe					
Refusa	al (Y/N):	N					
	Depth (ft):			-			
2. The so	e visually class oil was screene	ed in the field using	an photoionization detector (, urmister Soil Classification System PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volun se factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicati	ne (ppmv) isobutylene s ve of readings of 0.1 p	standard to repo pmv TVOCs or I	ort less.
Depth (ft)	Penetration (in) Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
	25		Sand and Silt	TOPSOIL-Brown fine SAND and SILT, some organics (roots).			0.0
-			o≚o	Tan fine to medium SAND, some coarse sand, trace coarse grave	I. Damp		
5— — — —	30		Coarse to Fine Sand	Tan f-c SAND, some fine gravel.	Dry	•	0.1
10—				· · · · · · · · · · · · · · · · · · ·			
4							
1							
-							
15—							
4							
7							
4							
_							
							1

SOIL BOR	ING ers Edge Wa <u>y</u>	vland	City: Wayland State: MA	V-114		
						B
Start Date:	03/28/2019		Lat: -71.38347300		K N PA V	Ň
Completion Date	e: 03/28/2019		Long: 42.36323300			
Personnel:	Kristen Sarso	on	GS Elev (ft):			
Drilling Co.:	Geosearch		_			
Method:	Geoprobe		_			
Refusal (Y/N):	N					
Boring Depth (ft): <u>10.0</u>					
2. The soil was scree	ned in the field using	an photoionization detector	urmister Soil Classification System (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million b se factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are	y volume (ppmv) isobutylene indicative of readings of 0.1 p	standard to report pmv TVOCs or les	ss.
Depth (ft) Penetration (in) Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
28		Silt Coarse to	TOPSOIL- Dark brown SILT and organics (roots). Light brown and orange medium to coarse SAND, little f-c g	ravel and Damp	C	0.5
5 <u>24</u> 10		Gravel	Grey coarse GRAVEL.	Dry		0.3
- - - 15- - - 20-						

Pro	jec	t: <u>Rive</u> r	rs Edge V	Vayland	City: <u>W</u>		· · ·	/-115	,	
BORING INFORMATION			LOCATION				V ®			
Start	Date	e:	03/28/201	9	Lat:	-71.38305800				
Comp	pleti	ion Date:	03/28/201	9	Long:	42.36312000				
Perso	onne	el:	Kristen Sa	irson	GS Elev	/ (ft): <u>0.0</u>				
Drillin	ng C	o.:	Geosearc	h						
/letho	:bc		Geoprobe							
Refus	sal ((Y/N):	N							
Borin	g D	epth (ft):	10.0							
NOTE										
		-	-	accordance with the Modif			·	·	- 4	
						6 electron volt lamp calibrated to a 100 parts per mil he PID has a detection limit of 0.1 ppmv, <1 reading:				
	<u>(</u>									
Ê	Penetration (in)	Recovered (in)	Blow Count (6 in) (1.2.3.4)			Soil		ture	L .	(maa) Old
Depth (ft)	tratio	scov (in	low Cou (6 in) (1.2.3.4)	itrata		Description		Moisture	Odor	
Del	Pene	Ř	Blo (1					2		
	-	20		Medium to F	ine Tan fine to	medium SAND, trace silt and fine gravel.				0.3
_				Sand						
				R R R						
-										
_										
5—										
Ŭ		12								0.1
_										
_										
_										
10—				427				-		
_										
-										
_										
15—										
-										
_										
-										
20-										

	RING /ers Edge Wa	vland	City: Wayland State: MA	V-116		
						B
Start Date: 03/28/2019			Lat: -71.38294100		∕N ₽N	Ň
Completion Da	te: 03/28/2019		Long:42.36315900			
Personnel:	Kristen Sars	on	GS Elev (ft):			
Drilling Co.:	Geosearch		_			
Method:	Geoprobe		_			
Refusal (Y/N):	N					
Boring Depth (f	ft): 10.0		-			
2. The soil was scre	ened in the field using	an photoionization detector	urmister Soil Classification System (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by vol se factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indic	ume (ppmv) isobutylene s ative of readings of 0.1 p	standard to repo pmv TVOCs or I	ort less.
Depth (ft) Penetration (in) Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
40 		Medium to Fine				0.0
521		Gravel	Grey coarse GRAVEL and crushed stone. Tan fine to medium SAND, trace coarse sand and coarse gravel	Dry . Dry		0.0
- - - 10-		Sand Sand				
-						
 15						
-						

Enclosure 4 - Slug Test Analyses Summaries

K (ft/day)	Ln K			
276	5.62040			
93.7	4.54010			
376	5.92959			
155	5.04343			
191	5.25227			
154	5.03695			
161	5.08140			
111	4.70953			
249	5.51745		_	
368	5.90808			
102	4.62497			
118	4.77068			
287	5.65948			
500	6.21461			
247	5.50939			
194	5.26786			
372	5.91889			
257	5.54908			
189	5.24175			
203	5.31321			
352	5.86363			
216	5.37528			
200	5.29832			
146	4.98361			
	5 24202	Averege	Moon of LNs - Coomcon	200
	5.34292	Average	Mean of LNs = Geomean	209
	5.30576	Median	Median of LNs	201
	0.44729	Stnd Deviation	Std Dev of Geomean $=$ s	1.6
	24	Count	Number of K Values	
	5.04181	1st quartile		155
	5.30576	2nd quartile		201
	5.63017	3rd quartile		279

Statistics for Hydrauic Conductvity Values

Confidence Interval for Geomean

24 Count 4.90 Sq Root of Count

GeoHydroCycle, Inc.

