

River's Edge 484-490 Boston Post Road Wayland, Massachusetts

PHASE I ENVIRONMENTAL SITE ASSESSMENT & PHASE II LIMITED SITE INVESTIGATION

AUGUST 7, 2019

PREPARED FOR:

WP East Acquisitions, LLC 91 Hartwell Avenue, 3rd Floor Lexington, MA 02421

PREPARED BY:

The Vertex Companies, Inc. 100 North Washington Street, Suite 302 Boston, MA 02114 PHONE 617.275.5407

VERTEX PROJECT NO: 46047

August 7, 2019

WP East Acquisitions, LLC 91 Hartwell Avenue, 3rd Floor Lexington, MA 02421 Attn: Mr. David Moore

RE: Phase I Environmental Site Assessment & Phase II Limited Site Investigation

River's Edge

484-490 Boston Post Road Wayland, Massachusetts VERTEX Project. No. 46047

Dear Mr. Moore:

The Vertex Companies, Inc. (VERTEX) is pleased to submit this Phase I Environmental Site Assessment (ESA) and Phase II Limited Site Investigation (LSI) report for the above referenced property (the Site). The purpose of this assessment was to identify Recognized Environmental Conditions (RECs) in connection with the Site. A REC is defined as "the presence or likely presence of hazardous substances or petroleum products in, on, or at a property: (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment." It does not include de minimis conditions that generally do not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies.

Our work was conducted in conformance with proposals P.0453.17 and P.3400.18 executed by Mr. David Moore on July 27, 2017 and March 25, 2019, respectively, and in accordance with the E 1527-13 American Society for Testing and Materials (ASTM) document entitled "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process" for commercial real estate, as well as the U.S. Environmental Protection Agency's (USEPA) All Appropriate Inquires (AAI) Final Rule of November 1, 2005, as amended December 30, 2013. To the best of our knowledge, this Phase I ESA report is true and accurate.

We declare that, to the best of our professional knowledge and belief, we meet the definition of an Environmental Professional as defined in §312.10 of 40 CFR Part 312. We have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. We have developed and performed the all

appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Please do not hesitate to contact us at your convenience should you have any questions or comments regarding this report or our recommendations. It has been a pleasure working with you on this project.

Sincerely,

The Vertex Companies, Inc.

Kristen Sarson Project Manager

William Gibbons, PG, LSP Senior Project Manager

William J. Libhans

Frank Calandra, PE, LSP

Division Manager – Remediation

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	SITE AND VICINITY CHARACTERISTICS	.11
2.1	Site Description	.11
2.2	Site Improvements	.11
2.3	Tenant Operations	.12
2.4	Current Uses of Adjoining Properties	.14
2.5	Physical Setting Source(s)	.14
2	.5.1 Topography	.14
2	.5.2 Surface Water	.15
2	.5.3 Geologic Conditions	
2	.5.4 Groundwater	.15
3.0	USER-PROVIDED INFORMATION	.16
4.0	INTERVIEWS	.18
5.0	HISTORICAL RECORDS REVIEW	.19
5.1	Historical Site Use Summary	
5.2	Historical Adjoining Properties Use Summary	
5.3	Previous Environmental Reports	
5.4	Prior Ownership	
5.5	City Directories	.25
5.6	Aerial Photography	
5.7	Topographic Maps	
5.8	Sanborn Fire Insurance Maps	
6.0	REGULATORY RECORDS REVIEW	
6.1	On-Site Listings	
6.2	Off-Site Listings	
6.3	Additional Environmental Record Sources	
7.0	SITE RECONNAISSANCE	
7.0 7.1	Access Restrictions	
7.1	Site Observations	
8.0	PHASE II LIMITED SUBSURFACE INVESTIGATION	
8.1	Utility Locate/Geophysical Survey	.43

8.2	32,000 Cubic-Yard Soil Stockpile Characterization	43
8.2	.1 Stockpile Grading	43
8.2	.2 Test Pit Advancement	44
8.2	.3 Potential ACWM Sampling	46
8.3	4,500 Cubic Yard Stockpile Characterization	46
8.4	Advancement of Soil Borings and Installation of Groundwater Monitoring Wells	s47
8.5	Soil Screening and Sampling	48
8.6	Groundwater Sampling	50
8.7	Exterior Soil Vapor Screening and Sampling	51
8.8	Firing Range Screening, Sampling, and Analysis	52
8.9	Site Geology and Hydrogeology	53
9.0 L	ABORATORY ANALYTICAL RESULTS	55
9.1	Applicable Regulatory Standards	55
9.2	32,000 Cubic-Yard Soil Stockpile Analytical Results	55
9.3	4,500 Cubic Yard Soil Stockpile Analytical Results	56
9.4	Soil Boring Analytical Results	56
9.5	Groundwater Analytical Results	56
9.6	Soil Vapor Analytical Results	59
9.7	Firing Range Analytical Results	59
9.7	.1 Correlation Analysis	60
9.7	.2 Vertical Delineation	60
10.0 C	ATA GAPS	62
11.0 C	ONCLUSIONS AND RECOMMENDATIONS	63
11.	1.1 Conclusions	63
11.2	Recommendations	64
11.	2.1 Soil Management	64
11.	2.2 Groundwater	65
11.	2.3 Soil Vapor	65
12.0 S	COPE AND LIMITATIONS	67
12.1	Purpose	67
12.2	Detailed Scope-of-Services	68
12.3	Significant Assumptions	70
12.4	Limitations and Exceptions	
12.5	Special Terms and Conditions	72

12.6	User Reliance
13.0 REF	ERENCES73
FIGURES	
Figure 1:	Site Locus
Figure 2:	Site Schematic
Figure 3:	Stockpile Grid Layout
Figure 4:	Firing Range Screening Results
Figure 4A:	Approximate Area of Lead Impact
Figure 4B:	Firing Range Vertical Delineation Assessment
TABLES	
Table 1:	Summary of Stockpile Analytical Data
Table 2:	Summary of Soil Analytical Data
Table 3:	Summary of Groundwater Analytical Data
Table 4:	Summary of Soil Vapor Analytical Data
Table 5:	Summary of Firing Range Analytical Data
APPENDIC	
Appendix A	
Appendix I	_
Appendix (
Appendix [
Appendix E	•
Appendix F	<u> </u>
Appendix (
Appendix I	·
Appendix I	: Regulatory Database Report
Appendix J	: Laboratory Analytical Reports

Appendix K: Resumes of Environmental Professionals

PHASE I ENVIRONMENTAL SITE ASSESSMENT & PHASE II LIMITED SITE INVESTIGATION

River's Edge 484-490 Boston Post Road Wayland, Massachusetts VERTEX Project. No. 46047

1.0 SUMMARY

On July 27, 2017, The Vertex Companies, Inc. (VERTEX) was retained by WP East Acquisitions, LLC to conduct a Phase I Environmental Site Assessment (ESA) and Phase II Limited Site Investigation (LSI) of the property, located at 484-490 Boston Post Road in Wayland, Massachusetts (the site). According to the South Middlesex Registry of Deeds, the site is currently owned by the Town of Wayland.

According to the Town of Wayland Assessor's Office, the site consists of parcels identified as Map 22, Lot 6 and Lot 7, and a portion of Map 22 Lot 3. The combined area of the site is approximately 7 acres. The western portion of the site is developed with a vacant wastewater treatment plant, an equalization tank, primary clarifier tank, thickener tank, wastewater discharge basins, and a hazardous material storage trailer associated with the former use of this area as the Route 20 Septage Facility. The building and associated structures were built in 1983. The exterior parking areas are currently used for school bus storage. Additionally, an office trailer has been located directly south of the site building since 2012.

The remainder of the site is undeveloped. The eastern half of the site is covered by a 32,000 cubic-yard stockpile of soil and construction materials generated during Wayland Department of Public Works (DPW) projects over many years, and a 4,500 cubic-yard stockpile of screened soil (reportedly originating from the 32,000 cubic-yard stockpile). The northwestern portion of the site was previously used by the Wayland Police Department as a firing range but has not been a firing range since 2017. Various piles of concrete debris, jersey barriers, and berms constructed of organic soils and compost are located throughout the eastern and northwestern portion of the site.

Phase I Environmental Site Assessment (ESA) and Phase II Limited Site Investigation (LSI) Findings

VERTEX's completed this Phase I ESA in accordance with the American Society for Testing and Materials (ASTM) E 1527-13 "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process." Findings identified below are based on a review of readily available historical information; interviews with Wayland municipal officials; historical environmental reports; a review of federal and state regulatory databases provided by Environmental Data Resources (EDR); and VERETX site reconnaissance visits. A summary of our findings and Phase II investigations to further investigate our findings is provided as follows:

Former Wastewater Treatment Plant Infiltration Beds

The site historically consisted of undeveloped land prior to construction of the wastewater treatment plant in 1983, with the exception of a portion of the site utilized as a firing range from the mid-1970s to 2017 (discussed further below). The treatment plant operated until 2009.

The wastewater treatment plant maintained three wastewater infiltration beds along the western border of the site. The infiltration beds were a discharge point for treated wastewater; however, due to the potential for environmental impacts and oil and hazardous materials (OHM) discharge at these locations, VERTEX identified potential impacts to soil and groundwater an environmental concern.

To assess potential impacts to soil and groundwater, VERTEX advanced two soil borings within the wastewater infiltration beds. Soil samples collected from the borings were submitted for laboratory analysis of soil characterization parameters. Based on the soil analytical data, constituents of concern were not identified at concentrations exceeding applicable Massachusetts Contingency Plan (MCP) Reportable Concentrations. Based on the absence of evidence of impact, the wastewater infiltration beds are no longer considered an environmental concern.

Soil Stockpiles

Based on available historical records, excess materials from DPW utility projects conducted at locations throughout the town were stockpiled in the eastern portion of the site beginning after the construction of the wastewater treatment plant. Transportation of materials for stockpiling at the site continued until 2017.

Based on potential historical impacts to the to the approximate 32,000-cubic yard soil stockpile of soil, DPW construction debris, and asbestos containing waste materials (ACWM), VERTEX identified the stockpile as a potential concern. To assess potential impacts to soil, VERTEX conducted a Phase II LSI to assess the 32,000 cubic-yard stockpile for potential on-site reuse and off-site disposal. Samples were collected at a frequency of one soil sample for every 500 cubic yards, which is the standard frequency required for Massachusetts landfills and soil reclamation facilities. Soil samples were submitted to a laboratory for the analysis of soil characterization parameters. Based on the analytical results, semi-volatile organic compounds (SVOCs) and lead were detected in several samples at concentrations exceeding MCP Reportable Concentrations. Based on the analytical data, the 32,000 cubic-yard stockpile represents a Recognized Environmental Conditions (REC) in connection with the site.

Former Firing Range

According to Wayland municipal officials and historical environmental reports, the northwestern portion of the site was utilized by the Wayland Police Department as a firing range since at least the mid-1970s until 2017. Based on the likelihood of lead impacts to shallow soils from historical use of lead bullets at the firing range, VERTEX identified this as an area of concern.

To assess lead impacts, VERTEX performed on-site screening of the firing range soils utilizing a handheld x-ray fluorescence (XRF) meter. Based on the screening results, VERTEX collected six soil samples for laboratory analysis of lead, antimony, copper, zinc, tungsten, and toxicity characteristic leaching procedure (TCLP) lead, and one composite sample for soil characterization purposes. Based on the detection of lead, antimony, and copper concentrations exceeding

applicable MCP RCS-1 Reportable Concentrations, metals impacts to firing range soils represents a REC in connection with the site.

Historical Releases

A review of federal and state regulatory databases provided by Environmental Data Resources (EDR) of Shelton, Connecticut indicated that the site is listed on various databases; however, the majority of the listings are attributed to the Wayland Transfer Station, located approximately 1,000 feet northwest and off-site, but maintaining the same address as the site (484 Boston Post Road). EDR regulatory database listings attributed to the site include Historical Waste Generator (HW GEN), Rhode Island Manifest (RI Manifest), State Hazardous Waste Site (SHWS), Release, and Asbestos:

- The site is included on the HW GEN and RI Manifest due to the transportation of various quantities of oil between 2004 and 2006. Based on the available information, these listings were not associated with other databases that would indicate a release of OHM had occurred to the environment; therefore, inclusion in the HW GEN and RI Manifest databases do not represent an environmental concern.
- The site is included on the SHWS and Release databases due to a reported release occurring 1987 and associated with Release Tracking Number (RTN) 3-001724. However, the site was later removed as a Disposal Site in 1993 based on a further review of available documentation by the Massachusetts Department of Environmental Protection (MassDEP). According to the MassDEP online file viewer the release was associated with the discharge of approximately 3 gallons of unknown oil "ostensibly from a restaurant grease trap" to the wastewater treatment plant's receiving tanks. Due to the regulatory status of the RTN, this listing is not considered a REC.
- The site is included on the SHWS, Release, and Asbestos databases due to the identification of greater than 1 pound of ACWM within the DPW excess-material stockpile. The asbestos was identified in 2017 and reported to the MassDEP who subsequently assigned the release RTN 3-34474. In December 2018, 2,000 cubic-yards

of co-mingled asbestos debris and soil was excavated from the stockpile and transported off-site. Based on the successful remediation of the delineated ACWM impacted area, the ACWM identified in August 2017 is a Historical Recognized Environmental Condition (HREC) to the site. Additionally, during the Phase II LSI investigation of the 32,000 cubic-yard stockpile, VERTEX collected asbestos samples at the same frequency as the waste characterization samples (1 sample per 500 cubic yards). Based on the analytical data, asbestos was not identified in the soil samples collected from the stockpile. Therefore, the detection of ACWM within the stockpile remains an HREC to the site.

Former Hazardous Materials Storage

At the time of VERTEX's site reconnaissance on April 11, 2019, the majority of OHM stored on site was located within four areas at the site: the laboratory area within the main site building, the machine shop area within the main site building, the hazardous materials storage trailer, and the office trailer. Evidence of a release associated with OHM storage at the site was not observed during VERTEX's site reconnaissance; however, due to stored materials and secondary containment structures, VERTEX could not directly inspect the floor of the hazardous materials storage trailer to identify potential releases of OHM. To assess impacts to soil and groundwater from potential releases from these areas, VERTEX advanced one soil boring and installed one monitoring well west and east of the hazardous materials storage trailer, respectively, to investigate for potential releases from OHM storage within the trailer. Based on the soil data collected from upgradient and the groundwater analytical data collected from downgradient of the hazardous material storage trailer, constituents of concern were not identified at concentrations exceeding applicable MCP Reportable Concentrations. Based on the absence of impact, the hazardous material storage trailer is not a REC associated with the site.

Former Underground Storage Tanks

Based on available historical documentation, several USTs were historically located on site, including one 1,000-gallon diesel-fuel UST, one 4,000-gallon No. 2 fuel-oil UST, and two 2,000-

gallon ferric-chloride USTs. Based on available documentation at the Wayland Fire Department, the USTs were removed in 1998; however, no soil screening or soil analytical data associated with the removal was available. To investigate the potential release from former on-site USTs, VERTEX advanced five soil borings within the area of the former USTs, with one boring completed as a permanent monitoring well. Soil samples and one groundwater sample were collected and submitted for laboratory analysis of total petroleum hydrocarbons (TPH), in addition to soil characterization parameters. Based on the soil and groundwater analytical data collected from the areas of the former USTs, constituents of concern were not identified at concentrations exceeding applicable MCP Reportable Concentrations. Based on the absence of impacts, the former on-site USTs no longer represent a REC.

Groundwater Impacts from Sudbury Landfill

The site is located in a mostly industrial and commercial area of Wayland, Massachusetts. Review of readily available historical information indicated that the site historically was bordered to the west by a gravel pit from at least the 1940s until the gravel pit was converted into the Sudbury Landfill in 1970. The landfill remained in operation until 1996 and was capped in 2005. In 2013 the landfill was developed with solar panels. Historically, south of the site has been bordered by Boston Post Road since at least 1894. South of the site beyond Boston Post Road was used as an unlined landfill between 1958 and 1980. The landfill has since been capped, and the area of the former landfill south of the site is now forested and undeveloped. Directly north and east of the site have remained undeveloped forested wetlands since at least 1894 until present. The Wayland Transfer Station, formerly the Wayland Sand Hill Landfill, was developed approximately 1,000 feet northwest of the site in 1980 and remains operational to this day. The locations of these properties relative to the site are depicted on Figure 2 – Site Schematic. The Sudbury River and associated Rare Wetland Wildlife Habitat and Protected Open Space is located approximately 200 feet east of the site. Groundwater flow is inferred to be east-southeast toward the river.

Based on previous subsurface investigations completed at the site, concentrations of dissolved arsenic exceeding applicable MCP Method 1 GW-1 standards were detected in monitoring wells located between the site and the Sudbury Landfill. To investigate the potential of dissolved

arsenic and other constituents of concern originating from the upgradient Sudbury Landfill, during the Phase II LSI VERTEX installed six groundwater monitoring wells throughout the site and collected groundwater samples for laboratory analysis of dissolved arsenic in addition to parameters recommended by the Town of Wayland. Based on groundwater analytical data, dissolved arsenic and nickel were detected in groundwater samples collected from monitoring wells V-102 (MW) and V-106 (MW), respectively, at concentrations exceeding applicable MCP RCGW-1 Reportable Concentrations. Additionally, ammonia was detected at concentrations exceeding applicable MCP RCGW-1 Reportable Concentrations in groundwater samples collected from monitoring wells V-101 (MW), V-102 (MW), V-105 (MW), and V-106 (MW). Based on the previously-established groundwater flow direction, the detections are related to the upgradient Sudbury Landfill and represent a REC in connection with the site.

Methane Impacts from Sudbury Landfill

Methane was also identified as a potential environmental issue. During a historical Phase II conducted at the site, methane concentrations were measured in a soil vapor point advanced within the firing range at concentrations up to 25% of the lower explosive limit (LEL). Based on the proximity of the Sudbury Landfill to the site and the historically measured concentrations of methane within the soil vapor at the site, during conducted additional assessment to further delineate methane impacts.

To investigate the potential of methane in soil vapor at the site, during the Phase II LSI, VERTEX installed six soil vapor sample points and collected soil vapor samples for laboratory analysis of methane from each point. Based on soil vapor analytical data, methane was not detected at concentrations exceeding the laboratory detection limit; however, screening data from the soil vapor points indicated the presence of methane at concentrations up to 10% of the LEL. Based on the detection of methane during screening activities, the continued elevated readings of methane above 10% of the LEL along the perimeter of the abutting Sudbury Landfill, VERTEX considers the potential for methane intrusion at the site to be a Business Environmental Risk (BER) that should be addressed during site redevelopment.

Non-ASTM Additional Services

In accordance with the proposed scope of work, additional services including the assessment of asbestos-containing materials (ACMs) and lead-based paint (LBP) in buildings are to be reported under a separate report.

Conclusions

VERTEX has performed a Phase I ESA in conformance with the scope and limitations of ASTM E 1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, and a Phase II LSI of the River's Edge property, located at 484 – 490 Boston Post Road in Wayland, Massachusetts. Exceptions to, or deletions from, this practice are described in Section 10.0 of this report. This assessment revealed the following RECs in connection with the site:

- The detection of SVOCs and lead at concentrations exceeding applicable MCP RCS-1
 Reportable Concentrations in soil in samples collected from the 32,000 cubic-yard stockpile represents a REC;
- The detection of lead, antimony, and copper at concentrations exceeding applicable
 MCP RCS-1 Reportable Concentrations in soil samples collected from the firing range at the site represents a REC; and
- Dissolved arsenic, nickel, and ammonia, originating from the upgradient Sudbury Landfill, at concentrations exceeding MCP RCGW-1 reportable concentrations in groundwater samples collected from the site represent a REC.

This assessment revealed the following BERs in connection with the site:

 The elevated readings of methane above 10% of the LEL along the perimeter of the abutting Sudbury Landfill and the potential for methane intrusion at the site represents a BER that should be addressed during site redevelopment.

This assessment revealed the following HRECs in connection with the site:

Based on the successful remediation of ACWM associated with RTN 3-34474, the
 ACWM in the stockpile is considered an HREC.

Recommendations

Based on the findings of VERTEX's assessment, VERTEX recommends the following:

- Based on the detection of SVOCs, lead, antimony, and copper at concentrations
 exceeding MCP RCS-1 Reportable Concentrations in soil samples collected from the
 stockpile and the firing range, conditions exist for which the MCP requires notification
 to be made to the MassDEP within 120-days of the property owner's knowledge or
 within 120 days of a new owner's purchase of the property.
- Based on the detection of dissolved arsenic, nickel, and ammonia in groundwater samples at concentrations exceeding MCP RCGW-1 reportable concentrations, a condition exists for which the MCP requires notification to be made to the MassDEP within 120-days of the property owner's knowledge or within 120 days of a new owner's purchase of the property. However, based on a review of historical environmental reports and on the location and distribution of the detected concentrations, the detected exceedances are attributable to the Sudbury Landfill. VERTEX recommends notifying the MassDEP of the groundwater release condition and the submittal of a Downgradient Property Status (DPS) Opinion in accordance with 310 CMR 40.0180.
- Based on screening data and the on-going detections of methane above 10% of the LEL
 along the perimeter of the abutting Sudbury Landfill, VERTEX recommends the
 installation of chemically resistant vapor barriers and/or a vapor mitigation system to
 protect indoor air in future buildings constructed where occupied ground floors and/or
 basement areas may be in contact with the site soils.
- Based on the laboratory analytical results most of the sampled soil is suitable for disposal at Massachusetts facilities permitted to receive soils containing OHM at concentrations that do not exceed MCP RCS-1 and RCS-2 Reportable Concentrations

(RCS-1 and RCS-2 facilities). VERTEX recommends the preparation and submittal to the MassDEP of a Release Abatement Measure (RAM) Plan for the remediation and management of soils impacted with OHM concentrations exceeding MCP Reportable Concentrations.

VERTEX recommends that a Soils Management Plan (SMP) be prepared for reference
and use by site contractors. The SMP would apply to the management of soil during
construction, other than soils addressed under the RAM Plan prior to construction.

For additional details regarding VERTEX's recommendations, please see Section 11.2.

2.0 SITE AND VICINITY CHARACTERISTICS

2.1 Site Description

The site is located at 484 – 490 Boston Post Road (Massachusetts Route 20) in Wayland, Massachusetts. According to the Town of Wayland Assessor's Office, the site consists of parcels identified as Map 22, Lot 6 and Lot 7, and a portion of Map 22 Lot 3. The combined area of the site is approximately 7 acres. The site location is provided on Figure 1 - Site Locus Map.

2.2 Site Improvements

The western portion of the site is developed with a vacant water treatment plant building, an equalization tank, primary clarifier tank, thickener tank, wastewater infiltration beds, and a hazardous-material storage trailer associated with the former use of this area as the Route 20 Septage Facility. The building and associated structures were built in 1983. The building is a metal-framed brick and concrete-block structure, with a flat asphalt roof. The interior of the site building includes a garage area, laboratory, control room, machine shop, offices, and a wastewater treatment area that includes a full basement housing various machinery associated with processing wastewater. The majority of the interior is finished with materials including concrete block, tile, and drywall. The equalization tank, primary clarifier tank, and thickener tank are mostly of fiber glass construction.

Additionally, an office trailer has been located directly south of the site building since 2012 and two metal storage containers associated with the firing range have been located along the eastern perimeter of the firing range since at least 2010. There are no other buildings located at the site.

The approximately eastern-half of the site is covered by a 32,000 cubic-yard stockpile that has been generated from Wayland DPW projects located throughout the town over many years and a 4,500 cubic-yard stockpile of screened soil (reportedly originating from the 32,000 cubic-yard stockpile). The northwestern portion of the site was previously used by the Wayland Police Department as a firing range from at least the mid-1970s until 2017. Various piles of concrete

debris, jersey barriers, and berms constructed of organic soils and compost are located throughout the eastern and northwestern portion of the site.

During site reconnaissance, VERTEX observed one existing monitoring well on site (MW-3), and at least three off-site monitoring wells abutting the site boundary. Based on available historical documentation, the observed monitoring well was installed as part of a network of monitoring wells meant to monitor site groundwater for potential impacts associated with the upgradient Sudbury Landfill and former use as a wastewater treatment plant.

For a layout of the site, please refer to Figure 2 - Site Schematic. Photographic documentation of the site and surrounding areas is provided in Appendix A.

2.3 Tenant Operations

The paved parking and driveway areas in the western portion of the site are currently used by the Wayland School District for school bus storage. The remainder of the site is vacant. Various chemicals and oils associated with the current use for school bus storage, and former use of the site as a wastewater treatment plant remain on site. Chemicals and oils are mostly located within four areas at the site: the laboratory area within the main site building, the machine shop area within the main site building, the hazardous materials storage trailer, and the office trailer.

Laboratory Area:

At the time of VERTEX's site reconnaissance on April 11, 2019, chemicals within the laboratory area included sulfuric acid, various reagents, and miscellaneous unlabeled bottles. Chemicals are mostly stored within a fume hood and an unworking refrigerator. The floor of the laboratory area appeared to be in good condition, and as such, the current storage of chemicals is not considered a current environmental concern; however, prior to demolition, VERTEX recommends the removal and proper disposal of all laboratory chemicals.

Machine Shop Area:

On April 11, 2019, chemicals and oils stored within the machine-shop area included various cans of lubricant, insecticide, welding chemicals, gear oils, and paints. The majority of chemicals were observed to be stored on a work bench and metal shelves; however, a two empty quart-sized bottles were observed on the ground. Additionally, visual access to the entire room was limited due to the storage of school furniture and equipment. Based on the current observable conditions, due to the minimal volumes of stored chemicals and oils and absence of evidence of a release, these materials are not considered a current environmental concern. However, prior to demolition, VERTEX recommends the removal and proper disposal of all observed chemicals and oils.

Hazardous Materials Storage Trailer:

The hazardous materials storage trailer is separated into two rooms. On April 11, 2019, in the northern portion of the trailer, VERTEX observed approximately five 55-gallon drums of oil, three 30-gallon drums of oil, and four 5-gallon buckets of oil are stored. Hazardous materials in the southern portion of the trailer was limited to a 5-gallon flammable-liquids storage can of unknown contents, and a flammables storage cabinet which was inaccessible during VERTEX's reconnaissance. Both sides of the trailer appeared to have secondary containment, but the integrity of the underlying floor could not be verified. Based on the potential for a release of hazardous materials within the trailer to the ground below, VERTEX identified the hazardous materials storage trailer as a REC to be investigated during the Phase II LSI.

Office Trailer:

On April 11, 2019, chemicals in the office trailer were limited to typical cleaning chemicals, which were well stored, with no signs of staining or a release. According to the site contact, school bus maintenance and repairs are conducted off-site and significant quantities of petroleum products and hazardous material are not used or stored on-site. As such, the current on-site operations are not considered an environmental concern.

2.4 Current Uses of Adjoining Properties

The site is in a mostly industrial and commercial area of Wayland, Massachusetts. The locations of surrounding properties relative to the Site are depicted on Figure 2 – Site Schematic.

NEARBY/ADJOINING PROPERTY SUMMARY				
DIRECTION	POTENTIAL CONCERNS			
North	Undeveloped forested land and wetlands	None		
Northwest Sudbury Landfill followed by the Wayland Transfer Station		See below		
West Sudbury Landfill		See below		
South Undeveloped land followed by Massachusetts Bay Transit Authority (MBTA) railroad tracks		None		
East	Wetlands and conservation land	None		

See Section 6.2 for additional information regarding the Sudbury Landfill and Wayland Transfer Station.

2.5 Physical Setting Source(s)

Physical setting sources specified in Section 13.0 of this report were reviewed to provide information about the geology and hydrogeology of the site.

2.5.1 Topography

A review of the 2012 USGS Topographic Quadrangle Map of Framingham, Massachusetts indicates that the surface elevation of the site is approximately 120 to 150 feet above mean sea level (amsl). The surface elevation at the portion of the site occupied by the former wastewater treatment plant is approximately 150 feet and the elevation of eastern portion of the site is approximately 120 feet, with the downward slope continuing east toward the wetlands and the Sudbury River.

2.5.2 Surface Water

No naturally-occurring surface water bodies or wetland areas were observed on-site. The closest naturally-occurring surface water body is the Sudbury River, located approximately 1,400 feet east of the site. According to the National Wetlands Inventory (NWI) Wetlands Mapper, the area between the site and the Sudbury River consists of wetlands. An additional forested wetland is located northerly adjacent to the site. According to the Federal Emergency Management Administration (FEMA) Flood Insurance Rate Map for the site, the site is not located within a 100-year or 500-year flood zone.

2.5.3 Geologic Conditions

According to the United States Department of Agriculture (USDA) Web Soil Survey and the Surficial Geology Map of Massachusetts, the majority of the soils at the site consist of Udothents sandy loams, which are well drained. According to previous subsurface investigation activities, as discussed in Section 5.3, soils encountered on-site have consisted of fill material overlying glacial till. According to the United States Geological Survey (USGS) Bedrock Map of Massachusetts, bedrock in the area of the site is noted as quartzite, schist, calc-silicate quartzite and amphibolite. Bedrock outcroppings were not observed during the site visit.

2.5.4 Groundwater

According to previous subsurface investigation activities conducted on-site, as discussed in Section 5.3, groundwater flow has been calculated to be to the southeast. Groundwater has been encountered between 15 and 30 feet below ground surface (bgs). Actual local groundwater flow direction can be influenced by factors such as local surface topography, underground structures, seasonal fluctuations, soil and bedrock geology, and production wells, none of which were considered during this study.

3.0 USER-PROVIDED INFORMATION

In accordance with the United States Environmental Protection Agency (USEPA) All Appropriate Inquiries (AAI) Final Rule of November 1, 2005, as amended December 30, 2013, VERTEX interviewed knowledgeable individuals about the site and requested the following information about the site from WP East Acquisitions, LLC ("User"):

- Whether they had knowledge of the presence of environmental cleanup liens for the Site;
- Whether they had knowledge of activity and use limitations (AULs) such as engineering controls (e.g., slurry walls, caps) and land use restrictions or institutional controls (e.g., deed restrictions, covenants) that may be in place for the Site;
- Whether they had specialized knowledge that is material to the presence of RECs at the
 Site, including personal knowledge or experience related to the Site or nearby
 properties based on professional experience or knowledge of the Site;
- Whether the amount asked for the Site was fair market value (FMV) or if it was lower due to the presence of contamination;
- Whether they had knowledge of obvious indicators of OHM releases at the Site such as spills, stains, releases, or cleanups on or near the site;
- Whether they had common knowledge about the use of specific chemicals, possible contamination, or past use of the Site and surrounding area; and
- Reason for performing the ESA.

WP East Acquisitions, LLC provided VERTEX with the name of the Site contact, Mr. Paul Brinkman, Town of Wayland Town Engineer, representing the owner and indicated that the reason for performing the ESA was to support their decision making regarding a potential purchase of the Site. In addition, WP East Acquisitions, LLC provided VERTEX with previous environmental reports

for the site (discussed in Section 5.3). No other information regarding the site was provided by the Client.

4.0 INTERVIEWS

VERTEX conducted interviews regarding site history and the current on-site operations with the following individuals:

INTERVIEWS				
NAME/COMPANY	TITLE/POSITION	INFORMATION PROVIDED		
Paul Brinkman/Town of Wayland	Town Engineer	Provided site access, as well as information regarding site operations.		
Municipal Officials	Various	Provided municipal information.		

Information obtained from these interviews is discussed in relevant sections of this report. Please refer to Section 6.3 for a summary of information obtained from municipal inquiries.

5.0 HISTORICAL RECORDS REVIEW

Past land uses for the site and adjoining properties were assessed to identify historical practices or conditions that may have impacted the site. This was accomplished by reviewing historical information from several sources including but not limited to; interviews with current owners and tenants, review of available previous environmental reports and ownership records, historical information obtained from regulatory sources, aerial photographs, city directories and historical maps. Information concerning prior reports provided, if any, is included in Section 5.3.

5.1 Historical Site Use Summary

Based on a review of readily available historical information, the site historically consisted of undeveloped cleared land prior to construction of the wastewater treatment plant in 1983, with the exception of a portion of the site utilized as a firing range since at least the mid-1970s (discussed further below). The treatment plant operated until 2009. Based on available historical records, it appears that the storage of excess DPW soil and waste asphalt, masonry, concrete, and other debris in the eastern portion of the site began following the construction of the wastewater treatment plant. Transportation of excess DPW material for storage at the site continued until 2017.

According to Wayland municipal officials and historical environmental reports, the northwestern portion of the site was utilized by the Wayland Police Department as a firing range since at least the mid-1970s until 2017.

5.2 Historical Adjoining Properties Use Summary

The site is in a mostly industrial and commercial area of Wayland, Massachusetts. Review of readily available historical information indicated that the site was historically bordered to the west by a gravel pit from at least the 1940s until the gravel pit was converted into a landfill in 1970. The landfill remained in operation until 1996 and was capped in 2005. In 2013 the landfill was developed with solar panels. Historically, south of the site has been bordered by Boston Post Road since at least 1894. South of the site beyond Boston Post Road was used as an unlined

landfill between 1958 and 1980. The landfill has since been capped, and south of the site is currently forested and undeveloped. Directly north and east of the site have remained undeveloped forested wetlands since at least 1894 until present. The Wayland Transfer Station, formerly the Wayland Sand Hill Landfill, was developed approximately 1,000 feet northwest of the site in 1980 and remains in operation. The locations of these properties relative to the site are depicted on Figure 2 – Site Schematic.

5.3 Previous Environmental Reports

VERTEX was provided with the following previous reports. Copies of the prior reports are included in Appendix D.

<u>Phase I Environmental Site Assessment and Limited Phase II Investigation Report, prepared by Tighe & Bond for The Town of Wayland, dated October 2012.</u>

At the request of the Town of Wayland Economic Development Committee, Tighe & Bond conducted a Phase I ESA and Phase II LSI at the site. At the time of the report, the wastewater treatment plant had ceased operation; however, the firing range and DPW stockpiles were active.

Based on Tighe & Bond's review of Wayland Fire Department records, USTs historically located on site, included one 1,000-gallon diesel-fuel UST, one 4,000-gallon No. 2 fuel-oil UST, and two 2,000-gallon ferric-chloride USTs, each reportedly removed in 1998. The report also indicated that the site was listed on the EDR SHWS database under MassDEP RTN 3-001724 due to the apparent release of waste gear-oil in 1986. Based on VERTEX's review of available documentation on the MassDEP Searchable Sites Database, the release most likely consisted of oil from a restaurant grease trap; VERTEX did not identify mentions of waste gear oil. Tighe & Bond reported that the site was removed as a Disposal Site in 1993 following additional investigation by the MassDEP that determined the release did not qualify. This RTN is discussed further in Section 6.1.

Based on the results of the Phase I ESA, Tighe & Bond identified the following RECs:

- The former 1,000-gallon diesel-fuel tank, 4,000-gallon No. 2 fuel-oil UST, and two 2,000-gallon ferric-chloride USTs located at the former septage treatment facility;
- The historic use of lead-containing bullets at the police firing range;
- The elevated concentrations of methane detected in a soil vapor point located on the eastern side of the abutting Sudbury Landfill;
- Concentrations of arsenic consistently detected at concentrations exceeding MCP
 Method 1 GW-1 cleanup standards in a groundwater monitoring well located on the eastern side of the landfill of the abutting Sudbury Landfill; and
- The soil stockpile generated from construction activities within the Town throughout the years.

To investigate the identified RECs, Tighe & Bond completed a Phase II LSI that included the following scope of work:

- The advancement of seven soil borings to depths up to 20 feet bgs (based on the report, soil samples were not screened, and samples were not collected for laboratory analysis).
- The collection of one groundwater sample from an existing on-site monitoring well submitted for laboratory analysis of extractable petroleum hydrocarbons (EPH) with polycyclic aromatic hydrocarbons (PAHs), volatile petroleum hydrocarbons (VPH), and volatile organic compounds (VOCs);
- The investigation of the firing range using an XRF meter, including the screening of up to 80 samples throughout the berms and range;
- The advancement of three shallow soil vapor monitoring points for soil vapor screening;
 and
- Tighe & Bond advanced an undesignated number of test pits to investigate the stockpiled soil generated from construction activities within the Town of Wayland. At

the time of Tighe & Bond's investigation, there were three stockpiles on site that they designated:

- o Stockpile No. 1: The largest stockpile, measured at a height of 40 feet, with a length of 200 feet and width of 150 feet.
- O Stockpile No. 2: Tighe & Bond reported that this material originated from Stockpile No. 1 and had previously been processed with an on-site crusher. The stockpile measured approximately 20 feet high, 200 feet long, and 30 feet wide. Tighe & Bond did not advance any test pits within the stockpile.
- o Stockpile No. 3: Tighe & Bond reported that this stockpile consisted of urban fill materials and was 25 feet high, 140 feet long, and 70 feet wide. Tighe & Bond did not advance any test pits within the stockpile.

The results of Tighe & Bond's Phase II LSI are summarized below.

Former UST Areas

Tighe & Bond advanced seven soil borings up to 20 feet bgs throughout the area formerly occupied by USTs. Reportedly, visual/olfactory evidence of a release was not identified, and as such, soil samples were not collected. The report does not indicate whether a photoionization detector (PID) was used to screen for total volatile organic compounds (TVOCs). Additionally, a groundwater sample was collected from existing monitoring well MW-3 (designated as Downgradient-1 by Tighe & Bond) and analyzed for EPH with PAHs, VPH, and VOCs. Tighe & Bond reported that the analyses did not detect analyte concentrations exceeding the applicable 2012 MCP RCGW-1 Reportable Concentrations; however, tabulated data or the laboratory analytical report was not included in the report made available for VERTEX's review. The location of monitoring well MW-3 is shown on Figure 2 – Site Schematic.

Firing Range

Using an XRF meter, Tighe & Bond screened the firing range area to determine the magnitude of lead concentrations in the shallow soils. Tighe & Bond reported elevated lead concentrations in most the firing range at depths up to two feet. Tighe & Bond estimated approximately 450 cubic yards of lead-impacted soil existed within this area of the site. The report indicates that the material in this area will require future management under the MCP.

Soil Vapor

Tighe & Bond installed three soil-vapor monitoring points to evaluate the potential migration of landfill gasses from the abutting Sudbury Landfill. Based on the report, flammable gases were detected at concentrations exceeding the 25% LEL in soil vapor sampled from the firing range. Flammable gases were not detected in soil-vapor screened from two soil-vapor monitoring points installed within the former wastewater treatment plant area. Tighe & Bond assumed the source of the elevated flammable gas readings was the abutting Sudbury Landfill due to evidence of historically high detections in soil-vapor samples collected from the border of the landfill abutting the site. The report also recommended that if the area were to be developed, "preventative protections to new structures" be constructed.

Soil Stockpiles

At the time of the report, Tighe & Bond indicated that there were three stockpiles on site: Stockpile No. 1 containing unprocessed soils and urban fill materials, and Stockpiles No. 2 and No. 3 containing processed materials. Based on VERTEX's site visit, Stockpile No. 3 is no longer located at the site.

To investigate Stockpile No. 1, Tighe & Bond reportedly completed test-pits within Stockpile No. 1 to depths up to 5 feet. The report indicates that urban fill materials such as asphalt, asphaltic piping, brick, metal, concrete, glass, and wood were identified in the test pits in addition to railroad ties and three sections of asbestos transite pipe. Based on the presence of asbestos piping, Tighe & Bond recommended careful monitoring during the management of the stockpile, and notification of the MassDEP if additional asbestos materials are identified.

<u>Former Wayland-Sudbury Septage Facility Groundwater Summary Memorandum – August 2015</u> Sampling Event, prepared by Tighe & Bond for The Town of Wayland, dated September 2, 2015.

The memorandum indicates Tighe & Bond collected groundwater samples from one on-site monitoring well (MW-3) and four off-site monitoring wells (MW-2, MW-4, MW-5, and D-3) and submitted the groundwater for laboratory analysis of MCP-14 total metals and manganese. The report indicated that arsenic was detected at concentrations exceeding the MCP RCGW-1 Reportable Concentrations in the two monitoring wells located off-site between the Sudbury Landfill and the site (MW-2 and D-3). VERTEX notes that MCP RCGW-1 Reportable Concentrations are not applicable to measured concentrations of total metals within groundwater. The memorandum attributed the exceedances to the Sudbury Landfill, and concluded they were therefore regulated under the Solid Waste Permitting Program and did not constitute a reporting condition. Additionally, manganese was detected above the Massachusetts Drinking Water Standards Secondary Maximum Contaminant Level Standard (SMCL), which was used for comparison as an RCGW-1 Reportable Concentration does not exist for manganese.

The memorandum also included historical Monthly Maximum Data Reports (MDRs) for the former wastewater treatment plant. The MDRs include historical groundwater analytical data collected from two on-site monitoring wells (MW-3 and MW-1 - which has since been destroyed) in addition to two off-site upgradient monitoring wells (D-3 and MW-2) and two off-site downgradient monitoring wells (MW-4 and MW-5). The tabulated analytical data includes monthly maximum concentrations from January 2008 through December 2009 for pH, biological oxygen demand (BOD), total suspended solids (TSS), total solids, ammonia, nitrate, total nitrogen, oil and grease, chlorine, fecal coliform, chloride, specific conductance, lead, manganese and mercury. Based on the tabulated data, various analytes were detected above the laboratory detection limit including ammonia, mercury, and manganese. Ammonia was only sampled from an unknown location designated as 'influent' at concentrations between 16,000 and 74,000 micrograms per liter (μ g/l). Mercury was detected in each of the six wells sampled in March 2008 at concentrations varying from 180 to 8,650 μ g/l; however, it was not detected above the laboratory detection limit in other months in 2008 and 2009. Manganese was detected at

concentrations between 80 μ g/l and 12,200 μ g/l between 2008 and 2009. A copy of the MDRs are included in Appendix D.

Based on the RECs identified by Tighe & Bond during their 2012 Phase I ESA and Phase II LSI, and the results of the supplemental 2015 groundwater analyses, VERTEX identified the former UST area, firing range, soil vapor, soil stockpiles, and on-site groundwater as RECS warranting investigation. The investigation and results of VERTEX's Phase II LSI are discussed further in Sections 8.0 and 9.0.

5.4 Prior Ownership

VERTEX reviewed records provided by the South Middlesex County Registry of Deeds. The site is currently owned by The Town of Wayland. Prior ownership records were reviewed online from the South Middlesex County Registry of Deeds. The available chain of title for the site is summarized below.

DEED RECORDS REVIEW – 484 - 490 BOSTON POST ROAD				
GRANTOR	GRANTEE	BOOK/PAGE	DATE	
Mary and William Lord	Town of Wayland	13443/177 13448/394	04/11/1978 5/25/1978	
Boston Edison Co	Mary and William Lord	10225/372	03/01/1963	
Donald and Constance Neelon	Boston Edison Co	9763/512	02/23/1961	

No evidence of prior owners of environmental concern was identified in the deed records reviewed. Additionally, no environmental liens or AULs were noted through review of ownership records. Prior owners of the site were not available to be interviewed.

5.5 City Directories

VERTEX reviewed historical city directory information for the site and adjoining properties as provided by EDR. Copies of select city directories are included in Appendix E. A summary of listings is presented below.

CITY DIRECTORY REVIEW				
YEAR	SUMMARY (ON-SITE)	SUMMARY (OFF-SITE)	CONCERNS	
1984	Boston Post Road (No Number):	430 Boston Post Road: Raytheon Company	None; See	
	Wayland-Sudbury Septic Facilities;	533 Boston Post Road: Hub Precision	Below	
	Wayland Town Dump, Wayland Town	Products; McIntire Brass Work		
	Office Dump	534 Boston Post Road: Dasibi Environmental		
		Corp.		
		No # Boston Post Road: U.S. Gov. Defense		
		Audit Agency		
1988	Boston Post Road (No Number):	430 Boston Post Road: Raytheon Company	None; See	
	Wayland-Sudbury Septic Facilities;	526 Boston Post Road: Alan Chapman	Below	
	Wayland Town Dump, Wayland Town	Communications; Impress Design and		
	Office Dump	Topography Inc.; Laguna Industries; Tmp		
		Services Co.		
		530 Boston Post Road: Candela Laser Corp.		
		533 Boston Post Road: Hub Precision		
		Products; McIntire Brass Work		
		534 Boston Post Road: Moduspec Company		
1992	Not Listed.	430 Boston Post Road: Raytheon Company	None; See	
		522 Boston Post Road: Richey and Clapper	Below	
		Inc.; Waters Manufacturing Inc.		
		524 Boston Post Road: Longfellow Health		
		Center; Sudbury Chiropractic Office		
		526 Boston Post Road: Alan Chapman		
		Communications; Candela Laser Corp.;		
		Cymer; Impress Design and Topography Inc.;		
1005	Net listed	Kolmar Technologies; Tmp Services Co.	Nama: Caa	
1995	Not Listed.	430 Boston Post Road: Raytheon Company	None; See	
		522 Boston Post Road: Electro Freeto	Below	
		Manufacturing Co. Inc.; Logan Products		
		524 Boston Post Road: The Longfellow Club; Longfellow Health Center Inc.; Sudbury		
		Chiropractic Office		
		526 Boston Post Road: Adtech Systems; Alan		
		Chapman Communications; Alternate		
		Solutions; Candela Laser Corp.; Eximer Laser		
		Systems; The Hamblin Group; Impress		
		Design and Topography Inc.; Iso 9000		
		Network; J.E. Robison Sales; Portable Clean		
		Rooms Inc.; Tmp Services Co.		
		534 Boston Post Road: Seavey Inc.		
		33 . 233ton i ost noda. Scavey inc.		

CITY DIRECTORY REVIEW						
YEAR	YEAR SUMMARY (ON-SITE) SUMMARY (OFF-SITE) CONCERNS					
1999	490 Boston Post Road: Methuen Construction Company Manufacturers Agency	522 Boston Post Road: Adtech Systens; Electro Freeto Manufacturing Co. Inc.; Giorgio Robert Sudbury School of Taekwondo; Longfellow Children's Center 524 Boston Post Road: The Longfellow Club; Longfellow Health Center Inc. 526 Boston Post Road: Adtech Systems; Alan Chapman Communications; Alternate Solutions; American Writers Review; Automotive Profit Builders Co. Inc.; Blue Dolphin Communications; Care Computer Systems Inc.; Editor and Writer; Education Network Inc.; EH Publishing Inc.; Excimer Laser Systems; The Hamblin Group; Impress Design and Topography Inc.; Internet Voyager; Iso 9000 Network; J.E. Robison Sales; Lasertone Corp.; National Dentex Corp.; Portable Clean Rooms Inc.; Razcal Corp.; Subscription Marketing; Technical Support Services Inc.; Tmp Services Co.; UV Technology Systems; Writing for Money 530 Boston Post Road: Candela Laser Corp. 533 Boston Post Road: Seavey Inc.	None			
2003	Not Listed.	400 Boston Post Road: Bus Wayland 426 Boston Post Road: Janice Carlson 430 Boston Post Road: Moldflow Corp.; Woodard and Curran Inc. 432 Boston Post Road: Sound Vision Inc. 522 Boston Post Road: Adtech 524 Boston Post Road: Holistic Health Management Inc.; Kenneth Hazirjian; Laurence Hammel; The Longfellow Club; Longfellow Health Center; Sudbury Racquet Club Inc. 526 Boston Post Road: 526 BPR East; Alternate Solutions; Computer Revivals Inc.; David Elliott; David Watkins; Electronic House; Eximer Laser Systems; Iso 9000 Network; Softscape Inc.; UV Technology Systems Inc. 530 Boston Post Road: Candela Skin Care Centers Inc.; Occupant Unknown 533 Boston Post Road: Occupant Unknown 534 Boston Post Road: Richard Wilson	None			

CITY DIRECTORY REVIEW				
YEAR	SUMMARY (ON-SITE)	SUMMARY (OFF-SITE)	CONCERNS	
2008	Not Listed.	508 Boston Post Road: EH Publishing 522 Boston Post Road: Adtech; Loan Fellow Children Center; Logan Products Co. 524 Boston Post Road: Longfellow Health Center; Sudbury Racquet Club Inc.; Tennis Pro Shop Inc. 526 Boston Post Road: Alternative Solutions; The Education Network Inc.; Show Me the Food Co.; Softscape Inc. 530 Boston Post Road: Candela Laser Corp. 533 Boston Post Road: Bentley Boston; Foreign Motors West Inc.; Herb Chambers of	None	
2013	490 Boston Post Road: First Student	Wayland Inc.; Heritage Motor Works 430 Boston Post Road: Aquarion Operating Services 522 Boston Post Road: Lumina at Longfellow; Zip Zone at Longfellow 524 Boston Post Road: The Longfellow Club; Longfellow Health Center 526 Boston Post Road: A13 Architects; National Dentex Corp.; Softscape 530 Boston Post Road: Candela Corp. 533 Boston Post Road: Bentley of Boston; Heritage Motor Works; Lamborghini of Boston; Rolls Royce Motor Cars of New England	None	

Available city directories indicate that the Wayland Town Dump was located at the site address in 1984 and 1988. Based on available information, the Wayland Town Dump is located 1,000 feet northwest of the site but maintains the address 484 Boston Post Road; therefore, based on distance and direction, this city directory listing is not considered to be an environmental concern.

Available city directories list Raytheon Company (Raytheon) at 430 Boston Post Road, approximately 2,700 feet east of the site. The property is associated with various RTNs; however, based on the distance and apparent hydraulic gradient, the property is not considered an environmental concern to the site.

5.6 Aerial Photography

VERTEX reviewed aerial photographs including the Site and adjoining properties. Copies of the aerial photographs are included in Appendix F. A summary of information obtained from the review is provided in the table below.

AERIAL PHOTOGRAPHY REVIEW				
YEAR	SUMMARY (ON-SITE)	SUMMARY (OFF-SITE)	CONCERNS	
1952	The site is depicted as undeveloped land. A portion of the site appears cleared.	The site is bordered to the south by Boston Post Road, beyond which is undeveloped forested land followed by a railroad. The site is bordered to the north and east by undeveloped forested land. Directly west of the site appears to be developed with a gravel quarry.	None	
1957 1963 1969	The site has been cleared but appears undeveloped.	Surrounding site properties appear similar to the 1952 aerial photograph; however, evidence of the old Wayland Landfill appears south of the site beyond Boston Post Road.	None; See Below	
1970 1978	The site appears similar to the 1969 photograph.	The property west of the site appears to have been converted to the Sudbury Landfill. Additional land has been cleared in conjunction with the old Wayland Landfill directly south of the site, beyond Boston Post Road. The north and east abutting properties appear similar to the 1969 aerial photograph.	See Below	
1980	A portion of the site appears to have been cleared and possibly used to stockpile materials.	Surrounding properties appear similar to the 1978 aerial photograph; however, a north/south oriented road appears directly abutting the site to the east and the old Wayland Landfill appears to be capped.	See Below	
1985 1995	The conditions at the site appear similar to its current condition, including stockpiles of various sizes throughout the eastern portion of the site.	Surrounding properties appear similar to the 1980 aerial photograph.	See Below	
2006 2008 2010 2012	The conditions at the site appear similar to its current condition.	The Sudbury Landfill directly west of the site appears to have been capped and no longer used as a landfill. South of the site, beyond Boston Post Road, appears to be forested land. The remaining abutting properties appear similar to the 1995 aerial photograph.	None	

Based on available historical documentation, the old Wayland Landfill appears to have been located south of the site (beyond Boston Post Road) from approximately 1957 until 1980;

however, based on the apparent hydraulic gradient, the old Wayland Landfill is considered downgradient to the site and not anticipated to be an environmental concern.

Based on available historical documentation, the Sudbury Landfill was developed west of the site in approximately 1970 and remained operational until 1996. According to available documentation, the landfill is lined, and has since been capped. However, based on the recording of flammable gas concentrations above 10% of the LEL and elevated concentrations of dissolved arsenic in groundwater along the perimeter of the Sudbury Landfill, VERTEX identified both the potential soil vapor intrusion and groundwater impact from the Sudbury Landfill at the site RECs warranting addition investigation during the Phase II LSI. The results of the Phase II LSI are discussed further in Sections 8.0 and 9.0.

5.7 Topographic Maps

VERTEX reviewed historical topographic maps including the site and surrounding areas. Copies of the topographic maps are included in Appendix G. A summary of information obtained from the review is provided in the table below.

	TOPOGRAPHIC MAP REVIEW				
YEAR	SUMMARY (ON-SITE)	SUMMARY (OFF-SITE)	CONCERNS		
1894	The site is depicted as undeveloped land and wetlands.	Boston Post Road is depicted south of the site, beyond which is a railroad.	None		
1915 1918	A road is depicted bisecting the site from southwest to northeast. The remainder of the site appears undeveloped.	Surrounding properties appear similar to the 1894 topographic map; however, two small structures are depicted northeast of the site.	None		
1943 1950	The site is depicted as undeveloped land.	The surrounding areas appear similar to the 1894 topographic map.	None		
1958	The site is not depicted.	The surrounding areas are not depicted.	None		
1965	The site is depicted as cleared undeveloped land.	The western abutting property is labelled as a gravel pit. Other remaining properties appear undeveloped.			
1970	The site is not depicted.	The surrounding areas are not depicted.	None		
1979	The site appears similar to the 1965 topographic map.	Surrounding properties appear similar to the 1965 topographic map.	None		
1987	A small structure appears in the southeastern corner of the site. The remainder of the site appears undeveloped.	Surrounding properties appear similar to the 1979 topographic map.	None		

	TOPOGRAPHIC MAP REVIEW								
YEAR	SUMMARY (ON-SITE)	SUMMARY (OFF-SITE)	CONCERNS						
2012	The 2012 topographic map does not depict structures.	The 2012 topographic map does not depict structures. A roadway is depicted to the east of the site.	None						

The review of historical topographic maps did not identify specific concerns or RECs; however, it should be noted that the Sudbury Landfill east of the site which was operational between 1970 and 1996 is depicted as a 'Gravel Pit' up to 1987.

5.8 Sanborn Fire Insurance Maps

VERTEX requested available Sanborn Fire Insurance (Sanborn) Maps for the site and surrounding areas. Sanborn Maps were not available.

6.0 REGULATORY RECORDS REVIEW

VERTEX obtained a regulatory database report as specified in Section 13.0. Review of databases and files from federal, state, and local environmental regulatory agencies was used to identify use, generation, storage, treatment, or disposal of hazardous materials and chemicals, or release incidents of such materials that might have impacted the site. The databases discussed in the following sections address ASTM Phase I ESA requirements. Additional federal and state databases may have also been reviewed, and if so, are listed in the table below. A copy of the database report is included in Appendix I.

A summary of the database information is provided in the following table.

REGULATORY DATABASE SUMMARY								
DATABASE	ASTM RADIUS	TARGET PROPERTY	SURROUNDING FACILITIES					
National Priorities List (NPL)/Proposed NPL/De-listed NPL	1 Mile	-	0					
Superfund Enterprise Management System (SEMS)	½ Mile	-	1					
SEMS Archive/CERCLIS No Further Remedial Action Planned (CERC-NFRAP) Sites	½ Mile	-	1					
Corrective Action Report (CORRACTS)	1 Mile	-	0					
Resource Conservation and Recovery Act Treatment, Storage, and Disposal Facilities (RCRA-TSDF)	½ Mile	-	0					
RCRA Hazardous Waste Generators	¼ Mile	-	0					
RCRA Former Hazardous Waste Generators/No Longer Regulated Sites (RCRA NonGen/NLR)	¼ Mile	х	0					
Facility Index System (FINDS)	Target Property	х	-					
Emergency Response Notification System (ERNS)	Target Property	-	-					
Federal Institutional Controls/Engineering Controls	½ Mile	-	0					
Land Use Control Information System Sites (LUCIS)	½ Mile	-	0					
State Hazardous Waste Sites (SHWS)	1 Mile	Х	22					
Solid Waste Facilities/Landfills (SWF/LF)	½ Mile	Х	2					
Open Dump Inventory (ODI)	½ Mile	Х	0					
Voluntary Cleanup Program (VCP)	½ Mile	-	0					

REGULATORY DATABASE SUMMARY								
DATABASE	ASTM RADIUS	TARGET PROPERTY	SURROUNDING FACILITIES					
Leaking Underground Storage Tank (LUST)	½ Mile	-	2					
Leaking Aboveground Storage Tank (LAST)	½ Mile	-	2					
Underground Storage Tank (UST)	¼ Mile	-	0					
Aboveground Storage Tank (AST)	¼ Mile	-	0					
Release	Target Property	х	-					
Massachusetts Hazardous Waste Generators (HW GEN)	¼ Mile	х	0					
DRYCLEANERS	¼ Mile	-	0					
State Institutional Controls/Engineering Controls	½ Mile	-	1					
Brownfield Sites	½ Mile	-	0					
Asbestos	Target Property	х	-					
EDR Historical Auto Stations	1/8 Mile	-	0					
EDR Historical Cleaners	1/8 Mile	-	0					
RI Manifest	¼ Mile	х	0					
RGA HWS	Target Property	х	-					
RGA LUST	Target Property	-	-					

The EDR database report includes an orphan summary. This summary identifies facilities that are listed on one of the above-referenced databases or lists but do not include complete or accurate geographic data. Consequently, EDR was unable to map the facilities in relation to the site. VERTEX reviewed the orphan summary prior to inspecting the site and surrounding properties. Orphan properties located within ASTM search distances of the site (if any) were incorporated into VERTEX's review.

6.1 On-Site Listings

The address 484 Boston Post Road, Wayland, Massachusetts is listed on various databases including the RCRA NonGen/NLR, FINDS, ECHO, LF, and ODI databases. However, based on a

review of available information, these listings are associated with the Wayland Transfer Station. The site is also listed on the RI Manifest, HW GEN, SHWS, Release, RGA HWS, and Asbestos databases, discussed further below.

According to readily available historical information, the site is listed on the HW GEN database as a Very Small Quantity Generator (VSQG) under USEPA ID MAR000015388 due to the transportation of various quantities of oil under RI Manifests between 2004 and 2006. Additional information was not available as to whether these listings were associated with the site or the Wayland Transfer Station; however, based on the available information, these listings do not represent an environmental concern.

The site is listed on the SHWS, Release, RGA HWS, and Asbestos databases associated with RTNs 3-001724, 3-24698, 3-27741, and 3-34474. Additional information regarding the RTNs are summarized below:

RTN 3-001724

This RTN, listed on the SHWS and Release databases as 'Septage Facility' was assigned to the site in 1987 following the discharge of an estimated 3-gallons unknown oil "ostensibly from a restaurant grease trap" into the wastewater plant's receiving tanks. Based on available documentation, the plant operator identified this wrongful discharge during the unloading of the proceeding truck and shut down valves isolating the discharged material to 'Raw Well' and restricting pathways that would have resulted in a release to the environment. The oil was subsequently removed under Hazardous Waste Manifest documentation, and a sample was collected submitted for laboratory analysis of polychlorinated biphenyls (PCBs). PCBs were not detected above the laboratory detection limit.

The release was subsequently assigned RTN 3-001724; however, after additional investigations by the MassDEP in 1993, based on available documentation, the MassDEP determined the site was no longer considered a 'Disposal Site' under the MCP and classified DEPNDS (MassDEP Not a Disposal Site). Based on the closure of the RTN, this release is not considered an environmental concern.

RTN 3-24698

This RTN, listed on the SHWS database, is associated with a release of 10-gallons of motor oil at the Wayland Transfer Station in 2005, which was closed with a Class A1 Response Action Outcome (RAO). Since this RTN is associated with the Wayland Transfer Site and has since been closed under the MCP, RTN 3-24698 does not represent an environmental concern to the site.