2.069 Student's t for 95% Confidence and N-1 Degrees of Freedom209.1 Mid value of interval, which is Geometric Mean252.6 High end of the 95% interval173.1 Low end of the 95% interval

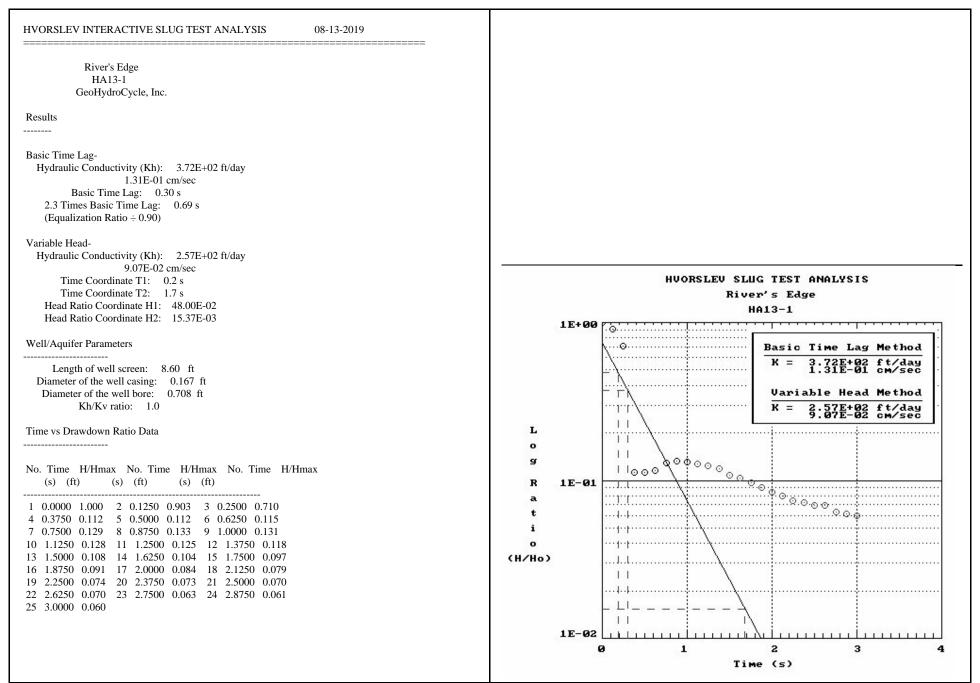
Does the Geometric Mean lie between the Low and High intervals? Low: Yes High: Yes

Check for Outliers

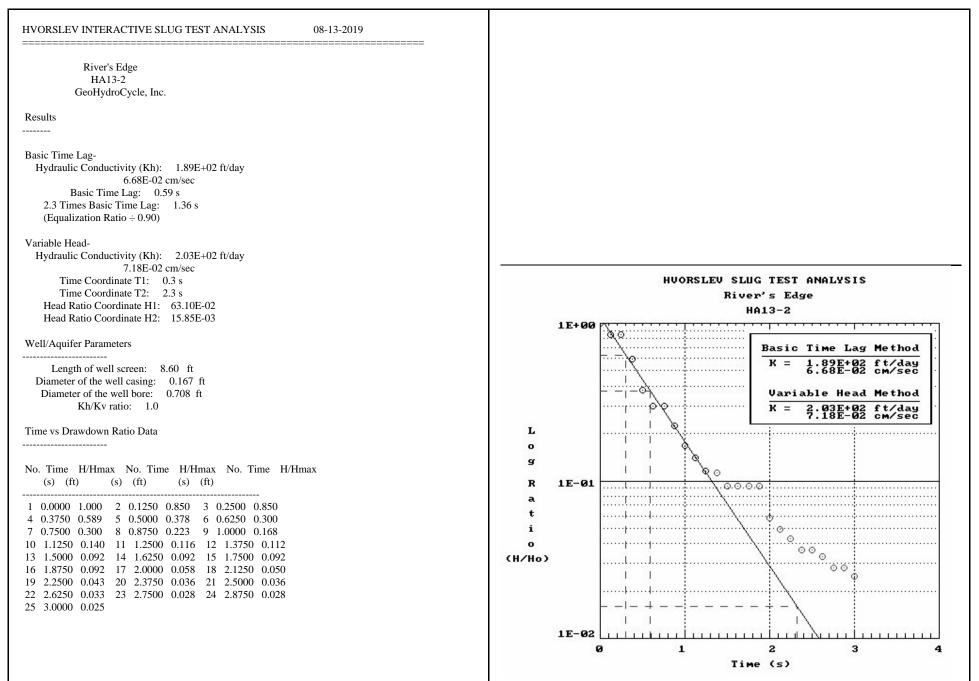
6.21461 Max of LNs
0.42440 LN of T statistic for Highest K value
1.53 T statistic for the Highest K value
4.54010 Min of LNs
0.35552 LN of T statistic for Lowest K value
1.43 T statistic for the Lowest K value
2.62 From Figure 2 for N-1 DoF

500 ft/day	OK, not an outlier
93.7 ft/day	OK, not an outlier

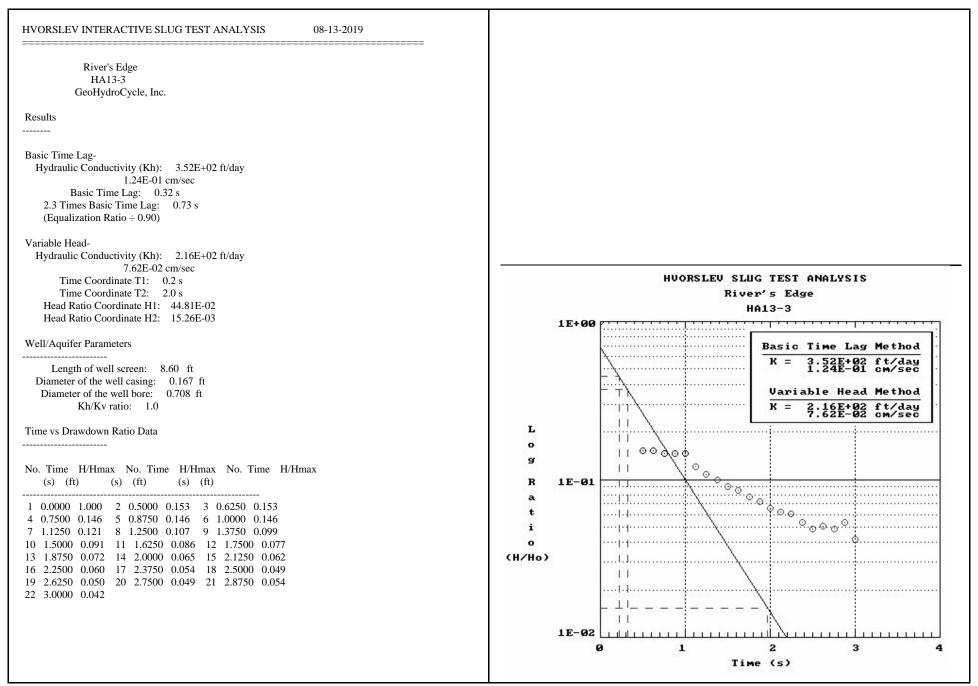
Calculate 95% Percentile Value of K

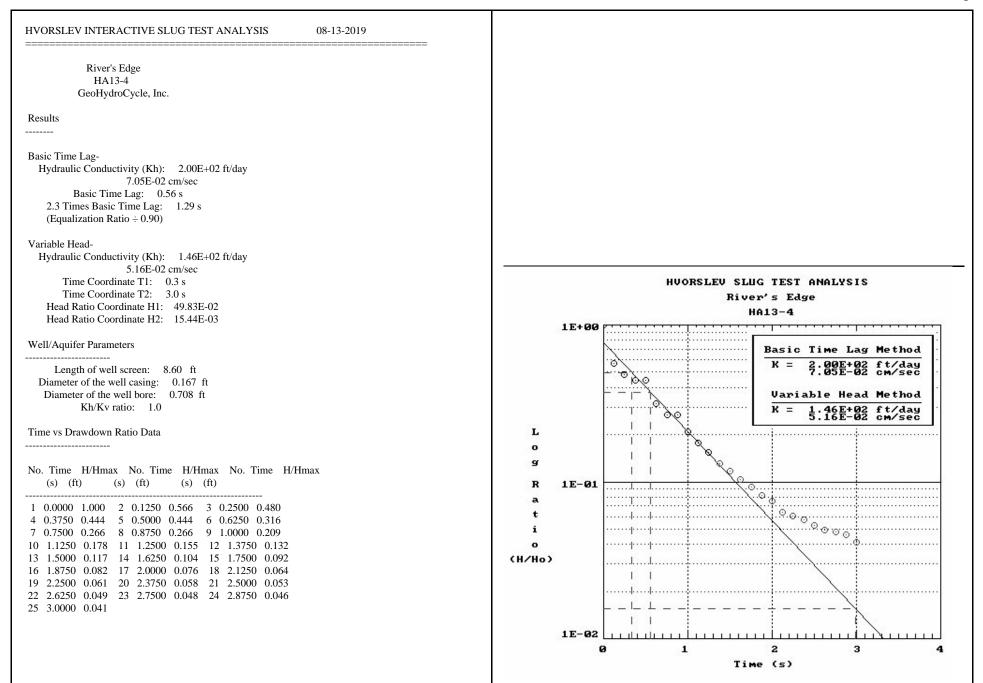

5.92798 LN of 95% Percentile Value of K375.4 95% Percentile Value of K

Calculate Coefficient of Variation C_v

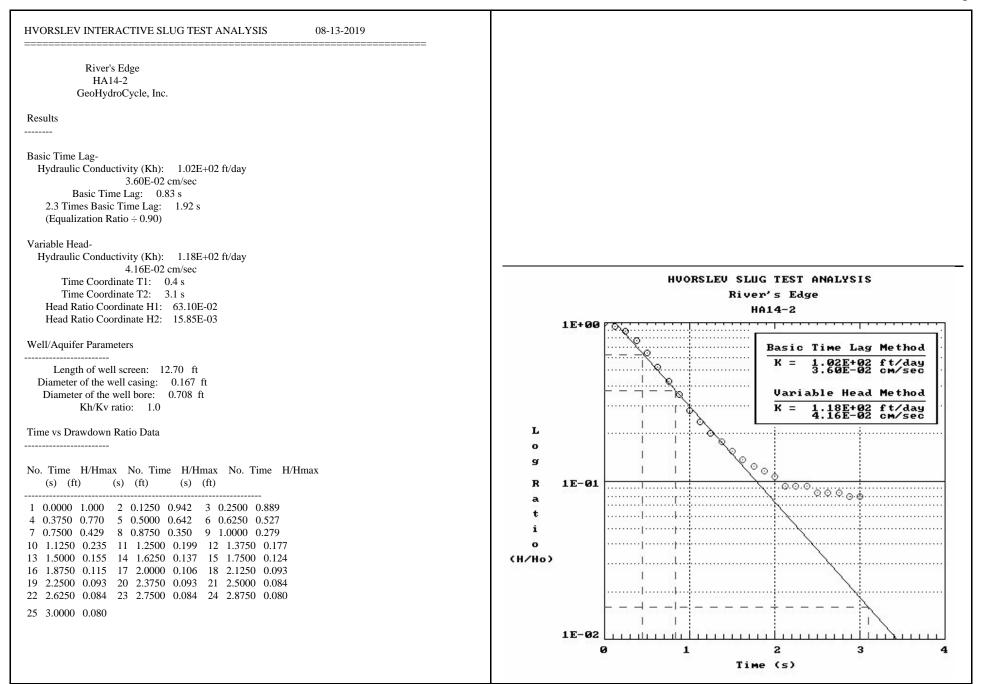

-4.89562 LN of Cv 0.01 Coefficeint of Variation Cv

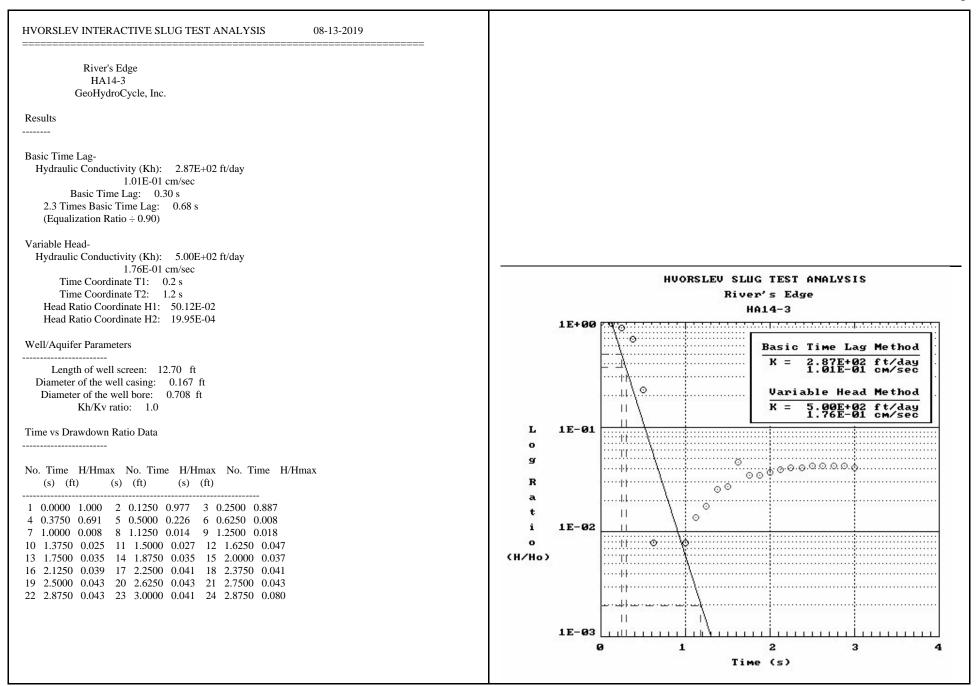
GeoHydroCycle, Inc.


River's Edge

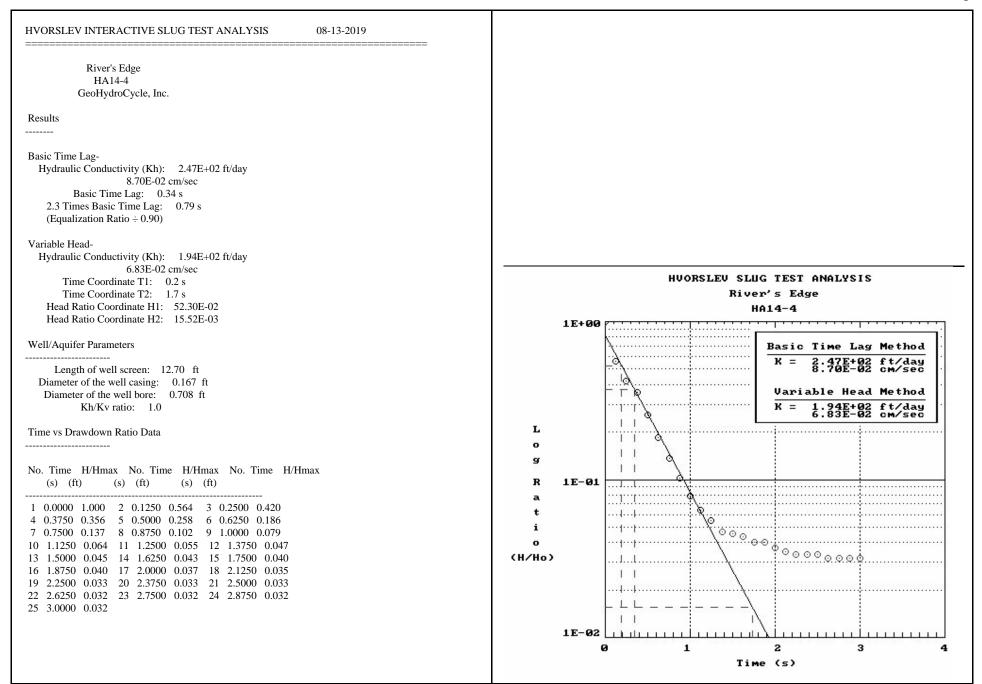

Project: River's Edge

Project: River's Edge


Project: River's Edge


Project: River's Edge

Divers Edea	
River's Edge HA14-1	
GeoHydroCycle, Inc.	
Georgalocycle, nie.	
sults	
sic Time Lag-	
Hydraulic Conductivity (Kh): 2.49E+02 ft/day	
8.80E-02 cm/sec	
Basic Time Lag: 0.34 s	
2.3 Times Basic Time Lag: 0.78 s	
(Equalization Ratio \div 0.90)	
riable Head-	
Hydraulic Conductivity (Kh): 3.68E+02 ft/day	
1.30E-01 cm/sec	HUORSLEV SLUG TEST ANALYSIS
Time Coordinate T1: 0.2 s	
Time Coordinate T2: 1.1 s	River's Edge