RTN 3-27741

This RTN, listed on the SHWS and Release database, is associated with a release of diesel fuel from a vehicle at the Wayland Transfer Station in 2008, which was closed with a Class A2 RAO. Since this RTN is associated with the Wayland Transfer Site and has since been closed under the Massachusetts Contingency Plan (MCP), RTN 3-27741 does not represent an environmental concern to the site.

RTN 3-34474

RTN 3-34474, listed on both the SHWS and Asbestos database, is associated with the discovery of asbestos at the site in August 2017 during VERTEX due-diligence activities. On August 8, 2017, during regrading of the large stockpile to enable it to be sampled for characterization analyses, VERTEX identified various suspect asbestos containing waste materials (ACWM) including potential transite pipe and floor tiles, all located within a small area of the stockpile. Six samples were collected from the suspect material and submitted for polarized light microscopy (PLM) analysis.

Based on the analytical results, five of the six samples contained greater than 1% asbestos. On August 14, 2017, following discussions between VERTEX, the Town of Wayland and their consultant (CMG Environmental Services, Inc.), and Mr. Peter Seward of the MassDEP Bureau of Air and Waste, it was determined that greater than 1 pound of asbestos was present at the site, triggering a 2-hour reportable condition under the MCP. The Town of Wayland notified the MassDEP of the release, and the release was subsequently assigned RTN 3-34474.

In July 2018, VERTEX observed the advancement of test pits to determine the potential presence of additional ACWM within ungraded portions of the stockpile. Soil from each test pit was visually assessed by a licensed asbestos inspector who collected samples of suspect ACWMs and composite soil samples for asbestos analysis by PLM. Additional ACWM was identified in one test pit; however, asbestos was not detected in any soil samples.

Based on the assessment activities, VERTEX delineated the area of the stockpile impacted with ACWM. In December 2018, following MassDEP approval of a Non-Traditional Asbestos Work Plan (NTAWP), VERTEX oversaw the excavation and off-site transport of approximately 2,000 cubic-yards of commingled soil and ACWM.

According to a review of available environmental reports on the MassDEP Searchable Sites database, RTN 3-34474 is currently a Tier I Classified Disposal Site. However, according to the December 14, 2018 Immediate Response Action (IRA) Status Report #3 prepared by CMG Environmental Services, Inc., the Town of Wayland intended to keep the RTN open until VERTEX completed the characterization of the soil stockpile. Based on VERTEX's Phase II LSI investigations of the soil stockpile (discussed further in Sections 8.2.3 and 9.2), characterization of the stockpile is complete and VERTEX recommends the Town of Wayland submit an IRA Completion Report and a Permanent Solution Statement in accordance with the MCP to close RTN 3-34474.

Based on the successful remediation of the delineated ACWM impacted area and the results of additional asbestos soil samples collected during Phase II LSI activities (see Sections 8.2.3 and 9.2), the ACWM is considered an HREC to the site.

6.2 Off-Site Listings

A review of state and federal regulatory records revealed several facilities within ASTM-specified search radii of the site. Of these facilities, one was located within 500 feet of the site and is summarized below. The remaining database listings, including those attributed to the Wayland Transfer Station described in Section 6.1, are not considered an environmental concern to the site based on distance, regulatory status, and/or apparent groundwater gradient and are not further discussed.

The former Sudbury Landfill and current Town of Sudbury Transfer Station abuts the western boundary of the site. The landfill is listed on various databases and appears to have operated between 1970 and 1996. Based on available documentation, the landfill was lined and classified for municipal solid waste. The landfill was then capped in 2005, but environmental monitoring appears to be continuously required as per 310 CMR 19.000. According to the MassDEP Online Searchable Sites Database, several RTNs are associated with the landfill, including:

RTN 3-17083

In July 1998, a release of 100-gallons of diesel from an above ground storage tank (AST) was reported to the MassDEP. The MassDEP subsequently assigned the release RTN 3-17083. Based on available documents, oil identified on the surface was removed using a vacuum truck and absorbent pads on the same day the release was identified, the AST was removed from the property, and impacted soil underlying the AST was hand excavated. Additional impacted-material was excavated between September and December 1998, and confirmatory samples were collected and analyzed for EPH and VPH. The RTN was closed with a Class A2 RAO in 1999. Based on regulatory closure, this RTN does not represent an environmental concern to the site.

RTNs 3-23624, 3-29909, 3-33503, and 3-34148

In accordance with 310 CMR 19.000, quarterly perimeter landfill gas sampling is required at the closed landfill. Various RTNs (3-23624, 3-29909, 3-33503, and 3-34148) have been assigned to the landfill between 2003 and 2017 due to the detection of methane concentrations exceeding 10% of the LEL. The elevated concentrations have been measured in both utility manholes and a fire hydrant. According to available reports, due to the repeated detections of high methane concentrations, a passive landfill venting system was installed in 2007. Based on the historical data, the passive system assisted in reducing the concentrations of methane gas in one utility manhole; however, it appears that methane concentrations persist throughout the landfill area. Based on the proximity of the landfill to the site, and the continued elevated readings of methane concentrations above 10% of the LEL, VERTEX considered the potential for methane intrusion as

a concern warranting additional investigation during the Phase II LSI. Additional discussion regarding the investigation and results is included in Sections 8.7 and 9.6.

6.3 Additional Environmental Record Sources

VERTEX contacted local agencies to request information relevant to the Site and vicinity. A summary of the agencies contacted, and the information obtained is included in the following table.

LOCAL RESEARCH SUMMARY						
OFFICE	INFORMATION OBTAINED	CONCERNS				
Wayland Assessor's Office	VERTEX obtained property assessment records.	None				
Wayland Town Clerk	No relevant material was identified.	None				
Wayland Fire Department	According to information obtained from the Wayland Fire Department, Applications and Permits for the removal of one 4,000-gallon No. 2 fuel-oil UST, one 1,000-gallon diesel generator fuel UST, one 1,000-gallon propane heating UST, and two 2,000-gallon ferric-chloride USTs in 1998 were on-file for the site. A chemical inventory was also on file listing the chemicals and volumes of each stored at the site. A date was not available on the inventory; however, the paperwork appears to be directed from the Plant Supervisor, suggesting it is from when the wastewater treatment plant was operational.	See Below				
Wayland Health Department	No relevant material was identified.	None				
Wayland Conservation Commission	No relevant material was identified.	None				
Wayland DPW	VERTEX reviewed engineering drawings of the wastewater treatment plant.	None				
Sudbury DPW	VERTEX requested files pertaining to the Sudbury Landfill. VERTEX was informed none were kept in the building, but to request from Mr. Daniel Nason (Director of Sudbury Public Works). At the time of the report, VERTEX had not received a reply.	None				
South Middlesex County Registry of Deeds	Deed information. See Section 5.4.	None				
MassDEP	VERTEX reviewed information pertaining to the site available online from the MassDEP.	None; See Sections 6.1 and 6.2				

Based on the lack of soil analytical data collected during the removal of the six site USTs, VERTEX identified the former USTs as a REC warranting additional investigation during the Phase II LSI. The results of the Phase II LSI investigation of the former USTs is included in Section 11.1.

Copies of relevant documents reviewed from local agencies are included in Appendix D.

7.0 SITE RECONNAISSANCE

A Site visit was conducted by VERTEX representative Kristen Sarson, Project Manager, between 7:30 a.m. and 2:00 p.m. on April 11, 2019. Mr. Paul Brinkman, Wayland Town Engineer, escorted VERTEX during the site visit and answered questions regarding site operations.

During the initial site visit, the weather was sunny and approximately 350 Fahrenheit. The site visit consisted of a walk-through of the site and visual reconnaissance of neighboring properties from curbside. Photographic documentation of the site visit is provided in Appendix A.

7.1 Access Restrictions

VERTEX visually and physically observed accessible areas of the site. The exteriors of site building and wastewater treatment structures were observed. The majority of the interior of the building was observed; however, due to large volumes of furniture and miscellaneous items, complete visual reconnaissance was not achieved. VERTEX was unable to access the roof of the site or the interior of the wastewater treatment structures. No other limitations imposed by physical obstructions or other limiting conditions were observed.

7.2 Site Observations

Observations of site conditions were made during the site reconnaissance and are summarized in the table below.

	SITE OBSERVATIONS						
DESCRIPTION	REPORTED/ OBSERVED ON-SITE Y/N	COMMENTS					
Hazardous Substances and Petroleum Products	Υ	VERTEX observed various quantities of chemicals, oils, and various cleaning chemicals throughout the site. See Section 2.3 for additional information.					
UST(s)	N	VERTEX did not observe fill pipes, vent pipes or other evidence of UST(s).					
AST(s)	N	VERTEX did not observe evidence of AST(s).					
Strong, Pungent, or Noxious Odors	N	Not identified during the site visit.					
Pools of Liquid	N	Not identified during the site visit.					
Drums	Υ	See Section 2.3.					

SITE OBSERVATIONS						
DESCRIPTION	REPORTED/ OBSERVED ON-SITE Y/N	COMMENTS				
Unidentified Substance Containers	Y	Various unlabeled containers of laboratory chemicals were identified within the laboratory area of the site building. See Section 2.3 for additional information.				
Polychlorinated Biphenyls (PCB)- containing Equipment Utilities	Y	A pad-mounted transformer was observed abutting the southwestern corner of the site building. The transformer was not labeled, and the age of the transformer was not readily apparent. VERTEX did not observe evidence of leaks or staining on or around the transformer.				
(Electricity/ Natural Gas)	1	Electricity – supplied by Eversource Natural gas – supplied by Eversource				
Hydraulic Equipment	Y	Two vehicle scales are in the garage area of the site building. The site contact was unaware as to whether the scales were hydraulic.				
Water Supply	Y	Water is supplied to the site by the Town of Wayland. The building was connected upon initial construction in 1983. Concerns were not identified.				
Wells	Y	One monitoring well was observed southwest of the hazardous materials storage trailer. Additional monitoring wells were observed off-site along both the western and eastern boundaries of the site associated with the Sudbury Landfill.				
Wastewater	Υ	Operational restrooms on the site are located within the office trailer; and wastewater is removed by an outside company. Concerns were not identified.				
Septic	N	Evidence of present or historical septic systems were not identified during the site visit.				
Storm Water	Y	Storm water within the western portion of the site is collected in storm drains located in the parking areas, which reportedly discharge to the municipal drain. Evidence of staining or a release was not observed in the vicinity of the storm drains; as such, no concerns were noted.				
Flood Plain	N	According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM), the site is not located within a 100- or 500-year flood zone.				
Pits, Ponds, Lagoons	Y	Three wastewater infiltration beds associated with the former use of the site as a wastewater treatment plant are located along the western boundary of the site. Based on the historical use of these as a discharge point, VERTEX collected and analyzed soil samples from the infiltration beds, discussed further in Sections 8.4 and 9.4. Based on the soil sample analyses, the wastewater infiltration beds are not considered an environmental concern.				
Stained Soil, Stained Pavement, Corrosion to Pavement	N	None observed.				
Stressed Vegetation	N	None observed.				

SITE OBSERVATIONS						
DESCRIPTION	REPORTED/ OBSERVED ON-SITE Y/N	COMMENTS				
Solid Waste	Υ	Approximately 32,000 cubic yards of material generated during DPW maintenance projects is stored on the eastern portion of the site. Additional waste included on-site includes concrete debris and concrete jersey barriers.				
Hazardous Waste Management	N	None.				
Heating/Cooling	Υ	The site building is heated and cooled via natural gas or electric HVAC units.				
Drains, Sumps, Oil/Water Separators/Sand Traps	Y	Trench drains were observed within the garage area of the building, and the basement of the building. According to available plans, the trench drains were directed to a deep sump drain. Evidence of staining or a release was not observed near the drains; as such, no concerns were noted.				
Vapor Intrusion	Y	As part of this assessment, VERTEX assessed the potential for impacts to the site from potential on- and off-site sources of vapor intrusion. The potential for impacts from off-site properties included a review of current off-site operations (see Section 6.2), a review of historical operations (see Section 6.1), and a review of regulatory database records (see Section 7.2). The abutting Sudbury Landfill represents a potential source of methane intrusion.				

To investigate these observations and other suspect conditions, VERTEX conducted an LSI discussed in the next sections.

8.0 PHASE II LIMITED SUBSURFACE INVESTIGATION

In accordance with VERTEX March 6, 2017 proposal P.0453.17 and December 18, 2018 proposal P.3400.18, VERTEX conducted a Phase II LSI and soil characterization of the 32,000 cubic-yard stockpile for disposal at the site to assess the RECs identified during the Phase I ESA.

8.1 Utility Locate/Geophysical Survey

Prior to the start of Phase II LSI activities at the site, the Massachusetts Dig Safe call center was contacted for public utility location services at the site. In addition, prior to the advancement of soil borings and monitoring well installations, Ground Penetrating Radar Systems, LLC. (GPRS) of Toledo, Ohio was contracted to provide private utility location services for the Site.

On March 26, 2019, VERTEX oversaw a ground-penetrating radar (GPR) and electromagnetic (EM) survey conducted by GPRS to identify potential underground utilities at proposed boring locations.

The purpose of the geophysical investigation was also to identify potential subsurface anomalies within the approximate area of the former USTs such as remaining USTs, associated piping, and/or former UST graves. The geophysical investigation identified various subsurface utilities, both active and abandoned, throughout the exterior areas of the water treatment plant. No other subsurface anomalies were identified at the site during the geophysical survey.

8.2 32,000 Cubic-Yard Soil Stockpile Characterization

8.2.1 Stockpile Grading

To assist with the characterization of the existing 32,000 cubic-yard stockpile, between February 19 and February 26, 2019, the stockpile was graded to an approximate depth of 10 feet prior to the collection of samples for laboratory analysis. Grading was completed by the Greener Group LLC. (Greener) of Lowell, Massachusetts under the oversight of VERTEX. VERTEX's oversight included inspecting the material during grading activities for potential ACWM and other environmental concerns. On February 25, 2019, VERTEX observed a fractured piece of potential

transite pipe in an area of the pile where grading had been completed. The potential ACWM was kept in place and surrounded with warning tape pending observation by a Massachusetts-licensed asbestos inspector (see Section 8.2.3 for additional information regarding the potential ACWM).

Following completion of the grading activities, the graded stockpile was surveyed and gridded into 50-foot by 50-foot grids by Allen & Major Associates, Inc. (Allen & Major). Based on the 10-foot depth of the pile, each grid represented 25,000 cubic feet, or approximately 925 cubic yards of material. An approximate layout of the grid is depicted on Figure 3.

8.2.2 Test Pit Advancement

Between March 1 and March 12, 2019, VERTEX oversaw the advancement of 39 test pits within the 32,000 cubic-yard stockpile. The test pits were advanced by Greener using an excavator. The test pits were advanced within the center of each surveyed grid and to the bottom of the graded stockpile, or until native material (light brown well graded fine to coarse sand and gravel) was identified.

Soil samples were collected from 0 to 5 feet bgs and 5 to 10 feet bgs (and from 10 to 15 feet in grids E5 and D3 where the stockpile was thicker than 10 feet). Soil samples were field screened with a PID equipped with a 10.6 electron volt (eV) lamp for the presence of total ionizable organic volatiles (TOVs). The PID was calibrated with a 100 part per million by volume (ppmv) isobutylene gas standard to provide readings of TOVs as benzene equivalents. PID readings are not considered actual TOV concentrations in the soil samples but are useful indicators of relative TOV concentrations between locations. The physical characteristics of the material within each test pit and the PID field screening results are reported on the test pit logs included in Appendix C.

The maximum PID TOV reading was 9.2 ppmv obtained from a soil sample collected from 5 to 10 feet bgs in test pit B3. Elevated concentrations of TOVs were not identified in other test pits. Materials encountered in most the test pits consisted of soil and urban fill including asphalt, concrete, wood, and metal; however, visual or olfactory evidence of impacts (other than roadway debris and material discussed below) were not identified in the soil excavated from the test pits.

During the excavation of test pits F4 and F7, suspect ACWM material was identified. Excavation of both test pits was stopped, and the pits were kept open pending observation by a Massachusetts-licensed asbestos inspector. Additional information regarding these test pits are included in Section 8.2.3.

VERTEX collected one composite soil sample from each five-foot interval of the 39 test pits, totaling 80 total samples including the 10 to 15 feet samples collected from test pits D3 and E5. Based on the volume of soil and the number of samples collected, this equaled approximately one sample for every 400 cubic yards. Soil samples were collected in laboratory-supplied precleaned containers, stored on ice, and transferred under chain-of-custody to Con-Test Analytical Laboratory (Con-Test) of East Longmeadow, Massachusetts for the following laboratory analyses:

- Volatile organic compounds (VOC) by USEPA Method 8260;
- Semi-VOCs (SVOCs) by USEPA Method 8270;
- TPH by USEPA Method 8100;
- MCP 14 metals by USEPA Method series 6000 and 7000;
- PCBs by USEPA Method 8082 with Soxhlet extraction;
- Ignitability;
- Corrosivity;
- Reactivity (cyanide/sulfide); and
- Specific conductivity.

Additionally, based on the previous identification of ACWM within the pile, each composite sample was collected and transferred under chain-of-custody to Eurofins CEI Labs, Inc. (Eurofins) of Cary, North Carolina for California Air Resources Board (CARB) Method 435 for determining asbestos content in soil.

8.2.3 Potential ACWM Sampling

As discussed above, potential ACWM was identified in various locations during the grading and sampling of the 32,000 cubic-yard stockpile. The potential transite identified during grading activities was located on the surface of grid C3. Potential ACWM identified during test pit activities included a chalky white substance identified from 0 to 5 feet bgs in test pit F4, and potential transite identified from 0 to 5 feet bgs in test pit F7.

On March 1, 2019, a Massachusetts-licensed asbestos inspector collected a sample of the potential ACWM identified in grid C3. Due to the size of the identified suspect material, the entirety of the suspect material was collected for laboratory analysis. The sample was submitted to EMSL Analytical, Inc. (EMSL) of Woburn, Massachusetts for PLM analysis.

On March 5, 2019, a Massachusetts licensed asbestos inspector collected samples of the potential ACWM identified in grids F4 and F7. Each sample was submitted to EMSL for PLM analysis. The remaining suspect material that was not submitted for laboratory analysis was placed on polyethylene sheeting and covered.

8.3 4,500 Cubic Yard Stockpile Characterization

On March 12, 2019, VERTEX oversaw the advancement of five test pits within the 4,500 cubic-yard stockpile, which was reportedly created from screened material from the 32,000 cubic-yard stockpile. The test pits were advanced by Greener using an excavator to depths of 5 feet into the side of the stockpile.

Soil samples from each test pit was field screened for TOVs with a PID equipped with a 10.6 eV lamp. The physical characteristics of the material within each test pit and the PID field screening results are reported on the test pit logs included in Appendix B. PID TOV readings did not exceed 1 ppm in the screened soil samples.

VERTEX collected one composite soil sample from each test pit. Based on the volume of soil and the number of samples collected, this equaled approximately one sample for every 500 cubic

yards. Soil samples were collected in laboratory-supplied pre-cleaned containers, stored on ice, and transferred under chain-of-custody to Con-Test for the following laboratory analyses:

- VOC by USEPA Method 8260;
- SVOCs by USEPA Method 8270;
- TPH by USEPA Method 8100;
- MCP 14 metals by USEPA Method series 6000 and 7000;
- PCBs by USEPA Method 8082 with Soxhlet extraction;
- Ignitability;
- Corrosivity;
- Reactivity (cyanide/sulfide); and
- Specific conductivity.

8.4 Advancement of Soil Borings and Installation of Groundwater Monitoring Wells

Between March 26 and March 28, 2019, VERTEX oversaw the advancement of sixteen soil borings to depths between 10 and 37 feet bgs. The borings were advanced by Geosearch, Inc. of Sterling, Massachusetts using direct-push drilling techniques (i.e. Geoprobe). The following table summarizes the locations and depths of each boring, and the REC or environmental condition investigated by the borings. Soil boring locations are shown on Figure 2.

	SOIL BORING SUMMARY							
BORING ID	DEPTH BGS	DTW*	LOCATION	AREA OF INVESTIGATION				
V-101	20-feet	13.80	Northeast corner of site	Hydraulically downgradient of the site and Wayland Transfer Station				
V-102	20-feet	14.72	Northwest of graded stockpile	Hydraulically downgradient of the old Sudbury Landfill				
V-103	35-feet	29.07	East of the hazardous materials storage trailer	The hazardous materials storage trailer				
V-104	37-feet	31.21	East of the former USTs	Former site USTs				

	SOIL BORING SUMMARY							
BORING ID	DEPTH BGS	DTW*	LOCATION	AREA OF INVESTIGATION				
V-105	37-feet	29.94	Northern border of paved parking area	The firing range				
V-106	37-feet	27.82	Western border of site	Abutting old Sudbury Landfill				
V-107	10-feet	-	West of hazardous materials storage trailer	The hazardous materials storage trailer				
V-108	10-feet	-	Northeast corner of site building Former site USTs					
V-109 thru V-111	10-feet	-	North of the site building	Former site USTs				
V-112	10-feet	-	East of wastewater settling tank	Former site operations				
V-113 & V-114	10-feet	-	Wastewater settling ponds	Former wastewater settling ponds				
V-115 & V-116	10-feet	-	East and south of former transformer pads	On-site transformers				

^{*}DTW = Depth to groundwater. Measured from the highest point of the polyvinyl chloride (PVC) riser.

Six of the 16 soil borings were completed as permanent groundwater monitoring wells, identified as V-101 (MW), V-102 (MW), V-103 (MW), V-104 (MW), V-105 (MW), and V-106 (MW). The wells were constructed of bottom-plugged 10-foot lengths of 2-inch diameter machine-slotted polyvinyl chloride (PVC) screen followed by PVC riser to grade. The borehole annulus of each well was finished with a clean, uniform-grade silica sand pack, bentonite seal, and native backfill, and the wells were completed at the ground surface with flush-mounted 6-inch diameter road boxes and cement surface seals. Soil boring logs and monitoring well completion reports are included in Appendix C.

Following installation, the monitoring wells were developed using dedicated submersible Proactive Waterspout I pumps capable of pumping a high volume of water at a high flow rate to remove silt and sediment from the well and sand pack.

8.5 Soil Screening and Sampling

Soil samples were collected from the soil borings using tube samples and disposable acetate sleeves in continuous five-foot intervals beginning at grade. Soil samples were screened in the field for the presence of TOVs with a PID equipped with a 10.6 eV lamp. The PID was calibrated

with a 100 ppmv isobutylene gas standard to provide readings of TOVs as benzene equivalents. PID readings are not considered actual TOV concentrations in the soil samples but are useful indicators of relative TOV concentrations between locations. Soil samples were selected for laboratory analysis based on the proposed scope of work, field observations, and field screening results. The physical characteristics of the soil samples and the PID field screening results are reported on the boring logs included in Appendix C.

The highest PID TOV readings were 44.3 ppmv obtained from the soil sample collected from 0 to 5 feet bgs in soil boring V-103 and 46.1 ppmv obtained from the soil sample collected from 0 to 5 feet bgs in soil boring V-104. Elevated concentrations of TOVs were not identified in soil samples collected from the other soil borings. Visual and/or olfactory evidence of impacts were not identified in the soil borings.

VERTEX collected one soil sample from each soil boring V-107 through V-114 from the interval exhibiting the highest PID readings, or if no TOVs were detected by PID, from the interval displaying the most evidence of potential OHM impact (including presence of urban fill materials). Seven soil samples identified as V-107 (5-10'), V-108 (0-5'), V-109 (5-10'), V-110 (5-10'), V-111 (0-10'), V-112 (0-5'), V-113 (0-5'), and V-114 (5-10') were collected in laboratory-supplied pre-cleaned containers, stored on ice, and transferred under chain-of custody to ConTest for the following laboratory analyses:

- VOC USEPA Method 8260;
- SVOCs by USEPA Method 8270;
- TPH by USEPA Method 8100;
- MCP 14 metals by USEPA Method series 6000 and 7000;
- PCBs by USEPA Method 8082 with Soxhlet extraction;
- Ignitability;
- Corrosivity;

- Reactivity (cyanide/sulfide); and
- Specific conductivity.

VERTEX also collected one soil sample from each soil boring V-115 through V-116 from the depth interval approximately equal to or slightly below the elevation of the existing transformers at the southwestern corner of the site building. Soil samples V-115 (5-10') and V-116 (0-5') were collected in laboratory-supplied pre-cleaned containers, stored on ice, and transferred under chain-of custody to Con-Test for analysis of PCBs by USEPA Method 8082 with Soxhlet extraction.

8.6 Groundwater Sampling

Following development, the monitoring wells were allowed to equilibrate to surrounding aquifer conditions for at least three days prior to sampling. Between April 1 and April 2, 2019, groundwater within the six monitoring wells was gauged using a water-level indicator probe.

Following gauging, groundwater samples were collected from the monitoring wells in general accordance with USEPA low-flow sampling techniques. Wells were purged using dedicated polyethylene tubing and a peristaltic pump. Drawdown of the groundwater in the well and water quality parameters, including temperature, pH, conductivity, dissolved oxygen (D.O.), oxygen reduction potential (ORP), and turbidity, were recorded every 3 to 5 minutes until readings were stable within allowable levels over three consecutive readings. Following stabilization, groundwater samples were collected in laboratory-supplied pre-cleaned containers, stored on ice, and transferred under chain-of-custody to Con-Test for the following laboratory analyses following the Town of Wayland recommended parameters:

- VOC USEPA Method 8260;
- SVOCs by USEPA Method 8270;
- Total MCP 14 metals, total manganese, and total copper by USEPA Method series 6000 and 7000;
- PCBs by USEPA Method 8082;

- Ammonia/Nitrogen by USEPA Method SM 19-22;
- Chloride, Nitrite, and Nitrate by USEPA Method 300;
- Total nitrogen by USEPA Method SM 19-22;
- Phosphorus/Orthophosphate by USEPA Method SM 21-22; and
- Dissolved arsenic USEPA Method series 6000 and 7000.

8.7 Exterior Soil Vapor Screening and Sampling

On April 9, 2019, VERTEX screened soil vapor for methane at six exterior locations throughout the site using a four-gas meter. The four-gas meter was calibrated with a methane standard to provide readings of flammable gas readings as methane equivalents. Four-gas meter readings are not considered actual methane concentrations in soil vapor, but are useful indicators of relative methane concentrations. Soil vapor investigation points were advanced using a KVA soil vapor sampling system. The KVA system uses a hammer drill and probe rod to drill a pilot hole, followed the probe system to extend tubing to the desired depth. The KVA soil-vapor tubing was extended to a depth of 5 feet bgs, the bore holes were backfilled with silica sand, and an air tight seal was created at the surface using hydrated bentonite.

Prior to sampling, the tubing was purged using a four-gas meter, and the maximum LEL reading was recorded. After purging, soil-vapor samples were collected using 6-liter (L) batch-certified summa canisters equipped with 30-minute flow regulators. Soil vapor samples were transferred via chain of custody and submitted to Con-Test for analysis of methane via USEPA Method 3C.

Based on the field screening results, flammable gas was detected at concentrations ranging from 1% of the LEL in V-SG-101 to 10% of the LEL in V-SG-106. Carbon monoxide was also detected during the field screening at concentrations ranging from 11 ppmv in V-SG-104 to 120 ppmv in V-SG-106. However, it should be noted that both the methane and carbon monoxide readings were detected almost immediately following the connection of the four-gas meter but dissipated

to 0 ppmv after less than one-minute. Soil vapor screening and sampling locations are shown on Figure 2, and the results of the soil vapor analytical results are presented on Table 4.

8.8 Firing Range Screening, Sampling, and Analysis

On April 11, 2019, to correlate historical data and provide a comparison between analytical data and XRF screening data, VERTEX created an approximate grid across the firing range to assist with the collection of screening data. The grid consisted of approximate 10-foot by 10-foot grids in the area east of the berms, followed by a grid of 10-feet wide by 5-feet high along each of the berms. The approximate grid location and configuration is shown on Figure 4.

VERTEX collected samples from approximately 0 to 2 feet bgs within the center of each grid and combined the sample into a transparent plastic sealable bag. Coarse material was removed from each bag, and the sample was flattened to a thickness of 1 to 2-inches. Each sample was then placed on a plastic table and screened for total lead content using a handheld XRF analyzer. XRF analyzer readings are not considered actual total lead concentrations in the soil samples but are useful indicators of relative lead concentrations between locations. Soil samples were selected for laboratory analysis based on the screening results. The XRF field screening results are included on the Figure 4.

Total lead was identified in screened soil samples at concentrations ranging up to 8,568 parts per million (ppm) in the sample collected from grid J3, with the average concentration throughout the area measuring approximately 1,050 ppm.

VERTEX collected one soil sample from each of six grids where elevated XRF readings were obtained. Soil samples V-201 (collected from K4), V-202 (collected from K1), V-203 (collected from E4), V-204 (collected from N1), V-205 (collected from M3), and V-206 (collected from J3) were collected in laboratory-supplied pre-cleaned containers, stored on ice, and transferred under chain-of custody to Con-Test for the following laboratory analyses:

- Lead, Antimony, Copper, and Zinc by USEPA Method 6010;
- Tungsten by USEPA Method Tungsten 200.7; and

TCLP Lead by USEPA Method 1311 and SW-846.

An additional composite sample was collected from each of the six grids mentioned above, stored on ice, and transferred under chain-of-custody to Con-Test for the following laboratory analyses:

- VOC USEPA Method 8260;
- SVOCs by USEPA Method 8270;
- TPH by USEPA Method 8100;
- MCP 14 metals by USEPA Method series 6000 and 7000;
- PCBs by USEPA Method 8082 with Soxhlet extraction;
- Ignitability;
- Corrosivity;
- Reactivity (cyanide/sulfide); and
- Specific conductivity.

8.9 Site Geology and Hydrogeology

Based on visual classification of soils collected during this Phase II investigation, soil within the 32,000 cubic-yard stockpile at the Site generally consisted of brown and grey urban fill material including gravelly sand with varying amounts of debris, including asphalt, concrete, and wood. Based on the soil borings advanced throughout the site, native material underlying the urban fill consisted of tan, well-graded fine to coarse sand.

During this investigation, groundwater at the Site was encountered at depths of approximately 13 to 15 feet bgs at the lower elevations of the site, and 27 to 32 feet bgs at the higher elevations of the site. Based on local and regional surface topography and locations of surface water bodies, groundwater flow at the site is assumed to be in a southeasterly direction toward the Sudbury River. Actual local groundwater flow direction can be influenced by factors such as underground

structures, seasonal fluctuations, soil and bedrock geology, and production wells, none of which were considered during this study. A groundwater elevation survey to calculate groundwater flow direction was not performed as part of this investigation.

9.0 LABORATORY ANALYTICAL RESULTS

9.1 Applicable Regulatory Standards

Soil analytical results were compared to the MassDEP MCP RCS-1 Reportable Concentrations because the site is located within a High Yield Aquifer, and as the site is proposed to be developed as a residential property. Groundwater analytical results were compared to the MassDEP MCP RCGW-1 Reportable Concentrations because the site is located within a High Yield Aquifer.

Methane concentrations in soil vapor samples were compared to the 10% of the LEL MCP Imminent Hazard notification criterion (310 CMR 40.0321) applicable to a release to the environment that could result in in the presence of oil and/or hazardous material vapors within buildings, structures, or underground utility conduits.

9.2 32,000 Cubic-Yard Soil Stockpile Analytical Results

Based on the laboratory analytical results, TPH was detected at concentrations exceeding the MCP RCS-1 Reportable Concentration of 1,000 milligrams per kilogram (mg/kg) in 21 of the samples collected from the test pits. However, in accordance with the MCP, if the sum of extractable petroleum hydrocarbons (EPH) fractions is below the 1,000 mg/kg threshold in addition to each of the individual fractions being below the applicable MCP RCS-1 Reportable Concentration, the detected TPH concentrations are not reportable. Samples with TPH concentrations exceeding 1,000 mg/kg were analyzed for EPH fractions. EPH fractions were not detected at concentrations exceeding the applicable MCP RCS-1 Reportable Concentrations, and the summation of the fractions did not exceed 1,000 mg/kg. Given these results, the detected TPH concentrations do not constitute a reportable condition.

Various SVOCs were also detected above the applicable MCP RCS-1 standards in samples TP-A5 (5-10'), TP-C1 (5-10'), TP-C2 (0-5'), TP-C3 (0-5'), TP-C3 (5-10'), TP-C6 (0-5'), TP-C6 (5-10'), TP-D1 (0-5'), TP-D1 (5-10'), TP-D4 (0-5'), TP-D6 (5-10') and TP-E3 (5-10'). Total lead was detected above MCP RCS-1 in soil samples TP-E7 (0-5') and TP-E7 (5-10). Laboratory analyses did not detect

asbestos in the samples collected from the stockpile. A summary of soil analytical results is presented on Table 1, and a copy of the laboratory analytical report is included in Appendix J.

9.3 4,500 Cubic Yard Soil Stockpile Analytical Results

Based on the laboratory analytical results, TPH was detected at concentrations exceeding the MCP RCS-1 Reportable Concentration of 1,000 mg/kg in soil sample TP-V-102. However, based additional EPH analysis, EPH fractions were not detected above the applicable MCP RCS-1 Reportable Concentrations, and the summation of the fractions did not exceed 1,000 mg/kg. Given these results, the detected TPH concentration does not constitute a reportable condition.

9.4 Soil Boring Analytical Results

Based on the laboratory analytical results, constituents of concern were not detected at concentrations exceeding the MCP RCS-1 Reportable Concentrations in soil samples collected from soil borings V-110 through V-116. TPH was detected in V-110 (5-10'), V-111 (0-10'), and V-114 (5-10') at concentrations exceeding the laboratory detection limit, but below applicable MCP RCS-1 standards. Toluene was detected in V-110 (5-10'), V-111 (0-10'), V-112 (0-5'), and V-114 (5-10') at concentrations exceeding the laboratory detection limit, but below applicable MCP RCS-1 standards. Various metals were also detected in soil samples collected from soil borings V-107 through V-114, but at concentrations less than the applicable MCP RCS-1 Reportable Concentrations. A summary of soil analytical results is presented on Table 2, and a copy of the laboratory analytical report is included in Appendix J.

9.5 Groundwater Analytical Results

A summary of groundwater analytical results is presented on Table 3, and a copy of the laboratory analytical report is included in Appendix J.

Based on the laboratory analytical results, dissolved arsenic was detected in the groundwater sample collected from monitoring well V-102 (MW) at 26 μ g/l, exceeding the MCP RCGW-1 Reportable Concentration of 10 μ g/l. Additionally, ammonia was detected in groundwater samples collected from V-101 (MW), V-102 (MW), V-105 (MW), and V-106 (MW) at respective

concentrations of 1,500 μ g/l, 1,500 μ g/l, 1,100 μ g/l, and 2,000 μ g/l, exceeding the MCP RCGW-1 standard of 1,000 μ g/l. Methyl tert-butyl ether (MTBE) was detected in groundwater samples collected from V-101 (MW), V-102 (MW), V-105 (MW), and V-106 (MW) exceeding the laboratory detection limit, but less than the applicable MCP RCGW-1 concentrations.

Tertiary-amyl methyl ether (TAME) was detected in groundwater samples collected from V-101 (MW) and V-106 (MW) at 4.5 μ g/l and 6.4 μ g/l, respectively; however, there is no applicable MCP RCGW-1 Reportable Concentration for TAME. Similarly, various total metals were detected in groundwater samples collected at the site; however, there are no applicable MCP RCGW-1 Reportable Concentrations for total metals. As a screening method, VERTEX compared the total metals detected concentrations to the relative dissolved metals MCP RCGW-1 Reportable Concentrations. Except for the detection of nickel in the groundwater sample V-106 (MW), the detected total metals concentrations were not detected at concentrations exceeding the relative dissolved metals MCP RCGW-1 Reportable Concentrations. Total nickel was detected in the groundwater sample collected from V-106 (MW) at 110 μ g/l, exceeding the MCP RCGW-1 Reportable Concentration for dissolved nickel. Based on this exceedance, VERTEX submitted the sample for analysis of dissolved nickel. Based on the analytical results dissolved nickel was detected in V-106 (MW) at 110 μ g/l, exceeding the applicable MCP RCGW-1 Reportable Concentration.

The ammonia, arsenic, and nickel in either or both of V-102 (MW) and V-106 (MW) are attributable to the Sudbury Landfill. However, to assess whether dissolved metals and ammonia detected in groundwater samples could pose an ecological risk, VERTEX compared the detected concentrations to the MCP Method 1 GW-3 groundwater standards (310 CMR 40.0974(2)), which applies to all groundwater in the Commonwealth. These standards are intended to address the potential for adverse ecological affects that could result from discharge of OHM to surface water.

As shown in the table below, concentrations of arsenic and nickel are well below their respective Method 1 GW-3 standards. However, the MCP does not establish a GW-3 standard for ammonia.

LOCATION ID	GW-3	UNITS	MW-3	V-101 (MW)	V-102 (MW)	V-103 (MW)	V-104 (MW)	V-105 (MW)	V-106 (MW)
SAMPLE DATE			4/2/2019	4/1/2019	4/1/2019	4/2/2019	4/2/2019	4/1/2019	4/2/2019
Arsenic (Dissolved)	900	μg/L	0.74	0.98	26	0.74	0.79	1.1	1.0
Nickel (Dissolved)	200	μg/L	-	-	-	-	-	-	110
Ammonia	NS	μg/L	ND (300)	1,500	1,500	ND (300)	ND (300)	1,100	2,000

In accordance with MassDEP guidance documents, VERTEX calculated an equivalent groundwater protection criterion for ammonia to assess whether concentrations of ammonia detected in groundwater samples would pose a significant ecological risk if the groundwater were to discharge to surface water. The equivalent groundwater protection criterion was calculated using the following equation as provided in MCP Numerical Standards by MassDEP (reformatted December 2017).

$$[OHM]_{target-gw} = [OHM]_{eco-sw} \times D_{gw} \times D_{sw}$$

Where: $[OHM]_{target-gw} = Equivalent GW-3 standard$

[OHM]_{eco-sw} = 1.9 mg/L (final chronic AWQC)¹

D_{gw} = groundwater to surface water dilution factor (dimensionless)

 D_{sw} = dilution factor in the receiving surface water body (dimensionless)

Using the lowest (protective) Dgw value of 2.5 that applies to OHM having organic-carbon portioning coefficients (Koc) of less than 1,000 mL/g, and using the default Dsw value of 10, the equivalent groundwater criterion is calculated as follows:

$$[OHM]_{target-gw} = 1.9 \text{ mg/L x } 2.5 \text{ x } 10 = 47.5 \text{ mg/L (or } 47,500 \text{ µg/L)}$$

Because concentrations of ammonia detected in site groundwater samples are well below the calculated groundwater criterion of 47,500 μ g/L, VERTEX does not anticipate adverse ecological effects.

¹ Final Aquatic Life Ambient Water Quality Criteria for Ammonia-Freshwater 2013, published by the EPA on 08/22/2013 (Document number 2013-20307)

Based on the proposed construction of an on-site stormwater and treated wastewater infiltration system, localized mounding of groundwater would be expected to occur during significant rain events. Based on the detected concentrations of metals and ammonia being well below applicable standards for the protection of surface water and ecological receptors, no exacerbation of the extent or impacts of these metals and ammonia is anticipated. Additional water infiltration will further disperse and dilute the low-level metal and ammonia concentrations within and downgradient of the site.

9.6 Soil Vapor Analytical Results

Based on the laboratory analytical results, methane was not detected above the laboratory detection limit in soil vapor samples V-SG-101 through V-SG-106. A summary of soil vapor analytical results is presented on Table 4, and a copy of the laboratory analytical report is included in Appendix J.

9.7 Firing Range Analytical Results

Based on the laboratory analytical results, total lead was detected in five out of the six samples collected from the firing range at concentrations exceeding the MCP RCS-1 Reportable Concentration of 200 mg/kg. Additionally, antimony and copper were detected at concentrations exceeding the applicable MCP RCS-1 Reportable Concentrations in three of the six samples and in four of the six samples, respectively. VERTEX also submitted each of the samples for TCLP lead analysis. While there is no MCP RCS-1 Reportable Concentration for TCLP lead, VERTEX compared the analytical results to the Resource Conservation and Recovery Act (RCRA) regulatory concentration for classification of characteristic hazardous waste. Based on the analytical results, each of the six samples exceeded the RCRA regulatory concentration of 5 milligrams per liter (mg/L) for characteristic hazardous waste.

Based on the laboratory analytical results of the composite sample collected from the firing range and submitted for soil characterization, antimony and lead were detected at concentrations exceeding the applicable MCP RCS-1 Reportable Concentrations. Additionally, arsenic, barium, cadmium, chromium, nickel, silver, vanadium, zinc, and TPH were detected exceeding the

laboratory detection limit but less than the MCP RCS-1 Reportable concentration and VOCs, SVOCs, and PCBs were not detected exceeding the laboratory detection limit. A summary of the firing range soil analytical results is presented on Table 5, and a copy of the laboratory analytical report is included in Appendix J.

9.7.1 Correlation Analysis

To provide an approximate area of impact within the firing range, VERTEX performed a basic correlation analysis between the XRF screening values and lead analytical results collected. Based on the correlation analysis, a statistically significant relationship exists between the XRF lead screening values and analytical data. Using the extrapolated equation, VERTEX approximated the lead concentrations in the grids screened using the handheld XRF analyzer. The results of this extrapolation are depicted on Figure 4A.

9.7.2 Vertical Delineation

On May 8, 2019, to assess the vertical depth of metals impacts within the firing range, VERTEX oversaw the advancement of 11 test pits within impacted areas of the firing range. The test pits were advanced by ECO Environmental Contracting (ECO) of Methuen, Massachusetts using an excavator. An additional three borings were advanced by VERTEX using a hand auger in the westernmost portion of the firing range, beyond the firing range berm.

Eight test pits were advanced within the area east of the firing range berm, each was advanced to a total depth of 6 feet bgs. VERTEX collected one composite sample from each test pit from 2 to 4 feet bgs (V-301 through V-308). The remaining three test pits were advanced through the berm to depths of 2 feet below the berm into the underlying native soil (e.g. 2 feet below the base of the berm), with one composite sample collected from each test pit from the underlying native soil (V-309 through V-311). Using a hand auger, VERTEX advanced three soil borings to a total depth of 4 feet bgs in the western edge of the firing range, beyond the firing range berm. VERTEX collected one composite sample from each boring from 2 to 4 feet bgs (V-312 through V-314).

Soil samples were collected in laboratory-supplied pre-cleaned containers, stored on ice, and transferred under chain-of-custody to Con-Test for the following laboratory analyses:

Antimony, Copper, and Lead by USEPA Method 6010.

Based on the laboratory analytical results, antimony, copper, or lead were not detected at concentrations exceeding the applicable MCP RCS-1 Reportable Concentrations in samples V-301 through V-314. However, lead was detected at concentrations above 100 mg/kg in samples V-310 and V-312, and additional TCLP lead analysis was requested for those samples. Based on the laboratory analytical results, TCLP lead was detected in sample V-310 at a concentration exceeding the RCRA regulatory concentration of 5 mg/L for classification as a characteristic hazardous waste, if that soil were to be managed in a manner that would constitute generation (i.e. excavation and placement into containers and/or transportation of that soil from the area of lead-impacted soil without first rendering the soil non-hazardous). TCLP lead was detected at a concentration exceeding the laboratory detection limit in sample V-312, but less than the RCRA regulatory concentration for characteristic hazardous waste. A summary of the firing range soil analytical results is presented on Table 5, and a copy of the laboratory analytical report is included in Appendix J

Antimony, copper, and lead impacts within the firing range have been vertically delineated because concentrations of those metals were not detected at concentrations exceeding the applicable MCP RCS-1 Reportable Concentrations at depths below 2 feet bgs\. However, TCLP lead was detected above the RCRA regulatory concentration for characteristic hazardous waste in a sample collected from directly underneath the center of the berm. The locations of the vertical delineation samples are shown on Figure 4B.

10.0 DATA GAPS

Meaningful data gaps that would affect VERTEX's ability to identify RECs at the site were not encountered during this assessment. Deviations or deletions from the scope of work defined by ASTM E 1527-13 were not intentionally made.

Our conclusions regarding the potential environmental impact of nearby, off-Site facilities on the site are based on readily available information from the environmental databases and the assumed groundwater flow direction as inferred from the topography of the site and surrounding area. A detailed file review of each facility was beyond the scope of work; however, VERTEX reviewed information pertaining to the site available online from the MassDEP, as discussed in Section 6.1.

11.0 CONCLUSIONS AND RECOMMENDATIONS

11.1.1 Conclusions

VERTEX has performed a Phase I ESA in conformance with the scope and limitations of ASTM E 1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, of the River's Edge property, located at 484 – 490 Boston Post Road in Wayland, Massachusetts. Between February 19 and April 11, 2019, VERTEX performed Phase II LSI activities at the site to investigate RECs identified as part of the Phase I ESA investigation and to characterize soil at the site. Exceptions to, or deletions from, this practice are described in Section 10.0 of this report. This assessment has revealed the following RECs in connection with the Site:

- The detection of SVOCs and lead at concentrations exceeding applicable MCP RCS-1
 Reportable Concentrations in soil samples collected from the 32,000 cubic yard
 stockpile represents a REC at the site;
- The detection of lead, antimony, and copper at concentrations exceeding applicable MCP RCS-1 Reportable Concentrations in soil samples collected from the firing range at the site is considered a REC; and
- Dissolved arsenic, nickel, and ammonia, originating from the upgradient Sudbury Landfill, at concentrations exceeding MCP RCGW-1 reportable concentrations in groundwater samples collected from the site represent a REC.

This assessment revealed the following BER in connection with the site:

 The elevated readings of methane above 10% of the LEL along the perimeter of the abutting Sudbury Landfill and the potential for methane intrusion at the site represents a BER to be addressed during site redevelopment.

This assessment revealed the following HREC in connection with the site:

Based on the successful remediation of ACWM associated with RTN 3-34474, the
 ACWM in the stockpile is considered an HREC.

11.2 Recommendations

11.2.1 Soil Management

Based on the detection of SVOCs and lead exceeding MCP RCS-1 Reportable Concentrations in several samples collected from the stockpile, and the detection of antimony, copper, and lead exceeding MCP RCS-1 Reportable Concentrations in the majority of samples collected from the firing range, conditions exist for which the MCP requires notification to be made to the MassDEP within 120-days of the property owner's knowledge or within 120 days of a new owner's purchase of the property. The release conditions should be addressed in accordance with the MCP.

With respect to soil disposal, based on the laboratory analytical results most of the sampled material is suitable for disposal at Massachusetts RCS-1 and RCS-2 facilities. Additionally, based on the presence of MassDEP reportable conditions, VERTEX recommends the completion and implementation of a Release Abatement Measure (RAM) Plan in accordance with 310 CMR 40.0440 to outline appropriate methods for remediation and management of the identified impacted soils, and potentially impact soil in areas that were not accessible for assessment and that may be encountered. during redevelopment and construction activities.

VERTEX recommends that a Soils Management Plan (SMP) be prepared for reference and use by site contractors. The SMP would apply to the management of soil during construction, including the small stockpile, and berms not associated with the firing range. It would not apply to soils to be addressed under the RAM Plan prior to construction. The SMP should identify the applicable management procedures for the transportation of soil off-site for reuse or disposal, including requirements for shipping documentation, receipts from receiving facilities, stockpile management, and acceptance criteria for any soil to be imported.

11.2.2 Groundwater

Based on the detection of dissolved arsenic and nickel and ammonia on site at concentrations exceeding the MCP RCGW-1 reportable concentrations, the detections constitute conditions for which the MCP requires notification to be made to the MassDEP within 120-days of the property owner's knowledge or within 120 days of a new owner's purchase of the property. The release should be addressed in accordance with the MCP.

However, based on a review of historical environmental reports, dissolved arsenic, dissolved nickel, and ammonia have been historically detected in groundwater at the abutting upgradient Sudbury landfill at concentrations also exceeding the MCP RCGW-1 reportable concentrations. Furthermore, the highest concentrations of metals and ammonia were detected in hydraulically upgradient portions of the site. Therefore, these detected concentrations are attributable to the Sudbury Landfill. Based on 310 CMR 40.0315, and the historical reports reviewed, VERTEX recommends notifying the MassDEP of the groundwater release condition and the submittal of a Downgradient Property Status (DPS) Opinion in accordance with 310 CMR 40.0180. Because parties asserting a DPS are required to abate Imminent Hazards, VERTEX conducted an assessment to evaluate whether dissolved metals and ammonia detected in groundwater samples could pose an ecological risk, as discussed in Section 9.5. The evaluation concluded that an ecological risk is not present, and therefore an imminent hazard does not exist.

11.2.3 Soil Vapor

While methane was not detected at concentrations exceeding the laboratory detection limit in the soil vapor samples collected at the site, based on screening data and the on-going detections of methane above 10% of the LEL along the perimeter of the abutting Sudbury Landfill, the potential of vapor intrusion into buildings remains possible. VERTEX recommends the installation of a chemically resistant vapor barrier and/or a vapor mitigation system to protect indoor air in future buildings constructed where occupied ground floors and/or basement areas are in contact with the site soils. Based on current development plans, mechanically ventilated garages are to

be constructed along the lower levels of the proposed buildings, which would be appropriate for vapor mitigation.

12.0 SCOPE AND LIMITATIONS

12.1 Purpose

The primary purpose of this assessment is to identify, to the extent feasible pursuant to the processes prescribed in ASTM E 1527-13, RECs in connection with the site. As defined in ASTM E 1527-13, a REC is defined as "the presence or likely presence of hazardous substances or petroleum products in, on, or at a property: (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment." It does not include de minimis conditions that generally do not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. A "historical REC" is defined in ASTM E 1527-13 as "a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls." ASTM E 1527-13 defines the term "controlled REC" as "a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting riskbased criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls)."

In conducting this assessment, VERTEX followed ASTM E 1527-13, as well as the U.S. Environmental Protections Agency's All Appropriate Inquires (AAI) Final Rule of November 1, 2005 as amended December 30, 2013. Any exceptions to, or deletions from, this practice are described in Section 10.0 of the report. ASTM defines good commercial and customary practice for conducting an ESA of a parcel of commercial real estate with respect to the range of contaminants within the scope of the Comprehensive Environmental Response, Compensation

and Liability Act (CERCLA) (42 U.S.C. 9601) and petroleum products. As such, this practice is intended to permit a user to satisfy one of the requirements to qualify for the innocent landowner, contiguous property owner, or bona fide prospective purchaser limitations on CERCLA liability. The practice constitutes "all appropriate inquiry into the previous ownership and uses of the property consistent with good commercial or customary practice" as defined at 42 U.S.C. 9601(35)(B).

As part of ASTM E 1527-13, Phase I ESAs must be conducted by or under the supervision of a qualified Environmental Professional. The AAI Final Rule defines an Environmental Professional as someone who possesses sufficient specific education, training, and experience necessary to exercise professional judgment to develop opinions and conclusions regarding conditions indicative of releases or threatened releases on, at, in, or to a property, sufficient to meet the objectives and performance factors of the rule. We declare that to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in 40 CFR 312.10. We have the specific qualifications based on education, training and experience to assess a property of the nature, history, and setting of the site. We have developed and performed all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

12.2 Detailed Scope-of-Services

As part of this Phase I ESA, and in accordance with the general provisions of ASTM E 1527-13, VERTEX performed a visual reconnaissance of the site, noted use of adjoining properties, and conducted historical and regulatory records research. The following provides a more detailed description of the scope of services:

- Visual inspection of the site building(s), if present, and grounds to identify potential for on-site petroleum or hazardous material release(s).
- Visual inspection and categorization of the use of abutting and adjoining properties as
 potential off-site sources of petroleum or hazardous material contamination to the site.

- Review of readily available state and federal regulatory records related to on-site
 activities and to potential off-site activities to identify sources of petroleum or
 hazardous material contamination to the site.
- Review of readily available historical information to assess for potential on-site and offsite sources of petroleum or hazardous material contamination to the site.
- Review of readily available local records related to historical site ownership, usage, and development. This includes obtaining information from local environmental authorities to identify complaints, violations, citations, inspections, environmental liens, activity and use limitations (AULs), or institutional and engineering controls related to the site.
- Review of readily available documents and other resources for the site and site vicinity to evaluate current and historical development and renovation activities.
- Visual assessment for suspect PCB containing equipment, e.g., transformers, elevators. Please note, this scope of work does not include an evaluation for or testing of suspect PCBs in building materials such as caulking, mastic/adhesives, oil-based paints, coatings and sealants. Currently, there are no regulatory requirements to test in-place building materials for the presence of PCBs. Although testing is not required for in place materials, owners are required to know the content of the waste streams that they generate and potentially sign waste profiles prior to disposal facility acceptance. Therefore, if renovation or demolition activities are to be conducted at the site that will result in the generation of demolition debris, a contractor and/or waste disposal facility may request certification of knowledge of the waste stream and/or testing to determine if the material(s) contain PCBs for proper handling and disposal purposes. VERTEX can further discuss this issue and/or provide a proposal for testing and analysis for PCBs if requested.
- Visual inspection of the accessible areas of the site and review of readily available public records to assess the presence or absence of the following ASTM E 1527-13 non-scope considerations: ACMs, LBP, and radon.

Preparation of a Phase I ESA report.

12.3 Significant Assumptions

Information obtained from the Client, the Client's representative, site representatives, individuals interviewed, and prior environmental reports is considered to be accurate unless VERTEX's reasonable inquiries clearly revealed otherwise.

Conditions observed were considered to be representative of areas that were not observed unless otherwise indicated.

The primary direction of groundwater flow is assumed to follow topography, unless otherwise indicated by measurement of the potentiometric surface or other quantifiable data.

VERTEX reviewed reasonably ascertainable public records with respect to past operations and ownership of the site in an attempt to determine past site usage. VERTEX is not a professional title insurance firm and makes no guarantee, express or implied, that the listing reviewed represented a comprehensive delineation of past site ownership or tenancy for legal purposes. The accuracy and completeness of information maintained in public records by public agencies or other entities is assumed to be sufficient for the purposes of this Phase I ESA, and independent verification of its validity is beyond the scope of this investigation.

12.4 Limitations and Exceptions

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with customary principles and practices in the fields of environmental science and engineering. The findings within this ESA utilized information that was practically reviewable per ASTM Practice E 1527-13, meaning that only relevant data relating to the subject site has been incorporated into the findings, disregarding extraordinary analysis of irrelevant data. The investigation conducted for this ESA was limited to data that were reasonably ascertainable, meaning that the information was publicly available, obtainable within the cost and time constraints under the scope of services for this project, and practically available. VERTEX is not responsible for the independent conclusions, opinions, or recommendations made

by others based on the records review, site inspection, field exploration, and laboratory test data presented in this report.

It should be noted that all surficial environmental assessments are inherently limited in the sense that conclusions are drawn and recommendations developed from information obtained from limited research and site evaluation. Subsurface conditions were not field investigated as part of this study and may differ from the conditions implied by the surficial observations. Additionally, the passage of time may result in a change in the environmental characteristics at this site and surrounding properties. VERTEX does not warrant against future operations or conditions, or against operations or conditions present of a type or at a location not investigated. VERTEX does not assume responsibility for other environmental issues that may be associated with the subject site.

This study is not intended to assess or otherwise determine if soil contamination, waste emplacement, or groundwater contamination exists. These data are accessible only by sampling of subsurface material and groundwater through the completion of soil borings and the installation of monitoring wells and the chemical analyses of soil and groundwater samples. The scope of work, determined by the client, did not include these activities.

In view of the rapidly changing status of environmental laws, regulations and guidelines, VERTEX cannot be responsible for changes in laws, regulations, or guidelines that occur after the study has been completed and that may affect the subject site.

It must be noted that no investigation can absolutely rule out the existence of hazardous materials at a given site. This assessment has been based upon prior site history and observable conditions. Existing hazardous materials and contaminants can escape detection using these methods.

Significant data gaps or accessibility limitations that would affect VERTEX's ability to identify RECs at the site are discussed in Section 8.0.

While VERTEX may comment on environmental compliance matters that fall under the scope of this assessment, this study does not constitute a regulatory compliance audit, and does not document compliance with applicable state, federal, or local regulations.

12.5 Special Terms and Conditions

This report is for the exclusive use of Wood Partners, WP East Acquisitions, LLC, and the Wood Partners affiliated entity taking title to the site, and their lenders and equity partners with respect to the site. No other party shall have the right to rely on service provided by VERTEX without prior written consent. Use of this report by any other party shall be at the party's sole risk.

12.6 User Reliance

This report may be relied upon by Wood Partners, WP East Acquisitions, LLC, and any entities created to hold an investment to which this report relates, including the entity created to own the site and their respective affiliates, any of Wood Partners' auditors, legal counsel, consultants, advisors and debt and equity capital sources and any party that purchases an interest in the property (or an interest in an entity that directly or indirectly owns the property) from Wood Partners and a reference to this report may be included or quoted in a private placement memorandum, registration statement, prospectus, sales brochure, annual or quarterly reports, proxy statements, Forms 8-K or similar documents (in either electronic or hard format) issued, filed or released in connection with a sale, for firm securitization, or any loan on the property or other transaction or reporting involving the property referenced in this report.

13.0 REFERENCES

Agencies Contact Records Reviewed:

Town of Wayland Fire Department

Town of Wayland Assessor's Office

Town of Wayland Department of Public Works

Town of Wayland Health Department

Town of Wayland Building Department

Town of Wayland Conservation Commission

Town of Wayland Town Clerk

Town of Sudbury Department of Public Works

South Middlesex County Registry of Deeds

Massachusetts Department of Environmental Protection

Other Documents Reviewed:

Phase I Environmental Site Assessment and Limited Phase II Investigation Report, prepared by Tighe & Bond, dated October 2012.

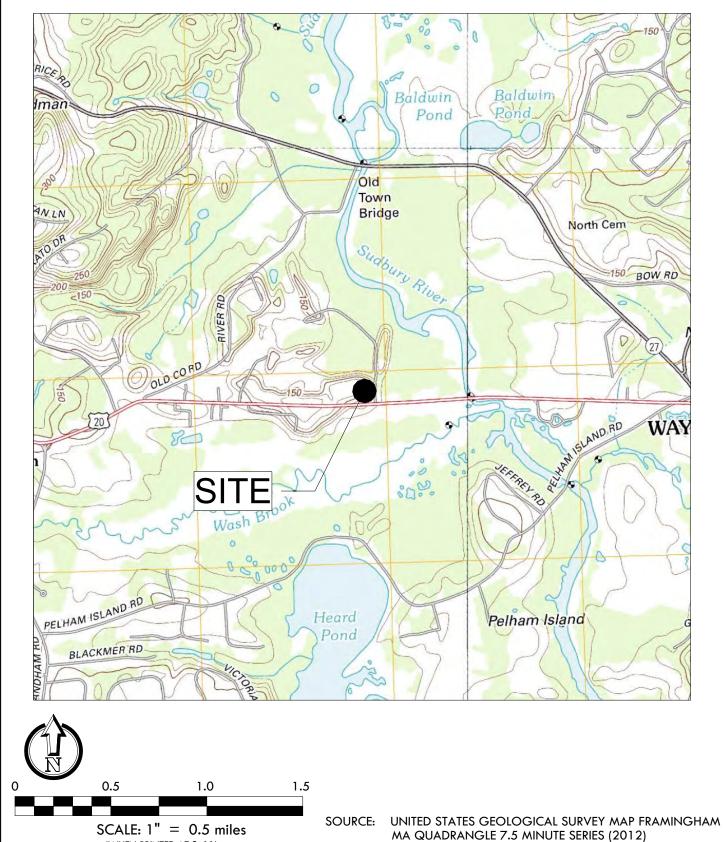
<u>Former Wayland-Sudbury Septage Facility Groundwater Summary Memorandum – August 2015</u> Sampling Event, prepared by Tighe & Bond, dated September 2, 2015.