Head Ratio Coordinate H1: 63.10E-02 Head Ratio Coordinate H2: 15.85E-03	HA14-1
Head Ratio Coordinate H2: 15.85E-05	1E+00
ell/Aquifer Parameters	Pacia Tina Lag Mathad
	_ 1 O Basic Time Lag Method
Length of well screen: 12.70 ft	K = 2.49E+02 ft/day 8.80E-02 cm/sec
Diameter of the well casing: 0.167 ft	
Diameter of the well bore: 0.708 ft	T) Variable Head Method
Kh/Kv ratio: 1.0	K = 3.68E+02 ft/day 1.30E-01 cm/sec
	1.30E-01 cm/sec
ne vs Drawdown Ratio Data	L
	• •
	g \
. Time H/Hmax No. Time H/Hmax No. Time H/Hmax	
(s) (ft) (s) (ft) (s) (ft)	R 1E-01
	a
0.0000 1.000 2 0.1250 0.972 3 0.2500 0.884	t
0.3750 0.649 5 0.5000 0.234 6 0.6250 0.040	1
0.7500 0.044 8 0.8750 0.033 9 1.0000 0.033	o
1.1250 0.033 11 1.2500 0.035 12 1.3750 0.037	і о
1.5000 0.037 14 1.6250 0.039 15 1.7500 0.039	
1.8750 0.042 17 2.0000 0.042 18 2.1250 0.044	
2.2500 0.042 20 2.3750 0.042 21 2.5000 0.044	······································
2.6250 0.039 23 2.7500 0.042 24 2.8750 0.042	
3.0000 0.039	
	1E-02


Project: River's Edge

Project: River's Edge

Project: River's Edge

GeoHydroCycle, Inc.

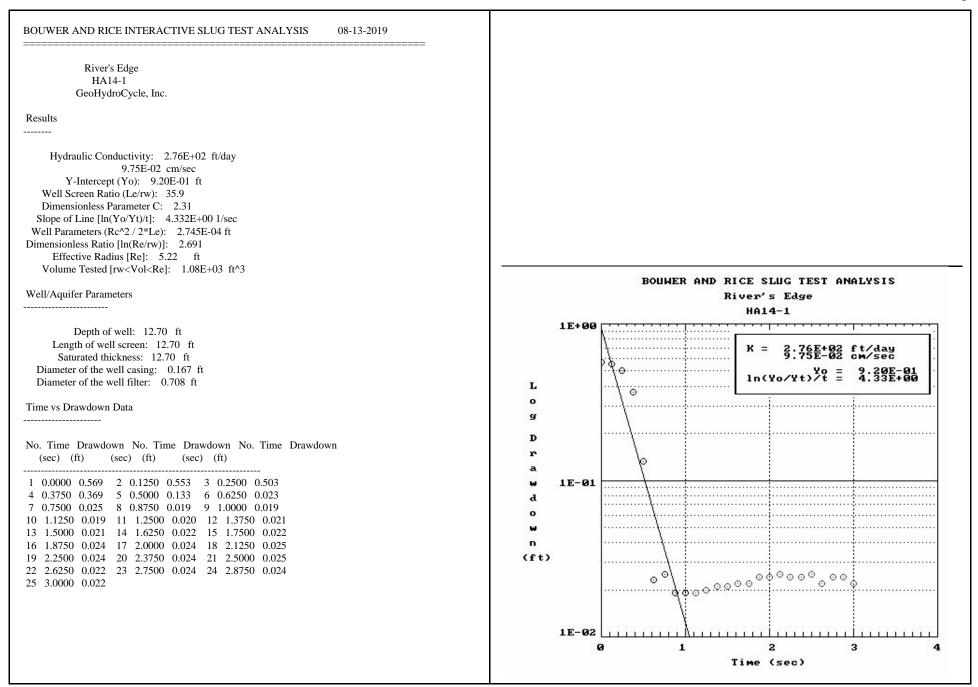
Project: River's Edge

HA13-1.lwp

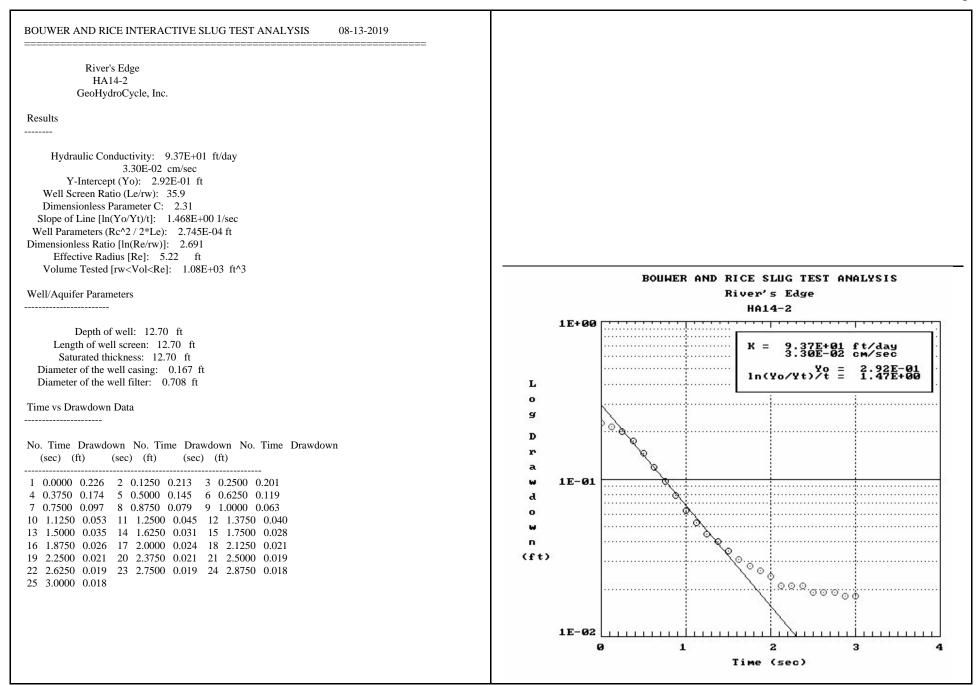
River's Edge	
HA13-1	
GeoHydroCycle, Inc.	
esults	
Hydraulic Conductivity: 1.91E+02 ft/day	
6.74E-02 cm/sec	
Y-Intercept (Yo): 4.56E-01 ft	
Well Screen Ratio (Le/rw): 24.3	
Dimensionless Parameter C: 1.87	
Slope of Line $[\ln(Yo/Yt)/t]$: 2.301E+00 1/sec	
Well Parameters ($\text{Rc}^2 / 2^*\text{Le}$): 4.054E-04 ft	
timensionless Ratio [ln(Re/rw)]: 2.372 Effective Radius [Re]: 3.79 ft	
Volume Tested [rw <vol<re]: 3.86e+02="" ft^3<="" td=""><td></td></vol<re]:>	
$\mathbf{V}_{\mathbf{M}} = \mathbf{V}_{\mathbf{M}} + $	BOUWER AND RICE SLUG TEST ANALYSIS
Vell/Aquifer Parameters	River's Edge
	HA13-1
	and an and a star and a star and the star and a star and
Depth of well: 8.60 ft	1E+00
Length of well screen: 8.60 ft	K = 1.91E+02 ft/day 6.74E-02 cm/sec
Saturated thickness: 8.60 ft	6.74E-02 cm/sec
Diameter of the well casing: 0.167 ft	$y_0 = 4.56E-01$ 0 $\ln(Y_0/Y_t)/t = 2.30E+00$
Diameter of the well filter: 0.708 ft	L $\ln(Y_0/Y_t)/t = 2.30E+00$
	•
ime vs Drawdown Data	g
o. Time Drawdown No. Time Drawdown No. Time Drawdown	D
(sec) (ft) (sec) (ft) (sec) (ft)	· · · · · · · · · · · · · · · · · · ·
	a
0.0000 0.618 2 0.1250 0.558 3 0.2500 0.439	w 1E-01
0.3750 0.069 5 0.5000 0.069 6 0.6250 0.071	a 000 90000
0.7500 0.080 8 0.8750 0.082 9 1.0000 0.081	• • • • • • • • • • • • • • • • • • •
0 1.1250 0.079 11 1.2500 0.077 12 1.3750 0.073	
3 1.5000 0.067 14 1.6250 0.064 15 1.7500 0.060	W
6 1.8750 0.056 17 2.0000 0.052 18 2.1250 0.049	
9 2.2500 0.046 20 2.3750 0.045 21 2.5000 0.043	(ft)
2 2.6250 0.043 23 2.7500 0.039 24 2.8750 0.038 5 3.0000 0.037	
5 5.0000 0.057	
	1E-02