City Directories, dated 1984, 1988, 1992, 1995, 1999, 2003, 2008, and 2013.

EDR Database Report, April 4, 2019.

Aerial photographs, dated 1952, 1957, 1963, 1969, 1970, 1978, 1980, 1985, 1995, 2006, 2008, 2010, and 2012.

Topographic maps, dated 1894, 1915, 1918, 1943, 1950, 1958, 1965, 1970, 1979, 1987, and 2012.


Federal Emergency Management Administration (FEMA) Flood Insurance Rate Map https://msc.fema.gov/portal

United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm

FIGURES

(WHEN PRINTED AT 8x11)

SITE LOCUS

RIVER'S EDGE

Date: 04/22/19
Drawn: KS

484 - 490 Boston Post Road
Wayland, Massachusetts

Date: 04/22/19
Drawn: KS

Checked: FC

Job No.: 46047

VERTEX®

'ERTEXENG.COM

FIGURE

SCALE: 1" = 100'-0" (WHEN PRINTED AT 11x17)

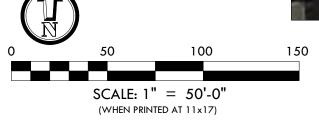
RIVER'S EDGE 484 - 490 BOSTON POST ROAD WAYLAND, MA

File No.: Date: FIGURE Drawn: Checked: Job No.: 46047

4/22/19

Test Pit Grid Number

Approximate Configuration of 32,000 cy Stockpile



4,500 cy Stockpile $_{\text{TP-V-101}}^{-}$ Test Pit Location

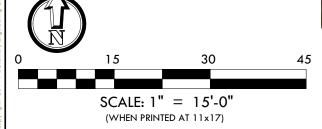
Approximate Configuration of 4,500 cy Stockpile

STOCKPILE GRID LAYOUT RIVER'S EDGE 484 - 490 BOSTON POST ROAD WAYLAND, MA

File No.: DRAFT FIGURE
Date: 03/05/19
Drawn: KS
Checked: BP Drawn: Checked: Job No.: 46047

REVISIONS 03/14/19

VERIEX


45.5

XRF Reading (ppm)

Grid Sampled

FIRING RANGE ASSESSMENT

RIVER'S EDGE

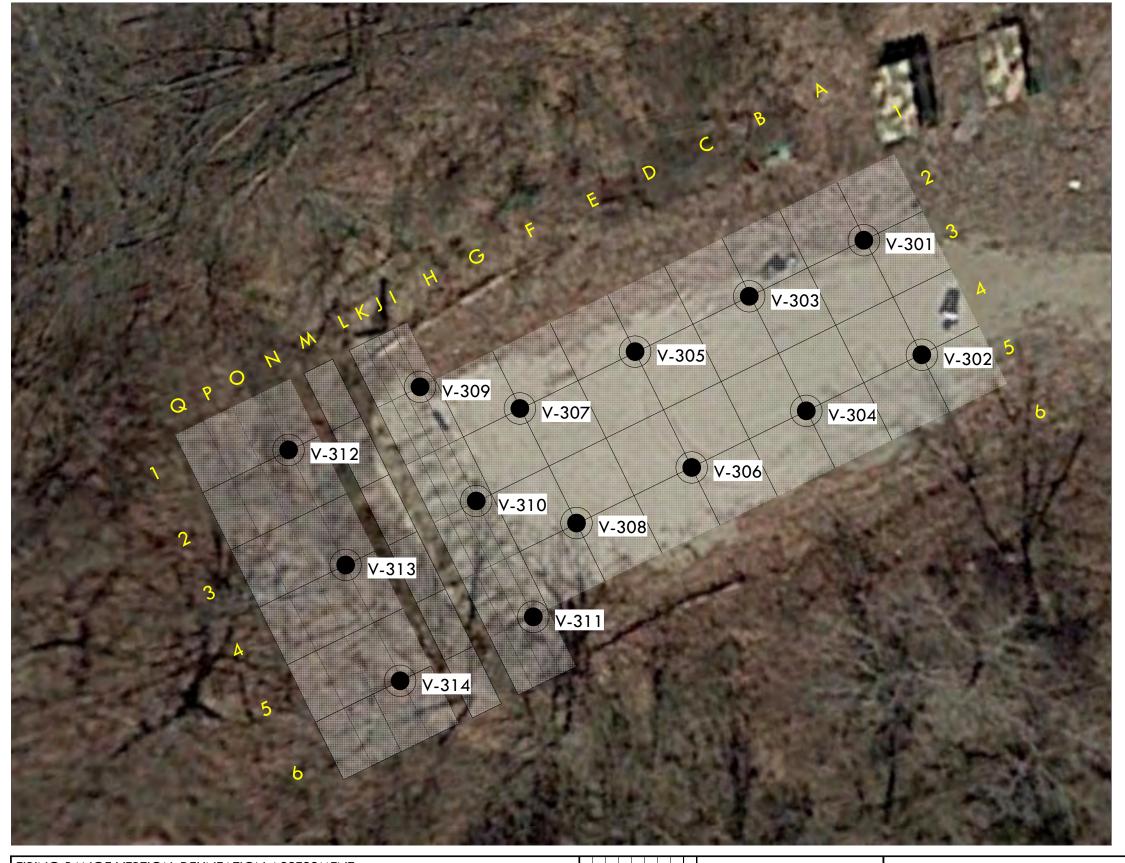
484 BOSTON POST ROAD
WAYLAND, MA

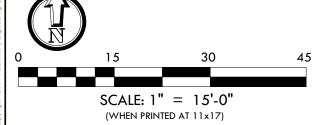
File No.: DRAFT FIGURE
Date: 04/12/19
Drawn: KS
Checked: FC
Job No.: 46047

REVISIONS

E VBBPB

SCALE: 1'' = 15'-0''(WHEN PRINTED AT 11×17)


484 BOSTON POST ROAD WAYLAND, MA


File No.: DRAFT FIGURE
Date: 04/22/19
Drawn: KS
Checked: FC
Job No.: 46047

Lead Vertical Delineation Sample

V-301 through V-308 (2-4 feet bgs) V-309 through V-311 (0-2 feet bgs) V-312 through V-314 (2-4 feet bgs)

FIRING RANGE VERTICAL DELINEATION ASSESSMENT RIVER'S EDGE 484 BOSTON POST ROAD WAYLAND, MA

File No.: DRAFT FIGURE
Date: 04/12/19
Drawn: KS
Checked: FC
Job No.: 46047

VERTEX

TABLES

Sample I	D		TP-A1 (0-5)	TP-A1 (5-10)	TP-A2 (0-5)	TP-A2 (5-10)	TP-A3 (0-5)	TP-A3 (5-10)	TP-A4 (0-5)	TP-A4 (5-10)	TP-A5 (0-5)	TP-A5 (5-10)	TP-B1 (0-5)	TP-B1 (5-10)	TP-B2 (0-5)	TP-B2 (5-10)	TP-B3 (0-5)	TP-B3 (5-10)	TP-B4 (0-5)
Sample Dat	e MCP RCS-1	Units	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/11/2019	3/11/2019	3/11/2019
Depth Interval (f	t)		0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5
Asbestos																			
CARB 435	NSE	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Extractable Petroleum Hydrocarbons (EPH) wi	ith target Poly	nuclear Aro	matic Hydroca	rbons (PAHs)															
C09-C18 Aliphatic Hydrocarbons (adjusted)	1000	mg/kg							ND(23)	ND(23)	ND(22)	ND(23)					ND(22)		
C11-C22 Aromatic Hydrocarbons (adjusted)	1000	mg/kg							190	290	280	300					160		
C11-C22 Aromatics (unadjusted)	NSE	mg/kg							210	320	290	340					180		
C19-C36 Aliphatics (adjusted)	3000	mg/kg							140	210	220	190					120		
Total Petroleum Hydrocarbons (TPH)																			
ТРН	1000	mg/kg	440	530	410	590	790	940	1000	1000	1400	1300	760	480	300	510	1000	690	400
Volatile Organic Compounds (VOCs)																			
Total VOCs	NSE	mg/kg	ND(0.17)	0.0019	ND(0.18)	ND(0.17)	ND(0.18)	ND(0.16)	ND(0.16)	ND(0.19)	ND(0.21)	ND(0.19)	ND(0.092)	0.0045	ND(0.17)	ND(0.18)	ND(0.19)	ND(0.31)	ND(0.17)
Semivolatile Organic Compounds (SVOCs)																			
Acenaphthene	4	mg/kg	ND(0.39)	ND(0.20)	ND(0.76)	ND(0.36)	ND(0.77)	ND(0.96)	ND(0.96)	ND(0.98)	ND(0.78)	ND(0.98)	ND(0.38)	ND(0.92)	ND(0.19)	ND(0.37)	ND(0.76)	ND(0.69)	ND(0.92)
Acenaphthylene	1	mg/kg	ND(0.39)	ND(0.20)	ND(0.76)	ND(0.36)	ND(0.77)	ND(0.96)	ND(0.96)	ND(0.98)	ND(0.78)	ND(0.98)	ND(0.38)	ND(0.92)	ND(0.19)	ND(0.37)	ND(0.76)	ND(0.69)	ND(0.92)
Anthracene	1000	mg/kg	ND(0.39)	ND(0.20)	ND(0.76)	ND(0.36)	ND(0.77)	ND(0.96)	ND(0.96)	1.2	ND(0.78)	ND(0.98)	ND(0.38)	ND(0.92)	ND(0.19)	ND(0.37)	0.76	ND(0.69)	ND(0.92)
Benzo(a)Anthracene	7	mg/kg	0.69	0.36	ND(0.76)	1.3	1.2	1.2	1.4	1.4	1.6	2.1	0.72	1.3	0.68	0.84	1.8	ND(0.69)	ND(0.92)
Benzo(a)Pyrene	2	mg/kg	0.72	0.40	ND(0.76)	1.4	1.2	1.2	1.5	1.5	1.5	2.0	0.82	1.4	0.72	0.92	1.7	ND(0.69)	ND(0.92)
Benzo(b)Fluoranthene	7	mg/kg	0.84	0.45	0.77	1.6	1.5	1.3	1.7	1.8	1.8	2.5	1.0	1.6	0.86	1.1	2.0	ND(0.69)	ND(0.92)
Benzo(g,h,i)Perylene	1000	mg/kg	0.44	0.26	ND(0.76)	0.76	0.80	ND(0.96)	ND(0.96)	1.1	0.93	1.2	0.43	0.98	0.57	0.70	1.1	ND(0.69)	ND(0.92)
Benzo(k)Fluoranthene	70	mg/kg	ND(0.39)	ND(0.20)	ND(0.76)	0.64	ND(0.77)	ND(0.96)	ND(0.96)	ND(0.98)	ND(0.78)	ND(0.98)	0.43	ND(0.92)	0.34	0.40	ND(0.76)	ND(0.69)	ND(0.92)
Chrysene	70	mg/kg	0.66	0.39	ND(0.76)	1.3	1.2	1.2	1.4	1.3	1.4	1.9	0.80	1.4	0.74	0.88	1.7	ND(0.69)	ND(0.92)
Dibenzo(a,h)Anthracene	0.7	mg/kg	ND(0.39)	ND(0.20)	ND(0.76)	ND(0.36)	ND(0.77)	ND(0.96)	ND(0.96)	ND(0.98)	ND(0.78)	ND(0.98)	ND(0.38)	ND(0.92)	ND(0.19)	ND(0.37)	ND(0.76)	ND(0.69)	ND(0.92)
Dibenzofuran	100	mg/kg	ND(0.77)	ND(0.39)	ND(1.5)	ND(0.72)	ND(1.5)	ND(1.9)	ND(1.9)	ND(2.0)	ND(1.6)	ND(2.0)	ND(0.76)	ND(1.8)	ND(0.38)	ND(0.74)	ND(1.5)	ND(1.4)	ND(1.8)
Fluoranthene	1000	mg/kg	1.3	0.62	0.94	2.3	2.4	1.9	2.8	2.5	3.2	3.8	1.1	2.4	1.3	1.6	3.9	ND(0.69)	1.0
Fluorene	1000	mg/kg	ND(0.39)	ND(0.20)	ND(0.76)	ND(0.36)	ND(0.77)	ND(0.96)	ND(0.96)	ND(0.98)	ND(0.78)	ND(0.98)	ND(0.38)	ND(0.92)	ND(0.19)	ND(0.37)	ND(0.76)	ND(0.69)	ND(0.92)
Indeno(1,2,3-cd)Pyrene	7	mg/kg	0.43	0.27	ND(0.76)	0.81	ND(0.77)	ND(0.96)	ND(0.96)	1.1	0.95	1.3	0.45	ND(0.92)	0.55	0.67	1.2	ND(0.69)	ND(0.92)
Naphthalene	4	mg/kg	ND(0.39)	ND(0.20)	ND(0.76)	ND(0.36)	ND(0.77)	ND(0.96)	ND(0.96)	ND(0.98)	ND(0.78)	ND(0.98)	ND(0.38)	ND(0.92)	ND(0.19)	ND(0.37)	ND(0.76)	ND(0.69)	ND(0.92)
Phenanthrene	10	mg/kg	0.56	0.28	ND(0.76)	1.1	1.3	1.2	1.6	1.3	2.7	2.3	0.49	1.7	0.80	0.79	3.1	ND(0.69)	ND(0.92)
Pyrene	1000	mg/kg	1.4	0.75	1.3	2.5	2.2	2.4	3.2	2.8	3.2	4.3	1.3	3.1	1.4	1.7	3.8	0.82	1.0
Metals		,			N= ()			A1= 41 - 11	N= 1 1						= /: -:	= /: -:	= /: -:	= /:	
Antimony	20	mg/kg	ND(1.8)	ND(1.9)	ND(1.8)	ND(1.7)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(3.4)	ND(1.8)
Arsenic	20	mg/kg	6.8	5.8	7.6	3.9	7.0	5.7	5.4	4.0	5.7	4.5	9.6	5.4	5.6	5.3	6.0	19	4.7
Barium	1000	mg/kg	37	31	34	37	36	30	33	34	40	34	34	31	32	30	32	58	24
Beryllium	90	mg/kg	0.33	0.38	0.38	0.33	0.26	0.26	0.29	0.28	0.28	0.28	0.36	0.35	0.32	0.30	0.32	0.44	0.22
Cadmium	70	mg/kg	0.51	0.38	0.47	0.29	0.45	0.38	0.39	0.30	0.45	0.41	0.50	0.33	0.41	0.54	0.41	1.2	0.30
Chromium	100	mg/kg	15	15	15	17	13	15	14	17	14	17	17	14	13	15	15	24	12
Lead	200	mg/kg	44	25	58	43	69	48	44	36	43	35	34	23	62	53	60	87	70
Mercury	20	mg/kg	0.051	0.029	0.048	0.032	0.042	0.039	0.095	0.044	0.055	0.054	0.034	ND(0.026)	0.054	0.040	0.036	ND(0.049)	ND(0.026)
Nickel	600	mg/kg	12	12	11	13	9.8	12	11	13	11	13	13	12	9.4	12	12	19	8.9
Selenium	400	mg/kg	ND(3.7)	ND(3.8)	ND(3.7)	ND(3.5)	ND(3.8)	ND(3.8)	ND(3.8)	ND(3.8)	ND(3.8)	ND(3.8)	ND(3.6)	ND(3.6)	ND(3.7)	ND(3.7)	ND(3.7)	ND(6.8)	ND(3.5)
Silver	100	mg/kg	ND(0.37)	ND(0.38)	ND(0.37)	ND(0.35)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.36)	ND(0.36)	ND(0.37)	ND(0.37)	ND(0.37)	ND(0.68)	ND(0.35)
Thallium	8	mg/kg	ND(1.8)	ND(1.9)	ND(1.8)	ND(1.7)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(1.8)	ND(3.4)	3.4
Vanadium	400	mg/kg	25	26	21	30	18	23	21	28	29	24	23	22	19	22	21	38	16
Zinc	1000	mg/kg	49	39	49	50	49	43	48	42	52	44	46	34	48	46	51	82	31

Sample ID			TP-A1 (0-5)	TP-A1 (5-10)	TP-A2 (0-5)	TP-A2 (5-10)	TP-A3 (0-5)	TP-A3 (5-10)	TP-A4 (0-5)	TP-A4 (5-10)	TP-A5 (0-5)	TP-A5 (5-10)	TP-B1 (0-5)	TP-B1 (5-10)	TP-B2 (0-5)	TP-B2 (5-10)	TP-B3 (0-5)	TP-B3 (5-10)	TP-B4 (0-5)
Sample Date	MCP RCS-1	Units	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/11/2019	3/11/2019	3/11/2019
Depth Interval (ft)			0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5
Polychlorinated Biphenyls (PCBs)																			
Total PCBs	1	mg/kg	ND(0.091)	ND(0.093)	ND(0.091)	ND(0.085)	ND(0.090)	ND(0.086)	ND(0.087)	ND(0.091)	ND(0.090)	ND(0.089)	ND(0.089)	ND(0.087)	ND(0.090)	ND(0.089)	ND(0.083)	ND(0.16)	ND(0.085)
General Chemistry																			
Ignitability	NSE	present/ absent	absent	absent	absent														
рН	9	pH Units	7.8	7.6	7.9	8.7	7.9	8.1	7.9	8.2	7.7	7.8	7.9	7.2	7.4	7.8	7.8	7.1	8.2
Reactivity Cyanide	NSE	mg/kg	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(4.0)	ND(3.9)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)
Reactivity Sulfide	NSE	mg/kg	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)
Solids, Total	NSE	%	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)
Specific Conductance	2000	umhos/cm	12	13	13	37	14	21	20	24	23	20	16	9.0	11	16	17	17	24

Notes:

- mg/kg=milligram per kilogram; uhoms/cm=microohms per centimeter
- Reportable Concentrations (RCS-1) taken from the Massachusetts Contingency Plan (MCP) 310 CMR 40.0974(2) dated April 2014
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed

Rivers Edge

- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- Italicized values represent laboratory detection limit equal to or above applicable RCS-1 standard
- Full analytical results, including QA/QC information and data flags, are detailed in the laboratory analytical report

2 of 10

San	nple ID		TP-B4 (5-10)	TP-B5 (0-5)	TP-B5 (5-10)	TP-B6 (0-5)	TP-B6 (5-10)	TP-C1 (0-5)	TP-C1 (5-10)	TP-C2 (0-5)	TP-C2 (5-10)	TP-C3 (0-5)	TP-C3 (5-10)	TP-C4 (0-5)	TP-C4 (5-10)	TP-C5 (0-5)	TP-C5 (5-10)	TP-C6 (0-5)	TP-C6 (5-10)
Sampl	le Date MCP RCS-1	Units	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019
Depth Inter	val (ft)		5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10
Asbestos																			
CARB 435	NSE	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Extractable Petroleum Hydrocarbons (EF	PH) with target Poly	nuclear Aro	1																
C09-C18 Aliphatic Hydrocarbons (adjuste	d) 1000	mg/kg				ND(23)			ND(55)	ND(21)		ND(53)	ND(55)						ND(23)
C11-C22 Aromatic Hydrocarbons (adjuste	ed) 1000	mg/kg				290			330	140		250	430						210
C11-C22 Aromatics (unadjusted)	NSE	mg/kg				310			350	150		260	470						240
C19-C36 Aliphatics (adjusted)	3000	mg/kg				200			270	100		210	310						140
Total Petroleum Hydrocarbons (TPH)																			
TPH	1000	mg/kg	390	540	640	1100	660	900	1200	1200	930	1700	1100	700	530	320	70	520	1100
Volatile Organic Compounds (VOCs)																			
Total VOCs	NSE	mg/kg	ND(0.18)	ND(0.10)	ND(0.086)	ND(0.092)	ND(0.10)	ND(0.10)	ND(0.084)	ND(0.083)	ND(0.075)	ND(0.22)	ND(0.082)	ND(0.16)	ND(0.24)	ND(0.092)	ND(0.19)	ND(0.094)	0.0027
Semivolatile Organic Compounds (SVOC	s)																		
Acenaphthene	4	mg/kg	ND(0.20)	ND(0.38)	ND(0.95)	ND(0.98)	ND(0.93)	ND(0.39)	0.54	ND(0.38)	ND(0.39)	ND(1.9)	ND(0.38)	ND(0.38)	ND(0.41)	ND(0.21)	ND(0.21)	ND(0.96)	4.1
Acenaphthylene	1	mg/kg	0.23	ND(0.38)	ND(0.95)	ND(0.98)	ND(0.93)	ND(0.39)	ND(0.39)	0.99	ND(0.39)	ND(1.9)	0.56	ND(0.38)	ND(0.41)	ND(0.21)	ND(0.21)	ND(0.96)	ND(0.97)
Anthracene	1000	mg/kg	ND(0.20)	ND(0.38)	ND(0.95)	ND(0.98)	ND(0.93)	ND(0.39)	1.4	2.0	ND(0.39)	ND(1.9)	0.91	ND(0.38)	ND(0.41)	ND(0.21)	ND(0.21)	ND(0.96)	9.0
Benzo(a)Anthracene	7	mg/kg	1.1	0.97	1.9	ND(0.98)	1.5	1.1	2.3	3.2	0.96	2.3	3.0	0.65	0.75	ND(0.21)	ND(0.21)	2.1	13
Benzo(a)Pyrene	2	mg/kg	1.1	1.1	1.9	ND(0.98)	1.7	1.3	2.2	2.7	1.1	2.1	2.9	0.73	0.84	ND(0.21)	ND(0.21)	2.1	12
Benzo(b)Fluoranthene	7	mg/kg	1.5	1.4	2.6	1.0	2.2	1.5	2.5	3.2	1.1	2.4	3.3	0.88	1.0	ND(0.21)	ND(0.21)	2.5	13
Benzo(g,h,i)Perylene	1000	mg/kg	0.65	0.61	1.4	ND(0.98)	0.94	0.72	1.0	1.6	0.76	ND(1.9)	1.3	0.56	0.61	ND(0.21)	ND(0.21)	1.0	5.6
Benzo(k)Fluoranthene	70	mg/kg	0.59	0.51	ND(0.95)	ND(0.98)	ND(0.93)	0.57	0.95	1.2	0.42	ND(1.9)	1.3	ND(0.38)	ND(0.41)	ND(0.21)	ND(0.21)	0.97	4.8
Chrysene	70	mg/kg	1.2	1.1	2.2	ND(0.98)	1.4	1.2	2.2	2.9	1.1	2.2	2.7	0.71	0.83	ND(0.21)	ND(0.21)	2.2	12
Dibenzo(a,h)Anthracene	0.7	mg/kg	ND(0.20)	ND(0.38)	ND(0.95)	ND(0.98)	ND(0.93)	ND(0.39)	ND(0.39)	0.45	ND(0.39)	ND(1.9)	ND(0.38)	ND(0.38)	ND(0.41)	ND(0.21)	ND(0.21)	ND(0.96)	1.5
Dibenzofuran	100	mg/kg	ND(0.40)	ND(0.75)	ND(1.9)	ND(2.0)	ND(1.9)	ND(0.78)	ND(0.78)	1.2	ND(0.77)	ND(3.7)	ND(0.75)	ND(0.76)	ND(0.81)	ND(0.42)	ND(0.43)	ND(1.9)	ND(1.9)
Fluoranthene	1000	mg/kg	1.8	1.7	4.9	1.5	2.6	1.9	5.1	7.6	1.5	4.8	6.0	1.2	1.6	0.24	ND(0.21)	3.8	23
Fluorene	1000	mg/kg	ND(0.20)	ND(0.38)	ND(0.95)	ND(0.98)	ND(0.93)	ND(0.39)	0.70	0.90	ND(0.39)	ND(1.9)	0.39	ND(0.38)	ND(0.41)	ND(0.21)	ND(0.21)	ND(0.96)	4.2
Indeno(1,2,3-cd)Pyrene	7	mg/kg	0.73	0.71	1.4	ND(0.98)	1.0	0.67	1.1	1.8	0.73	ND(1.9)	1.5	0.53	0.60	ND(0.21)	ND(0.21)	1.1	6.4
Naphthalene	4	mg/kg	ND(0.20)	ND(0.38)	ND(0.95)	ND(0.98)	ND(0.93)	ND(0.39)	ND(0.39)	1.2	ND(0.39)	ND(1.9)	ND(0.38)	ND(0.38)	ND(0.41)	ND(0.21)	ND(0.21)	ND(0.96)	ND(0.97)
Phenanthrene	10	mg/kg	0.81	0.97	2.9	1.1	1.1	0.99	4.6	8.3	0.65	4.5	3.1	0.62	0.76	ND(0.21)	ND(0.21)	3.0	19
Pyrene	1000	mg/kg	2.2	2.2	4.3	ND(0.98)	3.0	2.4	5.5	7.1	2.2	5.0	6.4	1.3	1.5	0.28	ND(0.21)	4.5	19
Metals Antimony	20	mg/kg	ND(2.0)	ND(1.8)	ND(1.8)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.9)	ND(1.8)	ND(2.0)	ND(2.1)	ND(2.1)	ND(1.9)	ND(1.9)
Arsenic	20	mg/kg	11	5.0	5.7	4.7	4.1	4.9	5.2	5.1	5.5	4.5	3.5	7.7	4.0	6.5	6.6	5.9	5.3
Barium	1000	mg/kg	41	3.0	30	36	33	33	3.2	36	3.3	30	35	32	31	35	38	46	33
Beryllium	90	mg/kg	0.35	0.26	0.27	0.27	0.29	0.37	0.36	0.34	0.32	0.28	0.34	0.25	0.24	0.44	0.50	0.32	0.27
Cadmium	70	mg/kg	0.61	0.41	0.40	0.39	0.32	0.37	0.39	0.42	0.42	0.29	0.30	0.50	0.34	0.33	0.32	0.40	0.36
Chromium	100	mg/kg	16	14	14	14	14	16	17	14	17	13	16	12	14	15	18	23	15
Lead	200	mg/kg	120	50	30	46	26	63	62	50	37	27	43	79	65	16	11	79	30
Mercury	20	mg/kg	0.084	0.035	0.050	0.059	ND(0.027)	0.057	0.028	0.073	0.033	0.048	0.053	0.049	0.095	0.037	ND(0.030)	0.064	ND(0.029)
Nickel	600	mg/kg	11	11	11	11	11	12	12	12	11	12	13	9.2	8.9	10	12	10	12
Selenium	400	mg/kg	ND(4.0)	ND(3.7)	ND(3.7)	ND(3.8)	ND(3.7)	ND(3.8)	ND(3.8)	ND(3.8)	ND(3.7)	ND(3.6)	ND(3.7)	ND(3.7)	ND(3.9)	ND(4.1)	ND(4.3)	ND(3.8)	ND(3.8)
Silver	100	mg/kg	ND(0.40)	ND(0.37)	ND(0.37)	ND(0.38)	ND(0.37)	0.84	ND(0.38)	ND(0.38)	ND(0.37)	ND(0.36)	ND(0.37)	ND(0.37)	ND(0.39)	ND(0.41)	ND(0.43)	ND(0.38)	ND(0.38)
Thallium	8	mg/kg	4.2	ND(1.8)	ND(1.8)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.9)	ND(1.8)	ND(2.0)	ND(2.1)	ND(2.1)	ND(1.9)	ND(1.9)
Vanadium	400	mg/kg	20	19	22	24	22	23	22	24	20	32	31	16	18	18	21	20	21
Zinc	1000	mg/kg	69	48	42	48	38	52	49	48	46	36	52	48	58	27	28	51	39

Sample ID			TP-B4 (5-10)	TP-B5 (0-5)	TP-B5 (5-10)	TP-B6 (0-5)	TP-B6 (5-10)	TP-C1 (0-5)	TP-C1 (5-10)	TP-C2 (0-5)	TP-C2 (5-10)	TP-C3 (0-5)	TP-C3 (5-10)	TP-C4 (0-5)	TP-C4 (5-10)	TP-C5 (0-5)	TP-C5 (5-10)	TP-C6 (0-5)	TP-C6 (5-10)
Sample Date	MCP RCS-1	Units	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019
Depth Interval (ft)			5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10
Polychlorinated Biphenyls (PCBs)																			
Total PCBs	1	mg/kg	ND(0.093)	ND(0.086)	ND(0.086)	ND(0.086)	ND(0.087)	ND(0.092)	ND(0.091)	ND(0.089)	ND(0.090)	ND(0.088)	ND(0.089)	ND(0.091)	ND(0.096)	ND(0.096)	ND(0.10)	ND(0.089)	ND(0.088)
General Chemistry																			
Ignitability	NSE	present/ absent	absent	absent	absent														
рН	9	pH Units	7.6	7.9	8.0	8.1	7.9	7.5	8.3	7.7	7.3	8.5	7.9	8.0	7.9	7.1	8.0	7.3	7.6
Reactivity Cyanide	NSE	mg/kg	ND(3.9)	ND(4.0)	ND(4.0)	ND(4.0)	ND(4.0)	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(4.0)	ND(4.0)
Reactivity Sulfide	NSE	mg/kg	ND(20)	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)								
Solids, Total	NSE	%	ND(20)	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)								
Specific Conductance	2000	umhos/cm	7.2	7.8	13	20	5.8	12	16	8.5	9.8	20	17	9.1	17	21	18	21	17

Notes

- mg/kg=milligram per kilogram; uhoms/cm=microohms per centimeter
- Reportable Concentrations (RCS-1) taken from the Massachusetts Contingency Plan (M
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed
- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- Italicized values represent laboratory detection limit equal to or above applicable RCS-1
- Full analytical results, including QA/QC information and data flags, are detailed in the la

Sample	e ID		TP-D1 (0-5)	TP-D1 (5-10)	TP-D2 (0-5)	TP-D2 (5-10)	TP-D3 (0-5)	TP-D3 (5-10)	TP-D3 (10-15)	TP-D4 (0-5)	TP-D4 (5-10)	TP-D5 (0-5)	TP-D5 (5-10)	TP-D6 (0-5)	TP-D6 (5-10)	TP-D7 (0-5)	TP-D7 (5-10)	TP-E2 (0-5)	TP-E2 (5-10)
Sample D	ate MCP RCS-1	Units	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/12/2019	3/12/2019
Depth Interval	(ft)		0-5	5-10	0-5	5-10	0-5	5-10	10-15	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10
Asbestos																			
CARB 435	NSE	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Extractable Petroleum Hydrocarbons (EPH)	with target Poly	nuclear Aro																	
C09-C18 Aliphatic Hydrocarbons (adjusted)	1000	mg/kg	ND(59)					ND(23)	ND(53)	ND(22)		ND(25)			ND(24)		ND(22)	ND(55)	
C11-C22 Aromatic Hydrocarbons (adjusted)	1000	mg/kg	250					170	360	310		230			210		220	210	
C11-C22 Aromatics (unadjusted)	NSE	mg/kg	260					180	400	350		250			220		240	220	
C19-C36 Aliphatics (adjusted)	3000	mg/kg	190					180	240	200		220			160		140	150	
Total Petroleum Hydrocarbons (TPH)																			
TPH	1000	mg/kg	1200	910	860	770	840	1100	1200	1000	960	1100	510	590	1000	330	1000	1100	870
Volatile Organic Compounds (VOCs)																			
Total VOCs	NSE	mg/kg	ND(0.093)	ND(0.087)	ND(0.088)	ND(0.10)	0.0022	ND(0.090)	ND(0.10)	ND(0.12)	ND(0.17)	ND(0.24)	ND(0.15)	ND(0.085)	ND(0.089)	ND(0.089)	ND(0.075)	ND(0.076)	0.0023
Semivolatile Organic Compounds (SVOCs)																			
Acenaphthene	4	mg/kg	ND(0.41)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.41)	ND(0.39)	ND(0.37)	ND(0.73)	ND(0.92)	ND(0.84)	ND(0.19)	ND(0.97)	ND(1.0)	ND(0.38)	ND(1.9)	ND(0.75)	ND(0.79)
Acenaphthylene	1	mg/kg	0.49	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.41)	ND(0.39)	ND(0.37)	ND(0.73)	ND(0.92)	ND(0.84)	ND(0.19)	ND(0.97)	ND(1.0)	ND(0.38)	ND(1.9)	ND(0.75)	ND(0.79)
Anthracene	1000	mg/kg	1.4	0.55	ND(0.38)	0.44	ND(0.41)	0.40	0.56	0.89	ND(0.92)	ND(0.84)	ND(0.19)	ND(0.97)	1.5	ND(0.38)	ND(1.9)	ND(0.75)	ND(0.79)
Benzo(a)Anthracene	7	mg/kg	2.8	2.0	1.5	1.2	0.82	1.1	1.8	2.9	ND(0.92)	1.5	0.37	ND(0.97)	3.5	1.0	ND(1.9)	1.8	1.4
Benzo(a)Pyrene	2	mg/kg	2.7	2.2	1.6	1.4	0.88	1.3	1.8	2.6	ND(0.92)	1.7	0.43	ND(0.97)	3.2	1.0	ND(1.9)	1.7	1.5
Benzo(b)Fluoranthene	7	mg/kg	3.2	2.5	1.9	1.5	1.0	1.4	2.2	3.0	ND(0.92)	2.4	0.53	ND(0.97)	3.8	1.1	ND(1.9)	1.9	1.7
Benzo(g,h,i)Perylene	1000	mg/kg	1.5	1.0	1.0	1.0	0.64	0.82	0.83	1.5	ND(0.92)	1.3	0.28	ND(0.97)	1.3	0.58	ND(1.9)	1.2	0.99
Benzo(k)Fluoranthene	70	mg/kg	1.2	0.88	0.71	0.50	ND(0.41)	0.59	0.85	1.3	ND(0.92)	0.89	0.23	ND(0.97)	1.4	0.44	ND(1.9)	ND(0.75)	ND(0.79)
Chrysene	70	mg/kg	2.9	1.9	1.4	1.3	0.83	1.2	1.8	2.6	ND(0.92)	2.0	0.41	ND(0.97)	3.2	1.1	ND(1.9)	1.8	1.3
Dibenzo(a,h)Anthracene	0.7	mg/kg	ND(0.41)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.41)	ND(0.39)	ND(0.37)	ND(0.73)	ND(0.92)	ND(0.84)	ND(0.19)	ND(0.97)	ND(1.0)	ND(0.38)	ND(1.9)	ND(0.75)	ND(0.79)
Dibenzofuran	100	mg/kg	ND(0.82)	ND(0.76)	ND(0.76)	ND(0.78)	ND(0.82)	ND(0.78)	ND(0.74)	ND(1.5)	ND(1.8)	ND(1.7)	ND(0.38)	ND(1.9)	ND(2.0)	ND(0.76)	ND(3.7)	ND(1.5)	ND(1.6)
Fluoranthene	1000	mg/kg	5.7	3.7	2.6	2.3	1.7	2.2	3.3	6.1	0.95	4.3	0.70	ND(0.97)	8.4	2.0	2.9	3.1	2.5
Fluorene	1000	mg/kg	ND(0.41)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.41)	ND(0.39)	0.38	ND(0.73)	ND(0.92)	ND(0.84)	ND(0.19)	ND(0.97)	ND(1.0)	ND(0.38)	ND(1.9)	ND(0.75)	ND(0.79)
Indeno(1,2,3-cd)Pyrene	7	mg/kg	1.7	1.1	1.0	1.1	0.61	0.80	0.93	1.6	ND(0.92)	1.2	0.29	ND(0.97)	1.6	0.67	ND(1.9)	1.1	1.0
Naphthalene	4	mg/kg	ND(0.41)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.41)	ND(0.39)	ND(0.37)	ND(0.73)	ND(0.92)	ND(0.84)	ND(0.19)	ND(0.97)	ND(1.0)	ND(0.38)	ND(1.9)	ND(0.75)	ND(0.79)
Phenanthrene	10	mg/kg	2.4	1.9	1.4	1.1	1.1	1.4	2.4	3.6	ND(0.92)	2.3	0.28	ND(0.97)	4.8	1.3	2.2	2.2	1.3
Pyrene	1000	mg/kg	6.0	4.0	2.9	2.4	1.7	2.5	3.8	5.7	1.1	3.7	0.75	ND(0.97)	7.9	2.2	3.0	3.6	2.6
Metals																			
Antimony	20	mg/kg	ND(2.0)	ND(1.9)	ND(1.9)	ND(1.9)	ND(2.0)	ND(1.9)	ND(1.8)	ND(1.8)	ND(1.8)	ND(2.1)	ND(1.8)	ND(2.0)	ND(2.0)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.9)
Arsenic	20	mg/kg	3.4	4.6	4.7	4.6	6.2	9.1	5.7	3.4	3.7	4.2	4.6	6.8	3.9	6.1	4.8	4.8	3.9
Barium	1000	mg/kg	32	31	30	34	38	30	29	37	27	25	27	46	32	34	34	33	38
Beryllium	90	mg/kg	0.40	0.33	0.34	0.35	0.40	0.32	0.33	0.28	0.27	0.24	0.32	0.34	0.36	0.32	0.29	0.37	0.37
Cadmium	70	mg/kg	0.29	0.31	0.33	0.35	0.42	0.57	0.35	0.31	0.27	0.65	0.34	0.44	0.30	0.41	0.39	0.37	0.40
Chromium	100	mg/kg	17	15	15	17	18	14	15	14	15	14	15	13	19	15	17	15	16
Lead	200	mg/kg	40	47	53	51	45	110	46	56	25	25	20	110	32	71	40	41	53
Mercury	20	mg/kg	0.055	0.059	0.061	0.045	0.086	0.071	0.031	0.28	ND(0.027)	ND(0.032)	ND(0.028)	0.11	0.041	0.079	0.038	0.046	0.045
Nickel	600	mg/kg	15	12	12	13	13	10	13	12	13	10	13	9.9	15	10	13	13	13
Selenium	400	mg/kg	ND(4.1)	ND(3.7)	ND(3.7)	ND(3.8)	ND(3.9)	ND(3.9)	ND(3.7)	ND(3.6)	ND(3.7)	ND(4.2)	ND(3.7)	ND(3.9)	ND(4.0)	ND(3.8)	ND(3.8)	ND(3.7)	ND(3.9)
Silver	100	mg/kg	ND(0.41)	ND(0.37)	ND(0.37)	ND(0.38)	ND(0.39)	ND(0.39)	ND(0.37)	ND(0.36)	ND(0.37)	ND(0.42)	ND(0.37)	ND(0.39)	ND(0.40)	ND(0.38)	ND(0.38)	ND(0.37)	ND(0.39)
Thallium	8	mg/kg	ND(2.0)	ND(1.9)	ND(1.9)	ND(1.9)	ND(2.0)	ND(1.9)	ND(1.8)	ND(1.8)	ND(1.8)	ND(2.1)	ND(1.8)	ND(2.0)	ND(2.0)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.9)
Vanadium	400	mg/kg	27	25	24	24	26	21	26	26	29	20	23	19	32	20	25	29	28
Zinc	1000	mg/kg	52	46	50	50	82	68	49	54	37	52	36	56	45	54	51	53	51

Sample ID			TP-D1 (0-5)	TP-D1 (5-10)	TP-D2 (0-5)	TP-D2 (5-10)	TP-D3 (0-5)	TP-D3 (5-10)	TP-D3 (10-15)	TP-D4 (0-5)	TP-D4 (5-10)	TP-D5 (0-5)	TP-D5 (5-10)	TP-D6 (0-5)	TP-D6 (5-10)	TP-D7 (0-5)	TP-D7 (5-10)	TP-E2 (0-5)	TP-E2 (5-10)
Sample Date	MCP RCS-1	Units	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/11/2019	3/12/2019	3/12/2019
Depth Interval (ft)			0-5	5-10	0-5	5-10	0-5	5-10	10-15	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10
Polychlorinated Biphenyls (PCBs)																			
Total PCBs	1	mg/kg	ND(0.098)	ND(0.090)	ND(0.090)	ND(0.092)	ND(0.097)	ND(0.093)	ND(0.088)	ND(0.087)	ND(0.088)	ND(0.095)	ND(0.085)	ND(0.093)	ND(0.091)	ND(0.088)	ND(0.090)	ND(0.088)	ND(0.093)
General Chemistry																			
Ignitability	NSE	present/ absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent
рН	9	pH Units	7.9	7.9	7.8	7.7	7.7	7.7	8.2	8.2	7.8	8.2	8.5	7.7	7.7	7.7	8.2	7.7	8.0
Reactivity Cyanide	NSE	mg/kg	ND(3.9)	ND(4.0)	ND(4.0)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(4.0)	ND(3.9)	ND(4.0)	ND(4.0)	ND(3.9)	ND(4.0)	ND(4.0)	ND(4.0)	ND(3.9)	ND(3.9)
Reactivity Sulfide	NSE	mg/kg	ND(20)	ND(20)	ND(20)	ND(19)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)
Solids, Total	NSE	%	ND(20)	ND(20)	ND(20)	ND(19)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)
Specific Conductance	2000	umhos/cm	13	11	8.8	8.7	11	8.0	22	24	6.2	17	11	9.0	23	11	18	18	15

Notes

- mg/kg=milligram per kilogram; uhoms/cm=microohms per centimeter
- Reportable Concentrations (RCS-1) taken from the Massachusetts Contingency Plan (M
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed
- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- Italicized values represent laboratory detection limit equal to or above applicable RCS-1
- Full analytical results, including QA/QC information and data flags, are detailed in the la

Sample I	D		TP-E3 (0-5)	TP-E3 (5-10)	TP-E4 (0-5)	TP-E4 (5-10)	TP-E5 (0-5)	TP-E5 (5-10)	TP-E5 (10-15)	TP-E6 (0-5)	TP-E6 (5-10)	TP-E7 (0-5)	TP-E7 (5-10)	TP-E8 (0-5)	TP-E8 (5-10)	TP-F3 (0-5)	TP-F3 (5-10)	TP-F4 (0-5)	TP-F4 (5-10)
Sample Dat	e MCP RCS-1	Units	3/12/2019	3/12/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/12/2019	3/12/2019	3/1/2019	3/1/2019
Depth Interval (f	t)		0-5	5-10	0-5	5-10	0-5	5-10	10-15	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10
Asbestos																			
CARB 435	NSE	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Extractable Petroleum Hydrocarbons (EPH) w	ith target Poly	nuclear Aro																	
C09-C18 Aliphatic Hydrocarbons (adjusted)	1000	mg/kg		ND(24)												ND(55)			
C11-C22 Aromatic Hydrocarbons (adjusted)	1000	mg/kg		170												280			
C11-C22 Aromatics (unadjusted)	NSE	mg/kg		190												290			
C19-C36 Aliphatics (adjusted)	3000	mg/kg		130												220			
Total Petroleum Hydrocarbons (TPH)																			
TPH	1000	mg/kg	780	1100	430	680	590	470	110	980	54	430	160	370	300	1300	910	390	310
Volatile Organic Compounds (VOCs)																			
Total VOCs	NSE	mg/kg	ND(0.077)	ND(0.11)	ND(0.20)	0.0052	0.0026	0.0028	ND(0.18)	ND(0.093)	ND(0.097)	ND(0.10)	ND(0.098)	0.0021	0.0036	ND(0.086)	ND(0.096)	ND(0.16)	0.0049
Semivolatile Organic Compounds (SVOCs)																			
Acenaphthene	4	mg/kg	ND(0.37)	ND(0.40)	ND(0.19)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.39)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.76)	ND(0.82)	ND(0.20)	ND(0.19)
Acenaphthylene	1	mg/kg	ND(0.37)	ND(0.40)	ND(0.19)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.39)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.76)	ND(0.82)	ND(0.20)	ND(0.19)
Anthracene	1000	mg/kg	ND(0.37)	1.2	0.55	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.39)	ND(0.36)	0.90	ND(0.39)	ND(0.76)	ND(0.82)	ND(0.20)	ND(0.19)
Benzo(a)Anthracene	7	mg/kg	0.42	3.4	1.7	0.45	ND(0.94)	ND(0.37)	ND(0.19)	1.6	ND(0.37)	0.55	ND(0.36)	1.6	0.45	1.5	ND(0.82)	0.49	0.39
Benzo(a)Pyrene	2	mg/kg	0.56	3.1	1.6	0.49	ND(0.94)	ND(0.37)	ND(0.19)	1.7	ND(0.37)	0.60	ND(0.36)	1.5	0.53	1.6	ND(0.82)	0.53	0.42
Benzo(b)Fluoranthene	7	mg/kg	0.67	3.6	1.9	0.57	0.98	ND(0.37)	ND(0.19)	2.0	ND(0.37)	0.84	ND(0.36)	1.7	0.60	1.8	ND(0.82)	0.60	0.45
Benzo(g,h,i)Perylene	1000	mg/kg	ND(0.37)	1.5	0.71	0.37	ND(0.94)	ND(0.37)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.39)	ND(0.36)	0.89	ND(0.39)	0.93	ND(0.82)	0.25	0.22
Benzo(k)Fluoranthene	70	mg/kg	ND(0.37)	1.4	0.72	0.21	ND(0.94)	ND(0.37)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.39)	ND(0.36)	0.62	ND(0.39)	ND(0.76)	ND(0.82)	0.26	ND(0.19)
Chrysene	70	mg/kg	0.48	3.3	1.5	0.46	ND(0.94)	ND(0.37)	ND(0.19)	1.9	ND(0.37)	0.64	ND(0.36)	1.5	0.48	1.5	ND(0.82)	0.56	0.44
Dibenzo(a,h)Anthracene	0.7	mg/kg	ND(0.37)	ND(0.40)	ND(0.19)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.39)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.76)	ND(0.82)	ND(0.20)	ND(0.19)
Dibenzofuran	100	mg/kg	ND(0.75)	ND(0.80)	ND(0.38)	ND(0.39)	ND(1.9)	ND(0.75)	ND(0.38)	ND(1.9)	ND(0.74)	ND(0.79)	ND(0.73)	ND(0.76)	ND(0.78)	ND(1.5)	ND(1.6)	ND(0.39)	ND(0.38)
Fluoranthene	1000	mg/kg	0.70	6.6	3.0	0.84	1.4	ND(0.37)	ND(0.19)	2.9	ND(0.37)	0.92	ND(0.36)	3.7	0.75	2.9	0.83	0.80	0.54
Fluorene	1000	mg/kg	ND(0.37)	ND(0.40)	0.21	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.39)	ND(0.36)	0.47	ND(0.39)	ND(0.76)	ND(0.82)	ND(0.20)	ND(0.19)
Indeno(1,2,3-cd)Pyrene	7	mg/kg	ND(0.37)	1.7	0.87	0.34	ND(0.94)	ND(0.37)	ND(0.19)	0.96	ND(0.37)	0.41	ND(0.36)	1.0	ND(0.39)	0.95	ND(0.82)	0.25	0.23
Naphthalene	4	mg/kg	ND(0.37)	ND(0.40)	ND(0.19)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.19)	ND(0.94)	ND(0.37)	ND(0.39)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.76)	ND(0.82)	ND(0.20)	ND(0.19)
Phenanthrene	10	mg/kg	ND(0.37)	4.2	2.0	0.43	ND(0.94)	ND(0.37)	ND(0.19)	1.4	ND(0.37)	ND(0.39)	ND(0.36)	3.3	ND(0.39)	1.5	ND(0.82)	0.62	0.31
Pyrene	1000	mg/kg	0.81	7.5	3.4	1.0	1.4	0.40	ND(0.19)	3.4	ND(0.37)	1.2	ND(0.36)	3.6	0.95	3.0	0.90	1.1	0.82
Metals																			
Antimony	20	mg/kg	ND(1.8)	ND(2.0)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.8)	ND(1.9)	ND(1.9)	ND(1.9)	9.3	ND(1.8)	ND(1.9)	ND(1.9)	ND(1.9)	ND(2.0)	ND(2.0)	ND(1.8)
Arsenic	20	mg/kg	5.2	5.3	3.7	4.9	4.4	5.9	4.3	5.1	4.4	8.7	3.7	6.4	6.6	4.0	4.7	7.0	5.8
Barium	1000	mg/kg	33	42	37	34	38	26	29	28	27	34	22	31	32	32	34	31	28
Beryllium	90	mg/kg	0.38	0.42	0.34	0.34	0.33	0.38	0.30	0.32	0.33	0.37	0.23	0.33	0.34	0.35	0.34	0.37	0.37
Cadmium	70	mg/kg	0.34	0.40	0.31	0.36	0.35	0.33	0.31	0.41	0.29	0.52	0.22	0.42	0.43	0.34	0.40	0.44	0.39
Chromium	100	mg/kg	17	18	14	16	15	15	14	14	15	15	8.5	15	16	17	13	16	16
Lead	200	mg/kg	25	53	74	23	26	19	37	48	8.9	780	300	59	41	39	26	34	32
Mercury	20	mg/kg	0.031	0.072	0.075	ND(0.028)	ND(0.026)	ND(0.026)	ND(0.028)	ND(0.029)	ND(0.026)	0.030	ND(0.026)	0.040	0.036	0.045	0.030	ND(0.029)	0.028
Nickel	600	mg/kg	14	14	12	13	12	13	11	11	10	11	7.2	12	12	14	12	12	11
Selenium	400	mg/kg	ND(3.6)	ND(4.0)	ND(3.7)	ND(3.7)	ND(3.6)	ND(3.6)	ND(3.8)	ND(3.7)	ND(3.7)	ND(3.9)	ND(3.5)	ND(3.8)	ND(3.8)	ND(3.7)	ND(4.1)	ND(3.9)	ND(3.7)
Silver	100	mg/kg	ND(0.36)	ND(0.40)	ND(0.37)	ND(0.37)	ND(0.36)	ND(0.36)	ND(0.38)	ND(0.37)	ND(0.37)	ND(0.39)	ND(0.35)	ND(0.38)	ND(0.38)	ND(0.37)	ND(0.41)	ND(0.39)	ND(0.37)
Thallium	8	mg/kg	ND(1.8)	ND(2.0)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.8)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.9)	ND(1.9)	ND(1.9)	ND(2.0)	ND(2.0)	ND(1.8)
Vanadium	400	mg/kg	25	27	27	25	26	24	17	22	17	20	13	22	24	26	21	21	19
Zinc	1000	mg/kg	44	59	50	36	39	33	48	48	26	56	44	51	48	47	67	38	38

Sample ID			TP-E3 (0-5)	TP-E3 (5-10)	TP-E4 (0-5)	TP-E4 (5-10)	TP-E5 (0-5)	TP-E5 (5-10)	TP-E5 (10-15)	TP-E6 (0-5)	TP-E6 (5-10)	TP-E7 (0-5)	TP-E7 (5-10)	TP-E8 (0-5)	TP-E8 (5-10)	TP-F3 (0-5)	TP-F3 (5-10)	TP-F4 (0-5)	TP-F4 (5-10)
Sample Date	MCP RCS-1	Units	3/12/2019	3/12/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/12/2019	3/12/2019	3/1/2019	3/1/2019
Depth Interval (ft)			0-5	5-10	0-5	5-10	0-5	5-10	10-15	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10
Polychlorinated Biphenyls (PCBs)																			
Total PCBs	1	mg/kg	ND(0.089)	ND(0.096)	ND(0.083)	ND(0.088)	ND(0.085)	ND(0.082)	ND(0.085)	ND(0.085)	ND(0.083)	ND(0.090)	ND(0.081)	ND(0.090)	ND(0.089)	ND(0.089)	ND(0.098)	ND(0.088)	ND(0.086)
General Chemistry																			
Ignitability	NSE	present/ absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent	absent
рН	9	pH Units	8.2	8.1	8.5	7.9	7.9	8.6	7.7	8.1	8.3	7.2	7.6	8.2	8.3	7.7	7.9	7.7	7.6
Reactivity Cyanide	NSE	mg/kg	ND(3.9)	ND(4.0)	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(4.0)	ND(3.9)	ND(3.9)
Reactivity Sulfide	NSE	mg/kg	ND(20)	ND(20)	ND(19)	ND(19)	ND(19)	ND(20)	ND(19)	ND(19)	ND(20)	ND(20)	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)
Solids, Total	NSE	%	ND(20)	ND(20)	ND(19)	ND(19)	ND(19)	ND(20)	ND(19)	ND(19)	ND(20)	ND(20)	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)
Specific Conductance	2000	umhos/cm	13	19	10	10	12	11	7.0	9.3	9.3	10	18	11	9.8	17	31	11	16

Notes

- mg/kg=milligram per kilogram; uhoms/cm=microohms per centimeter
- Reportable Concentrations (RCS-1) taken from the Massachusetts Contingency Plan (M
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed
- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- Italicized values represent laboratory detection limit equal to or above applicable RCS-1
- Full analytical results, including QA/QC information and data flags, are detailed in the la

Sample II	D		TP-F5 (0-5)	TP-F5 (5-10)	TP-F6 (0-5)	TP-F6 (5-10)	TP-F7 (0-5)	TP-F7 (5-10)	TP-F8 (0-5)	TP-F8 (5-10)	TP-G6 (0-5)	TP-G6 (5-10)	TP-G7 (0-5)	TP-G7 (5-10)	TP-V-101	TP-V-102	TP-V-103	TP-V-104	TP-V-105
Sample Dat	e MCP RCS-1	Units	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019
Depth Interval (f	:)		0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	-	-	-	-	-
Asbestos																			
CARB 435	NSE	%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Extractable Petroleum Hydrocarbons (EPH) wi	th target Poly	nuclear Aro	1																
C09-C18 Aliphatic Hydrocarbons (adjusted)	1000	mg/kg														ND(22)			
C11-C22 Aromatic Hydrocarbons (adjusted)	1000	mg/kg														110			
C11-C22 Aromatics (unadjusted)	NSE	mg/kg														120			
C19-C36 Aliphatics (adjusted)	3000	mg/kg														81			
Total Petroleum Hydrocarbons (TPH)																			
TPH	1000	mg/kg	640	680	420	510	580	560	250	380	400	430	360	430	500	3100	530	960	180
Volatile Organic Compounds (VOCs)																			
Total VOCs	NSE	mg/kg	ND(0.20)	0.004	0.0026	ND(0.12)	ND(0.11)	ND(0.082)	ND(0.11)	ND(0.089)	ND(0.12)	ND(0.12)	ND(0.11)	0.0026	ND(0.16)	ND(0.17)	ND(0.28)	ND(0.18)	ND(0.23)
Semivolatile Organic Compounds (SVOCs)																			
Acenaphthene	4	mg/kg	ND(0.97)	ND(0.96)	ND(0.37)	ND(0.40)	ND(0.37)	ND(0.97)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.39)	ND(0.38)	ND(0.75)	ND(0.93)	ND(0.20)	ND(0.38)	ND(0.20)
Acenaphthylene	1	mg/kg	ND(0.97)	ND(0.96)	ND(0.37)	ND(0.40)	ND(0.37)	ND(0.97)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.39)	ND(0.38)	ND(0.75)	ND(0.93)	ND(0.20)	ND(0.38)	ND(0.20)
Anthracene	1000	mg/kg	ND(0.97)	ND(0.96)	ND(0.37)	ND(0.40)	ND(0.37)	ND(0.97)	0.46	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.39)	ND(0.38)	ND(0.75)	ND(0.93)	ND(0.20)	ND(0.38)	ND(0.20)
Benzo(a)Anthracene	7	mg/kg	1.0	ND(0.96)	1.1	1.2	0.81	ND(0.97)	1.3	0.50	0.95	0.64	0.57	0.57	1.2	1.3	0.22	ND(0.38)	0.37
Benzo(a)Pyrene	2	mg/kg	1.1	ND(0.96)	1.2	1.3	0.90	ND(0.97)	1.3	0.58	0.98	0.73	0.58	0.58	1.3	1.2	0.24	ND(0.38)	0.32
Benzo(b)Fluoranthene	7	mg/kg	1.5	1.1	1.4	1.6	1.1	ND(0.97)	1.4	0.67	1.2	0.86	0.71	0.68	1.4	1.4	0.26	0.42	0.36
Benzo(g,h,i)Perylene	1000	mg/kg	ND(0.97)	ND(0.96)	0.65	0.68	0.45	ND(0.97)	0.85	0.43	0.57	ND(0.39)	ND(0.39)	ND(0.38)	ND(0.75)	ND(0.93)	ND(0.20)	ND(0.38)	ND(0.20)
Benzo(k)Fluoranthene	70	mg/kg	ND(0.97)	ND(0.96)	0.53	0.66	0.46	ND(0.97)	0.51	ND(0.38)	0.49	ND(0.39)	ND(0.39)	ND(0.38)	ND(0.75)	ND(0.93)	ND(0.20)	ND(0.38)	ND(0.20)
Chrysene	70	mg/kg	1.1	ND(0.96)	1.2	1.4	0.92	ND(0.97)	1.4	0.57	0.95	0.72	0.60	0.58	1.1	1.2	ND(0.20)	ND(0.38)	0.33
Dibenzo(a,h)Anthracene	0.7	mg/kg	ND(0.97)	ND(0.96)	ND(0.37)	ND(0.40)	ND(0.37)	ND(0.97)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.39)	ND(0.38)	ND(0.75)	ND(0.93)	ND(0.20)	ND(0.38)	ND(0.20)
Dibenzofuran	100	mg/kg	ND(1.9)	ND(1.9)	ND(0.75)	ND(0.79)	ND(0.75)	ND(1.9)	ND(0.76)	ND(0.76)	ND(0.75)	ND(0.79)	ND(0.77)	ND(0.77)	ND(1.5)	ND(1.9)	ND(0.41)	ND(0.77)	ND(0.41)
Fluoranthene	1000	mg/kg	1.8	1.2	2.2	2.7	1.5	ND(0.97)	2.7	0.89	1.6	1.1	0.96	1.1	2.0	2.2	0.41	ND(0.38)	0.77
Fluorene	1000	mg/kg	ND(0.97)	ND(0.96)	ND(0.37)	ND(0.40)	ND(0.37)	ND(0.97)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.39)	ND(0.38)	ND(0.75)	ND(0.93)	ND(0.20)	ND(0.38)	ND(0.20)
Indeno(1,2,3-cd)Pyrene	7	mg/kg	ND(0.97)	ND(0.96)	0.69	0.75	0.54	ND(0.97)	0.96	0.44	0.65	0.47	ND(0.39)	ND(0.38)	0.86	ND(0.93)	ND(0.20)	ND(0.38)	0.21
Naphthalene	4	mg/kg	ND(0.97)	ND(0.96)	ND(0.37)	ND(0.40)	ND(0.37)	ND(0.97)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.39)	ND(0.39)	ND(0.38)	ND(0.75)	ND(0.93)	ND(0.20)	ND(0.38)	ND(0.20)
Phenanthrene	10	mg/kg	ND(0.97)	ND(0.96)	1.1	1.6	0.97	ND(0.97)	2.2	0.40	0.93	0.62	0.58	0.82	1.1	ND(0.93)	0.21	ND(0.38)	0.76
Pyrene	1000	mg/kg	2.2	1.5	2.3	2.8	1.7	ND(0.97)	3.1	1.1	1.9	1.3	1.2	1.2	2.2	2.5	0.42	0.53	0.87
Metals	20	l)	ND(0.0)	ND/4 C	ND/4 S	ND/4 C	ND/4 C	ND/4 C	ND(4.5)	ND/4 C	ND(4.5)	ND(4.5)	ND/4 C	ND(4.5)	ND(4.5)	ND/4 C	NE (2.5)	ND(4.5)	ND (2.3)
Antimony	20	mg/kg	ND(2.0)	ND(1.9)	ND(1.8)	ND(1.9)	ND(1.8)	ND(1.9)	ND(1.8)	ND(1.8)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.8)	ND(2.0)	ND(1.9)	ND(2.0)
Arsenic	20	mg/kg	4.8	4.4	4.1	4.5	6.7	5.9	6.4	6.9	5.3	5.3	5.0	11	4.3	5.3	6.9	4.7	4.3
Barium	1000	mg/kg	29	28	46	37	30	30	38	34	31	28	37	38	25	42	56	37	39
Beryllium	90	mg/kg	0.28	0.31	0.31	0.32	0.35	0.35	0.35	0.35	0.35	0.30	0.39	0.40	0.31	0.33	0.54	0.28	0.35
Chromium	70	mg/kg	0.56	0.49	0.37	0.55	0.51	0.41	0.43	0.45	0.42	0.50	0.36	0.56	0.26	0.38	0.39	0.30	0.26
Chromium	100	mg/kg	21	15	18	16	15	15	14	15	16	15	16	15	13	17	25	16	18
Lead	200	mg/kg	25	26	63	51	57	34	74	69	56	49	53	50	18 ND(0.027)	31	20	24	15 ND(0.031)
Mercury Nickel	600	mg/kg	ND(0.028)	ND(0.027)	0.039	0.048	0.038	0.032	0.050	0.041	0.040	0.35	0.043	0.031	ND(0.027)	0.034	0.040	0.073	ND(0.031)
Selenium		mg/kg	12	11 ND(2.7)	13 ND(2.7)	14 ND(2.9)	12 ND(2.6)	12 ND(2.7)	11 ND/2 6\	12 ND(2.7)	11 ND(2.7)	10	13	12	11 ND(2.6)	14 ND(2.7)	18 ND(4.0)	11 ND(2.9)	13
	100	mg/kg	ND(3.9)	ND(3.7)	ND(3.7)	ND(3.8)	ND(3.6)	ND(3.7)	ND(3.6)	ND(3.7)	ND(3.7)	ND(3.8)	ND(3.8)	ND(3.8)	ND(3.6)	ND(3.7)	ND(4.0)	ND(3.8)	ND(3.9)
Silver Thallium	8	mg/kg	ND(0.39)	ND(0.37)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.37)	ND(0.36)	ND(0.37)	ND(0.37)	ND(0.38)	ND(0.38)	ND(0.38)	ND(0.36)	ND(0.37)	ND(0.40)	ND(0.38)	ND(0.39)
	_	mg/kg	ND(2.0)	ND(1.9)	ND(1.8)	ND(1.9)	ND(1.8)	ND(1.9)	ND(1.8)	ND(1.8)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.9)	ND(1.8)	ND(1.8)	ND(2.0)	ND(1.9)	ND(2.0)
Vanadium	400	mg/kg	20	21	26	25	21	23	20	21	21	18	25	24	22	26	32	19	23
Zinc	1000	mg/kg	67	49	60	66	46	41	52	55	50	57	51	46	32	42	48	48	37