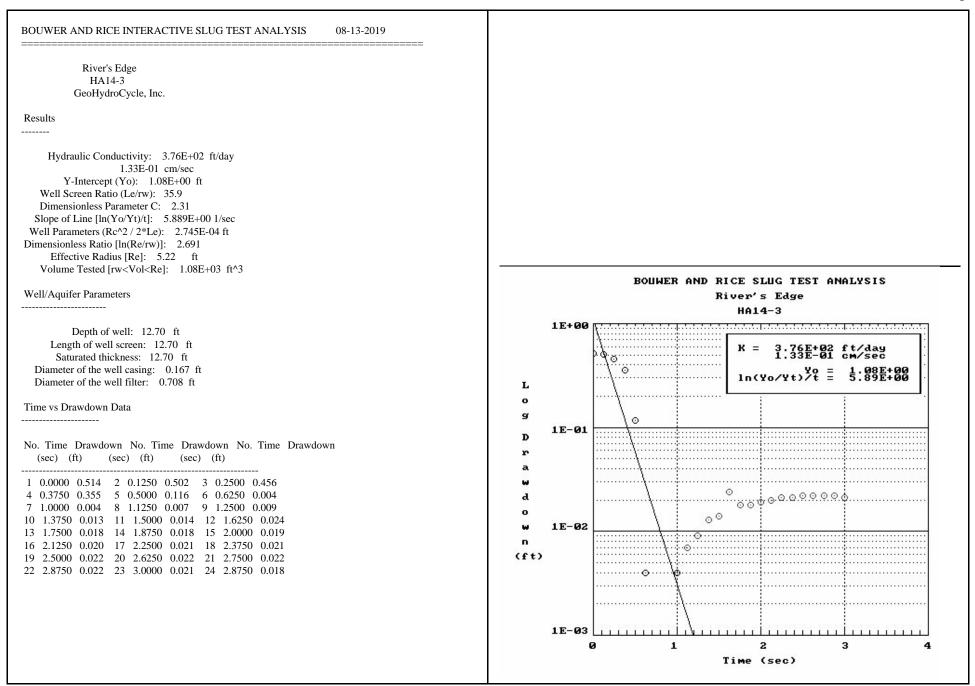
HA13-2.lwp

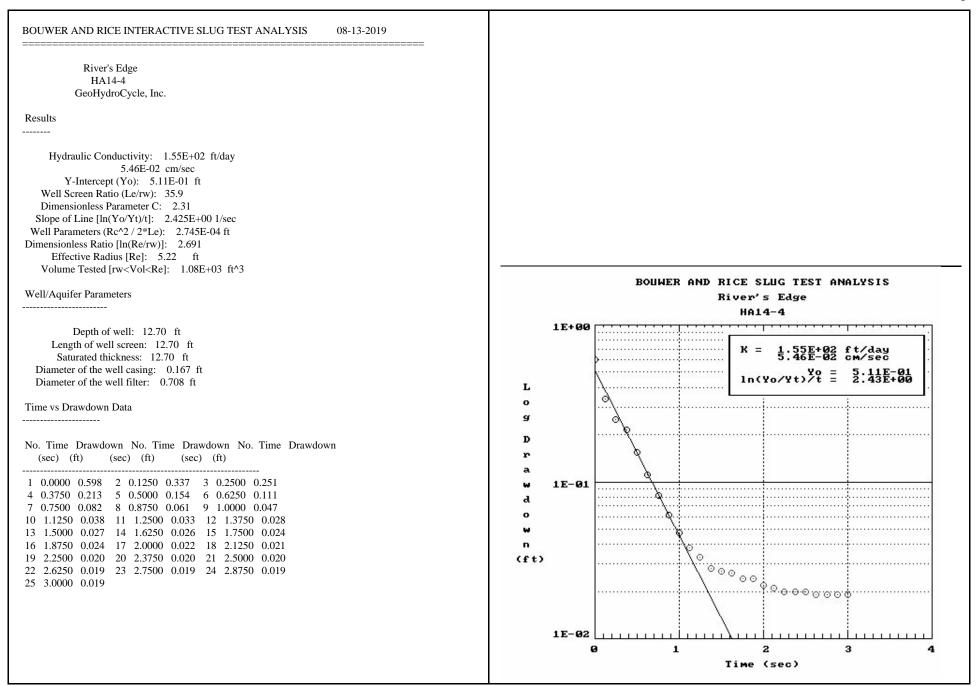
River's Edge	
HA13-2	
GeoHydroCycle, Inc.	
sults	
Hydraulic Conductivity: 1.54E+02 ft/day	
5.43E-02 cm/sec	
Y-Intercept (Yo): 6.64E-01 ft	
Well Screen Ratio (Le/rw): 24.3	
Dimensionless Parameter C: 1.87	
Slope of Line [ln(Yo/Yt)/t]: 1.853E+00 1/sec	
Vell Parameters ($Rc^2 / 2*Le$): 4.054E-04 ft	
mensionless Ratio [ln(Re/rw)]: 2.372	
Effective Radius [Re]: 3.79 ft	
Volume Tested [rw <vol<re]: 3.86e+02="" ft^3<="" td=""><td></td></vol<re]:>	
	BOUWER AND RICE SLUG TEST ANALYSIS
ell/Aquifer Parameters	River's Edge
	HA13-2
	1E+00
Depth of well: 8.60 ft	
Length of well screen: 8.60 ft	K = 1.54E+02 ft/day 5.43E-02 cm/sec
Saturated thickness: 8.60 ft	
Diameter of the well casing: 0.167 ft	1000 Yo = $6.64E-0110(Yo/Yt)/t = 1.85E+00$
Diameter of the well filter: 0.708 ft	
me vs Drawdown Data	•
	g
o. Time Drawdown No. Time Drawdown No. Time Drawdown	D OV
(sec) (ft) (sec) (ft) (sec) (ft)	r
	a
0.0000 0.606 2 0.1250 0.515 3 0.2500 0.515	w 1E-01
0.3750 0.357 5 0.5000 0.229 6 0.6250 0.182	a
0.7500 0.182 8 0.8750 0.135 9 1.0000 0.102	° ()
1.1250 0.085 11 1.2500 0.070 12 1.3750 0.068	0000
1.5000 0.056 14 1.6250 0.056 15 1.7500 0.056	
1.8750 0.056 17 2.0000 0.035 18 2.1250 0.030	n
2.2500 0.026 20 2.3750 0.022 21 2.5000 0.022	(ft)
2.6250 0.020 23 2.7500 0.017 24 2.8750 0.017	0
3.0000 0.015	
	00
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	1E-02
	0 1 2 3 4