Sample ID			TP-F5 (0-5)	TP-F5 (5-10)	TP-F6 (0-5)	TP-F6 (5-10)	TP-F7 (0-5)	TP-F7 (5-10)	TP-F8 (0-5)	TP-F8 (5-10)	TP-G6 (0-5)	TP-G6 (5-10)	TP-G7 (0-5)	TP-G7 (5-10)	TP-V-101	TP-V-102	TP-V-103	TP-V-104	TP-V-105
Sample Date	MCP RCS-1	Units	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/1/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019	3/12/2019
Depth Interval (ft)			0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10	0-5	5-10		-	-		-
Polychlorinated Biphenyls (PCBs)																			
Total PCBs	1	mg/kg	ND(0.092)	ND(0.087)	ND(0.087)	ND(0.090)	ND(0.084)	ND(0.089)	ND(0.086)	ND(0.084)	ND(0.088)	ND(0.094)	ND(0.087)	ND(0.089)	ND(0.083)	ND(0.088)	ND(0.094)	ND(0.085)	ND(0.094)
General Chemistry																			
Ignitability	NSE	present/ absent	absent	absent	absent	absent	absent	absent	absent										
рН	9	pH Units	7.9	8.0	8.4	8.6	7.7	7.9	7.9	8.0	8.0	7.8	8.0	7.7	7.7	8.1	7.8	7.3	7.7
Reactivity Cyanide	NSE	mg/kg	ND(3.9)	ND(4.0)	ND(4.0)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(3.9)	ND(4.0)	ND(3.9)	ND(4.0)	ND(4.0)	ND(4.0)
Reactivity Sulfide	NSE	mg/kg	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(19)	ND(19)	ND(20)	ND(20)	ND(19)	ND(20)	ND(19)	ND(20)	ND(20)	ND(20)
Solids, Total	NSE	%	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(19)	ND(19)	ND(20)	ND(20)	ND(19)	ND(20)	ND(19)	82.4	88.1	82.2
Specific Conductance	2000	umhos/cm	9.0	6.7	19	21	15	11	8.1	16	7.5	15	13	11	14	23	16	9.3	17

Notes

- mg/kg=milligram per kilogram; uhoms/cm=microohms per centimeter
- Reportable Concentrations (RCS-1) taken from the Massachusetts Contingency Plan (M
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed
- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- Italicized values represent laboratory detection limit equal to or above applicable RCS-1
- Full analytical results, including QA/QC information and data flags, are detailed in the la

Sample ID	МСР		V-107 (5-10)	V-108 (0-5)	V-109 (5-10)	V-110 (5-10)	V-111 (0-10)	V-112 (0-5)	V-113 (0-5)	V-114 (5-10)	V-115 (5-10)	V-116 (0-5)
Sample Date	RCS-1	Units	3/27/2019				3/27/2019				3/28/2019	
Total Petroleum Hydrocarbons (TPH)												
TPH	1000	mg/kg	ND(8.4)	ND(8.8)	ND(8.7)	11	13	ND(8.6)	ND(8.9)	27		
Volatile Organic Compounds (VOCs)												
1,1,1,2-Tetrachloroethane	0.1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,1,1-Trichloroethane (1,1,1-TCA)	30	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,1,2-Trichloroethane	0.1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,1-Dichloroethane (1,1-DCA)	0.4	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,1-Dichloroethene (1,1-DCE)	3	mg/kg	ND(0.0030)	ND(0.0035)	ND(0.0059)	ND(0.0046)	ND(0.0038)	ND(0.0037)	ND(0.0036)	ND(0.0042)		
1,1-Dichloropropene	NSE	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2,3-Trichlorobenzene	NSE	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2,3-Trichloropropane	100	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2,4-Trichlorobenzene	2	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2,4-Trimethylbenzene	1000	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2-Dibromo-3-Chloropropane	10	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2-Dibromoethane	0.1	mg/kg	ND(0.00076)	ND(0.00088)	ND(0.0015)	ND(0.0011)	ND(0.00094)	ND(0.00093)	ND(0.00089)	ND(0.0010)		
1,2-Dichlorobenzene	9	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2-Dichloroethane (1,2-DCA)	0.1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2-Dichloroethylene, trans (1,2-DCE, trans)	1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,2-Dichloropropane	0.1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,3,5-Trimethylbenzene	10	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,3-Dichlorobenzene (1,3-DCB)	3	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,3-Dichloropropane	500	mg/kg	ND(0.00076)	ND(0.00088)	ND(0.0015)	ND(0.0011)	ND(0.00094)	ND(0.00093)	ND(0.00089)	ND(0.0010)		
1,3-Dichloropropene, cis	0.01	mg/kg	ND(0.00076)	ND(0.00088)	ND(0.0015)	ND(0.0011)	ND(0.00094)	ND(0.00093)	ND(0.00089)	ND(0.0010)		
1,3-Dichloropropene, trans	0.01	mg/kg	ND(0.00076)	ND(0.00088)	ND(0.0015)	ND(0.0011)	ND(0.00094)	ND(0.00093)	ND(0.00089)	ND(0.0010)		
1,4-Dichlorobenzene	0.7	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
1,4-Dioxane	0.2	mg/kg	ND(0.076)	ND(0.088)	ND(0.15)	ND(0.11)	ND(0.094)	ND(0.093)	ND(0.089)	ND(0.10)		
2,2-Dichloropropane	NSE	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
2-Hexanone	100	mg/kg	ND(0.015)	ND(0.018)	ND(0.030)	ND(0.023)	ND(0.019)	ND(0.019)	ND(0.018)	ND(0.021)		
Acetone	6	mg/kg	ND(0.076)	ND(0.088)	ND(0.15)	ND(0.11)	ND(0.094)	ND(0.093)	ND(0.089)	ND(0.10)		
Benzene	2	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Bromobenzene	100	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Bromochloromethane (Chlorobromomethane)	NSE	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Bromodichloromethane	0.1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Bromoform	0.1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Bromomethane	0.5	mg/kg	ND(0.0076)	ND(0.0088)	ND(0.015)	ND(0.011)	ND(0.0094)	ND(0.0093)	ND(0.0089)	ND(0.010)		

Sample ID	МСР		V 107 (5 10)	V 108 (0 E)	V 109 (5 10)	V 110 /5 10\	V 111 (0 10)	V 112 (0 5)	V 112 (0 5)	V 114 (5 10)	V-115 (5-10)	V 116 (0 F)
Sample Date	RCS-1	Units	3/27/2019	3/27/2019	3/27/2019	3/27/2019		3/27/2019	3/28/2019		3/28/2019	3/28/2019
Carbon Disulfide	100	mg/kg	ND(0.0046)	ND(0.0053)	ND(0.0089)	ND(0.0068)		ND(0.0056)		ND(0.0062)		
Carbon Tetrachloride	5	mg/kg	ND(0.0015)	ND(0.0033)	ND(0.0030)	ND(0.0003)	ND(0.0037)	ND(0.0030)	ND(0.0033)	ND(0.0002)		
Chlorobenzene	1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Chloroethane	100	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0013)	ND(0.0013)	ND(0.0010)	ND(0.0021)		
Chloroform	0.2	mg/kg	ND(0.0030)	ND(0.0035)	ND(0.0059)	ND(0.0046)	ND(0.0034)	ND(0.0033)	ND(0.0036)	ND(0.0042)		
Chloromethane	100	mg/kg	ND(0.0076)		ND(0.015)	ND(0.011)	ND(0.0094)	` ′	ND(0.0089)	ND(0.010)		
Dibromochloromethane	0.005	mg/kg		ND(0.00088)	ND(0.0015)	ND(0.0011)			ND(0.00089)	, ,		
Dibromomethane	500	mg/kg	ND(0.0015)		ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Dichlorodifluoromethane	1000	mg/kg		ND(0.0088)	ND(0.015)	ND(0.011)	ND(0.0094)			ND(0.010)		
Dichloroethylene, cis 1,2 (cis-1,2 DCE)	0.1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Ethyl Ether	100	mg/kg	ND(0.0076)		ND(0.015)	ND(0.011)	ND(0.0094)	ND(0.0093)	. ,	ND(0.010)		
Ethylbenzene	40	mg/kg	_ `	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)			ND(0.0021)		
Ethyl-Tert-Butyl-Ether (Tert-Butylethyl Ether)	NSE	mg/kg		ND(0.00088)		ND(0.0011)			ND(0.00089)	` ′		
Hexachlorobutadiene	30	mg/kg	ND(0.0015)		ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)		ND(0.0021)		
Isopropyl Benzene	1000	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)		ND(0.0021)		
Isopropyl Ether	100	mg/kg	1	ND(0.00088)		ND(0.0011)			ND(0.00089)	` '		
Methyl Ethyl Ketone (MEK)	4	mg/kg	ND(0.030)	ND(0.035)	ND(0.059)	ND(0.046)	ND(0.038)	ND(0.037)	ND(0.036)	ND(0.042)		
Methyl Isobutyl Ketone (MIBK)	0.4	mg/kg	ND(0.015)	ND(0.018)	ND(0.030)	ND(0.023)	ND(0.019)	ND(0.019)	ND(0.018)	ND(0.021)		
Methyl Tert-Butyl Ether	0.1	mg/kg	ND(0.0030)	ND(0.0035)	ND(0.0059)	ND(0.0046)	ND(0.0038)	ND(0.0037)	ND(0.0036)	ND(0.0042)		
Methylene Chloride	0.1	mg/kg	ND(0.0076)	1	ND(0.015)	ND(0.011)	ND(0.0094)	ND(0.0093)	ND(0.0089)	ND(0.010)		
Naphthalene	4	mg/kg	ND(0.0030)	ND(0.0035)	ND(0.0059)	ND(0.0046)	ND(0.0038)	ND(0.0037)	ND(0.0036)	ND(0.0042)		
n-Butylbenzene	NSE	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
o-Chlorotoluene	100	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
o-Xylene	100	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
p/m-Xylene	100	mg/kg	ND(0.0030)	ND(0.0035)	ND(0.0059)	ND(0.0046)	ND(0.0038)	ND(0.0037)	ND(0.0036)	ND(0.0042)		
p-Chlorotoluene (4-Chlorotoluene)	NSE	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
p-Cymene	100	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Propylbenzene	100	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Sec-Butylbenzene	NSE	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Styrene	3	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Tert-Butylbenzene	100	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Tertiary-Amyl Methyl Ether (TAME)	NSE	mg/kg	ND(0.00076)	ND(0.00088)	ND(0.0015)	ND(0.0011)	ND(0.00094)	ND(0.00093)	ND(0.00089)	ND(0.0010)		
Tetrachloroethane	0.005	mg/kg	ND(0.00076)	ND(0.00088)	ND(0.0015)	ND(0.0011)	ND(0.00094)	ND(0.00093)	ND(0.00089)	ND(0.0010)		
Tetrachloroethylene (PCE)	1	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Tetrahydrofuran	500	mg/kg	ND(0.0076)	ND(0.0088)	ND(0.015)	ND(0.011)	ND(0.0094)	ND(0.0093)	ND(0.0089)	ND(0.010)		
Toluene	30	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	0.0045	0.0041	0.0030	ND(0.0018)	0.0068		
Trichloroethylene (TCE)	0.3	mg/kg	ND(0.0015)	ND(0.0018)	ND(0.0030)	ND(0.0023)	ND(0.0019)	ND(0.0019)	ND(0.0018)	ND(0.0021)		
Trichlorofluoromethane	1000	mg/kg	ND(0.0076)	ND(0.0088)	ND(0.015)	ND(0.011)	ND(0.0094)	ND(0.0093)	ND(0.0089)	ND(0.010)		
Vinyl Chloride	0.7	mg/kg	ND(0.0076)	ND(0.0088)	ND(0.015)	ND(0.011)	ND(0.0094)	ND(0.0093)	ND(0.0089)	ND(0.010)		
Total VOCs	NSE	mg/kg	ND(0.076)	ND(0.088)	ND(0.15)	0.0045	0.0041	0.003	ND(0.089)	0.0068		

Sample ID	МСР		V-107 (5-10)	V-108 (0-5)	V-109 (5-10)	V-110 (5-10)	V-111 (0-10)	V-112 (0-5)	V-113 (0-5)	V-114 (5-10)	V-115 (5-10)	V-116 (0-5)
Sample Date	RCS-1	Units	3/27/2019	3/27/2019	3/27/2019		3/27/2019	3/27/2019	3/28/2019	3/28/2019	3/28/2019	3/28/2019
Semivolatile Organic Compounds (SVOCs)						., ,						
1,2,4-Trichlorobenzene	2	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
1,2-Dichlorobenzene	9	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
1,2-Diphenylhydrazine	50	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
1,3-Dichlorobenzene (1,3-DCB)	3	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
1,4-Dichlorobenzene	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2,4,5-Trichlorophenol	4	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2,4,6-Trichlorophenol	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2,4-Dichlorophenol	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2,4-Dimethylphenol	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2,4-Dinitrophenol	3	mg/kg	ND(0.66)	ND(0.69)	ND(0.69)	ND(0.68)	ND(0.68)	ND(0.68)	ND(0.71)	ND(0.69)		
2,4-Dinitrotoluene	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2,6-Dinitrotoluene	100	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2-Chloronaphthalene	1000	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2-Chlorophenol	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2-Methylnaphthalene	0.7	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
2-Methylphenol (o-Cresol)	500	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
2-Nitrophenol (o-Nitrophenol)	100	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
3,3-Dichlorobenzidine	3	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
3-Methylphenol/4-Methylphenol	NSE	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
4-Bromophenyl Phenyl Ether	100	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Acenaphthene	4	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Acenaphthylene	1	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Acetophenone	1000	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Aniline	1000	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Anthracene	1000	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Benzo(a)Anthracene	7	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Benzo(a)Pyrene	2	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Benzo(b)Fluoranthene	7	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Benzo(g,h,i)Perylene	1000	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Benzo(k)Fluoranthene	70	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Bis (2-Chloroethyl) Ether	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Bis(2-Ethylhexyl)Phthalate	90	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Butyl Benzyl Phthalate	100	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Chrysene	70	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Dibenzo(a,h)Anthracene	0.7	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Dibenzofuran	100	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Dichloroisopropyl Ether	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Dichloromethoxy Ethane	500	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Diethyl Phthalate	10	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		

Sample ID	МСР		V-107 (5-10)	V-108 (0-5)	V-109 (5-10)	V-110 (5-10)	V-111 (0-10)	V-112 (0-5)	V-113 (0-5)	V-114 (5-10)	V-115 (5-10)	V-116 (0-5)
Sample Date	RCS-1	Units	3/27/2019	3/27/2019	3/27/2019	3/27/2019	3/27/2019	3/27/2019	3/28/2019	3/28/2019	3/28/2019	3/28/2019
Dimethyl Phthalate	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Fluoranthene	1000	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Fluorene	1000	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Hexachlorobenzene	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Hexachlorobutadiene	30	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Hexachloroethane	0.7	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Indeno(1,2,3-cd)Pyrene	7	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Isophorone	100	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Naphthalene	4	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
n-Butyl Phthalate	50	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
n-Dioctyl Phthalate	1000	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Nitrobenzene	500	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
p-Chloroaniline	1	mg/kg	ND(0.66)	ND(0.69)	ND(0.69)	ND(0.68)	ND(0.68)	ND(0.68)	ND(0.71)	ND(0.69)		
Pentachlorophenol	3	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
Phenanthrene	10	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Phenol	1	mg/kg	ND(0.34)	ND(0.36)	ND(0.36)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.36)	ND(0.36)		
p-Nitrophenol	100	mg/kg	ND(0.66)	ND(0.69)	ND(0.69)	ND(0.68)	ND(0.68)	ND(0.68)	ND(0.71)	ND(0.69)		
Pyrene	1000	mg/kg	ND(0.17)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)	ND(0.18)		
Total SVOCs	NSE	mg/kg	ND(0.66)	ND(0.69)	ND(0.69)	ND(0.68)	ND(0.68)	ND(0.68)	ND(0.71)	ND(0.69)		
Metals												
Antimony	20	mg/kg	ND(1.7)	ND(1.7)	ND(1.8)	ND(1.7)	ND(1.7)	ND(1.8)	ND(1.8)	ND(1.7)		
Arsenic	20	mg/kg	11	5.6	6.5	6.4	11	5.0	2.8	4.5		
Barium	1000	mg/kg	27	30	33	26	32	21	15	31		
Beryllium	90	mg/kg	0.27	0.28	0.28	0.26	0.31	0.25	ND(0.18)	0.26		
Cadmium	70	mg/kg	0.34	0.19	0.21	0.23	0.37	ND(0.18)	ND(0.18)	ND(0.17)		
Chromium	100	mg/kg	12	12	12	33	11	9.1	11	15		
Lead	200	mg/kg	6.1	5.2	5.0	3.9	5.6	3.9	2.3	5.8		
Mercury	20	mg/kg	ND(0.025)	ND(0.026)	ND(0.026)	ND(0.028)	ND(0.026)	ND(0.027)	ND(0.026)	ND(0.026)		
Nickel	600	mg/kg	9.3	9.4	9.6	11	11	7.1	4.8	12		
Selenium	400	mg/kg	ND(3.4)	ND(3.5)	ND(3.5)	ND(3.5)	ND(3.4)	ND(3.5)	ND(3.6)	ND(3.4)		
Silver	100	mg/kg	0.42	0.41	0.37	ND(0.35)	0.44	ND(0.35)	ND(0.36)	0.57		
Thallium	8	mg/kg	ND(1.7)	ND(1.7)	ND(1.8)	ND(1.7)	ND(1.7)	ND(1.8)	ND(1.8)	ND(1.7)		
Vanadium	400	mg/kg	17	17	17	17	17	12	9.6	23		
Zinc	1000	mg/kg	26	25	23	24	25	17	11	30		

Sample ID	MCP		V-107 (5-10)	V-108 (0-5)	V-109 (5-10)	V-110 (5-10)	V-111 (0-10)	V-112 (0-5)	V-113 (0-5)	V-114 (5-10)	V-115 (5-10)	V-116 (0-5)
Sample Date	RCS-1	Units	3/27/2019	3/27/2019	3/27/2019		3/27/2019		3/28/2019		3/28/2019	
Polychlorinated Biphenyls (PCBs)						2, , 2		.,,	2, 2, 2		., .,	., .,
Aroclor 1016	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
Aroclor 1221	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
Aroclor 1232	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
Aroclor 1242	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
Aroclor 1248	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
Aroclor 1254	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
Aroclor 1260	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
Aroclor 1262	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
Aroclor 1268	1	mg/kg	ND(0.081)	ND(0.084)	ND(0.082)	ND(0.083)	ND(0.079)	ND(0.079)	ND(0.080)	ND(0.081)	ND(0.082)	ND(0.082)
General Chemistry												
Ignitability	NSE	present/ absent	absent	absent	absent	absent	absent	absent	absent	absent		
рН	5-9	pH Units	8.1	8.2	8.1	8.5	8.2	6.3	6.5	6.4		
Reactivity Cyanide	NSE	mg/kg	ND(3.9)	ND(3.9)	ND(4.0)	ND(4.0)	ND(3.9)	ND(3.9)	ND(3.9)	ND(4.0)		
Reactivity Sulfide	NSE	mg/kg	ND(19)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)		
Solids, Total	NSE	%	97.0	93.8	94.2	94.8	95.2	94.5	93.3	95.4	94.6	94.6
Specific Conductance	2000	umhos/cm	4.9	5.7	5.8	5.3	6.5	4.7	ND(2.0)	2.1		

lotes:

- mg/kg=milligram per kilogram; uhoms/cm=microohms per centimeter
- MCP RCS-1 Reportable Concentrations taken from the Massachusetts Contingency Plan (MCP) 310 CMR 40.0974(2) dated April 2014
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed
- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- Full analytical results, including QA/QC information and data flags, are detailed in the laboratory analytical report

Wayland, MA VERTEX PROJECT NO. 46067

Location ID	200111		MW-3	V-101 (MW)	V-102 (MW)	V-103 (MW)	V-104 (MW)	V-105 (MW)	V-106 (MW)
Sample Date	RCGW-1	Units	4/2/2019	4/1/2019	4/1/2019	4/2/2019	4/2/2019	4/1/2019	4/2/2019
Volatile Organic Compounds (VOCs)			, -,	7-7	-, -,	7-7	7-7	-, -,	., _,
1,1,1,2-Tetrachloroethane	5	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,1-Trichloroethane (1,1,1-TCA)	200	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1,2-Trichloroethane	5	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethane (1,1-DCA)	70	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloroethene (1,1-DCE)	7	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,1-Dichloropropene	NSE	ug/l	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
1,2,3-Trichlorobenzene	NSE	ug/l	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
1,2,3-Trichloropropane	1000	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
1,2,4-Trichlorobenzene	70	ug/l	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
1,2,4-Trimethylbenzene	10000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dibromo-3-Chloropropane	100	ug/l	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
1,2-Dibromoethane	0.02	ug/l	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
1,2-Dichlorobenzene	600	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dichloroethane (1,2-DCA)	5	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dichloroethylene, trans (1,2-DCE, trans)	80	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,2-Dichloropropane	3	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,3,5-Trimethylbenzene	100	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,3-Dichlorobenzene (1,3-DCB)	100	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,3-Dichloropropane	5000	ug/l	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
1,3-Dichloropropene, cis	0.5	ug/l	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)
1,3-Dichloropropene, trans	0.5	ug/l	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)
1,4-Dichlorobenzene	5	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
1,4-Dioxane	0.3	ug/l	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)
2,2-Dichloropropane	NSE	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
2-Hexanone	1000	ug/l	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
Acetone	6300	ug/l	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
Benzene	5	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromobenzene	1000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromochloromethane (Chlorobromomethane)	NSE	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromodichloromethane	3	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Bromoform	4	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Bromomethane	7	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Carbon Disulfide	1000	ug/l	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Carbon Tetrachloride	2	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)

Wayland, MA VERTEX PROJECT NO. 46067

Location ID	2001114		MW-3	V-101 (MW)	V-102 (MW)	V-103 (MW)	V-104 (MW)	V-105 (MW)	V-106 (MW)
Sample Date	RCGW-1	Units	4/2/2019	4/1/2019	4/1/2019	4/2/2019	4/2/2019	4/1/2019	4/2/2019
Chlorobenzene	100	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Chloroethane	1000	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloroform	50	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Chloromethane	1000	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Dibromochloromethane	2	ug/l	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Dibromomethane	5000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Dichlorodifluoromethane	10000	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Dichloroethylene, cis 1,2 (cis-1,2 DCE)	20	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Ethyl Ether	1000	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Ethylbenzene	700	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Ethyl-Tert-Butyl-Ether (Tert-Butylethyl Ether)	NSE	ug/l	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Hexachlorobutadiene	0.6	ug/l	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)
Isopropyl Benzene	10000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Isopropyl Ether	1000	ug/l	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Methyl Ethyl Ketone (MEK)	4000	ug/l	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
Methyl Isobutyl Ketone (MIBK)	350	ug/l	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
Methyl Tert-Butyl Ether	70	ug/l	ND(1.0)	8.2	1.1	ND(1.0)	ND(1.0)	1.6	14
Methylene Chloride	5	ug/l	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Naphthalene	140	ug/l	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
n-Butylbenzene	NSE	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
o-Chlorotoluene	1000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
o-Xylene	3000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
p/m-Xylene	3000	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
p-Chlorotoluene (4-Chlorotoluene)	NSE	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
p-Cymene	1000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Propylbenzene	1000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Sec-Butylbenzene	NSE	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Styrene	100	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tert-Butylbenzene	1000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tertiary-Amyl Methyl Ether (TAME)	NSE	ug/l	ND(2.0)	4.5	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	6.4
Tetrachloroethane	2	ug/l	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Tetrachloroethylene (PCE)	5	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Tetrahydrofuran	5000	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Toluene	1000	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichloroethylene (TCE)	5	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Trichlorofluoromethane	10000	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)
Vinyl Chloride	2	ug/l	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)	ND(2.0)

Wayland, MA VERTEX PROJECT NO. 46067

Location ID	DCCW 1	l luite	MW-3	V-101 (MW)	V-102 (MW)	V-103 (MW)	V-104 (MW)	V-105 (MW)	V-106 (MW)
Sample Date	RCGW-1	Units	4/2/2019	4/1/2019	4/1/2019	4/2/2019	4/2/2019	4/1/2019	4/2/2019
Semivolatile Organic Compounds (SVOCs)									
1,2,4-Trichlorobenzene	70	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
1,2-Dichlorobenzene	600	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
1,2-Diphenylhydrazine	500	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
1,3-Dichlorobenzene (1,3-DCB)	100	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
1,4-Dichlorobenzene	5	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
2,4,5-Trichlorophenol	200	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2,4,6-Trichlorophenol	10	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2,4-Dichlorophenol	10	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2,4-Dimethylphenol	60	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2,4-Dinitrophenol	200	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2,4-Dinitrotoluene	30	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2,6-Dinitrotoluene	1000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2-Chloronaphthalene	10000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2-Chlorophenol	10	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2-Methylnaphthalene	10	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
2-Methylphenol (o-Cresol)	5000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
2-Nitrophenol (o-Nitrophenol)	1000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
3,3-Dichlorobenzidine	80	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
3-Methylphenol/4-Methylphenol	NSE	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
4-Bromophenyl Phenyl Ether	1000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Acenaphthene	20	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Acenaphthylene	30	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Acetophenone	10000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Aniline	10000	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Anthracene	30	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Benzo(a)Anthracene	1	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Benzo(a)Pyrene	0.2	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Benzo(b)Fluoranthene	1	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Benzo(g,h,i)Perylene	20	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Benzo(k)Fluoranthene	1	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Bis (2-Chloroethyl) Ether	30	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Bis(2-Ethylhexyl)Phthalate	6	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Butyl Benzyl Phthalate	1000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Chrysene	2	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Dibenzo(a,h)Anthracene	0.5	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Dibenzofuran	1000	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)

Wayland, MA

VERTEX PROJECT NO. 46067

Location ID	DCCW 4	l locks	MW-3	V-101 (MW)	V-102 (MW)	V-103 (MW)	V-104 (MW)	V-105 (MW)	V-106 (MW)
Sample Date	RCGW-1	Units	4/2/2019	4/1/2019	4/1/2019	4/2/2019	4/2/2019	4/1/2019	4/2/2019
Dichloroisopropyl Ether	30	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Dichloromethoxy Ethane	5000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Diethyl Phthalate	2000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Dimethyl Phthalate	300	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Fluoranthene	90	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Fluorene	30	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Hexachlorobenzene	1	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Hexachlorobutadiene	0.6	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Hexachloroethane	8	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Indeno(1,2,3-cd)Pyrene	0.5	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Isophorone	1000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Naphthalene	140	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
n-Butyl Phthalate	500	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
n-Dioctyl Phthalate	10000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Nitrobenzene	5000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
p-Chloroaniline	20	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Pentachlorophenol	1	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Phenanthrene	40	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Phenol	1000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
p-Nitrophenol	1000	ug/l	ND(11)	ND(11)	ND(9.8)	ND(9.8)	ND(11)	ND(11)	ND(12)
Pyrene	20	ug/l	ND(5.3)	ND(5.5)	ND(4.9)	ND(4.9)	ND(5.5)	ND(5.7)	ND(6.1)
Metals, Total									
Antimony	NSE	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
Arsenic	NSE	ug/l	ND(0.40)	ND(0.40)	22	ND(0.40)	0.50	ND(0.40)	1.6
Barium	NSE	ug/l	13	93	210	14	14	150	190
Beryllium	NSE	ug/l	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)
Cadmium	NSE	ug/l	ND(0.50)	0.52	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	3.0
Chromium	NSE	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	2.8
Copper	NSE	ug/l	ND(5.0)	5.1	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	6.9
Lead	NSE	ug/l	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.6
Manganese	NSE	ug/l	73	4400	7000	91	95	870	5400
Mercury	NSE	ug/l	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Nickel	NSE	ug/l	ND(5.0)	17	9.0	ND(5.0)	ND(5.0)	44	110
Selenium	NSE	ug/l	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Silver	NSE	ug/l	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)	ND(0.50)
Thallium	NSE	ug/l	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)
Vanadium	NSE	ug/l	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Zinc	NSE	ug/l	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	33

Table 3 Summary of Groundwater Analytical Data Rivers Edge

484 - 490 Boston Post Road Wayland, MA

VERTEX PROJECT NO. 46067

Location ID	RCGW-1	Units	MW-3	V-101 (MW)	V-102 (MW)	V-103 (MW)	V-104 (MW)	V-105 (MW)	V-106 (MW)
Sample Date Metals, Dissolved			4/2/2019	4/1/2019	4/1/2019	4/2/2019	4/2/2019	4/1/2019	4/2/2019
	10	/1	0.74	0.00	26	0.74	0.70	1.1	1.0
Arsenic	10	ug/l	0.74	0.98	26	0.74	0.79	1.1	1.0
Nickel	100	ug/l	-	-	-	-	-	-	110
Polychlorinated Biphenyls (PCBs)									
Aroclor 1016	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
Aroclor 1221	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
Aroclor 1232	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
Aroclor 1242	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
Aroclor 1248	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
Aroclor 1254	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
Aroclor 1260	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
Aroclor 1262	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
Aroclor 1268	0.5	ug/l	ND(0.093)	ND(0.15)	ND(0.17)	ND(0.17)	ND(0.11)	ND(0.17)	ND(0.12)
General Chemistry				·					
Ammonia	1000	ug/l	ND(300)	1500	1500	ND(300)	ND(300)	1100	2000
Chloride	NSE	ug/l	120000	260000	95000	230000	26000	140000	210000
Nitrogen	NSE	ug/l	3500	5100	7000	1700	4100	11000	39000
Nitrogen, Nitrate	NSE	ug/l	1500	2700	4700	1700	2100	7800	35000
Nitrogen, Nitrate/Nitrite	NSE	ug/l	ND(100)	400	254	ND(100)	ND(100)	810	302
Nitrogen, Total Kjeldahl	NSE	ug/l	2000	2000	2000	ND(1000)	2000	2000	4000
Ortho-phosphate	NSE	ug/l	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)
Phosphorus	NSE	ug/l	ND(62)	ND(62)	ND(62)	140	ND(62)	ND(62)	93

Notes:

- ug/l=micrograms per liter
- Reportable Concentrations (RCGW-1) taken from the Massachusetts Contingency Plan (MCP) 310 CMR 40.0974(2) dated April 2014
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed
- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- Italicized values represent laboratory detection limit equal to or above applicable RCGW-1 standard
- Full analytical results, including QA/QC information and data flags, are detailed in the laboratory analytical report

Location ID	V-SG-101	V-SG-102	V-SG-103	V-SG-104	V-SG-105	V-SG-106
Sample Date	4/9/2019	4/9/2019	4/9/2019	4/9/2019	4/9/2019	4/9/2019
CHEMICAL NAME						
Methane	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)

Notes:

- Results reported in parts per million/volume (ppmv)
- Full analytical results, including QA/QC information and data flags, are detailed in the laboratory analytical report

Table 5 Summary of Firing Range Analytical Data Rivers Edge 484 - 490 Boston Post Road

Wayland, MA
VERTEX PROJECT NO. 46047

Sample ID	RCS-1	Units	V-201	V-202	V-203	V-204	V-205	V-206	FIRING RANGE
Sample Date			4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019	4/11/2019
Metals	20	/1	4.4	4.40	ND(4.7)	2.2	F 4	4.40	200
Antimony	20	mg/kg	41	140	ND(1.7)	3.3	5.1	140	290
Arsenic	20	mg/kg							9.2
Barium	1000	mg/kg							13
Beryllium	90	mg/kg							ND(0.17)
Cadmium	70	mg/kg							0.40
Chromium	100	mg/kg	4200	4200			1000	7100	4.3
Copper	1000	mg/kg	4200	4200	120	74	1000		24000
Lead	200	mg/kg	4000	13000	46	290	630	24000	24000 ND(0.035)
Mercury	20	mg/kg							ND(0.025)
Nickel	600	mg/kg							3.6
Selenium	400	mg/kg							ND(3.3)
Silver	100	mg/kg							1.2
Thallium	8	mg/kg							ND(1.7)
Tungsten	NSE	mg/kg	ND(0.4)	14	5	ND(0.4)	ND(0.4)	ND(0.3)	
Vanadium	400	mg/kg							7.7
Zinc	1000	mg/kg	18	29	27	37	23	69	46
Metals, TCLP	F. *	/1	4.00	260	7.5	0.2	40	020	
Lead	5*	mg/l	180	360	7.5	8.3	48	830	
Total Petroleum Hydrocarbons (TPH)	4000	// -							27
TPH	1000	mg/kg							27
Volatile Organic Compounds (VOCs)	NCE								ND(0.47)
Total VOCs	NSE C-	mg/kg					-		ND(0.17)
Semivolatile Organic Compounds (SVO									ND(0.60)
Total SVOCs	NSE	mg/kg							ND(0.68)
Polychlorinated Biphenyls (PCBs)	4	/l							ND(0.004)
Total PCBs	1	mg/kg							ND(0.081)
General Chemistry	NCE	n no o o o t							a la a a su t
Ignitability	NSE	present/absent							absent
pH Beactivity Cyanida	5-9	pH Units							6.6
Reactivity Cyanide	NSE	mg/kg							ND(3.9)
Reactivity Sulfide	NSE	mg/kg		 OF 4	 0F 2				20
Solids, Total	NSE	%	93.3	95.4	95.3	92.1	92.3	92.9	96.4
Specific Conductance	2000	umhos/cm							2.0

Notes:

- mg/kg=milligram per kilogram; mg/l=milligram per liter; uhoms/cm= microohms per centimeter
- Reportable Concentrations (RCS-1) taken from the Massachusetts Contingency Plan (MCP) 310 CMR 40.0974(2) dated April 2014
- * = MCP RCS-1 does not apply. Regulatory concentration taken from the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations 40 CFR Part 261 Subpart C.
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed
- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- (*regulatory concentration)
- Full analytical results, including QA/QC information and data flags, are detailed in the laboratory analytical report

Table 5 Summary of Firing Range Analytical Data Rivers Edge 484 - 490 Boston Post Road Wayland, MA VERTEX PROJECT NO. 46047

Sample ID Sample Date	RCS-1	Units	V-301 (2-4) 5/8/2019	V-302 (2-4) 5/8/2019	V-303 (2-4) 5/8/2019	V-304 (2-4) 5/8/2019	V-305 (2-4) 5/8/2019	V-306 (2-4) 5/8/2019	V-307 (2-4) 5/8/2019	V-308 (2-4) 5/8/2019	V-309 (0-2) 5/8/2019	V-310 (0-2) 5/8/2019	V-311 (0-2) 5/8/2019	V-312 (2-4) 5/8/2019	V-313 (2-4) 5/8/2019	V-314 (2-4) 5/8/2019
Metals				2,2,		.,.,								2,2,		
Antimony	20	mg/kg	ND(1.7)	ND(1.8)	ND(1.8)	ND(1.7)	ND(1.7)	ND(1.8)	ND(1.8)	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.7)	ND(1.9)	ND(1.8)	ND(1.8)
Arsenic	20	mg/kg														
Barium	1000	mg/kg														
Beryllium	90	mg/kg														
Cadmium	70	mg/kg														
Chromium	100	mg/kg														
Copper	1000	mg/kg	13	22	45	13	37	31	28	43	4.2	400	5.9	20	24	32
Lead	200	mg/kg	5.0	31	28	12	22	25	57	22	5.9	140	8.8	150	86	55
Mercury	20	mg/kg														
Nickel	600	mg/kg														
Selenium	400	mg/kg														
Silver	100	mg/kg														
Thallium	8	mg/kg														
Tungsten	NSE	mg/kg														
Vanadium	400	mg/kg														
Zinc	1000	mg/kg									-		-			
Metals, TCLP																
Lead	5*	mg/l										20		0.099		
Total Petroleum Hydrocarbons (TPH)																
TPH	1000	mg/kg														
Volatile Organic Compounds (VOCs)																
Total VOCs	NSE	mg/kg														
Semivolatile Organic Compounds (SVO	Cs)															
Total SVOCs	NSE	mg/kg														
Polychlorinated Biphenyls (PCBs)																
Total PCBs	1	mg/kg														
General Chemistry																
Ignitability	NSE	present/absent														
рН	5-9	pH Units														
Reactivity Cyanide	NSE	mg/kg														
Reactivity Sulfide	NSE	mg/kg														
Solids, Total	NSE	%	93.9	91.5	93.3	94.1	93.5	92.6	93.2	93.6	96.2	96.4	96.0	89.5	89.1	91.3
Specific Conductance	2000	umhos/cm														

Notes:

- mg/kg=milligram per kilogram; mg/l=milligram per liter; uhoms/cm=microohms per centimeter
- Reportable Concentrations (RCS-1) taken from the Massachusetts Contingency Plan (MCP) 310 CMR 40.0974(2) dated April 2014
- * = MCP RCS-1 does not apply. Regulatory concentration taken from the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations 40 CFR Part 261 Subpart C.
- ND = Not Detected above laboratory reporting limits shown in parenthesis
- -- = Not Analyzed
- NSE = No Standard Exists
- Highlighted values exceeds the applicable Reportable Concentration
- (*regulatory concentration)
- Full analytical results, including QA/QC information and data flags, are detailed in the laboratory analytical report

APPENDIX A: PHOTOGRAPHIC DOCUMENTATION

Photograph #1: Southern exterior wall of site building, facing east.

Photograph #2: Main site building entrance.

Photograph #3: Northeastern exterior corner of the site building.

Photograph #4: Northern exterior wall of site building.

Photograph #5: Laboratory area within site building.

Photograph #6: Laboratory chemicals stored within laboratory area fume hood.

Photograph #7: Laboratory chemicals stored within laboratory area refrigerator.

Photograph #8: Scales within scale room.

Photograph #9: Scale room.

Photograph #10: Floor drain within scale room.

Photograph #11: Control room filled with various school furniture.

Photograph #12: Cleaning materials within bathroom.

Photograph #13: Area open to basement.

Photograph #14: Basement area.

Photograph #15: Chemicals stored within the machine shop area.

Photograph #16: Chemicals stored within the machine shop area.

 $\textbf{Photograph \#17:} \ \textbf{Additional treatment chemical storage}.$

Photograph #18: Example of additional school materials stored within the site building.

Photograph #19: Basement machine area and floor drains.

Photograph #20: Basement machine area, floor drains, and water damage.

Photograph #21: Hazardous materials storage trailer.

Photograph #22: Material storage northern side of the hazardous materials storage trailer.

Photograph #23: Oil storage within the southern portion of the trailer.

Photograph #24: Material storage within the northern portion of the trailer.

Photograph #25: Material storage and flammable storage cabinet within the northern portion of the trailer.

Photograph #26: Exterior wastewater treatment structures.

Photograph #27: Western exterior wall of site building and exterior treatment structure.

Photograph #28: Wastewater treatment ponds.

Photograph #29: Office trailer, facing south.

Photograph #30: Top of 32,000 cubic yard stockpile, facing east.

Photograph #31: Top of 32,000 cubic yard stockpile, facing southeast.

Photograph #32: 4,500 cubic yard stockpile.

Photograph #33: Ammunition storage trailers in firing range, facing northwest.

Photograph #34: Firing range, facing west-northwest.

Photograph #35: Firing range berm.

Photograph #36: Ammunition casings within firing range area.

Photograph #37: Eastern abutting access road toward the Wayland Transfer Station.

Photograph #38: Eastern abutting wetlands followed by the Sudbury River.

Photograph #39: Southern abutting Boston Post Road followed by forested land.

Photograph #40: Southern abutting Boston Post Road followed by forested land.

Photograph #41: Western-northwestern abutting Sudbury Landfill.

Photograph #42: Northern abutting forested wetlands.

APPENDIX B:

TEST PIT LOGS

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-F8 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, some fine to coarse gravel, trace cobbles and	<1.0
		debris (wood, metal, brick, asphalt, concrete).	
1		-	
2		= -	
3		- <mark> </mark> -	
4		- -	
5		5-10' Dark brown fine to coarse SAND and fine to coarse GRAVEL, some cobbles, trace debris (wood, metal, brick, asphalt, concrete).	<1.0
6			
7		- -	
8		- -	
9		- -	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		_	
12			
13		<u> </u>	
14			
15		_	
Test Pit Sketch			
^			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-E8 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND and fine to coarse GRAVEL, trace silt and	<1.0
		debris (ceramic, asphalt, concrete, fabric, brick).	
1	_		
		4	
2			
3		1	
4			
5		5-10' Dark brown fine to coarse SAND and fine to coarse GRAVEL, trace silty clay and	<1.0
		debris (ceramic, asphalt, large concrete blocks, fabric, brick).	
6			
7	1	1	
,			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
10		rest pit terminated at 10 feet bgs. Kerdsar not encountered.	
11			
12			
13			
14			
14			
15			
Test Pit Sketch			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-F6 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

		(PPM)
	0-5' Brown fine to coarse SAND and fine to coarse GRAVEL, trace silt and debris	<1.0
	(large concrete blocks, brick, asphalt, metal).	
1		
2		
3		
4		
5	5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, some asphalt, trace	<1.0
	silt and other debris (wood, paper, metal, plastic, brick).	11.0
6		
7		
8		
9		
10	Test wit terminated at 10 feet has Defined not encountered	
10	Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		
12		
13		
14		
15		
Test Pit Sketch		

NORTH

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-G6 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND and SILT, some coarse gravel and cobbles, trace	<1.0
	<u> </u>	debris (asphalt, brick, plastic, concrete).	
1		4	
2		1	
3			
4		-	
5	1	5-10' Dark brown fine to medium SAND, some silt and coarse sand, little fine to	1.8
6		coarse gravel, trace cobbles and debris (rubber, concerete, asphalt, glass, metal).	
7]	
		4	
8	1		
9	1	1	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		1	
12			
42	<u> </u>	4	
13		-	
14		1	
15		1	
Test Pit Sketch		•	
lack			
		Con Figure 4 for the 11 th	
		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-G7 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND and fine to coarse GRAVEL, some cobbles, trace	<1.0
		debris (asphalt, wood, plastic, brick, concrete).	
1		-	
2			
3			
4			
5		5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, some cobbles, trace silt and debris (concrete, wood, plastic, asphalt).	<1.0
6			
7			
8		- -	
9		-	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch			
1			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-F7 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND, some fine to coarse gravel, trace debris (asphalt,	<1.0
		metal). Pockets to grey silty clay.	
1			
2			
3			
4		4' Suspect transite pipe.	
5		5-10' Dark brown silty SAND, trace debris (asphalt, concrete, wood, plastic).	<1.0
6			
7			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch			
A			

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-E7 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Tan fine to coarse SAND, trace fine to coarse gravel and debris (asphalt, metal,	<1.0
1		plastic).	
1			
2			
3			
<u> </u>			
4			
5		5-10' Tan fine to coarse SAND and fine to coarse GRAVEL, some cobbles, trace	<1.0
		debris (asphalt, plastic, metal, fabric).	
6			
7			
8			
9			
40			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
12			
13			
14		4	
		1	
15			
Test Pit Sketch		1	
A			
1			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-E6 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND and fine to coarse GRAVEL, some asphalt and	<1.0
		cobbles, trace debris (concrete, wood, metal).	
1			
	1	-	
2			
3		1	
4			
5		5-10' Dark brown fine to coarse SAND, some fine to coarse gravel and cobbles,	<1.0
		trace wood and debris (plastic, asphalt, concrete).	
6			
7			
,			
8		1	
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
11			
12		1	
13			
14			
15		1	
Test Pit Sketch			_
^			

See Figure 1 for test pit locations.

NORTH NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-F5 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, trace cobbles and debris (concrete, plastic,	<1.0
		wood, metal).	
1		-	
2			
3			
4		_	
5		5-10' Dark brown fine to coarse SAND, trace cobbles and debris (concrete, plastic,	<1.0
6		wood, metal, asphalt).	
7		_	
8			
9		_	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
10]	
14			
15		d -1	
Test Pit Sketch		<u> </u>	
•			

See Figure 1 for test pit locations.

NORTH

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-F5 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown and grey fine to coarse GRAVEL and fine to coarse SAND, trace cobbles	<1.0
		and debris (asphalt, concrete, glass).	
1			
2			
3			
4			
5		5-11' Brown and grey fine to coarse GRAVEL and fine to coarse SAND, trace cobbles and debris (asphalt, concrete, glass). Pocket of wood and logs, accompanied by	<1.0
6		slight organic odor.	
7		- -	
8		-	
9			
10		-	
11		11-15' Dark brown fine to coarse SAND, some wood, roots, and silty clay, slight organic odor.	
12		-	
13		- -	
14			
15		Test pit terminated at 15 feet bgs. Refusal not encountered.	
Test Pit Sketch			<u> </u>

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR:

DATE:

TP-F4 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Light brown fine to coarse SAND, some fine to coarse gravel, trace debris (brick,	<1.0
		wood, concrete, asphalt, plastic).	
1			
2			
3			
4			
5		5-10' Light brown fine to coarse SAND, some fine to coarse gravel, trace debris (brick, wood, concrete, asphalt, plastic).	<1.0
6			
7			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13		1	
14			
15			
Test Pit Sketch			
T		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-E4 46047 The Greener Group, LLC Kristen Sarson 3/1/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND and fine to coarse GRAVEL, trace silt, cobbles, and	<1.0
		debris (metal, wood, concrete, asphalt).	
1			
2			
3		<u>-</u>	
4		- -	
5		5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace silt, cobbles, and debris (metal, wood, concrete, asphalt, brick, styrofoam).	<1.0
6		debris (metal, wood, concrete, aspiralt, brick, styroloam).	
7			
8			
9		- -	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch		1	
rest Pit Sketch			

NORTH

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-D7 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND and fine to coarse GRAVEL, trace boulders and	<1.0
		debris (asphalt, wood, concrete).	
1			
2			
2			
3			
4			
5		5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace boulders and	<1.0
		debris (asphalt, wood, concrete, metal, rubber).	12.0
6			
		-	
7			
8		1	
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12		1	
12			
13			
14			
15			
Test Pit Sketch			
A	I		

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-D6 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND and fine to coarse GRAVEL, some cobbles, trace	<1.0
		debris (concrete, asphalt, fabric, brick). Clumps of clay observed.	
1		_	
2		- -	
3		<u>-</u>	
4		-	
5		5-10' Dark brown fine to coarse SAND and fine to coarse GRAVEL, some cobbles, trace clay trace clay and debris (asphalt, brick, concrete, ceramic, metal).	<1.0
6			
7			
8		- -	
9		- -	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14		<u> </u>	
15		<u> </u>	
Test Pit Sketch			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-C6 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse GRAVEL and fine to coarse SAND, trace clay and	<1.0
		debris (asphalt, plastic, metal, wood, concrete).	
1			
2		1	
2			
3			
4			
5		5-10' Dark brown fine to coarse GRAVEL and fine to coarse SAND, trace debris	<1.0
		(asphalt, plastic, metal, wood, concrete).	
6			
7		1	
,			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12		1	
12			
13			
14		1	
15		1	
Test Pit Sketch			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-B6 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

	0-5' Dark brown fine to coarse SAND, some silt, trace debris (ceramic, asphalt, brick,	
		<1.0
	metal, concrete).	
1	-	
2		
3		
4		
5	5-10' Dark brown fine to coarse SAND, some fine to coarse gravel, little debris (brick, asphalt, ceramic, concrete, metal, glass), trace silt.	<1.0
6	aspirant, ceranne, concrete, metal, glass), trace site.	
7		
8		
9		
10	Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		
12		
13		
14		
15		
Test Pit Sketch		
^		

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-B5 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, some fine to coarse gravel and cobbles, trace	<1.0
		silt and debris (asphalt, concrete, glass).	
1	_		
	-	4	
2			
3	-	1	
4			
5		5-10' Dark brown fine to coarse SAND, some fine to coarse gravel and cobbles, trace	<1.0
_	1	silt and debris (asphalt, concrete, glass).	
6			
7		1	
,			
8	1		
9			
10		Total the market and at 40 feet here. Defined as the market and	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
	ļ		
13			
1.4	1	-	
14			
15			
Test Pit Sketch			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-C5 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-6' Tan silty CLAY, some fine to coarse sand and fine to coarse gravel, trace cobbles	<1.0
1		and debris (brick, asphalt, concrete, glass).	
тт			
2			
3			-
3			
4			
5			
6		6-10' Grey fine to coarse GRAVEL, some silty clay, saturated.	2.2
7			
8			
	ļ		
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch		<u> </u>	
^			
		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-D5 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, some fine to coarse gravel, trace silt, cobbles,	<1.0
		and debris (asphalt, brick, fabric, concrete).	
1			
		1	
2			
3		1	
4			
5		5-10' Tan fine to coarse SAND, some coarse gravel, trace cobbles and debris	<1.0
6	1	(asphalt, brick, concrete).	
0			
7			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
10		rest pit terminated at 15 feet againterasa not encountered.	
11			
12			
13		1	
13			
14	1	1	
15			
Test Pit Sketch			
iest Pit SketCh			

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-D4 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse GRAVEL, some fine to coarse sand, trace cobbles, clay, and	<1.0
		debris (brick, asphalt, concrete, plastic).	
1			
2			
3		<u>-</u>	
4			
5		5-10' Brown fine to coarse GRAVEL grading to fine to coarse SAND, some asphalt/coal patch, trace cobbles and debris (brick, concrete, plastic).	<1.0
6		-	
7		- -	
8		<u>-</u>	
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch			
^			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-C4 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND, some fine to coarse gravel, trace silt, cobbles, and	<1.0
		debris (plastic, metal, brick, asphalt).	
1			
2		1	
3			
4		-	-
]	
5		5-10' Dark brown fine to coarse GRAVEL, some fine to coarse sand, little wood, trace	1.3
6		debris (aspahlt, metal, plastic, concrete).	
7			
8			
0			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
10		rest pie terminated at 10 feet bgs. Refusal flot effective.	
11			
12		4	
12			
13			
1.4		4	
14			
15			
est Pit Sketch			
A			
T			
		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-B4 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND, pockets of fine to coarse gravel, trace silt, clay,	<1.0
		cobbles, and debris (brick, glass, asphalt, concrete).	
1			
2			
3			
4			
5		5-10' Brown fine to coarse SAND, pockets of fine to coarse gravel, trace silt, clay, cobbles, and debris (brick, glass, asphalt, concrete).	1.2
6		condies, and debris (brick, glass, aspiralt, concrete).	
7			
8			
9		- -	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12		_	
13			
14	1		
15			
12		4	
Test Pit Sketch		1	
A			

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-A5 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND, little fine to coarse gravel, trace cobbles and debris	<1.0
		(metal, asphalt, plastic, concrete, glass, wood).	
1			
2		- -	
3			
4			
5		5-10' Brown fine to coarse SAND, little fine to coarse gravel, trace cobbles and debris (metal, asphalt, plastic, concrete, glass, wood).	<1.0
6		Timetal, aspiralt, plastic, controcte, glass, wood).	
7		<u>-</u>	
8		_	
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch		<u>I</u>	
A			

NORTH

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-A4 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND, little fine to coarse gravel, trace cobbles and debris	<1.0
		(metal, asphalt, plastic, concrete, glass, wood).	
1			
	ļ		
2			
3			
3			
4			
5		5-10' Brown fine to coarse SAND, little fine to coarse gravel, trace cobbles and debris	<1.0
		(metal, asphalt, plastic, concrete, glass, wood).	
6			
	1		
7			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
12			
13		1	
14			
15			
Test Pit Sketch			
A			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-A3 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, little fine to coarse gravel, trace cobbles, clay,	<1.0
		and debris (metal, glass, asphalt, concrete).	
1			
2		-	
3			
4		-	
·			
5		5-10' Dark brown fine to coarse SAND, little fine to coarse gravel, trace cobbles and	<1.0
6		debris (metal, glass, asphalt, concrete).	
0			
7			
_		4	
8			
9		1	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		-	
12			
13		-	
13		-	
14]	
15		4	
13		-	
Test Pit Sketch		-	-
lack			
Ĭ			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-B3 46047 The Greener Group, LLC Kristen Sarson 3/11/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Brown fine to coarse SAND, little fine to coarse gravel, trace cobbles and debris	<1.0
		(metal, asphalt, plastic, concrete, glass, wood).	
1			
2		1	
3			
		4	
4			
5		5-7' Tan fine to coarse SAND and fine to coarse GRAVEL, trace cobbles and debris	9.2
		(asphalt, plastic, concrete).	
6			
7		7 101 Cross and block recettled alongs DEAT appearing address	
/		7-10' Grey and black mottled clayey PEAT, organic odor.	
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
		1	
13			
4.4		4	
14			
15			
Test Pit Sketch			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA DESIGNATION: PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-C3 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse GRAVEL and fine to coarse SAND, trace cobbles and	<1.0
		debris (metal, aspahlt, concrete, plastic).	
1		4	
2		1	
2			
3		1	
4] -	
5		5-10' Dark brown fine to coarse GRAVEL and fine to coarse SAND, trace cobbles, silt,	1.2
6		and debris (metal, aspahlt, concrete, plastic).	
		4	
7		-	
8		-	
9			
10		Test pit terminated at 10 feet has Defused not encountered	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		1	
12		-	
]	
13			
14		-	
15		<u> </u> -	
Test Pit Sketch		<u>l</u>	
A			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-D3 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown and black fine to coarse SAND, some fine to coarse gravel and	3.4
		debris (large concrete slabs, a tire, asphalt, metal, wood), trace cobbles.	
1			
2			
3			
4		- -	
5		5-10' Dark brown and black fine to coarse SAND, some fine to coarse gravel and debris (large concrete slabs, asphalt, metal, wood), trace cobbles and silt.	5.1
6			
7		- -	
8			
9			
10		10-15' Dark brown and black fine to medium SAND, some coarse sand and fine to	4.2
11		coarse gravel, little debris (bricks, wood, concrete, asphalt, ceramics, metal), trace silt and clay.	
12			
13			
14		<u>-</u> -	
15		Test pit terminated at 15 feet bgs. Refusal not encountered.	
est Pit Sketch		<u>I</u>	<u> </u>

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-E3 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Tan fine to coarse SAND, some fine to coarse gravel, trace debris (large concrete	<1.0
		blocks, wood, asphalt, plastic).	
1			
2			
3			
4			
5		5-10' Brown fine to medium SAND and fine GRAVEL, some coarse gravel, trace silt, clay, and debris (concrete, wood, asphalt, plastic).	<1.0
6			
7		- -	
8		-	
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch			
A			
1			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-F3 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, some fine to coarse gravel, some silt, trace	<1.0
		cobbles and debris (asphalt, concrete, metal, plastic, wood).	
1			
		1	
2			
3		1	
4			
5		5-10' Dark brown fine to coarse SAND, some fine to coarse gravel, some silt, trace	<1.0
		cobbles and debris (asphalt, concrete, metal, plastic, wood).	
6		1	
7		1	
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
		rest pit terminated at 10 feet againterada not encountered.	
11			
12			
12		1	
13			
14		1	
]	
15			
Test Pit Sketch			
^			
		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-E2 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, some fine to coarse gravel, some silt, trace	<1.0
		cobbles and debris (asphalt, concrete, metal, plastic, wood).	
1		_	
2		- -	
3		- -	
4		- -	
5		5-10' Dark brown fine to coarse SAND, some fine to coarse gravel, some silt, trace cobbles and debris (asphalt, concrete, metal, plastic, wood).	<1.0
6		- Loopies and debris (aspirali, concrete, metal, plastic, wood).	
7		- - 	
8		<u>-</u>	
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		_	
12		4	
13			
14		<u> </u>	
15			
Test Pit Sketch			

NORTH

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-D2 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown and black fine to coarse SAND and SILT, some fine to coarse gravel,	1.2
		trace cobbles and debris (metal, concrete, plastic, asphalt, wood).	
1		-	
2			
3		-	
4			
5		5-10' Dark brown and black fine to coarse SAND and SILT, some fine to coarse gravel, trace cobbles and debris (metal, concrete, plastic, asphalt, wood).	<1.0
6			
7			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch			
1			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-C2 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

0-5' Brown fine to coarse SAND and fine to coarse GRAVEL, trace cobbles, silt, and debris (concrete, metal, brick, glass, ceramic, asphalt). 2 3 3 5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace cobbles, silt, and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 13 14	PID (PPM)
1 2 3 4 5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace cobbles, silt, and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	<1.0
2 3 4 5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace cobbles, silt, and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
3 4 5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace cobbles, silt, and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
3 4 5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace cobbles, silt, and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
5 5 5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace cobbles, silt, and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 8 9 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 12 13 14	
5 5-10' Brown fine to coarse SAND and fine to coarse GRAVEL, trace cobbles, silt, and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 8 9 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 12 13 14	
5	
and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
and debris (concrete, metal, brick, glass, ceramic, asphalt). 6 7 8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
6	<1.0
7 8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
8 9 10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
10 Test pit terminated at 10 feet bgs. Refusal not encountered. 11 12 13 14	
11	
11	
12 13 14	
12 13 14	
13	
14	
14	
15	
10	
Test Pit Sketch	

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-D1 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown and black fine to coarse SAND, some silt and fine to coarse gravel,	1.1
		trace debris (concrete, asphalt, wood, metal) and cobbles.	
1		-	
2			
3			
4		-	
5		5-10' Dark brown and black fine to coarse SAND, some silt and fine to coarse gravel, trace debris (concrete, asphalt, wood, metal) and cobbles.	<1.0
6		trace debris (concrete, aspirait, wood, metal) and cobbles.	
7			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
14			
15			
Test Pit Sketch			
lack			

NORTH

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-C1 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown and black fine to coarse SAND and fine to coarse GRAVEL, some silt,	1.3
		trace cobbles and debris (plastic, metal, asphalt, concrete).	
1		-	
2			
3			
4			
5		5-10' Dark brown and black fine to coarse SAND and fine to coarse GRAVEL, some silt, trace cobbles and debris (plastic, metal, asphalt, concrete).	<1.0
6			
7			
8			
9			
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
12			
13			
15			
14			
15			
Test Pit Sketch		•	
1			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-B1 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, some fine to coarse gravel, trace silt and debris	3.1
		(asphalt, paper, glass, concrete).	
1			
2			
3			
4		1	
5		5-10' Dark brown fine to coarse SAND, some fine to coarse gravel, trace silt and	2.1
_		debris (asphalt, paper, glass, concrete).	
6			
7		1	
8			
9		1	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		1	
11			
12			
13			
14			
15			
Test Pit Sketch		<u> </u>	
•			

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-B2 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-7' Brown fine to coarse SAND, some fine to coarse gravel, trace silt and debris	<1.0
1		(metal, plastic, asphalt).	
2			
3			
4			
5		5-7' Brown fine to coarse SAND, some fine to coarse gravel, trace silt and debris	<1.0
6		(metal, plastic, asphalt).	
7		7-8' Grey fine to coarse GRAVEL.	
8		8-10' Brown fine to coarse SAND, some fine to coarse gravel, trace silt and debris (metal, plastic, asphalt).	
9		(metal, plastic, aspiralt).	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11		- -	
12			
13			
14			
15			
Test Pit Sketch			

See Figure 1 for test pit locations.

NOTES:

Project:

Wayland Location: Wayland, MA DESIGNATION: PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-A1 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION				
		0-5' Brown fine to coarse SAND, some fine to coarse gravel, trace silt and debris	<1.0			
		(metal, plastic, asphalt).				
1		-				
2			-			
		4				
3		-				
4						
5		5-10' Brown fine to coarse SAND, some fine to coarse gravel, trace silt and debris	<1.0			
6		(metal, plastic, asphalt).				
-						
7						
8						
0						
9						
10		Test pit terminated at 10 feet bgs. Refusal not encountered.				
10		rest pic terminated at 10 feet ogs. Nerasar not encountered.				
11						
12		-				
12		1				
13						
1.4		-				
14		-				
15						
est Pit Sketch						
A						

See Figure 1 for test pit locations.

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-A2 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND and fine to coarse GRAVEL, trace debris (brick,	<1.0
		concrete, asphalt, fabric).	
1			
2		1	
2			
3			
4			
5		5-10' Dark brown fine to coarse GRAVEL, some fine to coarse sand, trace silt and debris (brick, metal, concrete, asphalt).	<1.0
6		destis (strek, metal, contracte, aspirate).	
7			
		1	
8			
9		1	
10		Test pit terminated at 10 feet bgs. Refusal not encountered.	
11			
11			
12			
		4	
13			
14		1	
15			
Test Pit Sketch			
↑			
		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-V-101 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to coarse SAND, some silt, trace roots.	<1.0
1			
2			
3			
4			
5		Test pit terminated at 5 feet bgs. Refusal not encountered.	
6			
ŭ			
7			
8			
-			
9			
10			
11			
12			
13			
14			
15			
Test Pit Sketch			
		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-V-102 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown LOAM (silt and fine sand), trace roots.	<1.0
1			
2			
3			
4			
5		Test pit terminated at 5 feet bgs. Refusal not encountered.	
6			
•			
7			
8			
<u>_</u>			
9			
10			
10			
11			
12			
12			
13			
1.4			
14			
15			
Test Pit Sketch			
↑		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-V-103 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown LOAM (silt and fine sand), trace roots.	<1.0
1			
2			
3			
4			
5		Test pit terminated at 5 feet bgs. Refusal not encountered.	
6			
7			
8			
9			
10			
11			
12			
13			
14			
14			
15			
Test Pit Sketch			
1		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-V-104 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown fine to medium SAND, some silt, trace debris (one brick).	<1.0
1			
2			
2			
3			
4			
5		Test pit terminated at 5 feet bgs. Refusal not encountered.	
		Tool process and reed agos not encounted each	
6			
7			
8			
9			
10			
11			
42			
12			
13			
14			
15			
Test Pit Sketch			
		See Figure 1 for test pit locations.	

NOTES:

NORTH

Project:

Wayland Location: Wayland, MA **DESIGNATION:** PROJECT NO.: **EXCAVATOR:** INSPECTOR: DATE:

TP-V-105 46047 The Greener Group, LLC Kristen Sarson 3/12/2019

DEPTH ELEVATION	NO.	SOIL DESCRIPTION	PID (PPM)
		0-5' Dark brown LOAM (fine sand and silt), landscaping fabric.	<1.0
1			
_			
2			
3			
_			
4			
5		Test pit terminated at 5 feet bgs. Refusal not encountered.	
6			
U			
7			
8			
9			
10			
11			
11			
12			
13			
14			
15			
Test Pit Sketch			
↑		See Figure 1 for test pit locations.	

NOTES:

NORTH

APPENDIX C: BORING LOGS AND MONITORING WELL CONSTRUCTION LOGS

SOIL BORING/MONITORING WELL CONSTRUCTION LOGS V-101(MW) Project: Rivers Edge Wayland City: Wayland State: MA **BORING INFORMATION WELL CONSTRUCTION DETAILS** VERTEX: Start Date: 03/26/2019 Well Depth (ft): 20.0 Completion Date: <u>03/26/2019</u> Boring Depth (ft): 20.0 Well Diameter (in): 2.00 Personnel: Kristen Sarson Screen Length (ft): '10-20 Drilling Co.: Geosearch Slot Size (in): 0.010 Method: Geoprobe Completion Type: Roadbox **LOCATION** Refusal (Y/N): Casing Diameter (in): 2.0 42.3640 Lat: **NOTES** Long: -71.3811 1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System 2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by TOC (ft): volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a GS Elev (ft): detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less. Penetration (in) Recovered Blow Count (6 in) (1,2,3,4) Construction PID (ppm) (in/sleeve in) Moisture Depth (ft) Soil Strata Odor Description 0 feet Dark brown and black fine SAND and SILT, some medium to coarse sand and f-c gravel, trace debris (brick, concrete). Sand and Silt Dry 0.1 Coarse to Fine Sand Tan f-c SAND. Damp 32 0.1 Tan f-c SAND, some f-c gravel, trace silt. Damp 10-29 0.1 Tan f-c SAND, some f-c gravel. Damp Tan f-c SAND, some f-c gravel. Wet 15-46 0.0 Wet Tan f-c SAND, some f-c gravel, trace silt.

SOIL BOR	NG/MONIT	ORING WE	LL CONSTRUCTION	N LOGS	\/	_11)2(M	۱۸/۱	
Project: Rive	ers Edge Way	yland	City: <u>Wayland</u>	State: MA	V	- 10)Z(IVI	v v <i>)</i>	
ВО	RING INFOR	MATION	WELL CON	ISTRUCTION DETAILS	5		BR	N X	Viii
Start Date:	03/26/2019		Well Depth (ft):	20.0		100			
Completion Date	: <u>03/26/2019</u>		Boring Depth (ft):	20.0					
Personnel:	Kristen Sarsor	า	Well Diameter (in):	2.00					
Drilling Co.:	Geosearch		Screen Length (ft):	<u>'10-20</u>					
Method:	Geoprobe		Slot Size (in):	0.010					
Refusal (Y/N):	N		Completion Type:	Roadbox			LOC	ATION	
	<u> </u>		Casing Diameter (in): <u>2.0</u>		Lat:	42.3	642	
NOTES 1. Soil are visually cla	ssified in general acco	ordance with the Modi	fied Burmister Soil Classification Syste	em		Long:	<u>-71.3</u>	3824	
volume (ppmv) isobut	ylene standard to rep	ort total organic volatil		mp calibrated to a 100 parts per million with a response factor of 1. The PID ha		TOC GS E	(ft): lev (ft):		
Depth (ft) Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata		Soil Description	≡ _⊕ ×	Construction	Moisture	Odor	PID (ppm)
24		Medium to Fine Sand	Dark brown fine to medium SAN (roots).	ND, some silt, trace organics	o ie	eı	Damp		0.1
5— <u>28</u> — —		Sand and Silt Coarse to Fine Sand	Dark brown fine SAND and SIL roots). Tan fine to coarse SAND, layer				Damp Dry		0.1
10- 30		Sand and Gravel	Tan f-c SAND and f-c GRAVEL,	, trace silt.			Dry		0.0
15 60			Tan f-c SAND and f-c GRAVEL	, trace silt.	+		Wet		0.0
- - -									

Page 1 of 1 05/50/2019

SOIL BORING/MONITORING WELL CONSTRUCTION LOGS V-103(MW) Project: Rivers Edge Wayland City: Wayland State: MA **BORING INFORMATION WELL CONSTRUCTION DETAILS** VERTEX: Start Date: 03/27/2019 Well Depth (ft): 35.0 Completion Date: 03/27/2019 Boring Depth (ft): 35.0 Well Diameter (in): 2.00 Personnel: Kristen Sarson Screen Length (ft): '25-35 Drilling Co.: Geosearch Slot Size (in): 0.010 Method: Geoprobe Completion Type: Roadbox **LOCATION** Refusal (Y/N): Casing Diameter (in): 2.0 42.3636 Lat: **NOTES** Long: -71.3825 1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System 2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by TOC (ft): volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a GS Elev (ft): detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less. Blow Count (6 in) (1,2,3,4) Penetration (in) Recovered PID (ppm) Construction (in/sleeve in) Moisture Depth (ft) Soil Strata Odor Description 0 feet 44.3 Fine Sands TOPSOIL - Brown fine sand and silt, some organics (roots). Dry Sand and Silt Light brown fine to medium SAND and SILT, trace coarse gravel. Dry Sand and Gravel Brown f-c SAND and coarse GRAVEL, some crushed stone. Dry 43 2.0 Coarse to Fine Sand Tan f-c SAND. Damp 10-29 6.3 Tan f-c SAND, little coarse gravels and silt. Damp 15-60 6.2

	SOIL BORING/MONITORING WELL CONSTRUCTION LOGS Project: Rivers Edge Wayland City: Wayland State: MA V-103(MW)									
Depth (ft)	Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Well	Moisture	Odor	PID (ppm)		
	55		Coarse to Fine Sand	Tan f-c SAND, little coarse gravel.		Damp		2.2		
25— — — —	60			Tan f-c SAND, little coarse gravel.		Damp		0.6		
30-	60		Medium to Fine Sand	Tan fine to medium SAND, little coarse sand.		Wet		0.1		
35—			<i></i>							
- - -										
45— — — —										

SOIL BORING/MONITORING WELL CONSTRUCTION LOGS V-104(MW) Project: Rivers Edge Wayland City: Wayland State: MA **BORING INFORMATION WELL CONSTRUCTION DETAILS** WERTEX. Start Date: 03/26/2019 Well Depth (ft): 36.5 Completion Date: <u>03/26/2019</u> Boring Depth (ft): 36.5 Well Diameter (in): 2.00 Personnel: Kristen Sarson Screen Length (ft): '26.5-36.5 Drilling Co.: Geosearch Slot Size (in): 0.010 Method: Geoprobe Completion Type: Roadbox **LOCATION** Refusal (Y/N): Casing Diameter (in): 2.0 42.3635 Lat: **NOTES** Long: -71.3828 1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System 2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by TOC (ft): volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less. GS Elev (ft): Blow Count (6 in) (1,2,3,4) Penetration (in) Recovered PID (ppm) Construction (in/sleeve in) Moisture Depth (ft) Soil Strata Odor Description 0 feet 46.1 Sand and Silt Grey fine SAND and SILT, trace f-c gravel. Tan and orange fine to medium SAND, trace f-c gravel and debris (asphalt). Medium to Fine Sand Gravel Crushed STONE Sand and Silt Grey fine SAND and SILT, trace debris (asphalt). 20 5.2 Tan and orange fine to medium SAND and SILT, trace f-c gravel and debris (asphalt). 10-Coarse to Fine Sand 30 12.6 Tan and grey f-c SAND. Damp 15-15 7.8 Tan f-c SAND, some f-c gravel. Dry Crushed STONE

Gravel

Dry Drv

SOIL BORING/MONITORING WELL CONSTRUCTION LOGS Project: Rivers Edge Wayland City: Wayland State: MA V-104(MW)									
Depth (ft)	Penetration (in)	(in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Well	Moisture	Odor	PID (ppm)
	-	15		Sand and Gravel	Tan and grey f-c SAND and f-c GRAVEL.		Dry		0.5
25— — — — — — — —		60		Coarse to Fine Sand	Tan and grey f-c SAND, trace f-c gravel and silt.		Dry		0.5
30-		60		Sand and Gravel Cooperations of the Sand	Tan and grey f-c SAND and f-c GRAVEL. Tan f-c SAND.		Dry		0.1
35-									
40-	-								
45—	-								

SC	OIL B	ORI	NG/	MONI	TORING WE	LL C	ONSTRUCTION	LOGS	\	/_10)5(M	۱۸۸۱	
Pr	oject:	Rive	rs E	dge Wa	ayland	c	ity: <u>Wayland</u>	State	<u>MA</u>	v – i C	JJ(IVI	v v <i>)</i>	
		воі	RING	INFO	RMATION		WELL CON	STRUCTION D	ETAILS			(3 Y T	V ®
Star	t Date:		03/	27/2019			Well Depth (ft):	37.0			2	= = 2/	
Con	npletion	Date	: _03/	27/2019			Boring Depth (ft):	37.0					
Pers	ompletion Date: O3/27/2019				on		Well Diameter (in):	2.00					
Start Date: 03/27/2019 Completion Date: 03/27/2019 Personnel: Kristen Sarson Drilling Co.: Geosearch Method: Geoprobe Refusal (Y/N): N NOTES 1. Soil are visually classified in general accordance with the Modified 2. The soil was screened in the field using an photoionization detecto volume (ppmv) isobutylene standard to report total organic volatiles (detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppms, sandard to the sandard to report total organic volatiles (Coarse to Fine Ligsand			Screen Length (ft):										
Meth	nod:		Ged	probe			Slot Size (in):	0.010					
Refu	ısal (Y/	N):	N				Completion Type:				LOC	ATION	
							Casing Diameter (in)	i. <u>2.0</u>		Lat:	42.3	637	
		ally clas	ssified in	general a	ccordance with the Modi	fied Burmi	ister Soil Classification Syste	m		Long:	<u>-71.3</u>	3829	
volun	ne (ppmv)	isobuty	lene sta	andard to re	port total organic volati	es (TOVs)) as isobutylene equivalents			GS EI			
Depth (ft)	Penetration (in) Recovered	(in/sleeve in)	Blow Count (6 in)	(1,2,3,4)	Strata			Soil Description		Construction	Moisture	Odor	PID (ppm)
		2			Fine Sands	TOPSC	DIL - Brown fine SAND a	nd SILT, trace organic		feet	Damp		0.4
_	4					Light br	rown f-c SAND, some silt	, trace f-c gravel.	0000		Damp		
- - -	-												
- -	- 28 	3				Light br gravel a	own fine to medium SAN	ID grading to f-c SAN	O, trace f-c		Dry		0.4
10-	48	3				Tan f-c	SAND.				Dry		0.3
 15- 	60)											0.3
_													

			RING/M vers Edg			LL CONSTRUCTION LOGS City: Wayland State: MA	V-1	05(M	W)			
Depth (ft)	Penetration (in) Recovered	(in/sleeve in)	Blow Count (6 in) (1,2,3,4)						Well	Moisture	Odor	PID (ppm)
		60			Coarse to Fine Sand	Tan f-c SAND, trace f-c gravel. Tan f-c SAND, trace f-c gravel.		Dry Dry		0.1		
30-	-	49			Sand and Silt Gravel Medium to Fine Sand Coarse to Fine Sand	Tan fine SAND and SILT. Crushed STONE. Tan fine to medium SAND, some silt, trace coarse gravel. Tan fine to medium SAND, some silt and coarse sand. Tan f-c SAND, little f-c gravel, trace fine gravel.		Dry Dry Wet		0.0		
35—	-								-			
40												
45— ———————————————————————————————————												

SOIL BORING/MONITORING WELL CONSTRUCTION LOGS V-106(MW) Project: Rivers Edge Wayland City: Wayland State: MA **BORING INFORMATION WELL CONSTRUCTION DETAILS** VERTEX* Start Date: 03/27/2019 Well Depth (ft): 37.0 Completion Date: 03/28/2019 Boring Depth (ft): 37.0 Well Diameter (in): 2.00 Personnel: Kristen Sarson Screen Length (ft): '27-37 Drilling Co.: Geosearch Slot Size (in): 0.010 Method: Geoprobe Completion Type: Roadbox **LOCATION** Refusal (Y/N): Casing Diameter (in): 2.0 42.3637 Lat: **NOTES** Long: -71.3836 1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System 2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by TOC (ft): volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less. GS Elev (ft): Blow Count (6 in) (1,2,3,4) Penetration (in) Recovered Construction PID (ppm) (in/sleeve in) Moisture Depth (ft) Soil Strata Odor Description 0 feet Asphalt ASPHALT. Dry 0.0 Tan fine to medium SAND, trace coarse sand. Medium to Fine Damp Crushed STONE. Gravel Dry Coarse to Medium Sand Damp Tan medium to coarse SAND, trace fine sand. 33 0.7 Tan medium to coarse SAND, trace fine sand. Damp 10-Coarse to Fine Sand 60 1.3 Tan f-c SAND. Damp 15-49 0.1 Tan f-c SAND, some coarse gravel. Damp

SOIL BORING/MONITORING WELL CONSTRUCTION LOGS Project: Rivers Edge Wayland City: Wayland State: MA V-106(MW								
Depth (ft)	Penetration (in) Recovered (in/sleeve in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Well	Moisture	Odor	PID (ppm)
_ _ _ _	50		Coarse to Fine Sand	Tan f-c SAND, trace fine gravel.		Dry		0.1
25—	52		Medium to Fine Sand	Orange fine to medium SAND. Orange fine to medium SAND, little coarse sand.		Damp Damp		0.0
30-	60			Orange fine to medium SAND, little coarse sand.		Wet		0.0
35—								
40-								
45— ———————————————————————————————————								

SOIL BORIN	IG				V-107
Project: River	s Edge Wayland	City: <u>Wayl</u> a	ınd	State: MA	V-107
BOR	ING INFORMATION		LOCATION		WERTEX.
Start Date:	03/27/2019	Lat:	-71.38259100		
Completion Date:	03/27/2019	Long:	42.36362300		
Personnel:	Kristen Sarson	GS Elev (ft):	0.0		
Drilling Co.:	Geosearch				
Method:	Geoprobe				
Refusal (Y/N):	N				

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)	Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
-		25		Coarse to Fine Sand	Light brown f-c SAND, some f-c gravel, trace silt.	Damp		0.6
5—		20		Sand and Gravel	Light brown f-c SAND and f-c GRAVEL.	Damp		2.6
10-								
15—								

NOTES

1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System

(SIS) with a 10.6 electron volt lamp.

SOIL BORING V-108 Project: Rivers Edge Wayland City: Wayland State: MA **BORING INFORMATION LOCATION** VERTEX* Start Date: 03/27/2019 -71.38275400 Lat: Completion Date: 03/27/2019 Long: 42.36333100

GS Elev (ft): 0.0

Method: Geoprobe Refusal (Y/N):

Kristen Sarson

Drilling Co.: Geosearch Ν

NOTES

Boring Depth (ft): 10.0

Personnel:

 $1. \ Soil \ are \ visually \ classified \ in \ general \ accordance \ with \ the \ Modified \ Burmister \ Soil \ Classification \ System$

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)		Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
5—		38		Medium to Fine Sand	Tan and orange fine to medium SAND, some coarse sand and coarse gravel.	Dry		1.5
	-							
- - -								
15—								
20—							0.4/0.5/0.04	

SOIL BORIN	NG				V-109
Project: River	rs Edge Wayland	City: <u>Wayl</u> a	and	State: MA	V-109
BOR	ING INFORMATION		LOCATION		VERTEX:
Start Date:	03/27/2019	Lat:	-71.38290300		
Completion Date:	03/27/2019	Long:	42.36342700		
Personnel:	Kristen Sarson	GS Elev (ft):	0.0		
Orilling Co.:	Geosearch				
Method:	Geoprobe				
Pafusal (V/NI)	N				

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)		Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
5—	-	50		Asphalt Medium to Fine Sand	ASPHALT. Tan and orange fine to medium SAND, some coarse sand, trace coarse gravel.	Damp		2.1
15—							24051924	

NOTES

1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System

SOIL BORIN	NG				V-110
Project: River	s Edge Wayland	City: <u>Wayla</u>	ınd	State: MA	V-110
BOR	ING INFORMATION		LOCATION		WEIRTEX*
Start Date:	03/27/2019	Lat:	-71.38295900		
Completion Date:	03/27/2019	Long:	42.36345700		
Personnel:	Kristen Sarson	GS Elev (ft):	0.0		
Orilling Co.:	Geosearch				
Method:	Geoprobe				
Refusal (Y/N):	N				

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)	Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
5—		20		Asphalt Medium to Fine Sand	ASPHALT. Tan and orange fine to medium SAND, some coarse sand, trace coarse gravel.	Dry		1.2
15—								

NOTES

1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System

SOIL BORIN	NG				V-111
Project: River	s Edge Wayland	City: Wayla	and	State: MA	V-111
BOR	ING INFORMATION		LOCATION		WERTEX.
Start Date:	03/27/2019	Lat:	-71.38289600		
Completion Date:	03/27/2019	Long:	42.36350500		
Personnel:	Kristen Sarson	GS Elev (ft):	0.0		
Drilling Co.:	Geosearch				
Method:	Geoprobe				
Refusal (Y/N):	<u>N</u>				

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)	Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
		12		Asphalt Medium to Fine Sand	ASPHALT. Light brown fine to medium SAND, some coarse sand and coarse gravel.	Dry		1.2
-								
15— —								
20—								

NOTES
1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System

SOIL BORIN	NG				V-112
Project: River	rs Edge Wayland	City: <u>Wayla</u>	and	State: MA	V-11Z
BOR	RING INFORMATION		LOCATION		VERTEX*
Start Date:	03/27/2019	Lat:	-71.38305600		
Completion Date:	03/27/2019	Long:	42.36358200		
Personnel:	Kristen Sarson	GS Elev (ft):	0.0		
Orilling Co.:	Geosearch				
Method:	Geoprobe				
Refusal (Y/N):	N				

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)		Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
5—		60		Medium to Fine Sand Sand Sand Sand Sand Sand Sand Sand	Brown fine to medium SAND, trace coarse sand, coarse gravel, and silt.	Damp		0.7
15—								

NOTES

1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System

SOIL BORING

V-113 State: MA Project: Rivers Edge Wayland City: Wayland

-		,		
BOR	ING INFORMATION		LOCATION	VERTEX*
Start Date:	03/28/2019	Lat:	-71.38351400	
Completion Date:	03/28/2019	Long:	42.36347400	
Personnel:	Kristen Sarson	GS Elev (ft):	0.0	
Drilling Co.:	Geosearch			
Method:	Geoprobe			
Refusal (Y/N):	N			
Boring Depth (ft):	10.0			

NOTES

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)	Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
		25		Sand and Silt	TOPSOIL- Brown fine SAND and SILT, some organics (roots).			0.0
- - -				Medium to Fine Sand	Tan fine to medium SAND, some coarse sand, trace coarse gravel.	Damp		
5— —		30		Coarse to Fine Sand	Tan f-c SAND, some fine gravel.	Dry		0.1
_								
-								
10—								
-								
-								
-								
-								
15—								
-								
-								
-								
-								
20—								

04/05/2019 Page 1 of 1

 $^{1. \} Soil\ are\ visually\ classified\ in\ general\ accordance\ with\ the\ Modified\ Burmister\ Soil\ Classification\ System$

SOIL BORIN	NG				V-114
Project: River	s Edge Wayland	City: <u>Wayla</u>	ınd	State: MA	V-11 4
BOR	ING INFORMATION		LOCATION		WERTEX*
Start Date:	03/28/2019	Lat:	-71.38347300	_	
Completion Date:	03/28/2019	Long:	42.36323300		
Personnel:	Kristen Sarson	GS Elev (ft):	0.0		
Drilling Co.:	Geosearch				
Method:	Geoprobe				

NOTES

Refusal (Y/N):

Boring Depth (ft): 10.0

N

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)	Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
5—	-	28		Silt Coarse to Medium Sand	TOPSOIL- Dark brown SILT and organics (roots). Light brown and orange medium to coarse SAND, little f-c gravel and fine sand.	Damp		0.5
-				Gravel	Grey coarse GRAVEL.	Dry		
10-								
15—								
20—								

Page 1 of 1 04/05/2019

 $^{1. \} Soil \ are \ visually \ classified \ in \ general \ accordance \ with \ the \ Modified \ Burmister \ Soil \ Classification \ System$

SOIL BORIN	NG .				V-115
Project: River	s Edge Wayland	City: <u>Wayla</u>	and	State: MA	V-113
BOR	ING INFORMATION		LOCATION		VERTEX*
Start Date:	03/28/2019	Lat:	-71.38305800		
Completion Date:	03/28/2019	Long:	42.36312000		
Personnel:	Kristen Sarson	GS Elev (ft):	0.0		
Drilling Co.:	Geosearch				
Method:	Geoprobe				
Refusal (Y/N):	N				

Boring Depth (ft): 10.0

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in)		Blow Count (6 in) (1,2,3,4)		Soil Description	Moisture	Odor	PID (ppm)
		20		Medium to Fine Sand	Tan fine to medium SAND, trace silt and fine gravel.			0.3
5		12						0.1
- - -								
15—								

04/05/2019 Page 1 of 1

NOTES

1. Soil are visually classified in general accordance with the Modified Burmister Soil Classification System

(SIS) with a 10.6 electron volt lamp.

SOIL BORING V-116 Project: Rivers Edge Wayland City: Wayland State: MA **BORING INFORMATION LOCATION** VERTEX* Start Date: 03/28/2019 -71.38294100 Lat: Completion Date: 03/28/2019 Long: 42.36315900 Personnel: Kristen Sarson GS Elev (ft): 0.0 Drilling Co.: Geosearch Method: Geoprobe Refusal (Y/N):

NOTES

Boring Depth (ft): 10.0

Ν

2. The soil was screened in the field using an photoionization detector (PID) with a 10.6 electron volt lamp calibrated to a 100 parts per million by volume (ppmv) isobutylene standard to report total organic volatiles (TOVs) as isobutylene equivalents with a response factor of 1. The PID has a detection limit of 0.1 ppmv, <1 readings are indicative of readings of 0.1 ppmv TVOCs or less.

Depth (ft)	Penetration (in) Recovered (in)	Blow Count (6 in) (1,2,3,4)	Strata	Soil Description	Moisture	Odor	PID (ppm)
_ _ _ _	40		Medium to Fine Sand	Tan fine to medium SAND, trace coarse sand and coarse gravel. Grey coarse GRAVEL and crushed stone.	Dry		0.0
5—	21		Medium to Fine Sand	Tan fine to medium SAND, trace coarse sand and coarse gravel.	Dry		0.0
— — — —							
15—							

04/05/2019 Page 1 of 1

 $^{1. \} Soil \ are \ visually \ classified \ in \ general \ accordance \ with \ the \ Modified \ Burmister \ Soil \ Classification \ System$

APPENDIX D: RELEVANT DOCUMENTS

Langdon Environmental LLC

25 East Main Street Southborough, Massachusetts 01772

April 1, 2019

Mr. Mark Fairbrother
Massachusetts Department of Environmental Protection
Northeast Regional Office
205B Lowell Street
Wilmington, Massachusetts 01887

Subject: Summary of Groundwater Sampling Results

Samples Collected March 1, 2019

Sudbury Sand Hill Landfill, Sudbury, Massachusetts

Dear Mr. Fairbrother:

On behalf of the Town of Sudbury, Massachusetts, Langdon Environmental, LLC (Langdon) with support by Geologic Field Services, Inc. (GFS) collected groundwater samples at the Sudbury Sand Hill Landfill on March 1, 2019. The sampling was conducted in accordance with the Massachusetts Solid Waste Management Regulations (310 CMR 19.132, the Regulations). Post-closure groundwater monitoring at the Landfill occurs on a semi-annual basis.

This semi-annual groundwater monitoring report presents the results of the sampling event in tabular form as indicated below and includes a site plan showing each sampling location in Appendix A and the laboratory report from Alpha Analytical Laboratory, Inc. in Appendix C. Summary tables 1 through 3 which summarize field and laboratory sampling results are included in Appendix B. Tables 1 through 3 specifically contain the following:

- Groundwater Sampling Results
 - Table 1 summarizes the groundwater levels measured at each groundwater monitoring well.
 - Table 2 summarizes the analytical results for indicator parameters (alkalinity, total dissolved solids (TDS), nitrate-nitrogen, total cyanide, sulfate, chloride, and chemical oxygen demand (COD)); dissolved metals (arsenic, barium, cadmium, calcium, chromium, copper, iron, lead, manganese, mercury, selenium, silver, sodium, and zinc); and parameters measured in the field (pH, temperature, dissolved oxygen, oxidation reduction potential, and specific conductivity) for groundwater samples.
 - Table 3 summarizes the analytical results of volatile organic compounds (VOCs) for groundwater samples.

Analytical results that exceed applicable standards appear shaded in each table.

Mr. Mark Fairbrother MassDEP - Northeast Region April 1, 2019 Page 2

The results of this sampling event are discussed below.

Groundwater Sampling

Groundwater samples were collected from monitoring well locations GWMW-U-1, GWMW-D-1, GWMW-D-2, and GWMW-D-3. Samples were obtained using a TuBaH inertial lift valve. Wells were purged a minimum five well volumes prior to sampling. Samples for dissolved metals were field filtered using a 0.45-micron filter. Groundwater is assumed to flow generally to the east-southeast across the site based upon the location of the up-gradient monitoring well.

The Regulations require that groundwater sampling results be compared to the established federal EPA Drinking Water Standards and the State Primary Maximum Contaminant Level (MCL) and Secondary Maximum Contaminant Level (SMCL) standards for each parameter.

MCLs and/or EPA Primary Drinking Water Standards were exceeded in the following groundwater samples:

 Arsenic exceeded the MCL and EPA Primary Drinking Water Standard of 10 ug/L in the samples collected from GWMW-U-1, GWMW-D-2 and GWMW-D-3 with concentrations of 41 ug/L, 16 ug/L, and 44 ug/L, respectively.

SMCLs, state guidelines and/or EPA Secondary Drinking Water Standards were met or exceeded in the following groundwater samples:

- The pH level was below the SMCL range of 6.5 to 8.5 in the sample collected from GWMW-D-2.
- Chloride exceeded the SMCL and EPA Secondary Standard of 250 mg/L in the samples collected from each of the monitoring wells.
- Iron exceeded the SMCL and EPA Secondary Standard of 300 ug/L in samples collected from GWMW-U-1, GWMW-D-2 and GWMW-D-3.
- Manganese exceeded the Office of Research and Standards Guideline (ORSG) and the SMCL and EPA Secondary Standard of 50 ug/L in samples collected from GWMW-U-1, GWMW-D-2, and GWMW-D-3.
- Sodium exceeded the ORSG of 20,000 ug/L in all groundwater samples collected.

Secondary standards are established for the aesthetics and taste of a public drinking water supply and are not health based.

The concentration of 1,4-Dioxane exceeded the ORSG of 0.3 ug/L in samples collected from GWMW-U-1, GWMW-D-2, and GWMW-D-3.

The next semi-annual groundwater sampling round is scheduled for September 2019.

Quality Control Samples

Quality control samples are collected to verify that laboratory and sampling procedures are consistent and to indicate any possible cross contamination and resulting false positive analysis

Mr. Mark Fairbrother MassDEP - Northeast Region March 26, 2019 Page 3

results. The trip blank results were non-detect, indicating that the field sample storage and transport did not introduce contaminants.

Groundwater monitoring results from the March 2019 sampling round were consistent with prior sampling rounds.

Please do not hesitate to contact me at (617) 875-3693 if you have any questions or require anything further.

Sincerely yours

Bruce W. Haskell, P.E.

Langdon Environmental LLC

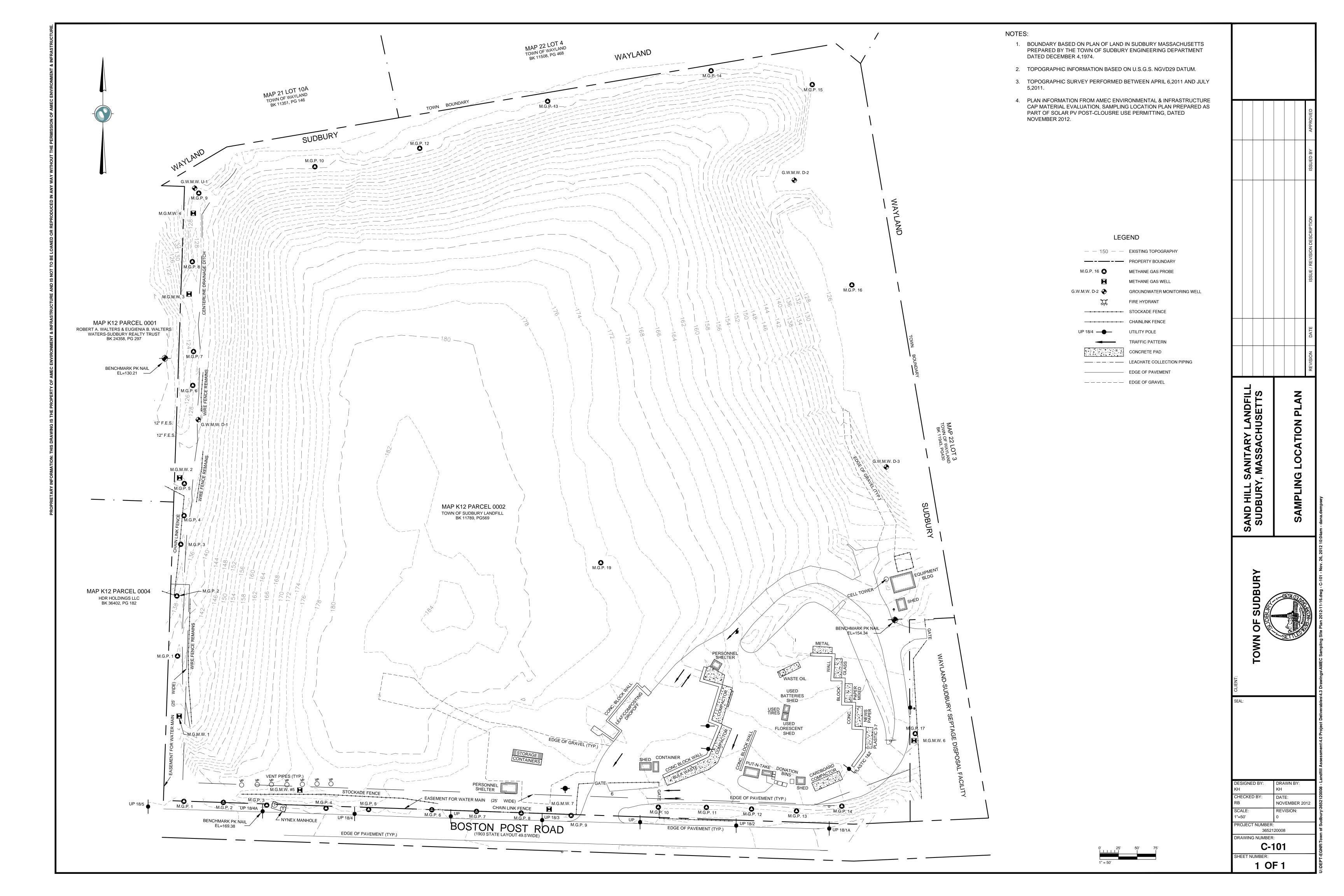
Bruce W. Hashell

cc: Melissa Murphy-Rodrigues, Sudbury Town Manager

Dan Nason, Sudbury Public Works

Sudbury Board of Health

Certification


In accordance with the Massachusetts Solid Waste Management Regulations (310 CMR 19.011), the Town of Sudbury, Massachusetts submits this certification for the attached March 2019 Semi-Annual Groundwater Monitoring Report prepared for us by Langdon Environmental, LLC.

I, Daniel Nason, attest under the pains and penalties of perjury that: (a) I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this certification statement; (b) based upon my inquiry of those persons responsible for obtaining the information, the information contained in this submittal is, to the best of my knowledge, true, accurate, and complete; (c) I am fully authorized to bind the entity required to submit these documents and to make this attestation on behalf of such entity; (d) I am aware that there are significant penalties, including, but not limited to, possible administrative and civil penalties for submitting false, inaccurate, or incomplete information and possible fines and imprisonment for knowingly submitting false, inaccurate, or incomplete information.

Ma			
and	Date:	4/1/2019	
Daniel Nason, Director, Sudbury Department of Public Works			

Appendix A – Site Plan

Appendix B – Sampling Results Summary Tables

Table 1
Groundwater Monitoring Summary - March 1, 2019
Water Levels

Monitoring Well Number	Sample Date	Well Depth (feet)	Depth to Groundwater ¹ (feet)
GWMW-U-1	3/1/2019	49.5	9.05
GWMW-D-1	3/1/2019	50.56	10.65
GWMW-D-2	3/1/2019	55	7.36
GWMW-D-3	3/1/2019	58.8	6.41

Note:

¹ Depth to water measured from top of PVC

Table 2 Summary of Water Quality Laboratory Results - Field Parameters, Conventional Parameters and Metals Samples Collected March 1, 2019 Sudbury Landfill

	LA			LOCATION GWMW-U-1 MPLING DATE 3/1/2019 AB SAMPLE ID L1908061-01			GWMW- 3/1/20 L1908062	19	GWMW-D-3 3/1/2019 L1908061-04	
	DRINKING WATER									
PARAMETER	STANDARDS	UNITS	Results	Qual	Results	Qual	Results	Qual	Results	Qual
FIELD PARAMETERS										
TEMPERATURE	NL	°C	11.29		11.85		9.67		10.45	
SPECIFIC CONDUCTANCE	NL	μmhos/cm	1677		1238		1267		1334	
DISSOLVED OXYGEN	NL	mg/L	1.48		2.25		7.09		2.82	
рН	6.5-8.5 (3,5)	Std. units	6.52		6.56		6.36		6.68	
ORP (OXIDATION REDUCTION POTENTIAL)	NL	mV	-53.9		-51		-31.7		-65.2	
CONVENTIONAL PARAMETERS										
Alkalinity, Total	NL	mg CaCO ₃ /L	113		64.7		239		150	
Solids, Total Dissolved	500 (3,5)	mg/L	120		95		81		64	
Cyanide, Total	0.2 (4)	mg/L	0.005	U	0.005	U	0.005	U	0.005	U
Chloride	250 (3,5)	mg/L	450		310		260		310	
Nitrogen, Nitrate	10 (2,4)	mg/L	0.1	U	5.01		0.1	U	0.1	U
Sulfate	250 (3,5)	mg/L	28		37		10	U	25	
Chemical Oxygen Demand	NL	mg/L	86		39		160		57	
METALS				<u> </u>				<u> </u>		
Arsenic, Dissolved	10 (2,4)	ug/L	41		5	U	16		44	
Barium, Dissolved	2,000 (2,4)	ug/L	311		53		86		92	_
Cadmium, Dissolved	5 (2,4)	ug/L	5	U	5	U	5	U	5	U
Calcium, Dissolved	NL	ug/L	83,900		43,500		102,000		87,200	
Chromium, Dissolved	100 (2,4)	ug/L	10	U	10	U	10	U	10	U
Copper, Dissolved	1,300 (2,4)	ug/L	10	U	10	U	10	U	10	U
Iron, Dissolved	300 (3,5)	ug/L	65,300		50	U	17,300		18,900	
Lead, Dissolved	15 (2,4)	ug/L	10	U	10	U	10	U	10	U
Manganese, Dissolved	50 (3,5)	ug/L	13,500		10	U	6,040		6,610	
Mercury, Dissolved	2 (2,4)	ug/L	0.2	U	0.2	U	0.2	U	0.2	U
Selenium, Dissolved	50 (2,4)	ug/L	10	U	10	U	10	U	10	U
Silver, Dissolved	100 (3,5)	ug/L	7	U	7	U	7	U	7	U
Sodium, Dissolved	20,000 (3,5)	ug/L	128,000		151,000		97,100		95,900	
Zinc, Dissolved	5,000 (3,5)	ug/L	50	U	50	U	50	U	50	U

NOTES:

- (1) EXCEEDS PRIMARY MASSACHUSETTS OR EPA DRINKING WATER STANDARDS SHOWN SHADED IN TAN. EXCEEDANCES OF SECONDARY STANDARDS (BASED ON ODOR, TASTE AND COLOR OF A WATER SUPPLY) OR MASSDEP GUIDELINE SHOWN SHADED GRAY.
- (2) MASSACHUSETTS DRINKING WATER STANDARD
- (3) MASSACHUSETTS DRINKING WATER GUIDELINE OR SECONDARY MAXIMUM CONTAMINANT LEVEL
- (4) EPA PRIMARY DRINKING WATER STANDARD
- (5) EPA SECONDARY DRINKING WATER STANDARD
- (6) Initial and final readings taken for field parameters. Final readings are shown.
- NL No Limit
- U Not Detected To The Limit Indicated

Table 3 Summary of Water Quality Laboratory Results - Volatile Organic Compounds Samples Collected March 1, 2019 **Sudbury Landfill**

GWMW-U-1 LOCATION SAMPLING DATE 3/1/2019 3/1/2019 3/1/2019 LAB SAMPLE ID ORSO Volatile Organic Compounds by GC/MS 0.005 0.003 0.003 0.00075 0.003 mg/L thylene Chloride 0.07 1,1-Dichloroethane mg/L 0.00075 0.00075 U U 0.00075 U 0.0007 mg/L arbon Tetrachloride U mg/L 0.0005 U 0.0005 0.0005 U 0.0005 U 0.0005 U 1,2-Dichloropropane 0.005 mg/L 0.0018 0.0005 0.0005 0.0005 0.0005 0.0005 0.005 1,1,2-Trichloroethane mg/L 0.00075 0.0007 0.00075 0.00075 0.0007 Tetrachloroethene 0.005 mg/L 0.000 0.0005 0.0005 U 0.0005 mg/L Trichlorofluoromethane mg/L 0.0025 U 0.0025 U 0.0025 U 0.0025 U 0.0025 U 1,2-Dichloroethane 1,1,1-Trichloroethane 0.0005 0.0005 0.0005 0.005 mg/L 0.0005 U mg/L mg/L 0.000 0.000 trans-1,3-Dichloropropene 0.0005 0.0005 0.0005 0.0005 mg/L cis-1,3-Dichloropropene mg/L 0.0004 1,3-Dichloropropene, Total mg/L 0.0005 U U 0.0005 U 0.0005 U 0.0005 U ,1-Dichloropropene 0.002 0.0025 mg/L 0.002 mg/L 0.002 0.002 U 0.002 0.002 U 1,1,2,2-Tetrachloroethane mg/L 0.000 0.000 0.0005 U 0.0005 0.0005 U 0.005 mg/L Toluene mg/L 0.0007 0.0007 0.0007 0.0007 0.0007 Ethylbenzene 0.7 mg/L 0.0005 0.0005 0.0005 0.0005 0.0005 U U 0.0025 0.0025 0.0025 U U Chloromethane mg/L Bromomethane 0.01 mg/L 0.001 0.001 U 0.001 U 0.001 U U 0.002 Chloroethane mg/L 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 1,1-Dichloroethene 0.007 mg/L mg/L 0.0005 0.000 0.000 0.0005 0.000 1,2-Dichloroethene, Tota mg/L 0.000 0.000 0.000 0.0005 0.000 0.005 0.0005 0.000 0.0005 0.000 mg/L 1,3-Dichlorobenzene mg/L mg/L 0.0025 U 0.0025 U 0.0025 U 0.0025 U 0.0025 U 0.005 0.0025 U 0.001 0.001 Methyl tert butyl eth mg/L m.p-Xvlene mg/L 0.001 0.001 U 0.001 0.001 0.001 0.001 mg/L Xylenes, Total mg/L 0.001 0.003 0.001 mg/L mg/L 0.0005 0.0005 0.005 0.0005 cis-1.2-Dichloroethene 0.07 0.0005 U U 0.0005 U 0.005 1,4-Dichlorobutane mg/L 0.005 0.005 U 0.005 0.005 U 1,2,3-Trichloropropane mg/L 0.005 U 0.005 U U 0.005 U 0.005 U Styrene mg/L Dichlorodifluoromethane 1.4 mg/L 0.005 0.00 0.005 0.005 0.005 Acetone Carbon Disulfide 0.005 6.3 mg/L 0.005 0.005 0.005 0.005 U 0.005 mg/L 2-Butanone mg/L 0.005 0.005 U 0.005 U 0.005 0.005 U 0.35 4-Methyl-2-Pentanone mg/L 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U mg/L 0.005 0.005 0.005 0.005 mg/L Acrylonitrile mg/L 0.005 0.005 0.005 0.005 0.005 0.002 0.002 0.0025 mg/L 2,2-Dichloropropane mg/L 0.002 U 0.0025 U 0.0025 U 0.0025 U 0.0025 U 0.00002 U U U mg/L 1,1,1,2-Tetrachloroethane mg/L 0.0005 0.000 0.000 0.0005 0.0005 0.002 0.002 0.0025 n-Butylbenzene mg/L 0.000 0.000 0.000 0.0005 0.000 sec-Butylbenzene mg/L mg/L 0.0005 0.0005 0.0005 0.0005 U 0.0005 U 0.002 0.002 o-Chlorotoluene mg/L 0.0025 0.0025 U 0.0025 U 0.0025 U 0.0025 U U 0.002 0.0025 mg/L Hexachlorobutadiene mg/L 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 mg/L p-Isopropyltoluene mg/L Naphthalene 0.14 mg/L 0.002 0.0025 U 0.0025 U 0.0025 0.0025 U 0.0005 mg/L 1,2,3-Trichlorobenzene mg/L 0.0025 0.002 U 0.0025 0.0025 0.0025 U 0.0025 0.0025 1,2,4-Trichlorobenzene 0.07 mg/L 0.002 U 0.002 U U 0.0025 U mg/L 0.002 1,2,4-Trimethylbenzene 0.002 0.002 0.002 0.002 0.0025 mg/L ans-1,4-Dichloro-2-butene 0.002 mg/L 1,4-Dioxane by 8270D-SIM mg/L 0.0018 U 0.00318 0.00178 0.0003

Notes and Abbreviations

MA-DW-MMCL: Massachusetts Maximum Contaminant Levels (MMCLs) Criteria per MassDEP DW Standards & Guidelines, July 2012.
MA-DW-ORSG: Massachusetts Drinking Water Guidelines (ORSGs) Criteria per MassDEP DW Standards & Guidelines, July 2012.

MA-DW-SMCL: Massachusetts Secondary Maximum Contaminant Levels (SMCLs) Criteria per MassDEP DW Standards & Guidelines, July 2012. Values shown shaded in gray indicate reporting limits equal to or greater than corresponding Criteria or Guideline

Values shown shaded in tan indicate detections equal to or greater than corresponding Criteria or Guideline.

SAND HILL SANITARY LANDFILL

Report Date: 4/1/19

SOUTHERLY PROPERTY LINE

Sampling I	Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O_2
MGMW-7	shallow	4/1/19	9:45am	RW	Sunny	40	29.81	0	0.1	0		20.2
MGMW-7	medium							0	0.1	0		20.3
MGMW-7	deep							0	0.1	0		20.4
MGF	P-9							0	0.4	0		20.9
MGF	2-8							0	0.1	0		21.0
MGF	?- 7							0	0.3	0		19.8
MGF	P-6							0.1	1.1	2		19.9
MGF	P-5							0.2	1.8	4		20.1
MGF	P-4							1.3	1.7	26		20.3
MGF	2-3							0	0.2	0		20.1

SOUTHERLY PROPERTY LINE

Sampling I	Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O ₂
MGMW-5	shallow	4/1/19	9:45am	RW	Sunny	40	29.81	0	0.1	0		20.7
MGMW-5	medium							0	0.3	0		20.3
MGMW-5	deep							0	0.2	0		20.5
Nynex m	anhole							0.1	0.3	2		20.0
MGF	P-2							0	0.1	0		21.1
MGF	P-1							0	0.2	0		21.2

WESTERLY PROPERTY LINE

Sampling l	Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O_2
MGMW-1	shallow							0	2.3	0		19.8
MGMW-1	deep							0	1.8	0		21.0
Westerly p Catch ba easterly pa	asin in							0	0.1	0		21.3
MGI	P-1							0	0.1	0		20.8
MGI	P-2							0	0.2	0		21.1

WESTERLY PROPERTY LINE

Sampling Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O_2
MGP-3	4/1/19	9:45am	RW	Sunny	40	29.81	0	0.2	0		20.7
MGP-4							0	0.1	0		20.1
Outlet Pipe-Head of Ditch							0	0.2	0		20.9
Outlet Pipe-Side of Ditch							0	0.1	0		21.1
MGP 5							W	A	T	E	R
MGMW-2							0	0.3	0		19.3
MGP-6							0	0.4	0		20.7
MGMW*D1						L	О	C	K	E	D
MGMW-3							0	0.1	0		20.3
MGP-7							0	0.2	0		21.1
MGP-8							0.2	1.3	4		18.3
MGMW-4							0	0.2	0		20.1
GWMW-U1						L	О	C	K	E	D
MGP-9							0	0.1	0		21.0

NORTHERLY PROPERTY LINE

Sampling Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O ₂
MGP-10	4/1/19	9:45am	RW	Sunny	40	29.81	0	0.2	0		20.8
MGP-12							0	0.1	0		21.0
MGP-13							0	0.1	0		19.8
MGP-14							0	0.2	0		21.1
MGP-15							0.1	0.3	2		20.7

EASTERLY PROPERTY LINE

Sampling Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O ₂
GWMW-D2						L	О	C	K	E	D
MGP-16							0	0.4	0		19.3
GWMW-D3						L	О	C	K	E	D
Leachate Tank Cover							W	A	Т	E	R
Drain Manhole Cover							W	A	Т	E	R
MGP-17							0	0.2	0		20.9

EASTERLY PROPERTY LINE

Sampling I	Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O_2
	•		(1111.111111)	Hilliais		remp.	11655416					
MGMW-6	shallow	4/1/19	9:45am	RW	Sunny	40	29.81	0	0.2	0		20.7
MGMW-6	medium							0	0.1	0		20.9
MGMW-6	deep							0	0.2	0		21.0

SOUTHERLY PROPERTY LINE

Sampling Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O ₂
MGP-19 top dump							N/A				
MGP-18							0	0.2	0		20.7
MGP-14							0	0.1	0		21.8
MGP-13							0	0.1	0		19.8
MGP-12							0	0.2	0		19.9
MGP-11							0	0.3	0		21.1
MGP-10							0	0.1	0		20.7
Richie&Clapper- Easterly GWMW							0	0.1	0		21.1
Richie&Clapper- Westerly GWMW							0	0.3	0		21.0

ADDITIONAL MONITORING WELLS

Sampling Location	Date	Time (hh:mm)	Sampler's Initials	Weather	Ambient Temp.	Bar. Pressure	CH ₄	CO ₂	%LEL	H ₂ S	O_2
MSW-GV-1 Top North	4/1/19	9:45am	RW	Sunny	40	29.81	38.7	29.7			0.3
MSW-GV-2 Top Middle							25.6	23.7			0.1
MSW-GV-3 Top South							41.3	30.45			0.1
S-GV-1							0	2.2	0		19.2
S-GV-2							0	0.8	0		21.7
S-GV-3							0	0.3	0		20.3
S-GV-4							0	3.1	0		18.6
S-GV-5							0	0.6	0		21.1
S-GV-6							N/A				
S-GV-7							N/A				
S-GV-8							N/A				

APPENDIX E: CITY DIRECTORIES

Rivers Edge 484 Boston Post Road Wayland, MA 01778

Inquiry Number: 5006034.5

July 27, 2017

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING. WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2017 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2013	$\overline{\checkmark}$		Cole Information Services
2008	$\overline{\checkmark}$		Cole Information Services
2003	$\overline{\checkmark}$		Cole Information Services
1999	$\overline{\checkmark}$		Cole Information Services
1995	$\overline{\checkmark}$		Cole Information Services
1992	$\overline{\checkmark}$		Cole Information Services
1988	$\overline{\checkmark}$		Cole Criss-Cross Directory
1984	$\overline{\checkmark}$		Cole Criss-Cross Directory

RECORD SOURCES

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

FINDINGS

TARGET PROPERTY STREET

484 Boston Post Road Wayland, MA 01778

<u>Year</u>	<u>CD Image</u>	<u>Source</u>
BOSTON F	POST RD	
2013	pg A1	Cole Information Services
2008	pg A2	Cole Information Services
2003	pg A3	Cole Information Services
1999	pg A4	Cole Information Services
1995	pg A6	Cole Information Services
1992	pg A7	Cole Information Services
1988	pg A8	Cole Criss-Cross Directory
1988	pg A9	Cole Criss-Cross Directory
1984	pg A10	Cole Criss-Cross Directory

5006034-5 Page 2

FINDINGS

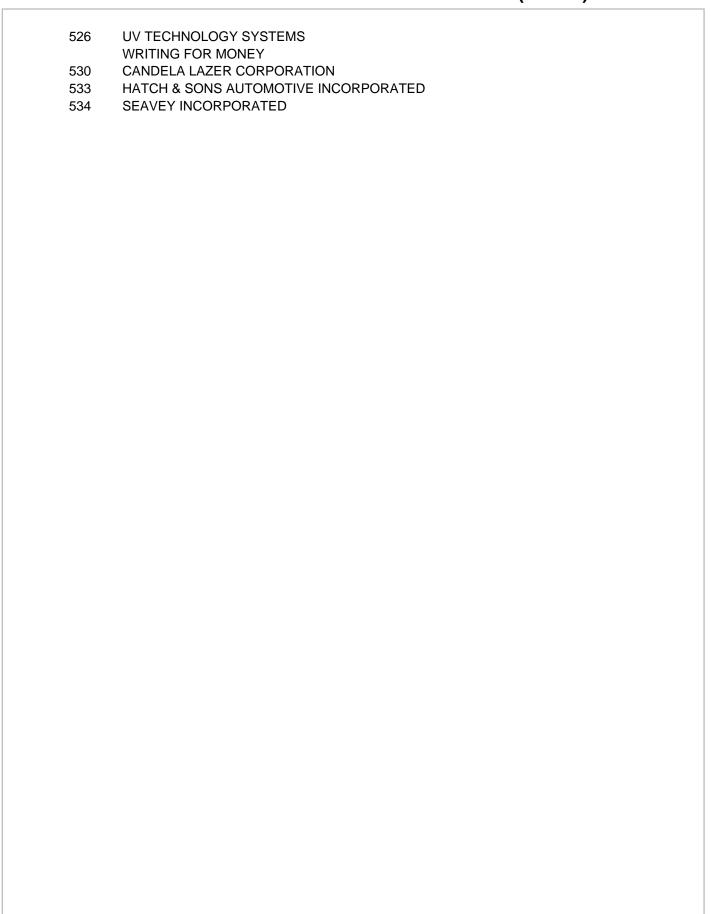
CROSS STREETS

No Cross Streets Identified

5006034-5 Page 3

205	CVC DITADMACY
325	CVS PHARMACY
	FRANKLIN CATERERS
	VOLLWOOD COMPUTER SERVICE
326	SOVEREIGN BANK
334	ADAMS LOCKSMITH
	WAYLAND MINI MARKET
336	WAYLAND PIZZA HOUSE
338	COOKS AUTOMOTIVE OF WAYLAND
356	WAYLAND FOREIGN MOTORS LLC
364	OSMOND RALPH S CO
395	JOHN RUSSELL
397	RUSSELLS GARDEN CENTER
430	AQUARION OPERATING SERVICES
490	FIRST STUDENT
522	LUMINA AT LONGFELLOW
	ZIP ZONE AT LONGFELLOW
524	LONGFELLOW CLUB THE
	LONGFELLOW HEALTH CENTER
526	AI3 ARCHITECTS
	NATIONAL DENTEX CORP
	SOFTSCAPE
530	CANDELA CORP
533	BENTLEY OF BOSTON
	HERITAGE MOTOR WORKS
	LAMBORGHINI OF BOSTON
	ROLLS ROYCE MOTOR CARS OF NEW ENGLAN

325	ADVANCED EXCAVATION CORP	
326	SOVEREIGN BANK	
334	ABODE	
	WAYLAND MINI MARKET	
336	WAYLAND PIZZA HOUSE	
338	COOKS AUTOMOTIVE	
	DAVE STARMER DISPOSAL INC	
372	LISA RUTHIG	
395	JOHN RUSSELL	
397	RUSSELLS GARDEN CENTER	
508	EH PUBLISHING	
522	ADTECH	
	LOAN FELLOW CHILDREN CENTER	
	LOGAN PRODUCTS CO	
524	LONGIELLOW HEALTH CENTER	
	SUDBURY RACQUET CLUB INC	
	TENNIS PRO SHOP INC	
526	ALTERNATIVE SOLUTIONS	
	EDUCATION NETWORK INC THE	
	SHOW ME THE FOOD CO	
	SOFTSCAPE INC	
530	CANDELA LASER CORP	
533	BENTLEY BOSTON	
	FOREIGN MOTORS WEST INC	
	HERB CHAMBERS OF WAYLAND INC	
	HERITAGE MOTOR WERKS	


326	OCCUPANT UNKNOWN
207	SOVEREIGN BANK
327	HUNNEMAN COLDWELL BANKER
338	DANIEL STARMER
050	DAVID STARMER INC
356	OCCUPANT UNKNOWN
364	OCCUPANT UNKNOWN
270	RALPH S OSMOND CO
372	OCCUPANT UNKNOWN
395	JOHN RUSSELL
397	OCCUPANT UNKNOWN
400	RUSSELLS GARDEN CTR
400	BUS WAYLAND
426 430	JANICE CARLSON MOLDFLOW CORP
430	
432	WOODARD & CURRAN INC
432 522	SOUND VISION INC ADTECH
522 524	HOLISTIC HEALTH MANAGEMENT INC
324	KENNETH HAZIRJIAN
	LAURENCE HAMMEL
	LONGFELLOW CLUB
	LONGFELLOW HEALTH CTR ACCTS
	SUDBURY RACQUET CLUB INC
526	526 BPR EAST
320	ALTERNATIVE SOLUTIONS
	COMPUTER REVIVALS INC
	DAVID ELLIOTT
	DAVID ELLIOTT
	ELECTRONIC HOUSE
	EXCIMER LASER SYSTEMS INC
	ISO 9000 NETWORK
	SOFTSCAPE INC
	UV TECH SYSTEMS INC
530	CANDELA SKIN CARE CENTERS INC
550	OCCUPANT UNKNOWN
533	OCCUPANT UNKNOWN
534	RICHARD WILSON
554	TAIOTH AND WILDON