HA13-3.lwp

River's Edge	
HA13-3	
GeoHydroCycle, Inc.	
esults	
Hydraulic Conductivity: 1.61E+02 ft/day	
5.67E-02 cm/sec	
Y-Intercept (Yo): 4.07E-01 ft	
Well Screen Ratio (Le/rw): 24.3	
Dimensionless Parameter C: 1.87	
Slope of Line $[\ln(Yo/Yt)/t]$: 1.933E+00 1/sec	
Well Parameters ($Rc^2/2*Le$): 4.054E-04 ft	
Dimensionless Ratio [In(Re/rw)]: 2.372	
Effective Radius [Re]: 3.79 ft	
Volume Tested [rw <vol<re]: 3.86e+02="" ft^3<="" td=""><td>BOUWER AND RICE SLUG TEST ANALYSIS</td></vol<re]:>	BOUWER AND RICE SLUG TEST ANALYSIS
Vell/Aquifer Parameters	River's Edge
	HA13-3
Depth of well: 8.60 ft	1E+00
Length of well screen: 8.60 ft	K = 1.61E + 02 ft/day
Saturated thickness: 8.60 ft	
Diameter of the well casing: 0.167 ft	
Diameter of the well filter: 0.708 ft	L $\ln(Yo/Yt)/t = 1.93E+00$
ïme vs Drawdown Data	•
	g
	D
lo. Time Drawdown No. Time Drawdown No. Time Drawdown	
(sec) (ft) (sec) (ft) (sec) (ft)	r
	a
0.0000 0.596 2 0.5000 0.091 3 0.6250 0.091	₩ 1E-01
4 0.7500 0.087 5 0.8750 0.087 6 1.0000 0.087	a
7 1.1250 0.072 8 1.2500 0.064 9 1.3750 0.059	•
0 1.5000 0.054 11 1.6250 0.051 12 1.7500 0.046	w
3 1.8750 0.043 14 2.0000 0.039 15 2.1250 0.037	
6 2.2500 0.036 17 2.3750 0.032 18 2.5000 0.029	
9 2.6250 0.030 20 2.7500 0.029 21 2.8750 0.032	(ft)
2 3.0000 0.025	•
	\
	1E-02


HA13-4.lwp


$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>w 1E-01 d o w n (ft) 1E-02</pre>
Time vs Drawdown Data No. Time Drawdown No. Time Drawdown No. Time Drawdown (sec) (ft) (sec) (ft) (sec) (ft) 	o g D r a
Depth of well: 8.60 ft Length of well screen: 8.60 ft Saturated thickness: 8.60 ft Diameter of the well casing: 0.167 ft Diameter of the well filter: 0.708 ft	$K = \frac{1.11E+02}{3.92E-02} \frac{ft/day}{cm/sec}$ L L L L L L L L L L L L L L L L L L L
Hydraulic Conductivity: $1.11E+02$ ft/day 3.92E-02 cm/sec Y-Intercept (Yo): $4.73E-01$ ft Well Screen Ratio (Le/rw): 24.3 Dimensionless Parameter C: 1.87 Slope of Line [ln(Yo/Yt)/t]: $1.339E+00$ 1/sec Well Parameters (Rc^2 / 2*Le): $4.054E-04$ ft Dimensionless Ratio [ln(Re/rw)]: 2.372 Effective Radius [Re]: 3.79 ft Volume Tested [rw <vol<re]: <math="">3.86E+02 ft^3 Well/Aquifer Parameters</vol<re]:>	BOUWER AND RICE SLUG TEST ANALYSIS River's Edge HA13-4
GeoHydroCycle, Inc. Results	
River's Edge HA13-4	


GEOHYDROCYCLE, INC. 321 Walnut Street #450, Newton, MA 02460

GEOHYDROCYCLE, INC. 321 Walnut Street #450, Newton, MA 02460

Enclosure 5 - Copies of Transmittal Form X256443 and BRP WP 83

Enter your transmittal number

X284361 Transmittal Number

Your unique Transmittal Number can be accessed online:

http://www.mass.gov/eea/agencies/massdep/service/approvals/transmittal-form-for-payment.html

Massachusetts Department of Environmental Protection Transmittal Form for Permit Application and Payment

1. Please type or
print. A separate
Transmittal Form
must be completed
for each permit
application.

2. Make your check payable to the Commonwealth of Massachusetts and mail it with a copy of this form to: MassDEP, P.O. Box 4062, Boston, MA 02211.

3. Three copies of this form will be needed.

Copy 1 - the original must accompany your permit application. Copy 2 must accompany your fee payment. Copy 3 should be retained for your records

4. Both fee-paying and exempt applicants must mail a copy of this transmittal form to:

MassDEP P.O. Box 4062 Boston, MA 02211

* Note: For BWSC Permits, enter the LSP.

A.	Permit Information								
	BRP WP 83		Hydrogeologic Evaluation						
	1. Permit Code: 4 to 7 character code from permit inst	tructions	2. Name of Permit Category						
	Groundwater Discharge Permit								
	3. Type of Project or Activity								
P	Applicant Information – Firm or	Individua							
Ъ.	••	muiviuu	11						
	WP East Acquisitions, LLC								
	1. Name of Firm - Or, if party needing this approval is an individual enter name below:								
	2. Last Name of Individual	3. First	Name of Individual		4. MI				
	91 Hartwell Avenue								
	5. Street Address								
	Lexington	MA	02421	781-541-5822					
	6. City/Town	7. State	8. Zip Code	9. Telephone #	10. Ext. #				
	Jim Lambert		jim.lambert@w	oodpartners.com					
	11. Contact Person		12. e-mail address	·					
<u> </u>	Facility, Site or Individual Requi	ring Ann	roval						
С.	•		loval						
	Alta at Rivers Edge WWTF								
	1. Name of Facility, Site Or Individual								
	490 Boston Post Road								
	2. Street Address		0.4770						
	Wayland	MA	01778						
	3. City/Town	4. State	5. Zip Code	6. Telephone #	7. Ext. #				
	8. DEP Facility Number (if Known)	9. Federa	al I.D. Number (if Kn	own) 10. BWSC Track	ing # (if Known)				
D.	Application Prepared by (if diffe	rent from	Section B)*						
	GeoHydroCycle, Inc.								
	1. Name of Firm Or Individual								
	321 Walnut Street, #450								
	2. Address								
	Newton	MA	02460	(617) 527-8074					
	3. City/Town	4. State	5. Zip Code	6. Telephone #	7. Ext. #				
	Stephen W. Smith, P.E., P.HGW								
	8. Contact Person 9. LSP Number (BWSC Permits only)								
Ε.	Permit - Project Coordination								
1.	Is this project subject to MEPA review?								
	If yes, enter the project's EOEA file number -								
	Environmental Notification Form is submitted	to the MEPA							
C	Amount Due		EOEA	File Number					
-	ecial Provisions:								
1.	☐ Fee Exempt (city, town or municipal housing au There are no fee exemptions for BWSC permits, re			or less).					

э.	
4.	Homeowner (according to 310 CMR 4.02).

Reviewer:

Permit No:

Rec'd Date:

DEP Use Only

Check Number

\$10,005 Dollar Amount

Date

Transmittal Form X284361-Alta at Rivers Edge WWTF Hydrogeological Application.docx • rev. 12/17

BRP WP 83 Application to Prepare a Hydrogeological Evaluation

A. General Information

X284361 Transmittal Number #

Facility ID/Permit # (if known)

Important: When
filling out forms
on the computer,
use only the tab
key to move your
cursor - do not
use the return
key.

1.	Applicant Information:	
	Jim Lambert	WP East Acc
	Name	Company Name (If applica
	91 Hartwell Avenue Address	
	Lexington	MA
	City/Town	State
	781-541-5822	02421

- quisitions, LLC able) Zip Code Telephone jim.lambert@woodpartners.com Email address 2. Applicant Contact Information (if different from above): CAME

	Contact Nam	е		Company Name (If applicable))
	Title				
	Address				
	City/Town			State	
	Telephone			Zip Code	
	email addres	S			
3.	Project	Information			
	Has a pre-	scoping meeting been I	held with MassDI	EP personnel?	
	🖂 Yes	🗌 No	If yes, date of	pre-scoping meeting:	1/10/2019
-	Has a public notice been placed in the Environmental Monitor that the scope of work has been prepared and will be submitted to MassDEP in accordance with 314 CMR 5.09(1)(b)?				
	🛛 Yes	🗌 No	If yes, date of	Environmental Monitor:	1/2/2019
	Is there a discharge presently located on the site?				
	🗌 Yes	🗌 No	lf yes, answer	the following:	
	When did	the discharge begin?		Date of startup:	

Massachusetts Department of Environmental Protection Bureau of Resource Protection–Groundwater Discharge Permit Program

BRP WP 83 Application to Prepare a Hydrogeological Evaluation

X284361 Transmittal Number #

Facility ID/Permit # (if known)

B. Project Information (cont.)

4. Improvements - Are you required by any Federal, State or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to; permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

🗌 Yes	🗌 No
-------	------

If yes, answer the following:

Description of order or agreement (include enforcement document number, if applicable):

Identification No. of Affected Treatment Facility

Description of Project

Final	Com	pliance	Date

C. Site Information

- 1. GPS Coordinates:
 - a) Enter Latitude and Longitude to the nearest whole second for the proposed site.

Latitude:	42º 21' 49"	Longitudo:	71º 22' 55"
		Longitude:	

- b) Provide a narrative description of the site and the feature to be permitted. As an example: "The site is on the west side of Main Street, the third building north of High Street. The disposal field lies 100 feet off the southwest corner of the building."
- c) Attach a site map based on the MassGIS Coordinate Information Tool that clearly indicates the site. The Coordinate Information Tool is available at http://maps.massgis.state.ma.us/images/dep/xyinfo/get_xy.html.

Massachusetts Department of Environmental Protection Bureau of Resource Protection–Groundwater Discharge Permit Program

BRP WP 83 Application to Prepare a Hydrogeological Evaluation

X284361 Transmittal Number #

Facility ID/Permit # (if known)

C. Site Information (cont.)

- 2. Provide a topographic map or maps of the area extending at least to one mile beyond the property boundaries of the site which clearly show the following:
 - 1) The legal boundaries of the site;
 - 2) All hazardous waste management facilities;
 - 3) All springs and surface water bodies in the area, plus all drinking water wells within one mile of the facility which are identified in the public record or otherwise known to you.
 - 4) All Zone II's or IWPA's.
- 3. Please list any public or private drinking water supply wells within 2,500 feet of the proposed site:

Well Location	Type of Well (Public/Private)	Status (Active/Inactive)	Safe Yield
SEE REPORT	·	· · · · · · · · · · · · · · · · · · ·	

D. Certification

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I will be responsible for publication of public notice of the applicable permit proceedings identified under 314 CMR 2.06(1)(a) through (d)."

	Jim Lambert
Signature of Applicant	Printed Name of Applicant
Date Signed	
Stephen W. Smith, P.E., P.HGW	(617) 527-8074
Name of Preparer	Telephone
President, GeoHydroCycle, Inc.	swsmith@geohydrocycle.com
Title of Preparer	email