<u>Target Street</u> <u>Cross Street</u> <u>Source</u>

Cole Information Services

325	CARAWAYS INCORPORATED
	IRRIGATION SERVICES INCORPORATED
	VILLAGE BARBER SHOP
	VOLLWOOD COMPUTER SERVICE
004	WAYLAND TAX AGENCY
334	PICTURE STORE THE
000	WAYLAND SPORTSWEAR OUTLET
336	WAYLAND PIZZA HOUSE
338	STARMER DAVE SERVICE STATION
250	STARMERS DAVE DISPOSAL INCORPORATED
356	AUTOMOTIVE PROFIT BUILDERS COOKS AUTOMOTIVE OF WAYLAND INCORPORATED
264	OSMOND RALPH S COMPANY
364	ALLISON KEHNE
372	JOHN RUSSELL
397	RUSSELL SALES COMPANY MANUFACTURERS AGT
397	RUSSELL'S GARDEN CENTER
490	METHUEN CONSTRUCTION COMPANY INCORPORATED
522	ADTECH SYSTEMS
522	ELECTRO FREETO MANUFACTURING COMPANY INCORPORATED
	GIORGIO ROBERT SUDBURY SCHOOL OF TAEKWON DO
	LONGFELLOW CHILDRENS CENTER
524	LONGFELLOW CLUB
324	LONGFELLOW CLUB THE
	LONGFELLOW HEALTH CENTER INCORPORATED
526	ADTECH SYSTEMS
020	ALAN CHAPMAN COMM
	ALTERNATIVE SOLUTIONS
	AMERICAN WRITERS REVIEW
	AUTOMOTIVE PROFIT BUILDERS
	AUTOMOTIVE PROFIT BUILDERS COMPANY INCORPORATED
	BLUE DOLPHIN COMMUNICATIONS
	CARE COMPUTER SYSTEMS INCORPORATED
	CHAPMAN ALAN COMMUNICATIONS
	EDITOR & WRITER
	EDUCATION NETWORK INCORPORATED
	EH PUBLISHING INCORPORATED
	EXCIMER LASER SYSTEMS
	HAMBLIN GROUP THE
	IMPRESS DESIGN TYPOGRAPHY
	INTERNET VOYAGER
	ISO 9000 NETWORK
	J E ROBISON SALES
	LASERTONE CORPORATION
	NATIONAL DENTEX CORPORATION
	PORTABLE CLEAN ROOMS INCORPORATED
	RAZCAL CORPORATION
	SUBSCRIPTION MARKETING
	TECHNICAL SUPPORT SERVICES INCORPORATED
	TMP SERVICES COMPANY

BOSTON POST RD 1999 (Cont'd)

325	CARAWAY'S INC
	CASE TRAVEL SERVICE INC
	IRRIGATION SERVICES INC
	VILLAGE BARBER SHOP
	VOLLWOOD COMPUTER SERVICE
326	SHAWMUT BANK-AREA BANKING OFFICES-WAYLAND
336	WAYLAND PIZZA HOUSE
338	STARMER DAVE SERV STA
	STARMER'S DAVE DISPOSAL INC
356	BILL & LEO AUTO SERVICE
	WAYLAND CITGO SERVICE
364	OSMOND RALPH S CO
395	HIGGINS, EMILY
	PLISSEY, PAUL
397	RUSSELL'S GARDEN CENTER
430	RAYTHEON COMPANY-EQUIPMENT DIVISION HQTRS
500	RAYTHEON COMPANY-EQUIPMENT DIVISION HQTRS-EQUIPMENT DEVELOPMENT
522	ELECTRO FREETO MFG CO INC
	LOGAN PRODUCTS
504	WATERS MANUFACTURING INC
524	LONGFELLOW CLUB THE
	LONGFELLOW HEALTH CENTER
500	SUDBURY CHIROPRACTIC OFFICE
526	ADTECH SYSTEMS
	ALTERNATIVE SOLUTIONS
	CANDELA LAZER CORP
	CHAPMAN ALAN COMMUNICATIONS
	EXCIMER LASER SYSTEMS
	HAMBLIN GROUP THE
	IMPRESS DESIGN TYPOGRAPHY
	ISO 9000 NETWORK
	J E ROBISON SALES
	PORTABLE CLEAN ROOMS INC
504	TMP SERVICES CO
534	SEAVEY INC

325	CARAWAY'S INC
	CASE TRAVEL SERVICE INC
	LASERTONE CORP
	VILLAGE BARBER SHOP
	VOLLWOOD COMPUTER SERVICE
326	WEST NEWTON SVGS BANK
336	WAYLAND PIZZA HOUSE
338	STARMER DAVE SERV STA
	STARMER'S DAVE DISPOSAL INC
346	SWARTHOUT, K
356	BILL & LEO AUTO SERVICE
	WAYLAND CITGO SERVICE
364	OSMOND RALPH S CO
372	IACOVIELLO, M
397	RUSSELL'S GARDEN CENTER
	SKEHAN, ELIZ & TIM
430	RAYTHEON COMPANY-EQUIPMENT DIVISION HQTRS
	RAYTHEON COMPANY-EQUIPMENT DIVISION HQTRS-EQUIPMENT DEVELOPMENT
522	RICHEY & CLAPPER INC
	WATERS MANUFACTURING INC
524	LONGFELLOW HEALTH CENTER
	SUDBURY CHIROPRACTIC OFFICE
526	CANDELA LAZER CORP
	CHAPMAN ALAN COMMUNICATIONS
	CYMER
	IMPRESS DESIGN/TYPOGRAPHY INC
	KOLMAR TECHNOLOGIES
	TMP SERVICES CO

Target Street Cross Street Source

✓ - Cole Criss-Cross Directory

BOSTON POST RD	1900
* Ok International	.86 651-1438
303 A * Wayland Antique .	
304★ Aneptek Corp	
* Ledgewood Assoc	
* Smith&Donahue Inc .	
305★ Newtonvl Camra&Vid	
* Photo-Video Store .	
* Western Union	
309★ Dragon Win Restrut .	
* Rockwell S Restaur .	
310★ Atmtv Svc Mngmt	
Scott M Brindley	
*T B Chisholm Ins	
* Metro West Mdcl Sr	
★ Olga European Skin .	
311★ Foster&Foster	
* Dr F N Natale	the second secon
* Dr J Spada-Horne	
	.85 358-7758
* Dr H J Stacks	
	. п 358-7758
313 * Thayers Phrmcy Way	
317 J R Heartland	
320 N	P
325★ Case Trvl Svc Inc	
* Criste Electronics	
Erwin David	
*W S Farrell Co	
* Lincoln-Fairfield	
*R H Assocts Inc	
* Viking Intrntnl	
* Village Barber Sho .	
* Vollwood Computer .	
326★ West Nwtn Svg Bank	
334★ Carpet Carousel	.76 358-7301
336★ Wayland Pizza Hse .	. 358-7316
338 * D Starmer Srv Sta .	
★ D Starmers Dispsl	. 358-4040
346 K Swarthout	.82 358-7263
356★ Bill&Leo Auto Svs	. п 358-7760
* Wayland Citgo	
364★R S Osmond Co	. 84 358-5321
372 Denis Thibault	
397★ Russells Grdn Ctr	358-2283
© COPYRIGHT INFORMATIO	
II - New Listing To The Direct	ctory New Listing

BOSTON POST RD 1988

	PAGE 276 COL	ļ
8 354 397 218 777 741 422 369 201 369 504 312 331 890 946 985 652	397 Russells Grdn Ctr	
834	BOW RD 01778	

Target Street

BOSTON POST RD 1984

and the same of th	
325★H D Associates	358-4701
★Lincoln-Fairfield	358-5219
★Meribel Sports	358-4122
*R H Assocs	358-4701
★Village Barbr Shop	358-7575
★Vollwood Computer	358-5126
334★Carpet Carousel	358-7301
336★Wayland Pizza Hse	358-7316
338★Starmer Dave	358-7793
★Starmers Disposal	358-4040
346 K Swarthout	
356 John Adolf	358-2173
★Wayland Gulf Srvc	358-7760
397 Lewis S Russell	358-4083
★Russells Gardn Ctr	358-2283
★Russells Gardn Ctr	358-5183
430★Raytheon Company	358-2721
533★Hub Precsn Prdcts	358-5141
★McIntire Brass Wrk	358-5141
534★Dasibi Environmnt	358-5969
No # US Gov Dins Audt A	358-2721
No #★US Gov PO Wayland	358-2912
No #★WayInd-Sudbry Sep#	
No #★Wayland Town Dump	
No #★Wylnd Twn Ofc Dump	358-7910
59 Residence 118	Business
BOSWORTH RD	01701
O 1- 99 TZ383902	\$AB 3
002330	
2 John E Gibbons	879-8255
3 E H Behrens Jr	
Clark F Grain	875-3827

APPENDIX F: AERIAL PHOTOGRAPHS

Rivers Edge 484 Boston Post Road Wayland, MA 01778

Inquiry Number: 5006034.9

July 28, 2017

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

07/28/17

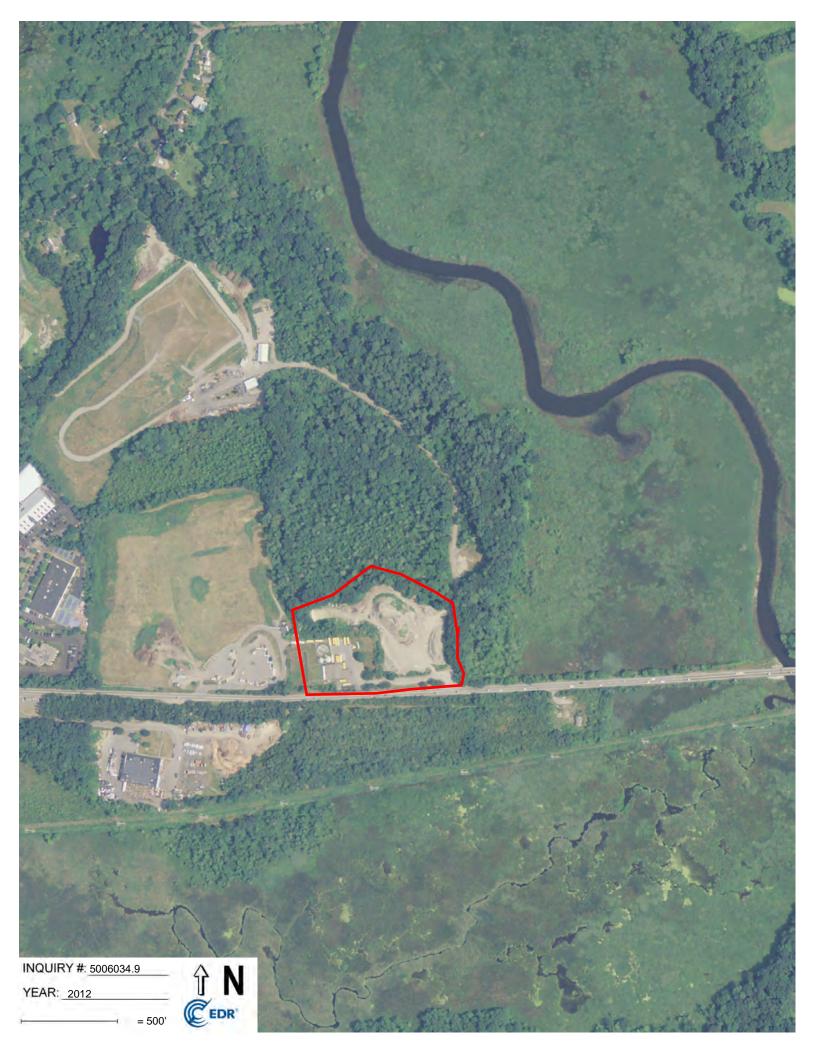
Site Name: Client Name:

Rivers Edge 484 Boston Post Road Wayland, MA 01778 EDR Inquiry # 5006034.9 Vertex Engineering Services 400 Libbey Parkway Weymouth, MA 02189-0000 Contact: Kristen Sarson

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2012	1"=500'	Flight Year: 2012	USDA/NAIP
2010	1"=500'	Flight Year: 2010	USDA/NAIP
2008	1"=500'	Flight Year: 2008	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
1995	1"=500'	Acquisition Date: March 29, 1995	USGS/DOQQ
1985	1"=500'	Flight Date: April 17, 1985	USGS
1980	1"=500'	Flight Date: October 10, 1980	USDA
1978	1"=500'	Flight Date: May 12, 1978	USGS
1970	1"=500'	Flight Date: October 06, 1970	USDA
1969	1"=500'	Flight Date: April 09, 1969	USGS
1963	1"=500'	Flight Date: April 27, 1963	USGS
1957	1"=500'	Flight Date: April 22, 1957	USGS
1952	1"=500'	Flight Date: June 16, 1952	USDA


When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.


Copyright 2017 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

APPENDIX G: TOPOGRAPHIC MAPS

Rivers Edge 484 Boston Post Road Wayland, MA 01778

Inquiry Number: 5006034.4

July 27, 2017

EDR Historical Topo Map Report

with QuadMatch™

EDR Historical Topo Map Report

07/27/17

Site Name: Client Name:

Rivers Edge 484 Boston Post Road Wayland, MA 01778 EDR Inquiry # 5006034.4 Vertex Engineering Services 400 Libbey Parkway Weymouth, MA 02189-0000 Contact: Kristen Sarson

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by Vertex Engineering Services were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Results:	Coordinates:
Jour on Modulio.	oooi amates.

P.O.# 46047 Latitude: 42.363386 42° 21' 48" North

Project: River s Edge - Wayland Longitude: -71.380921 -71° 22' 51" West

 UTM Zone:
 Zone 19 North

 UTM X Meters:
 303938.34

 UTM Y Meters:
 4692869.63

Elevation: 121.01' above sea level

Maps Provided:

2012 1918 1987 1915 1979 1894 1970 1965, 1970 1958 1950

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2017 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2012 Source Sheets

Framingham 2012 7.5-minute, 24000

Concord 2012 7.5-minute, 24000

Maynard 2012 7.5-minute, 24000

Natick 2012 7.5-minute, 24000

1987 Source Sheets

Maynard 1987 7.5-minute, 25000 Aerial Photo Revised 1981

Framingham 1987 7.5-minute, 25000 Aerial Photo Revised 1981

1979 Source Sheets

Framingham 1979 7.5-minute, 25000 Aerial Photo Revised 1977

Maynard 1979 7.5-minute, 25000 Aerial Photo Revised 1977

CONCORD 1979 7.5-minute, 25000 Photo Revised 1979

1970 Source Sheets

Natick 1970 7.5-minute, 25000 Aerial Photo Revised 1969

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1965, 1970 Source Sheets

Maynard 1965 7.5-minute, 24000

Framingham 1965 7.5-minute, 24000 Aerial Photo Revised 1939

Concord 1970 7.5-minute, 24000 Aerial Photo Revised 1969

1958 Source Sheets

Concord 1958 7.5-minute, 24000

Natick 1958 7.5-minute, 24000

1950 Source Sheets

Maynard 1950 7.5-minute, 24000

Natick 1950 7.5-minute, 24000

Concord 1950 7.5-minute, 24000

Framingham 1950 7.5-minute, 24000 Aerial Photo Revised 1938

1943 Source Sheets

Framingham 1943 7.5-minute, 31680

Natick 1943 7.5-minute, 31680

Concord 1943 7.5-minute, 31680

Maynard 1943 7.5-minute, 31680

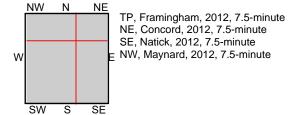
Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1918 Source Sheets

Framingham 1918 15-minute, 62500

1915 Source Sheets



FRAMINGHAM 1915 15-minute, 62500

1894 Source Sheets

Framingham 1894 15-minute, 62500

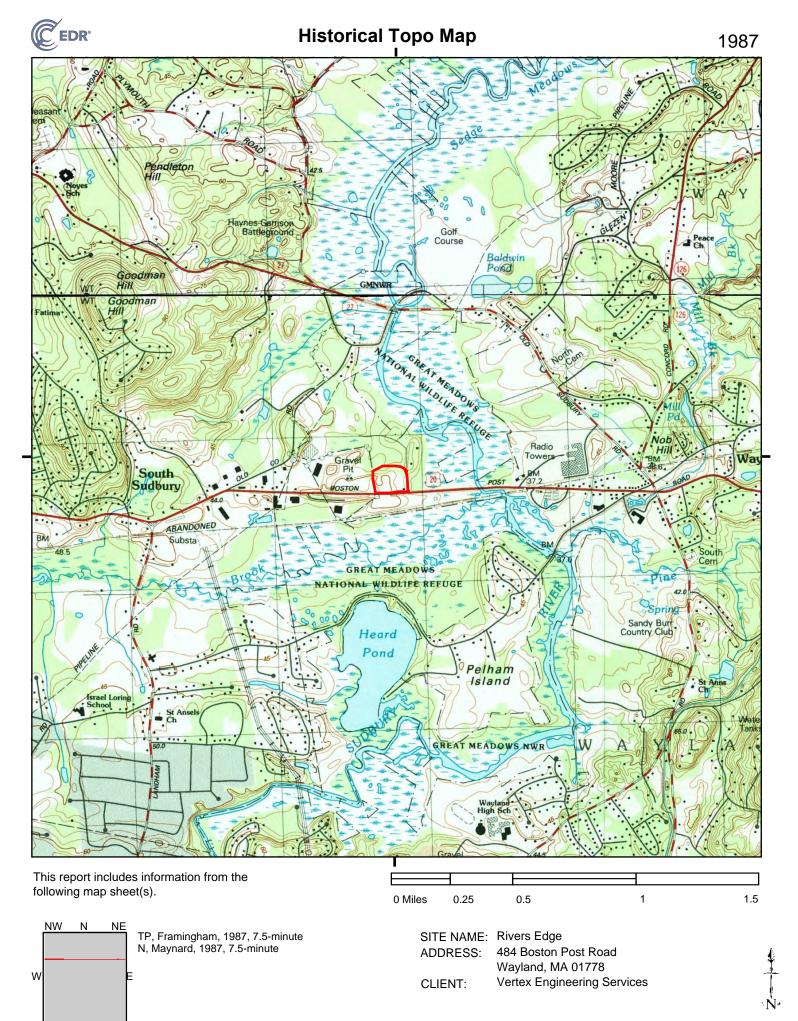
SITE NAME: Rivers Edge

0.25

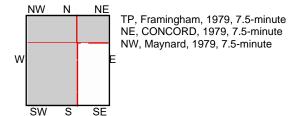
0 Miles

484 Boston Post Road ADDRESS:

0.5


Wayland, MA 01778

CLIENT: Vertex Engineering Services



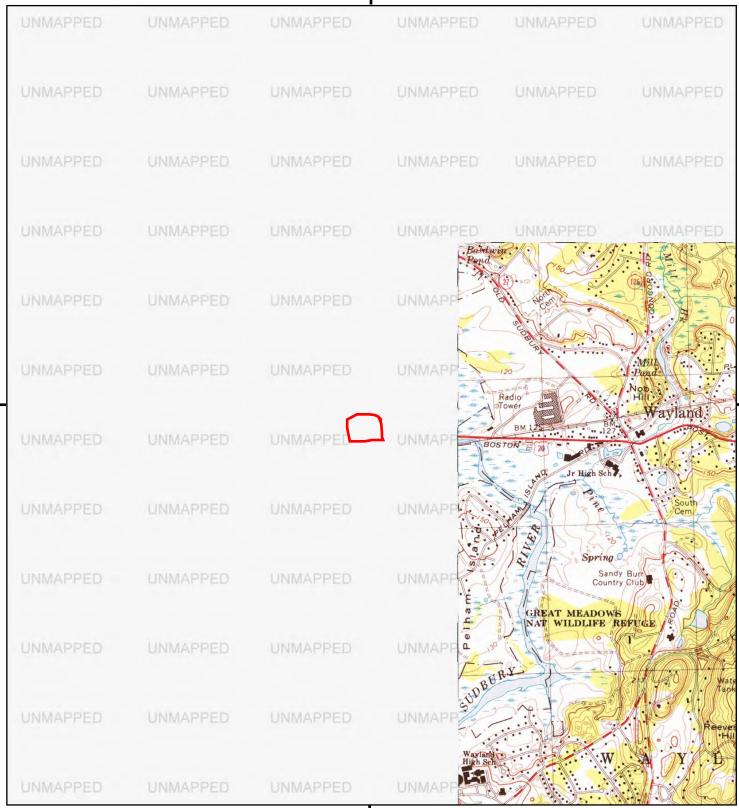
1

1.5

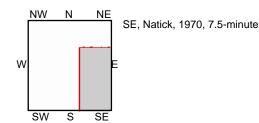
SW

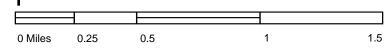
0 Miles 0.25 0.5 1 1.5

SITE NAME: Rivers Edge


ADDRESS: 484 Boston Post Road

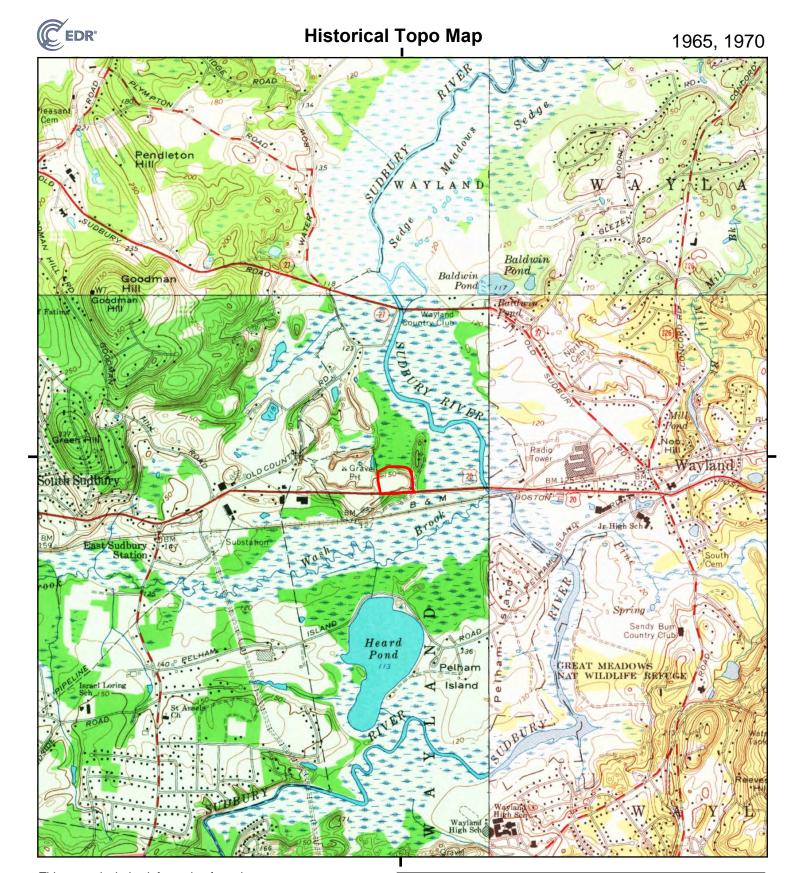
Wayland, MA 01778

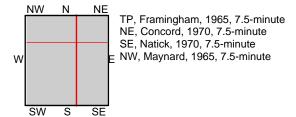




Historical Topo Map

This report includes information from the following map sheet(s).



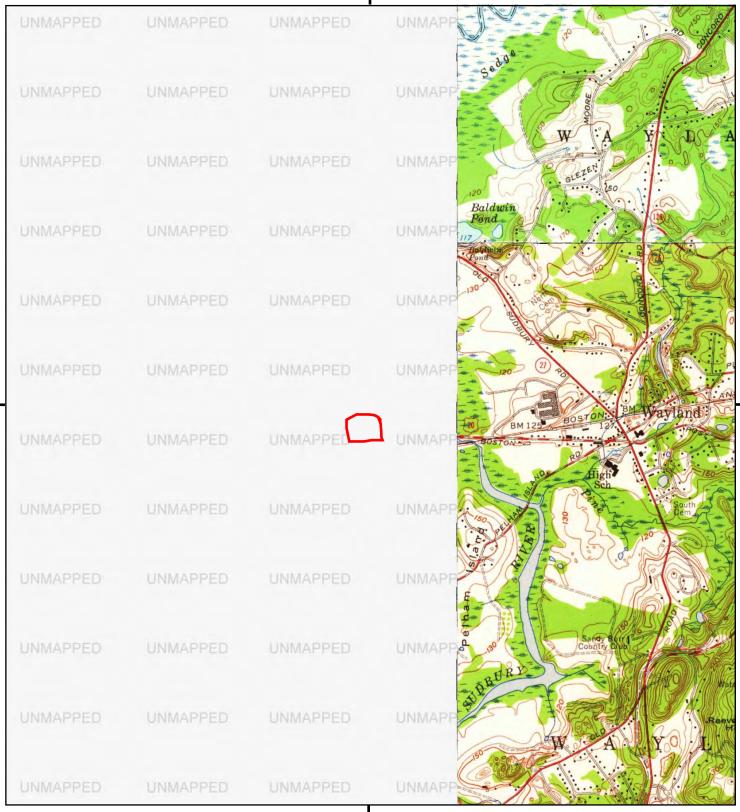

SITE NAME: Rivers Edge

ADDRESS: 484 Boston Post Road

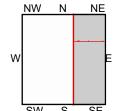
Wayland, MA 01778

0 Miles 0.25 0.5 1 1.5

SITE NAME: Rivers Edge


ADDRESS: 484 Boston Post Road

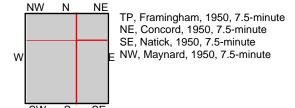
Wayland, MA 01778



Historical Topo Map

This report includes information from the following map sheet(s).

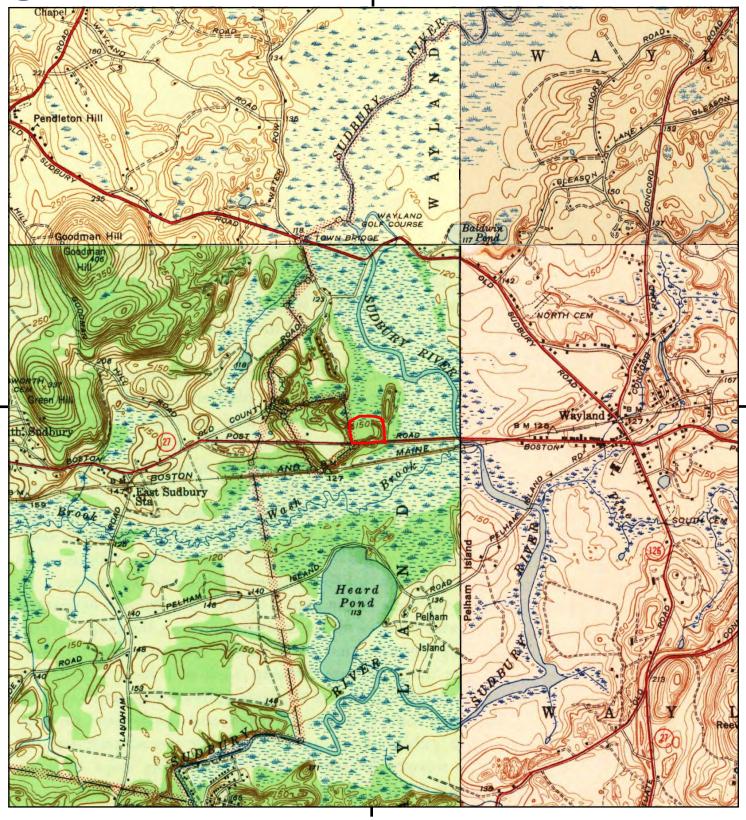
NE, Concord, 1958, 7.5-minute SE, Natick, 1958, 7.5-minute

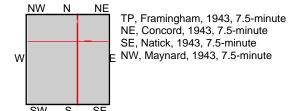


SITE NAME: Rivers Edge

ADDRESS: 484 Boston Post Road

Wayland, MA 01778

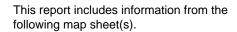


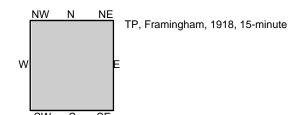

0 Miles 0.25 0.5 1 1.5

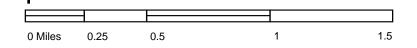
SITE NAME: Rivers Edge

ADDRESS: 484 Boston Post Road

Wayland, MA 01778

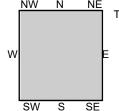



0 Miles 0.25 0.5 1 1.5


SITE NAME: Rivers Edge

ADDRESS: 484 Boston Post Road

Wayland, MA 01778



SITE NAME: Rivers Edge

ADDRESS: 484 Boston Post Road

Wayland, MA 01778

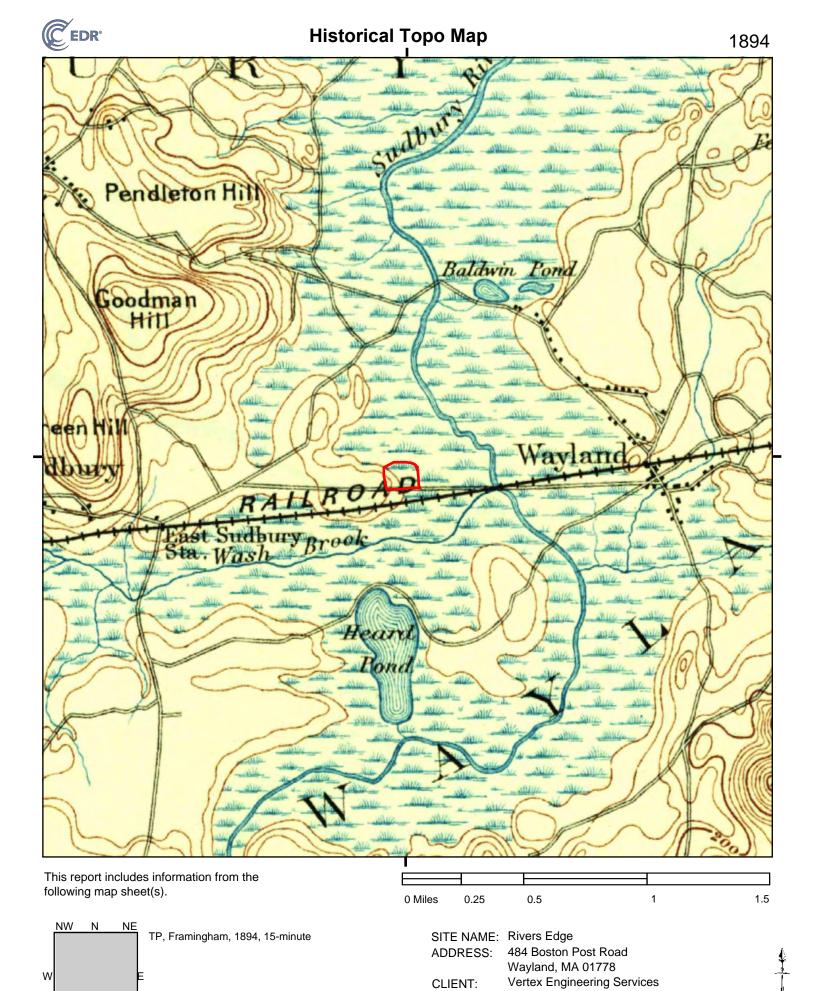
TP, FRAMINGHAM, 1915, 15-minute

SITE NAME: Rivers Edge

0.25

0 Miles

ADDRESS: 484 Boston Post Road


0.5

Wayland, MA 01778

CLIENT: Vertex Engineering Services

1.5

APPENDIX H: SANBORN FIRE INSURANCE MAPS

Rivers Edge 484 Boston Post Road Wayland, MA 01778

Inquiry Number: 5006034.3

July 27, 2017

Certified Sanborn® Map Report

Certified Sanborn® Map Report

Site Name: Client Name:

Rivers Edge Vertex Engineering Services
484 Boston Post Road 400 Libbey Parkway
Wayland, MA 01778 Weymouth, MA 02189-0000

EDR Inquiry # 5006034.3 Contact: Kristen Sarson

07/27/17

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Vertex Engineering Services were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # E95D-401D-BE45

PO# 46047

Project River s Edge - Wayland

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results

Certification #: E95D-401D-BE45

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

✓ Library of Congress

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Vertex Engineering Services (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2017 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

page 2

APPENDIX I: REGULATORY DATABASE REPORT

Rivers Edge 484 Boston Post Road Wayland, MA 01778

Inquiry Number: 5611734.2s

April 04, 2019

The EDR Radius Map™ Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary.	ES1
Overview Map.	2
Detail Map.	3
Map Findings Summary	4
Map Findings.	8
Orphan Summary	208
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	

GeoCheck - Not Requested

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2019 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

484 BOSTON POST ROAD WAYLAND, MA 01778

COORDINATES

Latitude (North): 42.3636870 - 42° 21' 49.27" Longitude (West): 71.3821120 - 71° 22' 55.60"

Universal Tranverse Mercator: Zone 19 UTM X (Meters): 303835.8 UTM Y (Meters): 4692692.0

Elevation: 140 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 5644808 FRAMINGHAM, MA

Version Date: 2012

Northeast Map: 5644804 CONCORD, MA

Version Date: 2012

Southeast Map: 5644826 NATICK, MA

Version Date: 2012

Northwest Map: 5646209 MAYNARD, MA

Version Date: 2012

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20140904, 20140712

Source: USDA

MAPPED SITES SUMMARY

Target Property Address: 484 BOSTON POST ROAD WAYLAND, MA 01778

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
A1	WAYLAND SANDHILL LAN	484 BOSTON POST RD	RCRA NonGen / NLR, FINDS, ECHO, RI MANIFEST		TP
A2	TOWN OF WAYLAND FORM	484-490 BOSTON POST	MA ASBESTOS		TP
A3	WAYLAND SAND HILL TR	484 BOSTON POST RD	MA SHWS, MA SWF/LF, MA RELEASE, MA ASBESTOS	, MA HW	TP
A4	NEAR LANDFILL	484 BOSTON POST RD	MA RGA HWS		TP
A5	WAYLAND LF	484 BOSTON POST ROAD	FINDS		TP
A6	WAYLAND SAND HILL LA	484 BOSTON POST RD	MA RGA HWS		TP
7	SUDBURY DUMP	DAKIN RD	MA SWF/LF	Lower	777, 0.147, ESE
8	WATERS MANUFACTURING	522 BOSTON POST RD L	MA LAST, MA RELEASE	Higher	910, 0.172, West
9	WATERS MANUFACTURING	BOSTON POST ROAD	SEMS	Higher	1515, 0.287, West
10	MHD STAGING AREA - S	BOSTON POST RD	MA SHWS, MA RELEASE	Lower	1670, 0.316, East
11	PROPERTY	533 BOSTON POST RD	MA SHWS, MA RELEASE, MA SPILLS, MA ASBESTOS,	MA HWLo.wer	1800, 0.341, West
12	NO LOCATION AID	6 OLD COUNTY RD	MA SHWS, MA RELEASE	Higher	1972, 0.373, WNW
13	TRANSFER STATION	448 BOSTON POST ROAD	MA MERCURY	Lower	1987, 0.376, East
B14	MA HIGHWAY DEPT	BOSTON POST RD RTE 2	MA SHWS, MA LUST, MA RELEASE	Lower	2177, 0.412, West
B15	DPW TRANSFER STATION	20 BOSTON POST RD	MA SHWS, MA SWF/LF, MA LAST, MA RELEASE, MA H	W GENLower	2229, 0.422, West
B16	RICHEY AND CLAPPER I	33 BOSTON POST RD	MA SHWS, MA RELEASE, MA HW GEN	Lower	2285, 0.433, West
B17	NO LOCATION AID	83 BOSTON POST RD	MA SHWS, MA SPILLS, MA RELEASE	Lower	2391, 0.453, West
C18	430 BOSTON POST ROAD	430 BOSTON POST ROAD	SEMS-ARCHIVE, MA SHWS, MA LUST, MA INST CONT	ROL,Lower	2462, 0.466, East
C19	NSTAR GAS & ELECTRIC	MBTA ROW NR400-440BO	MA SHWS, MA RELEASE, MA ENF	Lower	2533, 0.480, East
20	UNION CARBIDE LINDE	141 BOSTON POST RD	MA SHWS, MA LUST, MA SPILLS, MA RELEASE	Lower	3258, 0.617, West
D21	COOKS AUTOMOTIVE OF	356 BOSTON POST RD	MA SHWS, MA LUST, MA UST, MA RELEASE, MA ENF,	MA Lower	3665, 0.694, East
22	BUDDY DOG ANIMAL HOS	163 BOSTON POST RD	MA SHWS, MA RELEASE, MA ASBESTOS	Lower	3718, 0.704, WSW
D23	334-338 BOSTON POST	338 BOSTON POST ROAD	MA SHWS, MA RELEASE, MA ENF, MA HW GEN	Lower	3824, 0.724, East
D24	NO LOCATION AID	325 BOSTON POST RD	MA SHWS, MA LUST, MA RELEASE, MA ASBESTOS	Lower	3898, 0.738, East
25	NO LOCATION AID	86 OLD SUDBURY ROAD	MA SHWS, MA RELEASE	Higher	3954, 0.749, NE
26	NO LOCATION AID	19 HAWTHORNE ROAD	MA SHWS, MA RELEASE	Lower	4195, 0.795, SW
E27	WAYLAND CLEANERS	304 BOSTON POST RD	MA SHWS, MA RELEASE, MA UIC	Lower	4264, 0.808, East
28	WAYLAND VILLAGE	297-319 BOSTON POST	MA SHWS, MA RELEASE	Lower	4282, 0.811, East
E29	RTE 20	298 BOSTON POST RD	MA SHWS, MA RELEASE, MA DRYCLEANERS, MA EN	=, MAHLMow.er	4352, 0.824, East
E30	SEPTAGE FACILITY	BOSTON POST RD	MA SHWS, MA RELEASE	Lower	4430, 0.839, East
31	NO LOCATION AID	BOSTON POST ROAD AT	MA SHWS, MA RELEASE	Higher	4816, 0.912, West
32	SUDBURY AUTOMOTIVE	209 BOSTON POST RD	MA SHWS, MA LUST, MA UST, MA RELEASE, MA HW	GEN Higher	5199, 0.985, West

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following records. For more information on this property see page 8 of the attached EDR Radius Map report:

Site	Database(s)	EPA ID
WAYLAND SANDHILL LAN 484 BOSTON POST RD	RCRA NonGen / NLR EPA ID:: MAR000015388	MAR000015388
WAYLAND, MA 01778 FINDS Registry ID:: 110003	FINDS Registry ID:: 110003500658	
	ECHO Registry ID: 110003500658	
	RI MANIFEST EPA Id: MAR000015388 Manifest Document Number: RIG0233554	
TOWN OF WAYLAND FORM 484-490 BOSTON POST WAYLAND, MA	MA ASBESTOS	N/A
WAYLAND SAND HILL TR 484 BOSTON POST RD WAYLAND, MA 01778	MA SHWS Release Tracking Number / Current Status: 3-0034474 / Release Tracking Number / Current Status: 3-0024698 / Release Tracking Number / Current Status: 3-0027741 /	RAO
	MA SWF/LF Database: LF PROFILES, Date of Government Version: 0 Database: SWF/LF, Date of Government Version: 05/01/2 Current Operational Status: Inactive Current Operational Status: Active Status: Inactive	
	MA RELEASE Release Tracking Number / Current Status: 3-0024698 / Release Tracking Number / Current Status: 3-0027741 / Release Tracking Number / Current Status: 3-0034474 /	RAO
	MA ASBESTOS MA HW GEN EPA Id: MAR000015388	
NEAR LANDFILL 484 BOSTON POST RD WAYLAND, MA	MA RGA HWS Facility ID: 3-0027741	N/A
WAYLAND LF 484 BOSTON POST ROAD WAYLAND, MA 01778	FINDS Registry ID:: 110060462244	N/A
WAYLAND SAND HILL LA 484 BOSTON POST RD WAYLAND, MA	MA RGA HWS	N/A

Facility ID: 3-0024698

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal	NPL	site	list
---------	------------	------	------

NPL LIENS..... Federal Superfund Liens

Federal Delisted NPL site list

Delisted NPL..... National Priority List Deletions

Federal CERCLIS list

FEDERAL FACILITY..... Federal Facility Site Information listing

Federal RCRA CORRACTS facilities list

CORRACTS..... Corrective Action Report

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF...... RCRA - Treatment, Storage and Disposal

Federal RCRA generators list

RCRA-LQG______RCRA - Large Quantity Generators RCRA-SQG______RCRA - Small Quantity Generators

RCRA-CESQG...... RCRA - Conditionally Exempt Small Quantity Generator

Federal institutional controls / engineering controls registries

LUCIS....... Land Use Control Information System US ENG CONTROLS...... Engineering Controls Sites List US INST CONTROL....... Sites with Institutional Controls

Federal ERNS list

ERNS..... Emergency Response Notification System

State and	tribal l	eaking	storage	tank	lists
-----------	----------	--------	---------	------	-------

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

State and tribal registered storage tank lists

FEMA UST...... Underground Storage Tank Listing MA AST.......Aboveground Storage Tank Database
INDIAN UST........Underground Storage Tanks on Indian Land

State and tribal voluntary cleanup sites

INDIAN VCP..... Voluntary Cleanup Priority Listing

State and tribal Brownfields sites

MA BROWNFIELDS..... Completed Brownfields Covenants Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

INDIAN ODI...... Report on the Status of Open Dumps on Indian Lands DEBRIS REGION 9..... Torres Martinez Reservation Illegal Dump Site Locations Open Dump Inventory IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL Delisted National Clandestine Laboratory Register US CDL...... National Clandestine Laboratory Register

Local Land Records

MA LIENS..... Liens Information Listing LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

Hazardous Materials Information Reporting System

Other Ascertainable Records

FUDS..... Formerly Used Defense Sites

EPA WATCH LIST..... EPA WATCH LIST

TSCA..... Toxic Substances Control Act

PRP Potentially Responsible Parties
PADS PCB Activity Database System

FTTS......FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide

Act)/TSCA (Toxic Substances Control Act)

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER...... PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS..... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS..... Incident and Accident Data

CONSENT...... Superfund (CERCLA) Consent Decrees

INDIAN RESERV...... Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA...... Uranium Mill Tailings Sites
LEAD SMELTERS..... Lead Smelter Sites
US MINES...... Mines Master Index File
ABANDONED MINES..... Abandoned Mines

DOCKET HWC..... Hazardous Waste Compliance Docket Listing

UXO...... Unexploded Ordnance Sites

FUELS PROGRAM..... EPA Fuels Program Registered Listing

MA AIRS..... Permitted Facilities Listing

MA Financial Assurance Financial Assurance Information Listing MA GWDP..... Ground Water Discharge Permits

MA NPDES Permit Listing

MA TSD...... TSD Facility

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP...... EDR Proprietary Manufactured Gas Plants
EDR Hist Auto..... EDR Exclusive Historical Auto Stations
EDR Hist Cleaner.... EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

MA RGA LUST...... Recovered Government Archive Leaking Underground Storage Tank

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Federal CERCLIS list

SEMS: SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

A review of the SEMS list, as provided by EDR, and dated 02/06/2019 has revealed that there is 1 SEMS site within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WATERS MANUFACTURING Site ID: 0101528	BOSTON POST ROAD	W 1/4 - 1/2 (0.287 mi.)	9	32
EPA Id: MAD982547424				

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE: SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

A review of the SEMS-ARCHIVE list, as provided by EDR, and dated 02/06/2019 has revealed that there is 1 SEMS-ARCHIVE site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
430 BOSTON POST ROAD	430 BOSTON POST ROAD	E 1/4 - 1/2 (0.466 mi.)	C18	65

Site ID: 0100949 EPA Id: MAD990685554

State- and tribal - equivalent CERCLIS

MA SHWS: Contains information on releases of oil and hazardous materials that have been reported to DEP.

A review of the MA SHWS list, as provided by EDR, and dated 12/21/2018 has revealed that there are 22 MA SHWS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
NO LOCATION AID Release Tracking Number / Current Sta	6 OLD COUNTY RD atus: 3-0025622 / RAO	WNW 1/4 - 1/2 (0.373 mi.)	12	40
NO LOCATION AID Release Tracking Number / Current Sta	86 OLD SUDBURY ROAD atus: 3-0032618 / PSNC	NE 1/2 - 1 (0.749 mi.)	25	168
NO LOCATION AID Release Tracking Number / Current Sta	BOSTON POST ROAD AT atus: 3-0027224 / URAM	W 1/2 - 1 (0.912 mi.)	31	191
SUDBURY AUTOMOTIVE Release Tracking Number / Current Sta	209 BOSTON POST RD atus: 3-0033240 / TIERII	W 1/2 - 1 (0.985 mi.)	32	192
Lower Elevation	Address	Direction / Distance	Map ID	Page
MHD STAGING AREA - S Release Tracking Number / Current Sta	BOSTON POST RD atus: 3-0027875 / RAO	E 1/4 - 1/2 (0.316 mi.)	10	34
PROPERTY Release Tracking Number / Current Sta	533 BOSTON POST RD atus: 3-0003351 / RAO	W 1/4 - 1/2 (0.341 mi.)	11	37
MA HIGHWAY DEPT Release Tracking Number / Current Sta	BOSTON POST RD RTE 2 atus: 3-0018306 / RAO	W 1/4 - 1/2 (0.412 mi.)	B14	42
DPW TRANSFER STATION Release Tracking Number / Current Sta	atus: 3-0033503 / ADQREG atus: 3-0034148 / PSNC	W 1/4 - 1/2 (0.422 mi.)	B15	46
RICHEY AND CLAPPER I Release Tracking Number / Current Sta	33 BOSTON POST RD atus: 3-0029754 / RAO	W 1/4 - 1/2 (0.433 mi.)	B16	61
NO LOCATION AID Release Tracking Number / Current Sta	83 BOSTON POST RD atus: 3-0021843 / DPS	W 1/4 - 1/2 (0.453 mi.)	B17	63
430 BOSTON POST ROAD Release Tracking Number / Current Sta *Additional key fields are available in the	atus: 3-0001783 / RAO atus: 3-0013302 / REMOPS atus: 3-0019482 / RAONR atus: 3-0013574 / RAONR	E 1/4 - 1/2 (0.466 mi.)	C18	65
NSTAR GAS & ELECTRIC Release Tracking Number / Current Sta	MBTA ROW NR400-440BO atus: 3-0026027 / DEPNFA	E 1/4 - 1/2 (0.480 mi.)	C19	131
UNION CARBIDE LINDE	141 BOSTON POST RD	W 1/2 - 1 (0.617 mi.)	20	134

Release Tracking Number / Current Status	: 3-0002545 / WCSPRM			
COOKS AUTOMOTIVE OF Release Tracking Number / Current Status	356 BOSTON POST RD : 3-0017974 / RAO	E 1/2 - 1 (0.694 mi.)	D21	137
BUDDY DOG ANIMAL HOS Release Tracking Number / Current Status.	163 BOSTON POST RD : 3-0018895 / RAO	WSW 1/2 - 1 (0.704 mi.)	22	155
334-338 BOSTON POST Release Tracking Number / Current Status.	338 BOSTON POST ROAD : 3-0030287 / TMPS	E 1/2 - 1 (0.724 mi.)	D23	160
NO LOCATION AID Release Tracking Number / Current Status.	325 BOSTON POST RD : 3-0029040 / DPS	E 1/2 - 1 (0.738 mi.)	D24	162
NO LOCATION AID Release Tracking Number / Current Status.	19 HAWTHORNE ROAD : 3-0030271 / RAO	SW 1/2 - 1 (0.795 mi.)	26	171
WAYLAND CLEANERS Release Tracking Number / Current Status Release Tracking Number / Current Status		E 1/2 - 1 (0.808 mi.)	E27	172
WAYLAND VILLAGE Release Tracking Number / Current Status.	297-319 BOSTON POST : 3-0031423 / DPS	E 1/2 - 1 (0.811 mi.)	28	180
RTE 20 Release Tracking Number / Current Status	298 BOSTON POST RD : 3-0022753 / REMOPS	E 1/2 - 1 (0.824 mi.)	E29	182
SEPTAGE FACILITY Release Tracking Number / Current Status:	BOSTON POST RD: 3-0001724 / DEPNDS	E 1/2 - 1 (0.839 mi.)	E30	190

State and tribal landfill and/or solid waste disposal site lists

MA SWF/LF: The Solid Waste Facilities/Landfill Sites records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. The data come from the Department of Environmental Protection's Solid Waste Facility Database/Transfer Stations.

A review of the MA SWF/LF list, as provided by EDR, has revealed that there are 2 MA SWF/LF sites within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
SUDBURY DUMP Database: SWF/LF, Date of Gover Current Operational Status: Inactiv		ESE 1/8 - 1/4 (0.147 mi.)	7	29
DPW TRANSFER STATION Database: LF PROFILES, Date of Database: SWF/LF, Date of Gover Current Operational Status: Closed Current Operational Status: Active Status: Closed	nment Version: 05/01/2018 d	W 1/4 - 1/2 (0.422 mi.)	B15	46

State and tribal leaking storage tank lists

MA LUST: Sites within the Releases Database that have a UST listed as its source.

A review of the MA LUST list, as provided by EDR, and dated 12/21/2018 has revealed that there are 2

MA LUST sites within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
MA HIGHWAY DEPT Release Tracking Number / Current S	BOSTON POST RD RTE 2 Status: 3-0014245 / RAO	W 1/4 - 1/2 (0.412 mi.)	B14	42
430 BOSTON POST ROAD	430 BOSTON POST ROAD	E 1/4 - 1/2 (0.466 mi.)	C18	65
Release Tracking Number / Current S	status: 3-0013302 / REMOPS			
Release Tracking Number / Current S	status: 3-0027651 / DPS			

MA LAST: The Leaking Aboveground Storage Tanks database

A review of the MA LAST list, as provided by EDR, and dated 12/21/2018 has revealed that there are 2 MA LAST sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
WATERS MANUFACTURING	522 BOSTON POST RD L	W 1/8 - 1/4 (0.172 mi.)	8	30
Release Tracking Number / Curren	t Status: 3-0000059 / RAO	,		
Lower Elevation	Address	Direction / Distance	Map ID	Page

State and tribal institutional control / engineering control registries

MA INST CONTROL: Activity and Use Limitations establish limits and conditions on the future use of contaminated property, and therefore allow cleanups to be tailored to these uses.

A review of the MA INST CONTROL list, as provided by EDR, and dated 12/21/2018 has revealed that there is 1 MA INST CONTROL site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
430 BOSTON POST ROAD	430 BOSTON POST ROAD	E 1/4 - 1/2 (0.466 mi.)	C18	65
Release Tracking Number: 3-0013302				
Release Tracking Number: 3-0013574				
Release Tracking Number: 3-0022408				

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

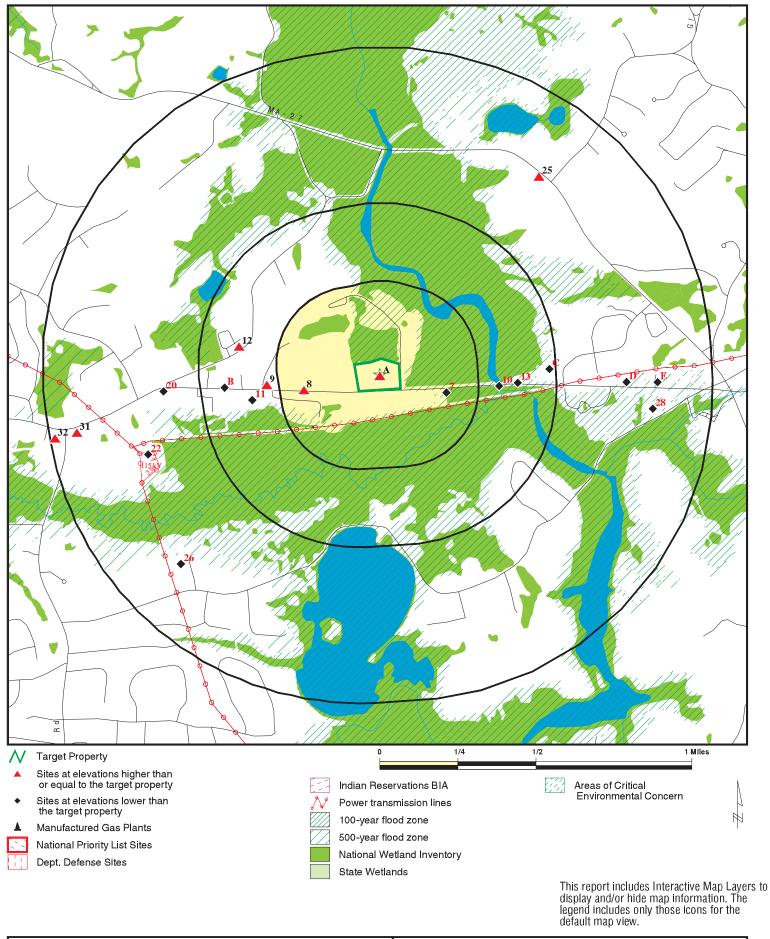
MA MERCURY: A listing of locations, collecting and recycling for mercury-added products. Mercury is toxic to the human nervous system, as well as fish and animals. Mercury can enter the body either through skin absorption or through inhalation of mercury vapors. At room temperature, small beads of mercury will vaporize.

A review of the MA MERCURY list, as provided by EDR, and dated 05/07/2018 has revealed that there is

1 MA MERCURY site within approximately 0.5 miles of the target property.

Lower Elevation	Address	Direction / Distance	Map ID	Page
TRANSFER STATION	448 BOSTON POST ROAD	E 1/4 - 1/2 (0.376 mi.)	13	42

Due to poor or inadequate address information, the following sites were not mapped. Count: 5 records.


Site Name

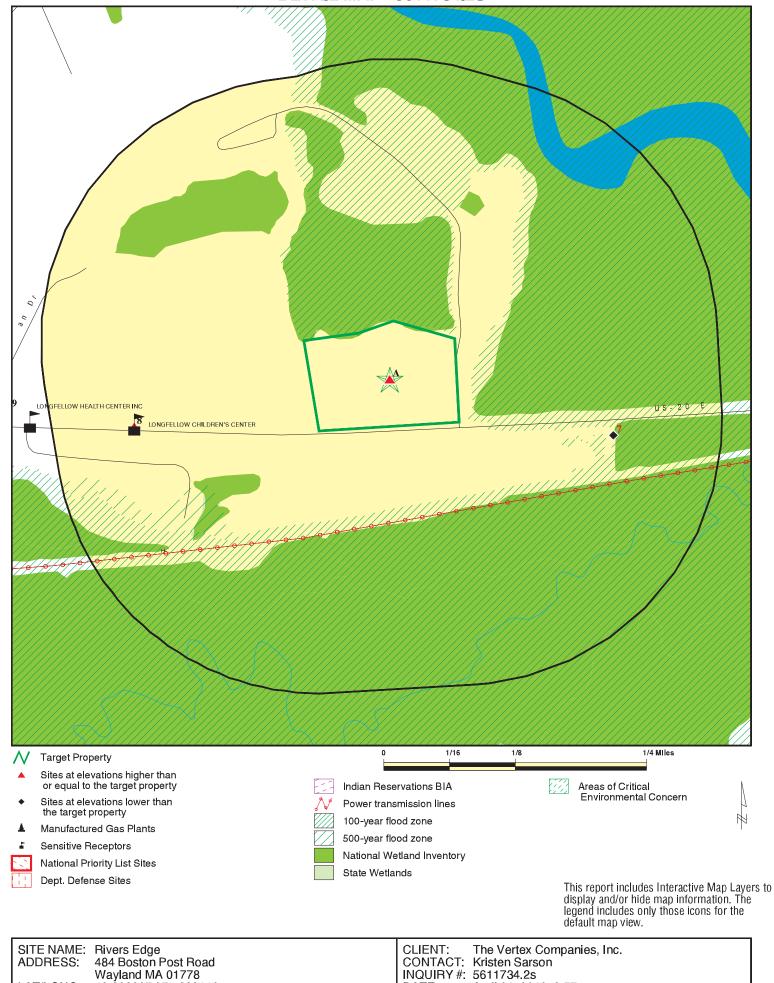
INTERSECTION
CONCORD ST
NO LOCATION AID
MUNICIPAL ROADWAY
SAND HILL SANITARY LANDFILL

Database(s)

MA SHWS, MA RELEASE MA SHWS, MA RELEASE MA SHWS, MA RELEASE MA SHWS, MA RELEASE ODI

OVERVIEW MAP - 5611734.2S

SITE NAME: Rivers Edge


ADDRESS: 484 Boston Post Road

Wayland MA 01778

CLIENT: The Vertex Companies, Inc. CONTACT: Kristen Sarson INQUIRY#: 5611734.2s

LAT/LONG: 42.363687 / 71.382112 DATE: April 04, 2019 3:55 pm

DETAIL MAP - 5611734.2S

INQUIRY#: 5611734.2s LAT/LONG: 42.363687 / 71.382112 DATE: April 04, 2019 3:57 pm

Copyright © 2019 EDR, Inc. © 2015 TomTom Rel. 2015.

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 1.000		0 0 0	0 0 0	0 0 0	0 0 0	NR NR NR	0 0 0
Federal Delisted NPL sit	te list							
Delisted NPL	1.000		0	0	0	0	NR	0
Federal CERCLIS list								
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 1	NR NR	NR NR	0 1
Federal CERCLIS NFRA	P site list							
SEMS-ARCHIVE	0.500		0	0	1	NR	NR	1
Federal RCRA CORRAC	TS facilities li	st						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-COR	RACTS TSD f	acilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generator	rs list							
RCRA-LQG RCRA-SQG RCRA-CESQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional cor engineering controls re								
LUCIS US ENG CONTROLS US INST CONTROL	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
State- and tribal - equiva	alent CERCLIS	;						
MA SHWS	1.000	1	0	0	9	13	NR	23
State and tribal landfill a solid waste disposal site								
MA SWF/LF	0.500	1	0	1	1	NR	NR	3
State and tribal leaking	storage tank l	ists						
MA LUST MA LAST INDIAN LUST	0.500 0.500 0.500		0 0 0	0 1 0	2 1 0	NR NR NR	NR NR NR	2 2 0
State and tribal register	ed storage tan	k lists						
FEMA UST	0.250		0	0	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
MA UST MA AST INDIAN UST	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
State and tribal institution control / engineering con		s						
MA INST CONTROL	0.500		0	0	1	NR	NR	1
State and tribal voluntary	cleanup site	s						
INDIAN VCP	0.500		0	0	0	NR	NR	0
State and tribal Brownfie	lds sites							
MA BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONMEN	TAL RECORDS	;						
		<u>-</u>						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / S Waste Disposal Sites	olid							
INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	0.500 0.500 0.500 0.500		0 0 0 0	0 0 0 0	0 0 0 0	NR NR NR NR	NR NR NR NR	0 0 0 0
Local Lists of Hazardous Contaminated Sites	waste /							
US HIST CDL US CDL	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Local Land Records								
MA LIENS LIENS 2	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
Records of Emergency R	elease Repoi	rts						
HMIRS MA SPILLS MA RELEASE MA SPILLS 90 MA SPILLS 80	TP TP TP TP TP	1	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	0 0 1 0
Other Ascertainable Reco	ords							
RCRA NonGen / NLR FUDS DOD SCRD DRYCLEANERS US FIN ASSUR EPA WATCH LIST 2020 COR ACTION	0.250 1.000 1.000 0.500 TP TP 0.250	1	0 0 0 0 NR NR 0	0 0 0 0 NR NR 0	NR 0 0 0 NR NR NR	NR 0 0 NR NR NR NR	NR NR NR NR NR NR	1 0 0 0 0 0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
TSCA	TP		NR	NR	NR	NR	NR	0
TRIS	TP		NR	NR	NR	NR	NR	0
SSTS	TP		NR	NR	NR	NR	NR	0
ROD	1.000		0	0	0	0	NR	Ö
RMP	TP		NR	NR	NR	NR	NR	Ö
RAATS	TP		NR	NR	NR	NR	NR	0
PRP	TP		NR	NR	NR	NR	NR	0
PADS	TP		NR	NR	NR	NR	NR	0
ICIS	TP		NR	NR	NR	NR	NR	0
FTTS	TP		NR	NR	NR	NR	NR	0
MLTS	TP		NR	NR	NR	NR	NR	0
COAL ASH DOE	TP		NR	NR	NR	NR	NR	0
COAL ASH EPA	0.500		0	0	0	NR	NR	0
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	0
HIST FTTS	TP		NR	NR	NR	NR	NR	0
DOT OPS	TP		NR	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV FUSRAP	1.000 1.000		0 0	0 0	0 0	0 0	NR NR	0 0
UMTRA	0.500		0	0	0	NR	NR NR	0
LEAD SMELTERS	TP		NR	NR	NR	NR	NR	0
US AIRS	TP		NR	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
ABANDONED MINES	0.250		0	0	NR	NR	NR	0
FINDS	TP	2	NR	NR	NR	NR	NR	2
DOCKET HWC	TP	_	NR	NR	NR	NR	NR	0
UXO	1.000		0	0	0	0	NR	Ō
ECHO	TP	1	NR	NR	NR	NR	NR	1
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
MA AIRS	TP		NR	NR	NR	NR	NR	0
MA ASBESTOS	TP	2	NR	NR	NR	NR	NR	2
MA DRYCLEANERS	0.250		0	0	NR	NR	NR	0
MA ENF	TP		NR	NR	NR	NR	NR	0
MA Financial Assurance	TP		NR	NR	NR	NR	NR	0
MA GWDP	TP	_	NR	NR	NR	NR	NR	0
MA HW GEN	0.250	1	0	0	NR	NR	NR	1
NY MANIFEST RI MANIFEST	0.250 0.250	4	0 0	0	NR NR	NR NR	NR NR	0
MA MERCURY	0.230	1	0	0 0	1	NR	NR	1 1
MA NPDES	TP		NR	NR	NR	NR	NR	0
MA TIER 2	TP		NR	NR	NR	NR	NR	0
MA TSD	0.500		0	0	0	NR	NR	0
MA UIC	TP		NR	NR	NR	NR	NR	ő
EDR HIGH RISK HISTORICA	AL RECORDS							
EDR Exclusive Records								
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		Ö	NR	NR	NR	NR	Õ
	50		Ŭ					ŭ

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
EDR RECOVERED GOV	ERNMENT ARCHIV	/ES						
Exclusive Recovered	Govt. Archives							
MA RGA HWS MA RGA LUST	TP TP	2	NR NR	NR NR	NR NR	NR NR	NR NR	2 0
- Totals		13	0	2	17	13	0	45

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Direction Distance

Distance Elevation Site EDR ID Number

Database(s) EPA ID Number

A1 WAYLAND SANDHILL LANDFILL RCRA NonGen / NLR 1004718305
Target 484 BOSTON POST RD FINDS MAR000015388

Property WAYLAND, MA 01778 ECHO
RI MANIFEST

Site 1 of 6 in cluster A

Actual: RCRA NonGen / NLR:

140 ft. Date form received by agency: 03/09/2000

Facility name: WAYLAND SANDHILL LANDFILL

Facility address: 484 BOSTON POST RD

WAYLAND, MA 01778

EPA ID: MAR000015388

Contact: CHARLES KILEY

Contact address: 484 BOSTON POST RD

WAYLAND, MA 01778

Contact country: US

Contact telephone: 508-358-7910 Contact email: Not reported

EPA Region: 01 Land type: Municipal

Land type: Municipal Classification: Non-Generator

Description: Handler: Non-Generators do not presently generate hazardous waste

Owner/Operator Summary:

Owner/operator name: TOWN OF WAYLAND
Owner/operator address: 484 BOSTON POST RD

WAYLAND, MA 01778

Owner/operator country: US

Owner/operator telephone: Not reported
Owner/operator email: Not reported
Owner/operator fax: Not reported
Owner/operator extension: Not reported
Legal status: Municipal

Owner/Operator Type: Owner
Owner/Op start date: 10/16/2004
Owner/Op end date: Not reported

Owner/operator name: WAYLAND SANDHILL LANDFILL

Owner/operator address: 484 BOSTON POST RD

WAYLAND, MA 01778

Owner/operator country: US

Owner/operator telephone: Not reported Owner/operator email: Not reported Owner/operator fax: Not reported Owner/operator extension: Not reported Legal status: Private Owner/Operator Type: Operator Owner/Op start date: 12/09/1991 Owner/Op end date: Not reported

Owner/operator name: TOWN OF WAYLAND BOARD OF HEALTH

Owner/operator address: 484 BOSTON POST RD

WAYLAND, MA 01778

Owner/operator country: US

Owner/operator telephone: Not reported Owner/operator email: Not reported Owner/operator fax: Not reported Owner/operator extension: Not reported Not reported Not reported Legal status: Private

Distance
Elevation Site Database(s)

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

EDR ID Number

EPA ID Number

Owner/Operator Type: Owner
Owner/Op start date: 10/16/2004
Owner/Op end date: Not reported

Handler Activities Summary:

U.S. importer of hazardous waste: No Mixed waste (haz. and radioactive): No Recycler of hazardous waste: No Transporter of hazardous waste: No Treater, storer or disposer of HW: No Underground injection activity: No On-site burner exemption: Nο Furnace exemption: No Used oil fuel burner: No Used oil processor: No User oil refiner: No Used oil fuel marketer to burner: No Used oil Specification marketer: No Used oil transfer facility: No Used oil transporter: No

. Waste code: MA01 . Waste name: MA01

Facility Has Received Notices of Violations:

Regulation violated: SR - 30.340

Area of violation: Generators - General

Date violation determined: 01/31/2001
Date achieved compliance: 01/09/2003
Violation lead agency: State
Enforcement action: Not reported
Enforcement action date: Not reported

Enf. disposition status:

Enf. disp. status date:

Enforcement lead agency:

Proposed penalty amount:

Final penalty amount:

Paid penalty amount:

Not reported

Not reported

Not reported

Not reported

Not reported

Not reported

Evaluation Action Summary:

Evaluation date: 01/31/2001

Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE

Area of violation: Generators - General

Date achieved compliance: 01/09/2003 Evaluation lead agency: State

FINDS:

Registry ID: 110003500658

Environmental Interest/Information System

AIR EMISSIONS CLASSIFICATION UNKNOWN

RCRAInfo is a national information system that supports the Resource Conservation and Recovery Act (RCRA) program through the tracking of events and activities related to facilities that generate, transport,

Direction Distance Elevation

on Site Database(s) EPA ID Number

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

EDR ID Number

and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA.

MA-EPICS - Massachussetts Environmental Protection Integrated Computer System

Click this hyperlink while viewing on your computer to access additional FINDS: detail in the EDR Site Report.

ECHO:

Envid: 1004718305 Registry ID: 110003500658

DFR URL: http://echo.epa.gov/detailed-facility-report?fid=110003500658

RI MANIFEST:

 EPA Id:
 MAR000015388

 GEN Cert Date:
 4/14/2004

 Manifest Document Number:
 RIG0233554

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS

TSDF Id: RID084802842

TSDF Name: United Oil Recovery Inc

 Qty:
 75

 WT/Vol Units:
 G

 TSDF Date:
 4/14/2004

 Transporter 2 Id:
 Not reported

 Item Number:
 2652

 Transporter 2 Name:
 Not reported

Transporter Name 2: CYCLE SOLVE CORPORATION

Transporter EPAID: RID982194987
Transporter Receipt Date: 4/14/2004

Number Of Containers: DM Container Type: Waste Code1: D001 Waste Code2: F003 Waste Code3: F005 Waste Code4: Not reported Waste Code5: Not reported Waste Code6: Not reported Fee Exempt Code: Not reported Comment: Not reported Transporter Name 2: Not reported Not reported Company Permit Number: Year: Not reported

Quarter: Not reported Transporter Contact Name: Not reported Transporter Contact Email: Not reported Filing Date: Not reported Total Fee: Not reported Billing Name: Not reported Paid Date: Not reported Paid Time: Not reported Facility Receipt Date: Not reported Not reported Fee:

Not reported

Manifest Created Date:

Direction Distance Elevation

n Site Database(s) EPA ID Number

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

EDR ID Number

Manifest Updated Date: Not reported

RI MANIFEST:

Fee Exempt Code:

Transporter Receipt Date: 5/12/2006 Number Of Containers: Container Type: DM F003 Waste Code1: Waste Code2: F005 Waste Code3: Not reported Waste Code4: Not reported Waste Code5: Not reported Waste Code6: Not reported Comment: Not reported

TSDF Name: United Oil Recovery Inc

TSDF Id: RID084802842
Transporter Name 2: Not reported
Company Permit Number: Not reported
Year: Not reported
EPA ID: MAR000015388
Manifest Docket Number: RIG0282861
Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS,

Not reported

Transporter Contact Name: Not reported

Quantity: 55

Transporter Contact Email: Not reported

WT/Vol Units: G

Filing Date: Not reported Total Fee: Not reported

Item Number: a

Transporter Name: CYCLE SOLVE CORPORATION

Billing Name: Not reported Transporter EPA ID: RID982194987 Date Paid: Not reported Time Paid: Not reported GEN Cert Date: 5/12/2006 Facility Receipt Date: Not reported Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported TSDF Receipt Date: 5/12/2006 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Transporter Receipt Date: 5/12/2006

Number Of Containers: Container Type: DM Waste Code1: F003 Waste Code2: F005 Waste Code3: Not reported Waste Code4: Not reported Waste Code5: Not reported Waste Code6: Not reported Not reported Comment: Fee Exempt Code: Not reported

TSDF Name: United Oil Recovery Inc

TSDF Id: RID084802842
Transporter Name 2: Not reported

Direction Distance

Elevation Site Database(s) **EPA ID Number**

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

EDR ID Number

Company Permit Number: Not reported Not reported Year: EPA ID: MAR000015388 Manifest Docket Number: RIG0282861 Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS,

Not reported Transporter Contact Name: 55

Quantity:

Transporter Contact Email: Not reported

WT/Vol Units:

Filing Date: Not reported Total Fee: Not reported

Item Number:

Transporter Name: CYCLE SOLVE CORPORATION

Not reported Billing Name: RID982194987 Transporter EPA ID: Date Paid: Not reported Time Paid: Not reported **GEN Cert Date:** 5/12/2006 Facility Receipt Date: Not reported Fee: Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported 5/12/2006 TSDF Receipt Date: Not reported Transporter 2 ID: Manifest Updated Date: Not reported

Transporter Receipt Date: 1/21/2005

Number Of Containers: Container Type: DM Waste Code1: D001 Waste Code2: F003 Waste Code3: F005 Waste Code4: Not reported Not reported Waste Code5: Not reported Waste Code6: Not reported Comment: Fee Exempt Code: Not reported

United Oil Recovery Inc TSDF Name:

RID084802842 TSDF Id: Transporter Name 2: Not reported Company Permit Number: Not reported Year: Not reported EPA ID: MAR000015388 Manifest Docket Number: RIG0250206 Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS

Transporter Contact Name: Not reported Quantity: 55 Transporter Contact Email: Not reported

WT/Vol Units: Filing Date: Not reported Total Fee: Not reported

Item Number:

UNITED INDUSTRIAL SERVICES Transporter Name:

Billing Name: Not reported Transporter EPA ID: CTD021816889

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

Date Paid: Not reported Time Paid: Not reported **GEN Cert Date:** 1/21/2005 Facility Receipt Date: Not reported Fee: Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported TSDF Receipt Date: 1/21/2005 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Transporter Receipt Date: 1/21/2005 Number Of Containers: Container Type: DM D001 Waste Code1: Waste Code2: F003 Waste Code3: F005 Waste Code4: Not reported Waste Code5: Not reported Waste Code6: Not reported Comment: Not reported

TSDF Name: United Oil Recovery Inc

TSDF Id: RID084802842 Transporter Name 2: Not reported Company Permit Number: Not reported Not reported Year: EPA ID: MAR000015388 RIG0250206 Manifest Docket Number: Not reported Quarter:

RQ WASTE FLAMMABLE LIQUID NOS Waste Description:

Not reported

Transporter Contact Name: Not reported

Quantity:

Fee Exempt Code:

Transporter Contact Email: Not reported

WT/Vol Units: G

Filing Date: Not reported Total Fee: Not reported Item Number: 8801

UNITED INDUSTRIAL SERVICES Transporter Name: Not reported

Billing Name: CTD021816889 Transporter EPA ID: Date Paid: Not reported Time Paid: Not reported 1/21/2005 **GEN Cert Date:** Not reported Facility Receipt Date: Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported TSDF Receipt Date: 1/21/2005 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Transporter Receipt Date: 1/21/2005

Number Of Containers: DM Container Type: Waste Code1: D001 Waste Code2: F003

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

Waste Code3: F005 Waste Code4: Not reported Waste Code5: Not reported Waste Code6: Not reported Comment: Not reported Fee Exempt Code: Not reported

TSDF Name: United Oil Recovery Inc

TSDF Id: RID084802842 Transporter Name 2: Not reported Company Permit Number: Not reported Not reported Year: EPA ID: MAR000015388 Manifest Docket Number: RIG0250206 Quarter: Not reported

RQ WASTE FLAMMABLE LIQUID NOS Waste Description:

Transporter Contact Name: Not reported

Quantity: 55

Transporter Contact Email: Not reported

WT/Vol Units:

Not reported Filing Date: Total Fee: Not reported

Item Number:

Transporter Name: UNITED INDUSTRIAL SERVICES

Billing Name: Not reported Transporter EPA ID: CTD021816889 Date Paid: Not reported Time Paid: Not reported **GEN Cert Date:** 1/21/2005 Facility Receipt Date: Not reported Fee: Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported TSDF Receipt Date: 1/21/2005 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Transporter Receipt Date: 1/21/2005

Number Of Containers: Container Type: DM D001 Waste Code1: F003 Waste Code2: Waste Code3: F005 Waste Code4: Not reported Not reported Waste Code5: Not reported Waste Code6: Not reported Comment: Fee Exempt Code: Not reported

United Oil Recovery Inc TSDF Name:

TSDF Id: RID084802842 Transporter Name 2: Not reported Not reported Company Permit Number: Year: Not reported MAR000015388 EPA ID: Manifest Docket Number: RIG0250206 Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS

Transporter Contact Name: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

EDR ID Number

Quantity: 55

Transporter Contact Email: Not reported

WT/Vol Units: G

Filing Date: Not reported
Total Fee: Not reported
Item Number: 8801

Transporter Name: UNITED INDUSTRIAL SERVICES

Billing Name: Not reported Transporter EPA ID: CTD021816889 Date Paid: Not reported Time Paid: Not reported GEN Cert Date: 1/21/2005 Facility Receipt Date: Not reported Not reported Transporter 2 Receipt Date: Not reported Not reported Manifest Created Date: TSDF Receipt Date: 1/21/2005 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Transporter Receipt Date: 4/14/2004
Number Of Containers: 2
Container Type: DM
Waste Code1: D001
Waste Code2: F003
Waste Code3: F005

Waste Code4: Not reported Waste Code5: Not reported Waste Code6: Not reported Comment: Not reported Fee Exempt Code: Not reported

TSDF Name: United Oil Recovery Inc

TSDF Id: RID084802842
Transporter Name 2: Not reported
Company Permit Number: Not reported
Year: Not reported
EPA ID: MAR000015388
Manifest Docket Number: RIG0233554
Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS

Transporter Contact Name: Not reported

Quantity: 75

Transporter Contact Email: Not reported

WT/Vol Units: G

Filing Date: Not reported Total Fee: Not reported Item Number: 15102

Transporter Name: CYCLE SOLVE CORPORATION

Billing Name: Not reported Transporter EPA ID: RID982194987 Date Paid: Not reported Time Paid: Not reported **GEN Cert Date:** 4/14/2004 Facility Receipt Date: Not reported Fee: Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

TSDF Receipt Date: 4/14/2004
Transporter 2 ID: Not reported
Manifest Updated Date: Not reported

Transporter Receipt Date: 4/14/2004

Number Of Containers: Container Type: DM Waste Code1: D001 Waste Code2: F003 Waste Code3: F005 Waste Code4: Not reported Not reported Waste Code5: Waste Code6: Not reported Comment: Not reported Fee Exempt Code: Not reported

TSDF Name: United Oil Recovery Inc

TSDF Id: RID084802842
Transporter Name 2: Not reported
Company Permit Number: Not reported
Year: Not reported
EPA ID: MAR000015388
Manifest Docket Number: RIG0233554
Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS

Transporter Contact Name: Not reported Quantity: 75
Transporter Contact Email: Not reported

WT/Vol Units:

Filing Date: Not reported Total Fee: Not reported Item Number: 17035

Transporter Name: CYCLE SOLVE CORPORATION

Billing Name: Not reported Transporter EPA ID: RID982194987 Date Paid: Not reported Time Paid: Not reported **GEN Cert Date:** 4/14/2004 Facility Receipt Date: Not reported Fee: Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported TSDF Receipt Date: 4/14/2004 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Transporter Receipt Date: 4/14/2004
Number Of Containers: 2
Container Type: DM
Waste Code1: D001
Waste Code2: F003
Waste Code3: F005
Waste Code4: Not report

Waste Code4:

Waste Code5:

Not reported

Waste Code6:

Not reported

TSDF Name: United Oil Recovery Inc

Direction Distance Elevation

Site Database(s) EPA ID Number

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

EDR ID Number

TSDF Id: RID084802842
Transporter Name 2: Not reported
Company Permit Number: Not reported
Year: Not reported
EPA ID: MAR000015388
Manifest Docket Number: RIG0233554
Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS

Transporter Contact Name: Not reported

Quantity: 75

Transporter Contact Email: Not reported

WT/Vol Units:

Filing Date: Not reported Total Fee: Not reported

Item Number: a

Transporter Name: CYCLE SOLVE CORPORATION

Billing Name: Not reported RID982194987 Transporter EPA ID: Date Paid: Not reported Time Paid: Not reported **GEN Cert Date:** 4/14/2004 Facility Receipt Date: Not reported Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported TSDF Receipt Date: 4/14/2004 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Transporter Receipt Date: 4/14/2004

Number Of Containers: 2 Container Type: DM Waste Code1: D001 Waste Code2: F003 Waste Code3: F005 Not reported Waste Code4: Waste Code5: Not reported Waste Code6: Not reported Comment: Not reported Fee Exempt Code: Not reported

TSDF Name: United Oil Recovery Inc

TSDF Id: RID084802842
Transporter Name 2: Not reported
Company Permit Number: Not reported
Year: Not reported
EPA ID: MAR000015388
Manifest Docket Number: RIG0233554
Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS

Transporter Contact Name: Not reported Quantity: 75
Transporter Contact Email: Not reported

WT/Vol Units: G

Filing Date: Not reported Total Fee: Not reported Item Number: 15102

Transporter Name: CYCLE SOLVE CORPORATION

Distance

Elevation Site Database(s) EPA ID Number

WAYLAND SANDHILL LANDFILL (Continued)

1004718305

EDR ID Number

Billing Name: Not reported RID982194987 Transporter EPA ID: Date Paid: Not reported Time Paid: Not reported 4/14/2004 **GEN Cert Date:** Facility Receipt Date: Not reported Not reported Fee: Not reported Transporter 2 Receipt Date: Manifest Created Date: Not reported TSDF Receipt Date: 4/14/2004 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Transporter Receipt Date: 4/14/2004 Number Of Containers: DM Container Type: Waste Code1: D001 Waste Code2: F003 Waste Code3: F005 Waste Code4: Not reported Waste Code5: Not reported Waste Code6: Not reported Comment: Not reported Fee Exempt Code: Not reported

TSDF Name: United Oil Recovery Inc

TSDF Id: RID084802842
Transporter Name 2: Not reported
Company Permit Number: Not reported
Year: Not reported
EPA ID: MAR000015388
Manifest Docket Number: RIG0233554
Quarter: Not reported

Waste Description: RQ WASTE FLAMMABLE LIQUID NOS

Transporter Contact Name: Not reported

Quantity: 75

Transporter Contact Email: Not reported

WT/Vol Units: G

Filing Date: Not reported Total Fee: Not reported Item Number: 17035

Transporter Name: CYCLE SOLVE CORPORATION

Billing Name: Not reported Transporter EPA ID: RID982194987 Date Paid: Not reported Time Paid: Not reported **GEN Cert Date:** 4/14/2004 Facility Receipt Date: Not reported Not reported Transporter 2 Receipt Date: Not reported Manifest Created Date: Not reported TSDF Receipt Date: 4/14/2004 Transporter 2 ID: Not reported Manifest Updated Date: Not reported

Click this hyperlink while viewing on your computer to access 4 additional RI_MANIFEST: record(s) in the EDR Site Report.

Direction Distance

Distance EDR ID Number
Elevation Site EPA ID Number

A2 TOWN OF WAYLAND FORMER PUBLIC WORKS STAGING YARD
Target 484-490 BOSTON POST ROAD

MA ASBESTOS S123243019

N/A

Property WAYLAND, MA

Site 2 of 6 in cluster A

Actual: 140 ft. ASBESTOS:
Notification:
DEP Region:
Not reported
Not reported

Notifiers Name: Not reported Start Date: 11/30/2018 End Date: 12/31/2018 Date Entered: Not reported Entry Date: 11/26/2018

Quantity Materical Removed SF: 0

Quantity Material Removed LF:
Project Description:
AR Tracking ID:
Super Lic Number:
Monitor Lic Number:
Lab Lic Number:
Not reported

 Sticker Number:
 100298886

 Form Type:
 ANF-001

 Fee Status:
 HUNDRED

 Facility Phone:
 000000000

 Sub Town:
 Not reported

 Worksite:
 N/A

 Occupied:
 0

 Contractor:
 AC000934

 Contract Type:
 WRITTEN

 Hours:
 7-3:30

Project Type: Oth:BULK LOADING OF ACM SOIL

Abatement Process: oth:BULK LOADING OF 3,200 TNS OF ACM CONTAMINATED

Location: OUTDOORS

Decon Process: TRUCK WASH 3 STAGE PERSONNEL DECON

Disposal Methods: MATERIAL WILL BE KEPT WET DURING LOADING OPERATIONS. THE TRAILER WILL

HAVE TWO PREFORMED 10 MIL LINERS SIZED AND FORMED TO THE TRAILERS. LINERS WILL BE FOLDED INWARD AND SEALED, LABELED WITH EPA AND OSHA

HAZARD LABELS AND GENERATOR LABEL.

Facility Usage: STOCKPILE
Waiver Given: Not reported
DEP Waiver Number: NAW1811399
DLWD Waiver Number: Not reported

Small Owner Occ: 0

Owner Name: TOWN OF WAYLAND
Owner Address: 41 COCHITUATE ROAD

Owner City: WAYLAND
Owner State: MA

On Site Manager Name: PAUL BRINKMAN
On Site Manager Phone: 0000000000
Ins Comp: THE HARTFORD
Policy Number: 08 WEA EK9075
EXP Date: 1/1/2019

EXP Date: 1/1 Facility Size: 0

Transporter Name: W.L. FRENCH EXCAVATING CORP

Transporter Address: 3 SURVEY CIRCLE
Transporter City: NORTH BILLERICA

Transporter State: MA

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

TOWN OF WAYLAND FORMER PUBLIC WORKS STAGING YARD (Continued)

S123243019

Final Site: Not reported Certified Name: TIM HUNT Cert Sign Date: 11/26/2018

Certified Company: W.L. FRENCH EXCAVATING CORP

Certified Phone: 9786002118 Entered_by: WLFRENCH

WAYLAND SAND HILL TRANSFER STATION А3

Target 484 BOSTON POST RD WAYLAND, MA 01778 **Property**

MA SHWS S100255721 MA SWF/LF N/A

MA RELEASE MA ASBESTOS MA HW GEN

Site 3 of 6 in cluster A

Actual: SHWS: 140 ft. Facility ID:

3-0034474 **DEMOLITION** Source Type: Release Town: WAYLAND Notification Date: 08/14/2017 TWO HR Category: Associated ID: Not reported **Current Status: TIERI** Status Date: 08/14/2018 Phase: PHASE II Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Facility ID: 3-0034474 Source Type: WASTE Release Town: WAYLAND Notification Date: 08/14/2017 Category: TWO HR Associated ID: Not reported **Current Status: TIERI** Status Date: 08/14/2018 PHASE II Phase: Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

3-0027741 Facility ID: Source Type: **VEHICLE** Release Town: WAYLAND Notification Date: 06/03/2008 Category: TWO HR Associated ID: Not reported **Current Status:** RAO Status Date: 07/29/2008 Not reported Phase:

Response Action Outcome: A2 Oil Or Haz Material: Oil

Facility ID: 3-0024698 Source Type: **DRUMS** Release Town: WAYLAND 03/18/2005 Notification Date: Category: TWO HR Associated ID: Not reported **Current Status:** RAO Status Date: 05/17/2005

Direction Distance Elevation

levation Site Database(s) EPA ID Number

WAYLAND SAND HILL TRANSFER STATION (Continued)

S100255721

EDR ID Number

Phase: Not reported

Response Action Outcome: A1
Oil Or Haz Material: Oil

LF:

Facility Phone: (508)358-7910

Annual Tons for 1995: 3071 2876 Annual Tons for 1996: Annual Tons for 1997: 2678 Annual Tons for 1998: 2371 Annual Tons for 1999: 2321 Annual Tons for 2000: 2345 Annual Tons for 2001: 2346 Annual Tons for 2002: 2438 Annual Tons for 2003: 2696 Annual Tons for 2004: 2261 Annual Tons for 2005: 2041 Annual Tons for 2006: 3024 Annual Tons for 2007: 2813 Annual Tons for 2008: 1256 Annual Tons for 2009: Not reported Annual Tons for 2010: Not reported Annual Tons for 2011: Not reported Annual Tons for 2012: Not reported Annual Tons for 2013: Not reported Annual Tons for 2014: Not reported Annual Tons for 2015: Not reported Reg Obj Acct ID Num For Each Solid Waste Operation: 173050

Days of Operation: 156

Note On The Physical Location Of The Site: SANDY HILL ROAD

Acres: 5
Active Year: 1980
Classification Group: Land Disposal
Current Or Most Recent Closed Classification: CSU-LF

Description Of The Last Classification: Landfill Closure Status Unknown

Close Year: Not reported

Name Of The Organization: WAYLAND BOARD OF HEALTH

Contacts Organization Type: Municipal

Contact Persons Name And Title: GEORGE W RUSSELL, SUPERINTENDENT

Contact Phone Including Extension: (508)358-7910
Contact Mailing Street Address: 484 BOSTON POST RD
Contacts Mailing City, State, Zip: WAYLAND, MA 01760

Inactive Year:

Land Disposal Closure Status:

Land Disposal Only, Category Waste Disposed:

Land Disposal Only, Category Waste Disposed:

Landfills Liner:

Municipality That The Operation Is Located In:

Alpha-Numeric Identification Code:

Numeric-Only Portion Of The Identification Code:

3208

Incomplete

MSW

Lined

WAYLAND

SL0315.004

Region: Northeast (Wilmington)

Org That Pays Any Annual Compliance Fee And/Or Permittee:TOWN OF WAYLAND

Responsible Party Organization Type: Municipal

Responsible Party Mailing Street Address Line 1: 41 COCHITUATE RD Responsible Party Mailing Street Address Line 2: Not reported

Responsible Party Mailing City, State, Zip: WAYLAND, MA 01778

Responsible Party Telephone Inc Extension: Not reported

Maximum Permitted Tons Per Day: 99

Direction Distance Elevation

ration Site Database(s) EPA ID Number

WAYLAND SAND HILL TRANSFER STATION (Continued)

S100255721

EDR ID Number

Current Operational Status: Inactive

(508)358-7910 Facility Phone: Annual Tons for 1995: Not reported Annual Tons for 1996: Not reported Annual Tons for 1997: Not reported Annual Tons for 1998: Not reported Annual Tons for 1999: Not reported Annual Tons for 2000: Not reported Annual Tons for 2001: Not reported Annual Tons for 2002: Not reported Annual Tons for 2003: Not reported Annual Tons for 2004: Not reported Annual Tons for 2005: Not reported Annual Tons for 2006: Not reported Annual Tons for 2007: Not reported Annual Tons for 2008: 2323 Annual Tons for 2009: 2696 Annual Tons for 2010: Not reported Annual Tons for 2011: Not reported Annual Tons for 2012: Not reported Annual Tons for 2013: Not reported Annual Tons for 2014: Not reported Annual Tons for 2015: Not reported Reg Obj Acct ID Num For Each Solid Waste Operation: 463945 156

Days of Operation: 156
Note On The Physical Location Of The Site: Not reported Acres: Not reported Active Year: 2009

Classification Group: Handling/Transfer

Current Or Most Recent Closed Classification: SMTRAN

Description Of The Last Classification: Small Transfer Station

Close Year: Not reported
Name Of The Organization: WAYLAND DPW
Contacts Organization Type: Municipal

Contact Persons Name And Title: GEORGE W RUSSELL, SUPERINTENDENT

Contact Phone Including Extension: (508)358-7910

Contact Mailing Street Address: 484 BOSTON POST RD Contacts Mailing City, State, Zip: WAYLAND, MA 01778

Inactive Year:

Not reported
Land Disposal Closure Status:

n/a

Land Disposal Only, Category Waste Disposed: n/a
Landfills Liner: n/a
Municipality That The Operation Is Located In: WAYLAND
Alpha-Numeric Identification Code: Not reported
Numeric-Only Portion Of The Identification Code: Not reported

Region: Northeast (Wilmington)

Org That Pays Any Annual Compliance Fee And/Or Permittee:TOWN OF WAYLAND

Municipal

Responsible Party Organization Type:

Responsible Party Mailing Street Address Line 1: 41 COCHITUATE RD

Responsible Party Mailing Street Address Line 2: Not reported

Responsible Party Mailing City, State, Zip: WAYLAND, MA 01778

Responsible Party Telephone Inc Extension:

Maximum Permitted Tons Per Day:

Current Operational Status:

Not reported
Not reported
Active

Direction Distance

Elevation Site Database(s) EPA ID Number

WAYLAND SAND HILL TRANSFER STATION (Continued)

S100255721

EDR ID Number

LF PROFILES:

Site Type Code: MSW

Site Type Desc: Municipal Solid Waste

Status:InactiveOwner Type:MunicipalStat Active Yr:0:00Stat Inactive Yr:2008

Stat Close Yr: Not reported Lined?: Lined Cap Status: Incomplete Cap Cert Date: Not reported Post Closure Permit: Not reported Not reported Post Closure Use: LF Gas Energy: Not reported 11.79 Acres: Acres Doc: CAP

Acres Doc Desc: Limits of landfill cap

 Electrical Provider:
 NSTAR

 Dist To Trans Miles:
 6.26

 Wind Speed 30m:
 4.6319

 Wind Speed 50m:
 5.1282

 Wind Speed 100m:
 6.0025

 Wind Speed 70m:
 5.5113

 Mass DEP FMF DB Id:
 39853

Release:

Release Tracking Number/Current Status: 3-0024698 / RAO
Primary ID: Not reported
Official City: WAYLAND
Notification: 03/18/2005
Category: TWO HR
Status Date: 05/17/2005
Phase: Not reported

Response Action Outcome: A1 - A permanent solution has been achieved. Contamination has been

reduced to background or a threat of release has been eliminated.

Oil / Haz Material Type: Oi

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 3/18/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 3/18/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: RLFA
Action Status: FOLOFF
Action Date: 3/18/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

Direction Distance

Elevation Site Database(s) EPA ID Number

WAYLAND SAND HILL TRANSFER STATION (Continued)

S100255721

EDR ID Number

to background or a threat of release has been eliminated.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 4/29/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 5/17/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: Response Action Outcome - RAO Action Status: RAO Statement Received

Action Date: 5/17/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Chemicals:

Chemical: WASTE OIL
Quantity: 10 gallons
Chemical: MOTOR OIL
Quantity: 5 gallons
Location Type: LANDFILL
Location Type: OPENSPACE
Source: DRUMS

Release Tracking Number/Current Status: 3-0027741 / RAO
Primary ID: Not reported
Official City: WAYLAND
Notification: 06/03/2008
Category: TWO HR
Status Date: 07/29/2008
Phase: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 6/3/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 6/3/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

WAYLAND SAND HILL TRANSFER STATION (Continued)

S100255721

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

7/28/2008 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Immediate Response Action Action Type: Action Status: Completion Statement Received

7/29/2008 Action Date:

A permanent solution has been achieved. Contamination has not been Response Action Outcome:

reduced to background.

Action Type: **RNFE**

Action Status: Transmittal, Notice, or Notification Received

Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO Action Status: **RAO Statement Received**

7/29/2008 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: **RNF**

Action Status: Reportable Release under MGL 21E

Action Date: 7/29/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO Level I - Technical Screen Audit Action Status:

Action Date: 9/5/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

Chemical: **DIESEL FUEL** Quantity: 15 gallons DIESEL Chemical: Quantity: 20 gallons MUNICIPAL Location Type: Source: **VEHICLE**

Release Tracking Number/Current Status: 3-0034474 / TIERI

Primary ID: Not reported Official City: WAYLAND Notification: 08/14/2017 Category: TWO HR Status Date: 08/14/2018 Phase: PHASE II

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Map ID MAP FINDINGS
Direction

Distance Elevation S

vation Site Database(s) EPA ID Number

WAYLAND SAND HILL TRANSFER STATION (Continued)

S100255721

EDR ID Number

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 10/12/2017 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 10/12/2017 Response Action Outcome: Not reported

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 10/12/2017
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 10/12/2017 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 12/11/2017
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 12/12/2017
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 12/14/2018
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 6/11/2018
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 6/12/2018
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: ALSENT
Action Date: 6/12/2018
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 8/14/2017
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

WAYLAND SAND HILL TRANSFER STATION (Continued)

S100255721

Action Date: 8/14/2017 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: **TIERI** Action Date: 8/14/2018 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

8/14/2018 Action Date: Response Action Outcome: Not reported

Action Type: Phase 1

Completion Statement Received Action Status:

Action Date: 8/14/2018 Response Action Outcome: Not reported

Action Type: Tier Classification Legal Notice Published Action Status:

Action Date: 8/21/2018 Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

A MassDEP piece of correspondence was issued (approvals, NORs, etc. Action Status:

Action Date: 9/21/2017 Response Action Outcome: Not reported

Chemicals:

ASBESTOS Chemical: Quantity: 1 pounds Location Type: **INDUSTRIAL** Location Type: MUNICIPAL **DEMOLITION** Source: WASTE Source:

ASBESTOS:

Not reported Notification: Not reported DEP Region: Not reported Notifiers Name: Start Date: 06/26/2002 End Date: 06/28/2002 Date Entered: Not reported 06/26/2002 Entry Date: Quantity Materical Removed SF: 1.00 Quantity Material Removed LF: 1.00

DECONTAMINTION Project Description:

AR Tracking ID: 4581 Super Lic Number: AS040170 Monitor Lic Number: Not reported Lab Lic Number: Not reported Year: 2002 Sticker Number: 755074 Form Type: ANF-001 Fee Status: **EXEMPT** Facility Phone: (508) 358-7910

Direction Distance

Elevation Site Database(s) EPA ID Number

WAYLAND SAND HILL TRANSFER STATION (Continued)

S100255721

EDR ID Number

Sub Town: Not reported

Worksite: EXTERIOR-30 YD ROLL OFF CONTAINER

Occupied: 0

Contractor: AC000412
Contract Type: Not reported
Hours: 8-5

Project Type: DECONTAMINATION
Abatement Process: FULL CONTAINMENT

Location: OUTDOORS Decon Process: 3 CHAMBER

Disposal Methods: 2 PLY POLY BAG WITH LABEL Facility Usage: LANDFILL/RECYCLING FACILITY

Waiver Given: -1
DEP Waiver Number: 020-6947
DLWD Waiver Number: NWA 00 2621

Small Owner Occ: 0

Owner Name: TOWN OF WAYLAND
Owner Address: 484 BOSTON POST ROAD

Owner City: WAYLAND

Owner State: MA

On Site Manager Name:
On Site Manager Phone:
Ins Comp:
Policy Number:
EXP Date:
Facility Size:
Not reported
Not reported
Not reported
Not reported
Not reported

Transporter Name: ENVIRONMENTAL RESPONSE SERVICES

Transporter Address: 9 BLUEBERRY LANE
Transporter City: NORTH DARTMOUTH

Transporter State: MA Final Site: 39

Certified Name: JIM POLLOCK
Cert Sign Date: 06/20/2002
Certified Company: Not reported
Certified Phone: (508) 998-6229
Entered_by: Not reported

HW GEN:

EPA Id: MAR000015388
RCRA Generator Status: VSQG
State Generator Status: Not reported

A4 NEAR LANDFILL
Target 484 BOSTON POST RD
Property WAYLAND, MA

MA RGA HWS S115032677

N/A

Site 4 of 6 in cluster A

Actual: RGA HWS: **140 ft.**

2012 NEAR LANDFILL 484 BOSTON POST RD
2011 NEAR LANDFILL 484 BOSTON POST RD
2010 NEAR LANDFILL 484 BOSTON POST RD
2009 NEAR LANDFILL 484 BOSTON POST RD

2008 NEAR LANDFILL 484 BOSTON POST RD

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

Α5 **WAYLAND LF FINDS** 1017371928 N/A

Target 484 BOSTON POST ROAD WAYLAND, MA 01778 **Property**

Site 5 of 6 in cluster A

Actual: 140 ft.

FINDS:

Registry ID: 110060462244

Environmental Interest/Information System

LANDFILL GAS (LFG) RECOVERY

Click this hyperlink while viewing on your computer to access

additional FINDS: detail in the EDR Site Report.

A6 **WAYLAND SAND HILL LANDFILL Target**

484 BOSTON POST RD WAYLAND, MA

MA RGA HWS S115054204 N/A

Site 6 of 6 in cluster A

Actual: 140 ft.

Property

RGA HWS:

WAYLAND SAND HILL LANDFILL 484 BOSTON POST RD 2012 2011 WAYLAND SAND HILL LANDFILL 484 BOSTON POST RD 2010 WAYLAND SAND HILL LANDFILL 484 BOSTON POST RD 484 BOSTON POST RD 2009 WAYLAND SAND HILL LANDFILL 2008 WAYLAND SAND HILL LANDFILL 484 BOSTON POST RD 2007 WAYLAND SAND HILL LANDFILL 484 BOSTON POST RD WAYLAND SAND HILL LANDFILL 2006 484 BOSTON POST RD 2005 WAYLAND SAND HILL LANDFILL 484 BOSTON POST RD

SUDBURY DUMP MA SWF/LF S101395301 **ESE DAKIN RD** N/A

1/8-1/4 SUDBURY, MA 01776 0.147 mi.

777 ft.

LF: Relative: Lower

Facility Phone: Not reported Annual Tons for 1995: Not reported Actual: Annual Tons for 1996: Not reported 117 ft. Annual Tons for 1997: Not reported Annual Tons for 1998:

Not reported Annual Tons for 1999: Not reported Annual Tons for 2000: Not reported Annual Tons for 2001: Not reported Annual Tons for 2002: Not reported Annual Tons for 2003: Not reported Annual Tons for 2004: Not reported Annual Tons for 2005: Not reported Annual Tons for 2006: Not reported Annual Tons for 2007: Not reported Annual Tons for 2008: Not reported Annual Tons for 2009: Not reported Annual Tons for 2010: Not reported Annual Tons for 2011: Not reported

Direction Distance

Elevation Site **EPA ID Number** Database(s)

SUDBURY DUMP (Continued) S101395301

Annual Tons for 2012: Not reported Annual Tons for 2013: Not reported Annual Tons for 2014: Not reported Annual Tons for 2015: Not reported Reg Obj Acct ID Num For Each Solid Waste Operation: 172981 Days of Operation: Not reported Note On The Physical Location Of The Site: Not reported Acres: Not reported Not reported Active Year: Classification Group: Land Disposal

Current Or Most Recent Closed Classification: CSU-LF

Description Of The Last Classification: Landfill Closure Status Unknown

Close Year: Not reported

Name Of The Organization: TOWN OF SUDBURY

Contacts Organization Type: Municipal Contact Persons Name And Title: Not reported Contact Phone Including Extension: (978)443-8891

Contact Mailing Street Address: 288 OLD SUDBURY RD Contacts Mailing City, State, Zip: SUDBURY, MA 01776

Inactive Year: 1970 Land Disposal Closure Status: Incomplete Land Disposal Only, Category Waste Disposed: MSW Landfills Liner: Not Lined Municipality That The Operation Is Located In: **SUDBURY** Alpha-Numeric Identification Code: SL0288.002 Numeric-Only Portion Of The Identification Code: 0288.002

Northeast (Wilmington) Org That Pays Any Annual Compliance Fee And/Or Permittee:Not reported

Responsible Party Organization Type: Not reported Responsible Party Mailing Street Address Line 1: Not reported Responsible Party Mailing Street Address Line 2: Not reported Responsible Party Mailing City, State, Zip: Not reported Responsible Party Telephone Inc Extension: Not reported Maximum Permitted Tons Per Day: Not reported **Current Operational Status:** Inactive

WATERS MANUFACTURING S103043780 MA LAST **522 BOSTON POST RD LONGFELLOW MA RELEASE** N/A

1/8-1/4 0.172 mi. 910 ft.

8

West

Relative: LAST:

Higher Release Tracking Number/Current Status: 3-0000059 / RAO **AST**

Source Type: Actual: Release Town: WAYLAND 159 ft. Notification Date: 05/28/1986 Category: NONE Associated ID: Not reported

Status Date: 06/29/1995 Not reported Response Action Outcome:

A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil Or Haz Material: Oil

Chemicals:

WAYLAND, MA 01778

VOCS Chemical: Not reported Quantity:

EDR ID Number

Direction Distance Elevation

n Site Database(s) EPA ID Number

WATERS MANUFACTURING (Continued)

S103043780

EDR ID Number

Location Type: MANUFACT Source: AST

Actions:

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 4/15/1986

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Disposition
Action Status: Valid Transition Site

Action Date: 5/28/1986

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 5/28/1986

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FLDRUN
Action Date: 6/28/2017

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO
Action Status: RAO Statement Received

Action Date: 6/29/1995

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FOLOFF
Action Date: 9/19/2017

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Release:

Release Tracking Number/Current Status: 3-0000059 / RAO
Primary ID: Not reported
Official City: WAYLAND
Notification: 05/28/1986
Category: NONE
Status Date: 06/29/1995
Phase: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Direction Distance

Elevation Site Database(s) EPA ID Number

WATERS MANUFACTURING (Continued)

S103043780

EDR ID Number

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 4/15/1986

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Disposition
Action Status: Valid Transition Site

Action Date: 5/28/1986

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 5/28/1986

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FLDRUN
Action Date: 6/28/2017

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO Action Status: RAO Statement Received

Action Date: 6/29/1995

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FOLOFF
Action Date: 9/19/2017

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

Chemical: VOCS
Quantity: Not reported
Location Type: MANUFACT

Source: AST

9 WATERS MANUFACTURING CO SEMS 1000217486 West BOSTON POST ROAD MAD982547424

1/4-1/2 WAYLAND, MA 01778

0.287 mi. 1515 ft.

Relative: SEMS: Higher Site ID:

 Actual:
 EPA ID:
 MAD982547424

 140 ft.
 Cong District:
 04

FIPS Code: 25017
Latitude: +42.36
Longitude: -071.38
FF: N

NPL: Not on the NPL

Non NPL Status: Other Cleanup Activity: State-Lead Cleanup

0101528

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

WATERS MANUFACTURING CO (Continued)

1000217486

SEMS Detail:

01 Region: Site ID: 0101528 EPA ID: MAD982547424

Site Name: WATERS MANUFACTURING CO NPL: Ν FF: Ν OU: 00

Action Code: VA OTHR CLEANUP Action Name: SEQ:

2000-07-01 04:00:00 Start Date: Finish Date: Not reported Qual: Not reported **Current Action Lead:** St Ovrsght

Region: 01 Site ID: 0101528 EPA ID: MAD982547424

WATERS MANUFACTURING CO Site Name:

NPL: N FF: Ν OU: 00 Action Code: DS DISCVRY Action Name:

SEQ:

Start Date: 1988-03-30 05:00:00 Finish Date: 3/30/1988 5:00:00 AM

Qual: Not reported Current Action Lead: St Perf

Region: 01 Site ID: 0101528 EPA ID: MAD982547424

Site Name: WATERS MANUFACTURING CO

NPL: Ν FF: Ν OU: 00 Action Code: PΑ Action Name: PΑ SEQ:

Start Date: Not reported

Finish Date: 12/30/1988 5:00:00 AM

Qual: Current Action Lead: St Perf

Region: 01 Site ID: 0101528 EPA ID: MAD982547424

Site Name: WATERS MANUFACTURING CO

NPL: FF: Ν OU: 00 Action Code: SI Action Name: SI SEQ:

Start Date: Not reported

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

WATERS MANUFACTURING CO (Continued)

1000217486

8/1/1991 4:00:00 AM Finish Date:

Qual: ı

Current Action Lead: St Perf

MHD STAGING AREA - SUDBURY RIV BRIDGE S109489516 10 MA SHWS East **BOSTON POST RD MA RELEASE** N/A

1/4-1/2 WAYLAND, MA 01778

0.316 mi. 1670 ft.

SHWS: Relative:

Lower Facility ID: 3-0027875 Source Type: UNKNOWN Actual: Release Town: WAYLAND 115 ft. Notification Date: 07/30/2008 Category: TWO HR Associated ID: Not reported **Current Status:** RAO Status Date: 10/03/2008 Phase: Not reported

> Response Action Outcome: A2 Oil Or Haz Material: Oil

Facility ID: 3-0027875 Source Type: **DRUMS** Release Town: WAYLAND Notification Date: 07/30/2008 TWO HR Category: Associated ID: Not reported **Current Status:** RAO Status Date: 10/03/2008 Phase: Not reported

Response Action Outcome: A2 Oil Or Haz Material: Oil

Release:

Release Tracking Number/Current Status: 3-0027875 / RAO Primary ID: Not reported Official City: WAYLAND Notification: 07/30/2008 Category: TWO HR Status Date: 10/03/2008 Phase: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Response Action Outcome - RAO Action Status: **RAO Statement Received**

Action Date: 10/3/2008

A permanent solution has been achieved. Contamination has not been Response Action Outcome:

reduced to background.

Map ID MAP FINDINGS
Direction

Direction Distance

Elevation Site Database(s) EPA ID Number

MHD STAGING AREA - SUDBURY RIV BRIDGE (Continued)

S109489516

EDR ID Number

Action Type: RLFA
Action Status: FLDD1A
Action Date: 7/30/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: FLDISS
Action Date: 7/30/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 7/30/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 7/30/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FOLOFF
Action Date: 8/12/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action
Action Status: Oral Approval of a Modified Plan

Action Date: 8/12/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 8/13/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 8/13/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FLDRAN
Action Date: 8/14/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FLDRUN
Action Date: 8/15/2008

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

MHD STAGING AREA - SUDBURY RIV BRIDGE (Continued)

S109489516

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Immediate Response Action Action Type: Action Status: Written Plan Received

Action Date: 8/21/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 8/22/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: **RLFA** Action Status: **FOLOFF** Action Date: 8/26/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action Written Approval of Plan Action Status:

Action Date: 8/26/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: **RLFA** Action Status: **FOLOFF** Action Date: 8/5/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: **RLFA FLDRAN** Action Status: 8/5/2008 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: **RLFA FOLOFF** Action Status: Action Date: 8/8/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

Chemical: PETROLEUM BASED OIL

Quantity: 10 gallons

PETROLEUM/COAL TAR Chemical:

Quantity: 55 gallons Chemical: **UNKNOWN OHM** Quantity: 55 gallons **OPENSPACE** Location Type: Location Type: **RIGHTOFWAY** STATE

Location Type: Source: **DRUMS** Source: UNKNOWN

Direction Distance

Distance Elevation Site EDR ID Number

Database(s) EPA ID Number

 11
 PROPERTY
 MA SHWS S101034008

 West
 533 BOSTON POST RD
 MA RELEASE N/A

 West
 533 BOSTON POST RD
 MA RELEASE

 1/4-1/2
 WAYLAND, MA 01778
 MA SPILLS

 0.341 mi.
 MA ASBESTOS

1800 ft.

Relative: SHWS:

Lower 3-0003351 Facility ID: Source Type: UNCONTAIN Actual: Release Town: WAYLAND 133 ft. Notification Date: 08/27/1990 Category: NONE Associated ID: Not reported **Current Status:** RAO

Status Date: 08/02/1996
Phase: Not reported
Response Action Outcome: Not reported
Oil Or Haz Material: Not reported

Release:

Release Tracking Number/Current Status: 3-0003351 / RAO

Primary ID: Not reported
Official City: WAYLAND
Notification: 08/27/1990
Category: NONE
Status Date: 08/02/1996
Phase: Not reported

Response Action Outcome: -

Oil / Haz Material Type: Not reported

Click here to access the MA DEP site for this facility:

Actions:

Action Type: TREGS
Action Status: RAOEQ
Action Date: 8/2/1996
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 8/27/1990
Response Action Outcome: Not reported

Action Type: Release Disposition
Action Status: Valid Transition Site

Action Date: 8/27/1990
Response Action Outcome: Not reported

Chemicals:

Chemical: UNKNOWN
Quantity: Not reported
Location Type: INDUSTRIAL
Location Type: FORMER
Location Type: MANUFACT
Source: UNCONTAIN

MA Spills:

MA HW GEN

Direction
Distance

Elevation Site Database(s) EPA ID Number

Spill ID:

Date Entered:

Spill Time:

Mat Type:

Report Time:

Contam Soil:

Other Impact:

Qty Actual:

Qty Actual:

Other Material:

PCB Lev (ppm):

Other Source:

Other Incdnt:

Contractor:

LUST Elig:

Category:

First Response:

N90-1182

19900801

19900720

09:20AM

Not reported

HAZARDOUS

Not reported

Not reported

Not reported

UNKNOWN

GALLONS

UNKNOWN

Not reported

Not reported NOT USED

Not reported

NO

PROPERTY (Continued)

S101034008

EDR ID Number

Facility ID: 3-3351 Staff Lead: BRADLEY, R Last Entered: 19931227 Not reported Spill Date: Report Date: 19900720 YES Case Closed: Virgin Waste: ----Env Impact: SOIL Material: SOLVENTS Qty Reported: **UNKNOWN** Qty Reported: **GALLONS** CAS No: Not reported Source: Incident: Cleanup Type: SSC Referral: SA Report Prep:

Not reported JOHN MULLEN, ATTORNEY

Notifier: JOHN MULLEN

Notif Tel: Not reported

Days/Close: 0

ASBESTOS:

Notification: Not reported DEP Region: Not reported Notifiers Name: Not reported Start Date: 03/28/2016 03/29/2016 End Date: Date Entered: Not reported Entry Date: 03/11/2016 Quantity Materical Removed SF: 700.00

Quantity Material Removed LF: .00

Project Description: OTHER TILE & MASTIC

AR Tracking ID: 233817 Super Lic Number: AS034502 AA000124 Monitor Lic Number: AA000124 Lab Lic Number: Year: 2016 Sticker Number: 100238915 ANF-001 Form Type: Fee Status: HUNDRED Facility Phone: 000000000 Sub Town: Not reported

Worksite: DEALERSHIP OFFICES

Occupied: -1

Contractor: AC000873
Contract Type: WRITTEN
Hours: 7-3:30
Project Type: Renv
Abatement Process: Fcontain
Location: INDOORS

Decon Process: PROVIDE AN ADEQUATE DECONTAMINATION SYSTEM.

Disposal Methods: DOUBLE 6 MIL POLY Facility Usage: AUTO DEALERSHIP

Waiver Given: Not reported
DEP Waiver Number: Not reported
DLWD Waiver Number: Not reported

Small Owner Occ: 0

Direction Distance

Elevation Site Database(s) EPA ID Number

PROPERTY (Continued) S101034008

Owner Name: HERB CHAMBERS COMPANIES
Owner Address: 259 MCGRATH HIGHWAY

Owner City: SOMERVILLE

Owner State: MA

On Site Manager Name: PETER OCALLAGHAN

On Site Manager Phone: 6176668333

Ins Comp: ACE AMERICAN INS CO
Policy Number: BINDER ID 120189

EXP Date: 2/26/2017 Facility Size: 25000

Transporter Name: ALL STATE ABATEMENT PROFESSIONALS

Transporter Address: 4 WILDER DRIVE, STE 12

Transporter City: PLAISTOW

Transporter State: NH
Final Site: Not reported

Certified Name: JUDITH BEREZANSKY

Cert Sign Date: 03/11/2016
Certified Company: ASAP, INC.
Certified Phone: 6033780600
Entered_by: ASAPINC

Notification: Not reported DEP Region: Not reported Notifiers Name: Not reported Start Date: 03/28/2016 End Date: 03/29/2016 Date Entered: Not reported Entry Date: 03/11/2016 Quantity Materical Removed SF: 700.00 Quantity Material Removed LF: .00

Project Description: OTHER TILE & MASTIC

AR Tracking ID: 233818 Super Lic Number: AS034502 Monitor Lic Number: AA000124 Lab Lic Number: AA000124 Year: 2016 Sticker Number: 100238913 Form Type: ANF-001 **HUNDRED** Fee Status: Facility Phone: 000000000 Sub Town: Not reported

Worksite: DEALERSHIP OFFICES

Occupied: -1

Contractor: AC000331
Contract Type: WRITTEN
Hours: 7-3:30
Project Type: Renv
Abatement Process: Fcontain
Location: INDOORS

Decon Process: PROVIDE AN ADEQUATE DECONTAMINATION SYSTEM.

Disposal Methods: DOUBLE 6 MIL POLY.

Facility Usage: DEALERSHIP
Waiver Given: Not reported
DEP Waiver Number: Not reported
DLWD Waiver Number: Not reported

Small Owner Occ: 0

Owner Name: HERB CHAMBERS COMPANIES

EDR ID Number

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

PROPERTY (Continued) S101034008

Owner Address: 259 MCGRATH HIGHWAY

SOMERVILLE Owner City:

Owner State: MA

On Site Manager Name: PETER OCALLAGHAN

On Site Manager Phone: 6176668333

FEDERAL INSURANCE COMPANY Ins Comp:

Policy Number: 0044727722 EXP Date: 3/22/2016 Facility Size: 25000

Transporter Name: ALL STATE ABATEMENT PROFESSIONALS, INC.

Transporter Address: 4 WILDER DRIVE, STE 12

Transporter City: **PLAISTOW**

Transporter State: NH

Final Site: Not reported

JUDITH BEREZANSKY Certified Name:

03/11/2016 Cert Sign Date: Certified Company: ASAP, INC. Certified Phone: 6033780600 Entered_by: **ASAPINC**

HW GEN:

SUDBURY, MA 01776

EPA Id: MAR000522672

RCRA Generator Status: VSQG SQG-MA State Generator Status:

12 **NO LOCATION AID** MA SHWS S107678272 WNW **6 OLD COUNTY RD MA RELEASE** N/A

1/4-1/2 0.373 mi. 1972 ft.

Relative: SHWS:

3-0025622 Higher Facility ID: Source Type: Not reported Actual: Release Town: SUDBURY 144 ft. Notification Date: 01/27/2006 Category: 120 DY

Associated ID: Not reported **Current Status:** RAO Status Date: 01/29/2007 Phase: Not reported

Response Action Outcome: A2 Oil Or Haz Material: Oil

Release:

Phase:

Release Tracking Number/Current Status: 3-0025622 / RAO Primary ID: Not reported Official City: SUDBURY Notification: 01/27/2006 Category: 120 DY 01/29/2007 Status Date:

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

Not reported

been reduced to background.

Oil / Haz Material Type: Oil

Direction Distance Elevation

ation Site Database(s) EPA ID Number

NO LOCATION AID (Continued)

S107678272

EDR ID Number

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 1/27/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 1/27/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 1/27/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 1/29/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO
Action Status: RAO Statement Received

Action Date: 1/29/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO
Action Status: Fee Received - FMCRA Use Only

Action Date: 1/30/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: ALSENT Action Date: 12/11/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 12/18/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Fee Received - FMCRA Use Only

Action Date: 2/1/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NO LOCATION AID (Continued) S107678272

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

A MassDEP piece of correspondence was issued (approvals, NORs, etc. Action Status:

Action Date: 2/10/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 5/24/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

C9 THRU C18 ALIPHATIC HYDROCARBONS Chemical:

Quantity: 4590 milligrams per kilogram

C11 THRU C22 AROMATIC HYDROCARBONS Chemical:

Quantity: 2640 milligrams per kilogram

Chemical: C9 THRU C12 ALIPHATIC HYDROCARBONS

Quantity: 1020 milligrams per kilogram

13 TRANSFER STATION MA MERCURY S113670358

448 BOSTON POST ROAD N/A

1/4-1/2 WAYLAND, MA

0.376 mi. 1987 ft.

East

Relative: MERCURY:

Lower Tues 8am - 4pm Hours1: Thurs and Sat 7am - 4pm Hours2: Actual:

Website: http://www.wayland.ma.us/Pages/WaylandMA_DPW/transfer/Transfer20Statio 118 ft.

n20Disposal20List20V3.pdf

Work Phone: (508) 358-7910 Not reported **Button Batteries B:** Not reported Button Batteries R: Fluorescent Lamps (Incl# Cfls) B: Not reported Fluorescent Lamps (Incl# Cfls) R: Yes

Thermostats B: Not reported Thermostats R: Not reported Electronics-Inc Flat Panel TV, Laptops B: Not reported Electronics-Inc Flat Panel TV, Laptops R: Fee may apply Other Hg Products-Thermometers Blood Press Cuffs B: Not reported Other Hg Products-Thermometers Blood Press Cuffs R: Not reported Comments: Not reported

B14 MA HIGHWAY DEPT MA SHWS S104000420

West **BOSTON POST RD RTE 20 MA LUST** N/A

1/4-1/2 SUDBURY, MA 01776

0.412 mi.

2177 ft. Site 1 of 4 in cluster B

Relative: SHWS:

Lower Facility ID: 3-0018306 Source Type: Not reported Actual: **SUDBURY** Release Town: 135 ft. Notification Date: 05/05/1999

Category: 120 DY **MA RELEASE**

Direction Distance

Elevation Site Database(s) EPA ID Number

MA HIGHWAY DEPT (Continued)

S104000420

EDR ID Number

Associated ID: Not reported Current Status: RAO Status Date: 05/05/2000 Phase: Not reported

Response Action Outcome: A2

Oil Or Haz Material: Hazardous Material

LUST:

Facility:

Phase:

Release Tracking Number/Current Status: 3-0014245 / RAO Status Date: 11/18/1996 Source Type: UST Release Town: SUDBURY Notification Date: 09/18/1996 Category: 72 HR Associated ID: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

Not reported

been reduced to background.

Oil Or Haz Material: Oil

Location Type: STATE Source: UST

Click here to access the MA DEP site for this facility:

Chemicals:

Chemical: GASOLINE
Quantity: 650 parts per million

Actions:

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 11/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 11/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO Action Status: RAO Statement Received

Action Date: 11/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FOLOFF
Action Date: 9/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Map ID MAP FINDINGS
Direction

Distance

Elevation Site Database(s) EPA ID Number

MA HIGHWAY DEPT (Continued)

S104000420

EDR ID Number

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 9/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 9/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 9/30/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Release:

Release Tracking Number/Current Status: 3-0014245 / RAO
Primary ID: Not reported
Official City: SUDBURY
Notification: 09/18/1996
Category: 72 HR
Status Date: 11/18/1996
Phase: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 11/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 11/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO

Action Status: RAO Statement Received

Action Date: 11/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RLFA
Action Status: FOLOFF
Action Date: 9/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

Direction Distance Elevation

ation Site Database(s) EPA ID Number

MA HIGHWAY DEPT (Continued)

S104000420

EDR ID Number

reduced to background.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 9/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 9/18/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 9/30/1996

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

Chemical: GASOLINE

Quantity: 650 parts per million

Location Type: STATE Source: UST

Release Tracking Number/Current Status: 3-0018306 / RAO
Primary ID: Not reported
Official City: SUDBURY
Notification: 05/05/1999
Category: 120 DY
Status Date: 05/05/2000
Phase: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 10/5/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 2/22/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 5/5/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

Direction Distance

Elevation Site Database(s) EPA ID Number

MA HIGHWAY DEPT (Continued)

S104000420

EDR ID Number

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 5/5/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 5/5/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO Action Status: RAO Statement Received

Action Date: 5/5/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

3-0029909

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 7/13/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

Chemical: BENZO[B]FLUORANTHENE

Quantity: 1.8 parts per million

B15 DPW TRANSFER STATION
West 20 BOSTON POST RD
1/4-1/2 SUDBURY, MA 01776

1/4-1/2 SUDBURY, MA 01776 0.422 mi.

2229 ft. Site 2 of 4 in cluster B

Relative: SHWS: Lower Facility ID:

Actual: Source Type: LANDFILL

134 ft. Release Town: SUDBURY
Notification Date: 03/31/2011
Category: TWO HR

Associated ID: Not reported
Current Status: ADQREG
Status Date: 10/15/2012
Phase: Not reported
Response Action Outcome: Not reported
Oil Or Haz Material: Hazardous Material

Facility ID: 3-0029909 Source Type: GAS Release Town: **SUDBURY** Notification Date: 03/31/2011 TWO HR Category: Associated ID: Not reported **Current Status: ADQREG** 10/15/2012 Status Date:

MA SHWS

MA LAST MA RELEASE

MA SWF/LF

MA HW GEN

S103383738

N/A

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

DPW TRANSFER STATION (Continued)

S103383738

Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Facility ID: 3-0033503 Source Type: LANDFILL Release Town: **SUDBURY** Notification Date: 04/05/2016 Category: TWO HR Associated ID: Not reported **ADQREG Current Status:** 08/03/2016 Status Date: Not reported Phase: Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Facility ID: 3-0033503 **METHANE** Source Type: Release Town: **SUDBURY** 04/05/2016 Notification Date: Category: TWO HR Associated ID: Not reported **Current Status: ADQREG** Status Date: 08/03/2016 Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Facility ID: 3-0023624 UNKNOWN Source Type: Release Town: **SUDBURY** Notification Date: 02/20/2004 Category: TWO HR Associated ID: Not reported **ADQREG Current Status:** 12/12/2016 Status Date: Phase: Not reported Response Action Outcome: Not reported

Oil and Hazardous Material Oil Or Haz Material:

Facility ID: 3-0034148 Source Type: UNKNOWN Release Town: **SUDBURY** Notification Date: 03/29/2017 TWO HR Category: Associated ID: Not reported **Current Status: PSNC** 08/07/2017 Status Date: Phase: Not reported Response Action Outcome: PΝ

Oil Or Haz Material: Oil and Hazardous Material

LF:

Facility Phone: (978)443-8891

7567 Annual Tons for 1995: Annual Tons for 1996: 1850 Annual Tons for 1997: Not reported Map ID MAP FINDINGS Direction

Distance

Elevation Site **EPA ID Number** Database(s)

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Annual Tons for 1998: Not reported Annual Tons for 1999: Not reported Not reported Annual Tons for 2000: Annual Tons for 2001: Not reported Annual Tons for 2002: Not reported Annual Tons for 2003: Not reported Annual Tons for 2004: Not reported Annual Tons for 2005: Not reported Annual Tons for 2006: Not reported Annual Tons for 2007: Not reported Annual Tons for 2008: Not reported Annual Tons for 2009: Not reported Annual Tons for 2010: Not reported Annual Tons for 2011: Not reported Annual Tons for 2012: Not reported Annual Tons for 2013: Not reported Not reported Annual Tons for 2014: Annual Tons for 2015: Not reported Reg Obj Acct ID Num For Each Solid Waste Operation: 224306

Days of Operation: 260

Note On The Physical Location Of The Site: Not reported Acres: 22 1970 Active Year: Classification Group: Land Disposal

Current Or Most Recent Closed Classification: CLF

Description Of The Last Classification: Closed Landfill with Env Monitoring Required

Close Year: 2005

Name Of The Organization: TOWN OF SUDBURY

Contacts Organization Type: Municipal

Contact Persons Name And Title: STEVEN LEDOUX, TOWN MRG

Contact Phone Including Extension: (978)443-8891 Contact Mailing Street Address: 288 SUDBURY RD Contacts Mailing City, State, Zip: SUDBURY, MA 01776

Inactive Year: 1996 Land Disposal Closure Status: Capped MSW Land Disposal Only, Category Waste Disposed: Landfills Liner: Lined Municipality That The Operation Is Located In: **SUDBURY** Alpha-Numeric Identification Code: SL0288.001 Numeric-Only Portion Of The Identification Code: 0288.001

Northeast (Wilmington) Region:

Org That Pays Any Annual Compliance Fee And/Or Permittee:TOWN OF SUDBURY

Responsible Party Organization Type: Municipal

Responsible Party Mailing Street Address Line 1: 278 OLD SUDBURY RD

Responsible Party Mailing Street Address Line 2: Not reported

Responsible Party Mailing City, State, Zip: SUDBURY, MA 01776

Responsible Party Telephone Inc Extension: Not reported Maximum Permitted Tons Per Day: 99 **Current Operational Status:** Closed

Facility Phone: (978)443-2209 1390 Annual Tons for 1995: Not reported Annual Tons for 1996: Not reported Annual Tons for 1997: Not reported Annual Tons for 1998: 2977 Annual Tons for 1999: 2817 Annual Tons for 2000: 2851

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

DPW TRANSFER STATION (Continued)

S103383738

Annual Tons for 2001: 3270 Annual Tons for 2002: 2114 Annual Tons for 2003: 2364 Annual Tons for 2004: 2394 Annual Tons for 2005: 4128 Annual Tons for 2006: 2430 Annual Tons for 2007: 2307 Annual Tons for 2008: 2419 Annual Tons for 2009: 2672 Annual Tons for 2010: Not reported Annual Tons for 2011: Not reported Annual Tons for 2012: Not reported Annual Tons for 2013: Not reported Annual Tons for 2014: Not reported Annual Tons for 2015: Not reported Reg Obj Acct ID Num For Each Solid Waste Operation: 318294

Days of Operation: 156

Note On The Physical Location Of The Site: Not reported Acres: Not reported Active Year: 1996

Classification Group: Handling/Transfer

Current Or Most Recent Closed Classification: **SMTRAN**

Description Of The Last Classification: Small Transfer Station Close Year: Not reported SUDBURY DPW Name Of The Organization:

Contacts Organization Type: Municipal

Contact Persons Name And Title: WILLIAM PLACE, DPW DIR Contact Phone Including Extension: (978)443-2209 1390 Contact Mailing Street Address: 275 OLD LANCASTER RD Contacts Mailing City, State, Zip: SUDBURY, MA 01776

Inactive Year: Not reported

Land Disposal Closure Status: n/a Land Disposal Only, Category Waste Disposed: n/a Landfills Liner: n/a Municipality That The Operation Is Located In: **SUDBURY** TR0288.009 Alpha-Numeric Identification Code: Numeric-Only Portion Of The Identification Code: 0288.009

Northeast (Wilmington)

Org That Pays Any Annual Compliance Fee And/Or Permittee:TOWN OF SUDBURY

Responsible Party Organization Type: Municipal

Responsible Party Mailing Street Address Line 1: 278 OLD SUDBURY RD

Responsible Party Mailing Street Address Line 2: Not reported

Responsible Party Mailing City, State, Zip: SUDBURY, MA 01776

Responsible Party Telephone Inc Extension: Not reported Maximum Permitted Tons Per Day: Not reported **Current Operational Status:** Active

LF PROFILES:

Site Type Code: MSW

Municipal Solid Waste Site Type Desc:

Status: Closed Owner Type: Municipal Stat Active Yr: 0:00 Stat Inactive Yr: 1996 Stat Close Yr: 05/10/2005 Lined?: Lined Cap Status: Capped

Direction Distance

Elevation Site Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Cap Cert Date:

Post Closure Permit:

Not reported
Post Closure Use:

Not reported
LF Gas Energy:

Acres:

Acres:

Acres Doc:

Not reported
Post Closure Use:

Not reported
Post PB

Acres Doc Desc: Parcel Boundary

 Electrical Provider:
 NSTAR

 Dist To Trans Miles:
 6.25

 Wind Speed 30m:
 4.6424

 Wind Speed 50m:
 5.1308

 Wind Speed 100m:
 6.0122

 Wind Speed 70m:
 5.5185

 Mass DEP FMF DB Id:
 224402

LAST:

Release Tracking Number/Current Status: 3-0017083 / RAO

Source Type: AST

Release Town:

Notification Date:

Category:

Associated ID:
Status Date:

Phase:

SUDBURY

07/24/1998

TWO HR

Not reported

04/30/1999

Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil Or Haz Material:

Chemicals:

Chemical: DIESEL FUEL
Quantity: 100 gallons
Location Type: MUNICIPAL
Source: AST

Actions:

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 11/20/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO Action Status: RAO Statement Received

Action Date: 4/30/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO
Action Status: Fee Received - FMCRA Use Only

Action Date: 5/3/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 7/24/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Direction Distance

Elevation Site Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 7/24/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 8/27/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action
Action Status: Written Plan Received

Action Date: 9/24/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 9/24/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Release:

Release Tracking Number/Current Status: 3-0017083 / RAO
Primary ID: Not reported
Official City: SUDBURY
Notification: 07/24/1998
Category: TWO HR
Status Date: 04/30/1999
Phase: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 11/20/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO

Action Status: RAO Statement Received

Action Date: 4/30/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO
Action Status: Fee Received - FMCRA Use Only

Action Date: 5/3/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

Direction Distance

Elevation Site Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

reduced to background.

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 7/24/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 7/24/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 8/27/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 9/24/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 9/24/1998

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

Chemical:
Quantity:
Location Type:
Source:

DIESEL FUEL
100 gallons
MUNICIPAL
AST

Release Tracking Number/Current Status: 3-0023624 / ADQREG

Primary ID: Not reported Official City: SUDBURY Notification: 02/20/2004 Category: TWO HR Status Date: 12/12/2016 Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Oil and Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 1/10/2005 Response Action Outcome: Not reported Map ID MAP FINDINGS
Direction

Distance
Elevation Site Database(s)

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

EPA ID Number

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 1/10/2005 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 1/10/2005
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 1/13/2005 Response Action Outcome: Not reported

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 1/13/2005 Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 1/13/2005
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 1/23/2007
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 10/4/2007 Response Action Outcome: 10/4/2007 Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 10/6/2008 Response Action Outcome: Not reported

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 10/6/2008 Response Action Outcome: Not reported

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 12/12/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 12/12/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Direction Distance Elevation

tion Site Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Action Date: 12/13/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Written Approval of Plan

Action Date: 2/16/2007 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 2/2/2007
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 2/20/2004
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 2/20/2004
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 2/20/2004
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 2/24/2004
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FLDRAN
Action Date: 3/15/2007
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 3/22/2010
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 3/29/2006
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 3/5/2004
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of a Modified Plan

Action Date: 3/8/2004
Response Action Outcome: Not reported

Map ID MAP FINDINGS
Direction

Distance

Elevation Site Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Action Type: RLFA
Action Status: FOLOFF
Action Date: 3/8/2007
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 3/9/2004
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 4/5/2007 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of a Modified Plan

Action Date: 4/6/2005
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 4/6/2005
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 4/6/2005
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Modified Revised or Updated Plan Received

Action Date: 5/26/2005 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Submittal Retracted

Action Date: 5/26/2005 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 5/26/2005 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 5/28/2008
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 5/6/2004
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF

Direction Distance Elevation

evation Site Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Action Date: 5/7/2004
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Modified Revised or Updated Plan Received

Action Date: 6/22/2016
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 6/25/2007
Response Action Outcome: Not reported

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 6/30/2009
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 6/30/2009 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 7/30/2010
Response Action Outcome: Not reported

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 7/30/2010
Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 7/7/2004
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 7/7/2004
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 7/7/2004
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 7/7/2004
Response Action Outcome: Not reported

Chemicals:

Chemical: TOTAL PETROLEUM HYDROCARBONS (TPH)

Quantity: Not reported Chemical: METHANE

Distance

Elevation Site Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Quantity: Not reported Location Type: ROADWAY Location Type: MUNICIPAL Source: UNKNOWN

Release Tracking Number/Current Status: 3-0029909 / ADQREG

Primary ID:

Official City:

Not reported
SUDBURY

Notification:

03/31/2011
Category:

TWO HR
Status Date:

10/15/2012
Phase:

Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 10/15/2012 Response Action Outcome: Not reported

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 10/15/2012
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 11/28/2011
Response Action Outcome: Not reported

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 11/28/2011
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 11/30/2011
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FLDRUN
Action Date: 3/26/2012
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 3/31/2011
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 3/31/2011
Response Action Outcome: Not reported

Distance EDR ID Number
Elevation Site EDR ID Number
Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 4/15/2011
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 4/29/2011
Response Action Outcome: Not reported

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 4/29/2011
Response Action Outcome: Not reported

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 4/29/2011
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 4/29/2011
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Modified Revised or Updated Plan Received

Action Date: 4/29/2011
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 4/3/2012
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of a Modified Plan

Action Date: 5/13/2011
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 5/13/2011
Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Approval of Plan

Action Date: 5/25/2011
Response Action Outcome: Not reported

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 6/6/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

DPW TRANSFER STATION (Continued)

S103383738

Action Date: 8/1/2013 Response Action Outcome: Not reported

Chemicals:

Chemical: **METHANE** 17 %LEL Quantity: MUNICIPAL Location Type: GAS Source: Source: LANDFILL

Release Tracking Number/Current Status: 3-0033503 / ADQREG

Primary ID: Not reported Official City: SUDBURY 04/05/2016 Notification: Category: TWO HR Status Date: 08/03/2016 Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

4/5/2016 Action Date: Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Oral Approval of Plan or Action

Action Date: 4/5/2016 Response Action Outcome: Not reported

A Notice sent to a Potentially Responsible Party (PRP) Action Type:

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 6/2/2016 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 8/3/2016 Response Action Outcome: Not reported

RAO Not Required Action Type: Adequately Regulated Action Status:

Action Date: 8/3/2016 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Level I - Technical Screen Audit

Action Date: 8/8/2016 Not reported Response Action Outcome:

Chemicals:

Chemical: **METHANE** Quantity: 22 %LEL

Direction Distance

Elevation Site Database(s) EPA ID Number

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Location Type: MUNICIPAL Source: METHANE Source: LANDFILL

Release Tracking Number/Current Status: 3-0034148 / PSNC

Primary ID:
Official City:
SUDBURY
Notification:
O3/29/2017
Category:
TWO HR
Status Date:
O8/07/2017
Phase:
Response Action Outcome:
PN - PN

Oil / Haz Material Type: Oil and Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 3/29/2017 Response Action Outcome: PN

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 3/29/2017 Response Action Outcome: PN

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 5/24/2017 Response Action Outcome: PN

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 7/11/2017 Response Action Outcome: PN

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 7/24/2017 Response Action Outcome: PN

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 7/24/2017 Response Action Outcome: PN

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 7/6/2017 Response Action Outcome: PN

Action Type: RAO Not Required
Action Status: Adequately Regulated

Action Date: 7/6/2017 Response Action Outcome: PN

MAP FINDINGS Map ID

Direction Distance

Elevation Site Database(s) **EPA ID Number**

DPW TRANSFER STATION (Continued)

S103383738

EDR ID Number

Action Type: Immediate Response Action Written Plan Received Action Status:

Action Date: 7/6/2017 Response Action Outcome:

Action Type: Immediate Response Action Action Status: Completion Statement Received

Action Date: 8/2/2017 Response Action Outcome: PΝ

Action Type: Response Action Outcome - RAO

Action Status: **PSNRCD** Action Date: 8/7/2017 Response Action Outcome: PΝ

Chemicals:

GASOLINE Chemical: Quantity: 508 %LEL Chemical: **METHANE** Quantity: 508 %LEL MUNICIPAL Location Type: Source: UNKNOWN

HW GEN:

EPA Id: MAR000505016

RCRA Generator Status: SQG State Generator Status: Not reported

MAD982545527 EPA Id:

RCRA Generator Status: SQG State Generator Status: LQG-MA

B16 **RICHEY AND CLAPPER INC** West 33 BOSTON POST RD 1/4-1/2 SUDBURY, MA 01776

0.433 mi.

136 ft.

Site 3 of 4 in cluster B 2285 ft.

SHWS: Relative: Lower Actual:

Facility ID: 3-0029754 Source Type: **TRANSFORM** Release Town: **SUDBURY** Notification Date: 01/17/2011 TWO HR Category: Associated ID: Not reported **Current Status:** RAO 01/20/2011 Status Date:

Not reported Response Action Outcome: A1

Oil Or Haz Material: Not reported

Release:

Phase:

Release Tracking Number/Current Status: 3-0029754 / RAO Primary ID: Not reported SUDBURY Official City: Notification: 01/17/2011

MA SHWS

MA RELEASE

MA HW GEN

S110822186

N/A

Distance

Elevation Site Database(s) EPA ID Number

RICHEY AND CLAPPER INC (Continued)

S110822186

EDR ID Number

Category: TWO HR
Status Date: 01/20/2011
Phase: Not reported

Response Action Outcome: A1 - A permanent solution has been achieved. Contamination has been

reduced to background or a threat of release has been eliminated.

Oil / Haz Material Type: Not reported

Click here to access the MA DEP site for this facility:

Actions:

Action Type: RLFA
Action Status: FLDD1U
Action Date: 1/17/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 1/17/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 1/17/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 1/20/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: Response Action Outcome - RAO Action Status: RAO Statement Received

Action Date: 1/20/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/20/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 2/22/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: Response Action Outcome - RAO
Action Status: Level I - Technical Screen Audit

Action Date: 2/8/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

RICHEY AND CLAPPER INC (Continued)

S110822186

S101031097

N/A

Chemicals:

MODF Chemical: Quantity: 100 gallons

Chemical: MINERAL OIL DIELECTRIC FLUID

Quantity: 95 gallons COMMERCIAL Location Type: **TRANSFORM** Source:

HW GEN:

MV9784431333 EPA Id: RCRA Generator Status: Not reported State Generator Status: SQG-MA

B17 **NO LOCATION AID 83 BOSTON POST RD** West 1/4-1/2 SUDBURY, MA 01776

MA SHWS **MA SPILLS MA RELEASE**

N87-0142

Not reported

Spill ID:

Date Entered:

Spill Time:

Mat Type:

Report Time:

Contam Soil:

Other Impact:

Qty Actual:

Qty Actual:

Other Material:

PCB Lev (ppm):

Other Source:

Other Incdnt:

Contractor:

LUST Elig:

Category:

First Response:

0.453 mi.

139 ft.

2391 ft. Site 4 of 4 in cluster B

Relative: SHWS: Lower Actual:

Facility ID: Source Type: Release Town: Notification Date: Category:

Status Date:

3-0021843 Not reported **SUDBURY** 06/24/2002 120 DY Associated ID: Not reported **Current Status:** DPS 07/16/2002

Not reported Phase: Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

MA Spills:

Facility ID: 0000 Staff Lead:

BRADLEY, R Last Entered: Not reported Spill Date: 19870206 Not reported Report Date: Case Closed: YES Virgin Waste: Not reported

Env Impact: Not reported **DIESEL FUEL** Material: 5 GALS Qty Reported: Qty Reported: Not reported CAS No: Not reported Source: Not reported Not reported Incident: Cleanup Type: Not reported Referral: Not reported

Report Prep: Not reported Notifier: Not reported Notif Tel: Not reported

Days/Close:

Release:

Release Tracking Number/Current Status: 3-0021843 / DPS

Direction Distance

Elevation Site Database(s) EPA ID Number

NO LOCATION AID (Continued)

S101031097

EDR ID Number

Primary ID: Not reported
Official City: SUDBURY
Notification: 06/24/2002
Category: 120 DY
Status Date: 07/16/2002
Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 6/24/2002 Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 6/24/2002 Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Fee Received - FMCRA Use Only

Action Date: 7/15/2002
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 7/16/2002 Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 8/15/2002
Response Action Outcome: Not reported

Chemicals:

Chemical: BENZENE

Quantity: 7.15 micrograms per liter

Direction Distance

Elevation Site Database(s) EPA ID Number

1/4-1/2 WAYLAND, MA 01778 0.466 mi.

2462 ft. Site 1 of 2 in cluster C

Relative: Lower Actual: 124 ft. MA RELEASE RCRA NonGen / NLR ICIS US AIRS FINDS ECHO MA ENF MA HW GEN NY MANIFEST

MA LUST

MA TIER 2 MA UIC

MA INST CONTROL

EDR ID Number

SEMS Archive:

 Site ID:
 0100949

 EPA ID:
 MAD990685554

 Cong District:
 04

 FIPS Code:
 25017

 FF:
 N

NPL: Not on the NPL

Non NPL Status: NFRAP-Site does not qualify for the NPL based on existing information

Latitude: +42.36 Longitude: -071.36

SEMS Archive Detail:

 Region:
 01

 Site ID:
 0100949

 EPA ID:
 MAD990685554

Site Name: RAYTHEON CO EQUIPMENT DIV

 NPL:
 N

 FF:
 N

 OU:
 00

 Action Code:
 VS

 Action Name:
 AR

Action Name:
SEQ:
Start Date:
Not reported
Finish Date:
Qual:
Not reported
Current Action Lead:
ARCH SITE
SARCH SITE
Not reported
EPA Perf In-Hse

 Region:
 01

 Site ID:
 0100949

 EPA ID:
 MAD990685554

Site Name: RAYTHEON CO EQUIPMENT DIV

 NPL:
 N

 FF:
 N

 OU:
 00

 Action Code:
 SI

 Action Name:
 SI

 SEQ:
 1

Start Date: 1990-12-12 05:00:00 Finish Date: 1991-10-29 05:00:00

Qual: H
Current Action Lead: EPA Perf

Region: 01 Site ID: 0100949

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

EDR ID Number

1000407718

EPA ID: MAD990685554

Site Name: RAYTHEON CO EQUIPMENT DIV

 NPL:
 N

 FF:
 N

 OU:
 00

 Action Code:
 DS

 Action Name:
 DISCVRY

SEQ:

 Start Date:
 1980-11-01 05:00:00

 Finish Date:
 1980-11-01 05:00:00

 Qual:
 Not reported

Current Action Lead: EPA Perf

 Region:
 01

 Site ID:
 0100949

 EPA ID:
 MAD990685554

Site Name: RAYTHEON CO EQUIPMENT DIV

 NPL:
 N

 FF:
 N

 OU:
 00

 Action Code:
 PA

 Action Name:
 PA

 SEQ:
 1

Start Date: Not reported Finish Date: 1980-11-01 05:00:00

Qual:

Current Action Lead: EPA Perf

 Region:
 01

 Site ID:
 0100949

 EPA ID:
 MAD990685554

Site Name: RAYTHEON CO EQUIPMENT DIV

 NPL:
 N

 FF:
 N

 OU:
 00

 Action Code:
 VA

Action Name: OTHR CLEANUP

SEQ:

Start Date: 2000-07-01 04:00:00 Finish Date: 2009-11-04 05:00:00

Qual: N

Current Action Lead: St Ovrsght

SHWS:

Facility ID: 3-0013302 UNKNOWN Source Type: Release Town: WAYLAND Notification Date: 01/02/1996 Category: 72 HR Associated ID: 3-0013302 **Current Status: REMOPS** Status Date: 05/16/2018 Phase: PHASE V Response Action Outcome: Not reported

Oil Or Haz Material: Oil

Direction Distance

Elevation Site Database(s) EPA ID Number

3-0019482

430 BOSTON POST ROAD (Continued)

Facility ID:

1000407718

EDR ID Number

Source Type: UNKNOWN Release Town: WAYLAND Notification Date: 04/26/2000 Category: TWO HR Associated ID: Not reported RAONR **Current Status:** 11/28/2000 Status Date: Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

3-0033752 Facility ID: Source Type: UNKNOWN WAYLAND Release Town: Notification Date: 02/13/2017 Category: 120 DY Associated ID: Not reported **Current Status:** DPS 03/13/2017 Status Date: Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

3-0013574 Facility ID: Source Type: Not reported WAYLAND Release Town: Notification Date: 03/15/1996 120 DY Category: Associated ID: Not reported **Current Status:** RAONR Status Date: 11/28/2000 Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Facility ID: 3-0014042 Source Type: Not reported Release Town: WAYLAND 07/25/1996 Notification Date: Category: 120 DY Associated ID: Not reported **Current Status: RAONR** 11/28/2000 Status Date: Phase: Not reported Response Action Outcome: Not reported

Oil Or Haz Material: Oil and Hazardous Material

Facility ID: 3-0022408 Source Type: Not reported Release Town: WAYLAND Notification Date: 12/17/2002 120 DY Category: Associated ID: Not reported **Current Status: RAONR** Status Date: 06/09/2009 Phase: PHASE V

Direction Distance Elevation

tion Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Response Action Outcome: Not reported
Oil Or Haz Material: Hazardous Material

Facility ID: 3-0022665 Source Type: Not reported WAYLAND Release Town: Notification Date: 03/12/2003 Category: 120 DY Associated ID: Not reported **Current Status: RAONR** 12/10/2003 Status Date: Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Facility ID: 3-0001783 Source Type: **FLOORDRAIN** Release Town: WAYLAND Notification Date: 01/15/1987 Category: NONE Associated ID: Not reported **Current Status:** RAO Status Date: 08/03/1995 Phase: Not reported

Response Action Outcome: B1
Oil Or Haz Material: Oil

LUST:

Facility:

Release Tracking Number/Current Status: 3-0013302 / REMOPS

 Status Date:
 05/16/2018

 Source Type:
 UST

 Release Town:
 WAYLAND

 Notification Date:
 01/02/1996

 Category:
 72 HR

 Associated ID:
 3-0013302

 Phase:
 PHASE V

Response Action Outcome: Oil Or Haz Material: Oil

Location Type: RESIDNTIAL
Location Type: INDUSTRIAL
Source: UST
Source: UNKNOWN

Click here to access the MA DEP site for this facility:

Chemicals:

Chemical: TPH

Quantity: 48000 parts per million

Actions:

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

MAP FINDINGS Map ID

Direction Distance Elevation

EDR ID Number Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

Action Date: 1/12/1996 Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/13/2012 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 1/19/2012 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Oral Approval of Plan or Action

Action Date: 1/2/1996 Response Action Outcome: Not reported

Action Type: Release Disposition

Reportable Release under MGL 21E Action Status:

1/2/1996 Action Date: Response Action Outcome: Not reported

Action Type: **BOL**

Transmittal, Notice, or Notification Received Action Status:

Action Date: 1/23/2012 Response Action Outcome: Not reported

Action Type: Activity and Use Limitation

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/24/2012 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Status or Interim Report Received Action Status:

Action Date: 1/28/2013 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Status or Interim Report Received Action Status:

Action Date: 1/28/2014 Response Action Outcome: Not reported

Tier Classification Action Type: Action Status: Tier 1B Classification

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/3/1997 Response Action Outcome: Not reported

Direction Distance Elevation

levation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: BOL
Action Status: SHPFAC
Action Date: 1/30/2013
Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/6/2012
Response Action Outcome: Not reported

Action Type: Phase 3

Action Status: Public Comment Period Initiated on Submittal

Action Date: 10/10/2001 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Public Comment Period Initiated on Submittal

Action Date: 10/10/2001 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 10/15/2004 Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Action Status or AUL Terminated

Action Date: 10/17/2016
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Public Comment Period Initiated on Submittal

Action Date: 10/7/2004 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/10/2010
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/10/2010
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/10/2011
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/10/2011
Response Action Outcome: Not reported

Action Type: PIP

Action Status: Written Plan Received

Direction Distance Elevation

tance EDR ID Number vation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Date: 11/14/2000 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/16/2009
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/16/2009
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/16/2012
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/16/2012
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/16/2017
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 11/16/2017
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/17/2018
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/17/2018
Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Public Comment Period Initiated on Submittal

Action Date: 11/19/2003
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/20/2015
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/20/2015
Response Action Outcome: Not reported

Direction Distance Elevation

tion Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/21/2007
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/21/2007 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/21/2014
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/21/2014
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/22/2013
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/22/2013
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/22/2016
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/22/2016
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation
Action Status: Level II - Audit Inspection
Action Date: 11/23/2009

Action Date: 11/23/2009
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: As-Built Construction Report Received

Action Date: 11/24/2004 Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Completion Statement Received

Action Date: 11/24/2004
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 11/24/2006 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/24/2006
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation
Action Status: Legal Notice Published

Action Date: 11/24/2014
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation
Action Status: Amendment Received or Issued

Action Date: 11/24/2014
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/25/2005 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: DEP Disagrees with Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 11/28/2001 Response Action Outcome: Not reported

Action Type: Phase 3

Action Status: Completion Statement Received

Action Date: 11/28/2001 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 12/11/2008
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 12/11/2008
Response Action Outcome: Not reported

Action Type: Partial RAO for this RTN

Action Status: PSARCD
Action Date: 12/15/2016
Response Action Outcome: Not reported

Distance Elevation S

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 12/17/2003 Response Action Outcome: Not reported

Action Type: An activity type that is related to an Audit

Action Status: NAFVIO
Action Date: 12/29/2009
Response Action Outcome: Not reported

Action Type: An activity type that is related to an Audit

Action Status: Interim Deadline Letter Issued

Action Date: 12/29/2009
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 12/3/2004
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Written Plan Received

Action Date: 12/30/2002 Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 12/9/2015
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 2/1/1996
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation
Action Status: Legal Notice Published

Action Date: 2/2/2012
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 3/11/1996
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FLDRAN
Action Date: 3/27/1997
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 3/31/2015
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Direction Distance Elevation

evation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 3/9/1998
Response Action Outcome: Not reported

Action Type: Partial RAO for this RTN

Action Status: Public Comment Period Initiated on Submittal

Action Date: 3/9/2005 Response Action Outcome: Not reported

Action Type: Activity and Use Limitation

Action Status: Public Comment Period Initiated on Submittal

Action Date: 3/9/2005
Response Action Outcome: Not reported

Action Type: Phase 3

Action Status: Notice of Delay in Meeting RA Deadline Received

Action Date: 4/2/1999
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Notice of Delay in Meeting RA Deadline Received

Action Date: 4/26/2002 Response Action Outcome: 4/26/2002 Not reported

Action Type: Phase 2

Action Status: Scope of Work Received

Action Date: 4/28/1998
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Modified Revised or Updated Plan Received

Action Date: 4/29/2004
Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 4/3/2012
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation

Action Status: Transmittal, Notice, or Notification Received

Action Date: 5/14/1999
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 5/14/1999
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Extension Received

Action Date: 5/15/2003 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/16/2011
Response Action Outcome: Not reported

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/16/2011
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/16/2013
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/16/2013
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/16/2018
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 5/16/2018
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Public Comment Period Initiated on Submittal

Action Date: 5/17/2002 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/17/2012 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/17/2012
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/19/2016
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/19/2016
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/19/2017
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Direction Distance Elevation

on Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 5/19/2017 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/20/2014
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/20/2014
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 5/21/1997 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/21/2007 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/21/2007
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/21/2010
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/21/2010
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/22/2006
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/22/2006
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/22/2015
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/22/2015
Response Action Outcome: Not reported

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: Phase 5

Action Status: Status or Interim Report Received

Action Date: 5/24/2005 Response Action Outcome: Not reported

Action Type: BOL
Action Status: SHPFAC
Action Date: 5/24/2013
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 5/25/2000
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1A Classification

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Revised Statement or Transmittal Received

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: BOL
Action Status: SHPFAC
Action Date: 5/31/2013
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 6/10/2009 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 6/10/2009
Response Action Outcome: Not reported

Action Type: BOL
Action Status: SHPFAC
Action Date: 6/11/2013
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 6/15/2016
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Distance Elevation

on Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 6/2/2008
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 6/2/2008
Response Action Outcome: Not reported

Action Type: PIP

Action Status: Public Involvement Petition Received

Action Date: 6/24/2000 Response Action Outcome: Not reported

Action Type: Partial RAO for this RTN
Action Status: RAO Statement Received

Action Date: 6/8/1999
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 6/9/2009
Response Action Outcome: Not reported

Action Type: PIP
Action Status: PIPDLY
Action Date: 7/18/2000
Response Action Outcome: Not reported

Action Type: BOL
Action Status: SHPFAC
Action Date: 7/25/2012
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/25/2012
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 7/29/2003
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/29/2013
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/3/1998
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/31/2003
Response Action Outcome: Not reported

Direction Distance Elevation

nce EDR ID Number ttion Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 8/1/1996
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 8/14/2014
Response Action Outcome: Not reported

Action Type: PIP

Action Status: Public Comment Period Initiated on Submittal

Action Date: 8/28/2000 Response Action Outcome: Not reported

Action Type: PIP
Action Status: PLANDT
Action Date: 8/28/2000
Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Public Comment Period Initiated on Submittal

Action Date: 8/29/2011
Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Written Plan Received

Action Date: 9/15/2011
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Scope of Work Received

Action Date: 9/21/1999
Response Action Outcome: 9/21/1999
Not reported

Action Type: PIP
Action Status: PIPMTG
Action Date: 9/28/2000
Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Public Comment Period Initiated on Submittal

Action Date: 9/8/2011
Response Action Outcome: Not reported

Action Type: BWS20
Action Status: APPROV
Action Date: Not reported
Response Action Outcome: Not reported

Action Type: BWS02
Action Status: APPROV
Action Date: Not reported
Response Action Outcome: Not reported

Action Type: BWS10
Action Status: APPROV

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: Not reported Response Action Outcome: Not reported

Facility:

Release Tracking Number/Current Status: 3-0027651 / DPS
Status Date: 11/26/2007
Source Type: UST
Release Town: WAYLAND
Notification Date: 11/26/2007
Category: 120 DY
Associated ID: Not reported
Phase: Not reported

Response Action Outcome:

Oil Or Haz Material: Hazardous Material

Location Type: COMMERCIAL

Source: UST

Click here to access the MA DEP site for this facility:

Chemicals:

Chemical: METHYL TERT-BUTYL ETHER
Quantity: 280 micrograms per liter

Actions:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 11/26/2007 Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 11/26/2007 Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Level I - Technical Screen Audit

Action Date: 4/17/2008
Response Action Outcome: Not reported

INST CONTROL:

Release Tracking Number: 3-0013302
Action Type: AUL
Action Stat: AMEND
Action Date: 11/24/2014

Response Action Outcome: -

Release Tracking Number: 3-0013302
Action Type: AUL
Action Stat: LEGNOT
Action Date: 02/02/2012

Response Action Outcome: -

Direction Distance Elevation

evation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Release Tracking Number: 3-0013302
Action Type: AUL
Action Stat: LEGNOT
Action Date: 11/24/2014

Response Action Outcome: -

Release Tracking Number: 3-0013302
Action Type: AUL
Action Stat: PUBCOM
Action Date: 03/09/2005

Response Action Outcome: -

Release Tracking Number: 3-0013302
Action Type: AUL
Action Stat: RECPT
Action Date: 01/24/2012

Response Action Outcome: -

Release Tracking Number: 3-0013302
Action Type: AUL
Action Stat: RECPT
Action Date: 05/14/1999

Response Action Outcome: -

Release Tracking Number: 3-0013302
Action Type: AUL
Action Stat: SNAUDI
Action Date: 11/23/2009

Response Action Outcome: -

Release Tracking Number: 3-0013574
Action Type: AUL
Action Stat: AMEND
Action Date: 11/24/2014

Response Action Outcome: -

Release Tracking Number: 3-0013574
Action Type: AUL
Action Stat: LEGNOT
Action Date: 11/24/2014

Response Action Outcome: -

Release Tracking Number: 3-0013574
Action Type: AUL
Action Stat: PUBCOM
Action Date: 03/09/2005

Response Action Outcome: -

Release Tracking Number: 3-0013574
Action Type: AUL
Action Stat: RECPT
Action Date: 05/14/1999

Response Action Outcome: -

Release Tracking Number: 3-0013574 Action Type: AUL Action Stat: SNAUDI

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 11/23/2009

Response Action Outcome: -

Release Tracking Number: 3-0022408
Action Type: AUL
Action Stat: LEGNOT
Action Date: 02/02/2012

Response Action Outcome: -

Release Tracking Number: 3-0022408
Action Type: AUL
Action Stat: RECPT
Action Date: 01/24/2012

Response Action Outcome: -

Release:

Release Tracking Number/Current Status: 3-0001783 / RAO
Primary ID: Not reported
Official City: WAYLAND
Notification: 01/15/1987
Category: NONE
Status Date: 08/03/1995
Phase: Not reported

Response Action Outcome: B1 - Remedial actions have not been conducted because a level of No

Significant Risk exists.

Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition
Action Status: Valid Transition Site

Action Date: 1/15/1987

Response Action Outcome: Remedial actions have not been conducted because a level of No

Significant Risk exists.

Action Type: PIP

Action Status: Public Comment Period Initiated on Submittal

Action Date: 5/19/2006

Response Action Outcome: Remedial actions have not been conducted because a level of No

Significant Risk exists.

Action Type: PIP

Action Status: Public Involvement Petition Received

Action Date: 8/3/1995

Response Action Outcome: Remedial actions have not been conducted because a level of No

Significant Risk exists.

Action Type: Response Action Outcome - RAO

Action Status: RAO Statement Received

Action Date: 8/3/1995

Response Action Outcome: Remedial actions have not been conducted because a level of No

Significant Risk exists.

Chemicals:

Chemical: VOCS

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

 Quantity:
 Not reported

 Location Type:
 WETLANDS

 Location Type:
 INDUSTRIAL

 Source:
 FLOORDRAIN

Release Tracking Number/Current Status: 3-0013302 / REMOPS

 Primary ID:
 3-0013302

 Official City:
 WAYLAND

 Notification:
 01/02/1996

 Category:
 72 HR

 Status Date:
 05/16/2018

 Phase:
 PHASE V

Response Action Outcome: Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 1/12/1996
Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/13/2012
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 1/19/2012
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 1/2/1996
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 1/2/1996
Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/23/2012
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/24/2012
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 1/28/2013
Response Action Outcome: Not reported

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: Release Abatement Measure Status or Interim Report Received Action Status:

Action Date: 1/28/2014 Response Action Outcome: Not reported

Action Type: Tier Classification Action Status: Tier 1B Classification

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: BOL Action Status: **SHPFAC** Action Date: 1/30/2013 Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/6/2012 Response Action Outcome: Not reported

Action Type: Phase 3

Action Status: Public Comment Period Initiated on Submittal

Action Date: 10/10/2001 Response Action Outcome: Not reported

Phase 2 Action Type:

Action Status: Public Comment Period Initiated on Submittal

Action Date: 10/10/2001 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 10/15/2004 Response Action Outcome: Not reported

Downgradient Property Status Action Type: Action Status: Action Status or AUL Terminated

Action Date: 10/17/2016 Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Public Comment Period Initiated on Submittal

10/7/2004 Action Date: Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Date: 11/10/2010
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/10/2010
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/10/2011
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/10/2011
Response Action Outcome: Not reported

Action Type: PIP

Action Status: Written Plan Received

Action Date: 11/14/2000 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/16/2009
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/16/2009
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/16/2012
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/16/2012
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/16/2017
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 11/16/2017
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/17/2018
Response Action Outcome: Not reported

Direction Distance Elevation

istance EDR ID Number
Ilevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/17/2018
Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Public Comment Period Initiated on Submittal

Action Date: 11/19/2003
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/20/2015
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/20/2015
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/21/2007
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/21/2007 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/21/2014
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/21/2014
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/22/2013
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/22/2013
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/22/2016
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Direction Distance Elevation

tance EDR ID Number vation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Date: 11/22/2016
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation
Action Status: Level II - Audit Inspection

Action Date: 11/23/2009
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: As-Built Construction Report Received

Action Date: 11/24/2004
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Completion Statement Received

Action Date: 11/24/2004
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/24/2006 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 11/24/2006
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation
Action Status: Legal Notice Published

Action Date: 11/24/2014
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation
Action Status: Amendment Received or Issued

Action Date: 11/24/2014
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 11/25/2005 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: DEP Disagrees with Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 11/28/2001 Response Action Outcome: Not reported

MAP FINDINGS Map ID Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: Phase 3

Completion Statement Received Action Status:

11/28/2001 Action Date: Response Action Outcome: Not reported

Action Type: Phase 5 Action Status: **RMRINT** Action Date: 12/11/2008 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

12/11/2008 Action Date: Response Action Outcome: Not reported

Action Type: Partial RAO for this RTN

Action Status: **PSARCD** 12/15/2016 Action Date: Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Completion Statement Received

Action Date: 12/17/2003 Response Action Outcome: Not reported

Action Type: An activity type that is related to an Audit

Action Status: NAFVIO Action Date: 12/29/2009 Response Action Outcome: Not reported

Action Type: An activity type that is related to an Audit

Action Status: Interim Deadline Letter Issued

Action Date: 12/29/2009 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 12/3/2004 Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Written Plan Received

Action Date: 12/30/2002 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Completion Statement Received

Action Date: 12/9/2015 Response Action Outcome: Not reported

Action Type:

Action Status: Reportable Release under MGL 21E

2/1/1996 Action Date: Response Action Outcome: Not reported

Action Type: Activity and Use Limitation Action Status: Legal Notice Published

Direction Distance Elevation

evation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 2/2/2012
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 3/11/1996 Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FLDRAN
Action Date: 3/27/1997
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 3/31/2015
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 3/9/1998
Response Action Outcome: Not reported

Action Type: Partial RAO for this RTN

Action Status: Public Comment Period Initiated on Submittal

Action Date: 3/9/2005
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation

Action Status: Public Comment Period Initiated on Submittal

Action Date: 3/9/2005
Response Action Outcome: Not reported

Action Type: Phase 3

Action Status: Notice of Delay in Meeting RA Deadline Received

Action Date: 4/2/1999
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Notice of Delay in Meeting RA Deadline Received

Action Date: 4/26/2002 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Scope of Work Received

Action Date: 4/28/1998
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Modified Revised or Updated Plan Received

Action Date: 4/29/2004
Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 4/3/2012
Response Action Outcome: Not reported

Direction
Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Activity and Use Limitation

Action Status: Transmittal, Notice, or Notification Received

Action Date: 5/14/1999
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 5/14/1999
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 5/15/2003
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/16/2011
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/16/2011
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/16/2013
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/16/2013
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/16/2018
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 5/16/2018
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Public Comment Period Initiated on Submittal

Action Date: 5/17/2002 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/17/2012
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Date: 5/17/2012
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/19/2016
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/19/2016
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/19/2017
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 5/19/2017 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/20/2014
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/20/2014
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 5/21/1997 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/21/2007 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/21/2007
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 5/21/2010
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 5/21/2010
Response Action Outcome: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: Phase 5

Remedy Operation Status Report Received Action Status:

Action Date: 5/22/2006 Response Action Outcome: Not reported

Action Type: Phase 5 Action Status: **RMRINT** Action Date: 5/22/2006 Response Action Outcome: Not reported

Phase 5 Action Type: Action Status: **RMRINT** Action Date: 5/22/2015 Response Action Outcome: Not reported

Phase 5 Action Type:

Remedy Operation Status Report Received Action Status:

Action Date: 5/22/2015 Response Action Outcome: Not reported

Phase 5 Action Type:

Action Status: Status or Interim Report Received

Action Date: 5/24/2005 Response Action Outcome: Not reported

Action Type: BOL Action Status: **SHPFAC** Action Date: 5/24/2013 Response Action Outcome: Not reported

Tier Classification Action Type: Action Status: Legal Notice Published

Action Date: 5/25/2000 Response Action Outcome: Not reported

Tier Classification Action Type: Action Status: Tier 1A Classification

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 5/30/2000 Response Action Outcome: Not reported

Tier Classification Action Type:

Action Status: Revised Statement or Transmittal Received

Action Date: 5/30/2000 Response Action Outcome: Not reported

BOL Action Type: **SHPFAC** Action Status: 5/31/2013 Action Date: Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 6/10/2009 Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 6/10/2009
Response Action Outcome: Not reported

Action Type: BOL
Action Status: SHPFAC
Action Date: 6/11/2013
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 6/15/2016
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 6/2/2008
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 6/2/2008
Response Action Outcome: Not reported

Action Type: PIP

Action Status: Public Involvement Petition Received

Action Date: 6/24/2000 Response Action Outcome: Not reported

Action Type: Partial RAO for this RTN
Action Status: RAO Statement Received

Action Date: 6/8/1999
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 6/9/2009
Response Action Outcome: Not reported

Action Type: PIP
Action Status: PIPDLY
Action Date: 7/18/2000
Response Action Outcome: Not reported

Action Type: BOL
Action Status: SHPFAC
Action Date: 7/25/2012
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/25/2012
Response Action Outcome: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: Tier Classification Permit Effective Date Action Status:

Action Date: 7/29/2003 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 7/29/2013 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 7/3/1998 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 7/31/2003 Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 8/1/1996 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 8/14/2014 Response Action Outcome: Not reported

PIP Action Type:

Action Status: Public Comment Period Initiated on Submittal

Action Date: 8/28/2000 Response Action Outcome: Not reported

PIP Action Type: Action Status: **PLANDT** Action Date: 8/28/2000 Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Public Comment Period Initiated on Submittal

Action Date: 8/29/2011 Response Action Outcome: Not reported

Release Abatement Measure Action Type: Action Status: Written Plan Received

Action Date: 9/15/2011 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Scope of Work Received

9/21/1999 Action Date: Response Action Outcome: Not reported

Action Type: PIP Action Status: **PIPMTG**

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

Action Date: 9/28/2000 Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Public Comment Period Initiated on Submittal

Action Date: 9/8/2011 Response Action Outcome: Not reported

Action Type: BWS20 Action Status: **APPROV** Action Date: Not reported Response Action Outcome: Not reported

Action Type: BWS02 **APPROV** Action Status: Action Date: Not reported Response Action Outcome: Not reported

Action Type: BWS10 **APPROV** Action Status: Action Date: Not reported Response Action Outcome: Not reported

Chemicals:

TPH Chemical:

Quantity: 48000 parts per million

Location Type: RESIDNTIAL Location Type: **INDUSTRIAL** Source: UST UNKNOWN Source:

Release Tracking Number/Current Status: 3-0013574 / RAONR

Primary ID: Not reported Official City: WAYLAND Notification: 03/15/1996 Category: 120 DY Status Date: 11/28/2000 Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/3/1997 Response Action Outcome: Not reported

RAO Not Required Action Type:

Action Status: Linked to a Tier Classified Site

1/3/1997 Action Date: Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification Action Status: Tier 1B Classification

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 1/31/2002 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 1/31/2003 Response Action Outcome: Not reported

Action Type: Tier Classification

Permit Extension Received Action Status:

Action Date: 10/15/2004 Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Modified Revised or Updated Plan Received Action Status:

10/23/2002 Action Date: Response Action Outcome: Not reported

PIP Action Type:

Action Status: Written Plan Received

Action Date: 11/14/2000 Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Public Comment Period Initiated on Submittal Action Status:

Action Date: 11/19/2003 Response Action Outcome: Not reported

Action Type: Activity and Use Limitation Level II - Audit Inspection Action Status:

Action Date: 11/23/2009 Response Action Outcome: Not reported

Activity and Use Limitation Action Type: Action Status: Amendment Received or Issued

Action Date: 11/24/2014 Response Action Outcome: Not reported

Action Type: Activity and Use Limitation Action Status: Legal Notice Published

11/24/2014 Action Date: Response Action Outcome: Not reported

Action Type: **RAO Not Required**

Linked to a Tier Classified Site Action Status:

Action Date: 11/28/2000 Response Action Outcome: Not reported

MAP FINDINGS Map ID Direction

Distance

Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Tier Classification

DEP Disagrees with Classification Action Status:

11/28/2000 Action Date: Response Action Outcome: Not reported

Action Type: Tier Classification Action Status: Tier 1B Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Written Approval of Plan

Action Date: 11/6/2001 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Completion Statement Received

12/17/2003 Action Date: Response Action Outcome: Not reported

Action Type: Release Disposition

Reportable Release under MGL 21E Action Status:

Action Date: 3/15/1996 Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 3/15/1996 Response Action Outcome: Not reported

A Notice sent to a Potentially Responsible Party (PRP) Action Type:

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 3/28/1996 Response Action Outcome: Not reported

Action Type: Activity and Use Limitation

Action Status: Public Comment Period Initiated on Submittal

Action Date: 3/9/2005 Response Action Outcome: Not reported

Action Type: Activity and Use Limitation

Action Status: Transmittal, Notice, or Notification Received

Action Date: 5/14/1999 Response Action Outcome: Not reported

Tier Classification Action Type:

Action Status: Permit Extension Received

Action Date: 5/15/2003 Response Action Outcome: Not reported

Tier Classification Action Type: Action Status: Permit Effective Date

Action Date: 5/21/1997 Response Action Outcome: Not reported

Action Type: Tier Classification Action Status: Legal Notice Published

Direction Distance Elevation

ion Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 5/25/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Revised Statement or Transmittal Received

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1A Classification

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: PIP

Action Status: Public Involvement Petition Received

Action Date: 6/24/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 6/9/2009
Response Action Outcome: Not reported

Action Type: PIP
Action Status: PIPDLY
Action Date: 7/18/2000
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/26/2002 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 7/29/2003
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/31/2003 Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Public Comment Period Initiated on Submittal

Action Date: 8/16/2001
Response Action Outcome: Not reported

Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: PIP

Action Status: Public Comment Period Initiated on Submittal

Action Date: 8/28/2000 Response Action Outcome: Not reported

Action Type: PIP
Action Status: PLANDT
Action Date: 8/28/2000
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 9/12/2001 Response Action Outcome: 9/12/2001 Not reported

Action Type: PIP
Action Status: PIPMTG
Action Date: 9/28/2000
Response Action Outcome: Not reported

Chemicals:

Chemical: ETHENE, 1,1-DICHLORO-Quantity: 4.8 micrograms per liter
Chemical: ETHENE, TRICHLOROQuantity: 72 micrograms per liter
Chemical: NAPHTHALENE
Quantity: 30 micrograms per liter

Chemical: BENZENE

 Quantity:
 25 micrograms per liter

 Chemical:
 ETHENE, TETRACHLORO

 Quantity:
 17 micrograms per liter

Release Tracking Number/Current Status: 3-0014042 / RAONR

Primary ID: Not reported Official City: WAYLAND Notification: 07/25/1996 Category: 120 DY Status Date: 11/28/2000 Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Oil and Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Direction Distance Elevation

ation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Fee Received - FMCRA Use Only

Action Date: 10/11/1996 Response Action Outcome: 10/11/1996 Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 10/15/2004 Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 10/7/1996 Response Action Outcome: Not reported

Action Type: PIP

Action Status: Written Plan Received

Action Date: 11/14/2000 Response Action Outcome: Not reported

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: DEP Disagrees with Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 2/21/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 5/15/2003 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 5/21/1997

Direction Distance Elevation

evation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 5/25/2000
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1A Classification

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Revised Statement or Transmittal Received

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: PIP

Action Status: Public Involvement Petition Received

Action Date: 6/24/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 6/9/2009
Response Action Outcome: Not reported

Action Type: PIP
Action Status: PIPDLY
Action Date: 7/18/2000
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 7/25/1996
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 7/25/1996
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 7/29/2003
Response Action Outcome: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: PIP

Action Status: Public Comment Period Initiated on Submittal

Action Date: 8/28/2000 Response Action Outcome: Not reported

Action Type: PIP
Action Status: PLANDT
Action Date: 8/28/2000
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 8/8/1996
Response Action Outcome: Not reported

Action Type: PIP
Action Status: PIPMTG
Action Date: 9/28/2000
Response Action Outcome: Not reported

Chemicals:

Chemical: PCB

Quantity: 1050 milligrams per kilogram

Chemical: TPH

Quantity: 8600 milligrams per kilogram

Release Tracking Number/Current Status: 3-0019482 / RAONR

Primary ID: Not reported Official City: WAYLAND Notification: 04/26/2000 Category: TWO HR Status Date: 11/28/2000 Phase: Not reported

Response Action Outcome: -

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 1/3/1997
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: RLFA Action Status: FLDD1U

Direction Distance Elevation

ation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 10/15/2001 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 10/15/2004 Response Action Outcome: 10/15/2004 Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 10/29/2001 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 10/29/2003 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 10/31/2000 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 10/31/2002
Response Action Outcome: Not reported

Action Type: PIP

Action Status: Written Plan Received

Action Date: 11/14/2000 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: DEP Disagrees with Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 4/22/2003 Response Action Outcome: 4/22/2003 Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 4/25/2002 Response Action Outcome: Not reported

Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 4/26/2000 Response Action Outcome: 4/26/2000 Not reported

Action Type: Immediate Response Action Action Status: IRA Assessment Only

Action Date: 4/26/2000 Response Action Outcome: 4/26/2000 Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 4/26/2001 Response Action Outcome: 4/26/2001 Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 5/15/2003 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 5/21/1997
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 5/24/2000
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 5/25/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1A Classification

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Revised Statement or Transmittal Received

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FLDRAN

Distance Elevation Site

te Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 5/4/2000
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 5/9/2000 Response Action Outcome: Not reported

Action Type: PIP

Action Status: Public Involvement Petition Received

Action Date: 6/24/2000 Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 6/26/2000 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 6/26/2000 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 6/26/2000 Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 6/9/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 6/9/2009
Response Action Outcome: Not reported

Action Type: PIP
Action Status: PIPDLY
Action Date: 7/18/2000
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 7/18/2003
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Public Comment Period Initiated on Submittal

Action Date: 7/21/2004
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 7/29/2003 Response Action Outcome: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

Action Type: PIP

Public Comment Period Initiated on Submittal Action Status:

Action Date: 8/28/2000 Response Action Outcome: Not reported

PIP Action Type: Action Status: **PLANDT** Action Date: 8/28/2000 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Completion Statement Received

9/10/2004 Action Date: Response Action Outcome: Not reported

PIP Action Type: Action Status: **PIPMTG** Action Date: 9/28/2000 Response Action Outcome: Not reported

Chemicals:

Chemical: **BARIUM**

Quantity: 150 parts per million

Chemical: PCB

Quantity: 100 parts per million AROCLOR 1260 Chemical: 540000 parts per billion Quantity:

Chemical: **LEAD**

Quantity: 1220 parts per million

CHROMIUM Chemical:

Quantity: 20000 parts per million

Chemical: **CHROMIUM**

Quantity: 16000 parts per million

Chemical: **ARSENIC** 40 parts per million Quantity: COMMERCIAL Location Type: Source: UNKNOWN

Release Tracking Number/Current Status: 3-0022408 / RAONR

Primary ID: Not reported Official City: WAYLAND Notification: 12/17/2002 Category: 120 DY 06/09/2009 Status Date: Phase: PHASE V

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

A Notice sent to a Potentially Responsible Party (PRP) Action Type:

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 1/16/2003 Response Action Outcome: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Activity and Use Limitation

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/24/2012 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 10/15/2004 Response Action Outcome: 10/15/2004 Not reported

Action Type: Phase 3

Action Status: Public Comment Period Initiated on Submittal

Action Date: 11/18/2005 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Public Comment Period Initiated on Submittal

Action Date: 11/18/2005 Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Public Comment Period Initiated on Submittal

Action Date: 11/19/2003 Response Action Outcome: Not reported

Action Type: Partial RAO for this RTN
Action Status: RAO Statement Received

Action Date: 11/26/2007 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: DEP Disagrees with Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Direction Distance Elevation

tance EDR ID Number vation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Action Date: 12/17/2002 Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 12/17/2002 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 12/17/2003 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 12/17/2003 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Scope of Work Received

Action Date: 12/17/2003 Response Action Outcome: 12/17/2003 Not reported

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 12/17/2003
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 12/20/2005
Response Action Outcome: Not reported

Action Type: Phase 3

Action Status: Completion Statement Received

Action Date: 12/20/2005 Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Completion Statement Received

Action Date: 12/23/2008 Response Action Outcome: 12/23/2008 Not reported

Action Type: Phase 5
Action Status: Work Started
Action Date: 12/23/2008
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Public Comment Period Initiated on Submittal

Action Date: 12/8/2008
Response Action Outcome: Not reported

Action Type: Activity and Use Limitation
Action Status: Legal Notice Published

Action Date: 2/2/2012
Response Action Outcome: Not reported

Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 2/6/2004
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Public Comment Period Initiated on Submittal

Action Date: 4/11/2005 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Scope of Work Received

Action Date: 4/26/2005 Response Action Outcome: Not reported

Action Type: PIP

Action Status: Public Involvement Petition Received

Action Date: 4/6/2004
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 5/15/2003 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 5/21/1997 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 5/25/2000
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1A Classification

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Revised Statement or Transmittal Received

Action Date: 5/30/2000 Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Public Comment Period Initiated on Submittal

Action Date: 6/14/2008
Response Action Outcome: Not reported

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Date: 6/9/2009
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 6/9/2009
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Modified Revised or Updated Plan Received

Action Date: 7/21/2008
Response Action Outcome: Not reported

Action Type: PIP

Action Status: Public Comment Period Initiated on Submittal

Action Date: 7/27/2007 Response Action Outcome: Not reported

Action Type: Partial RAO for this RTN

Action Status: Public Comment Period Initiated on Submittal

Action Date: 7/27/2007 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 7/29/2003
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Written Plan Received

Action Date: 8/22/2006
Response Action Outcome: Not reported

Action Type: BWS02
Action Status: APPROV
Action Date: Not reported
Response Action Outcome: Not reported

Chemicals:

Chemical: ARSENIC

Quantity: 158 micrograms per liter

Chemical: TOLUENE

Quantity: 2600 parts per billion

Chemical: METHYL TERT-BUTYL ETHER
Quantity: 120 micrograms per liter
Chemical: TRICHLOROETHENE
Quantity: 17040 micrograms per liter

Release Tracking Number/Current Status: 3-0022665 / RAONR

Primary ID: Not reported
Official City: WAYLAND
Notification: 03/12/2003
Category: 120 DY
Status Date: 12/10/2003
Phase: Not reported

Response Action Outcome: -

Oil / Haz Material Type: Hazardous Material

Direction Distance Elevation

ation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 1/3/1997
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/3/1997 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 10/15/2004 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1B Classification

Action Date: 11/28/2000 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: DEP Disagrees with Classification

Action Date: 11/28/2000
Response Action Outcome: Not reported

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Action Date: 12/10/2003
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 3/12/2003
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 3/12/2003 Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 4/2/2003
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 5/15/2003 Response Action Outcome: Not reported

Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 5/21/1997 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 5/25/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Revised Statement or Transmittal Received

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 1A Classification

Action Date: 5/30/2000
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 6/9/2009
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 7/29/2003
Response Action Outcome: Not reported

Chemicals:

Chemical: CHROMIUM

Quantity: 0.56 milligrams per liter

Release Tracking Number/Current Status: 3-0027651 / DPS
Primary ID: Not reported
Official City: WAYLAND
Notification: 11/26/2007
Category: 120 DY
Status Date: 11/26/2007
Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 11/26/2007
Response Action Outcome: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 11/26/2007 Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Level I - Technical Screen Audit

Action Date: 4/17/2008 Response Action Outcome: 4/17/2008 Not reported

Chemicals:

Chemical: METHYL TERT-BUTYL ETHER
Quantity: 280 micrograms per liter

Location Type: COMMERCIAL

Source: UST

Release Tracking Number/Current Status: 3-0033752 / DPS
Primary ID: Not reported
Official City: WAYLAND
Notification: 02/13/2017
Category: 120 DY
Status Date: 03/13/2017
Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 2/13/2017 Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 2/13/2017 Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 3/13/2017 Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Fee Received - FMCRA Use Only

Action Date: 3/20/2017 Response Action Outcome: Not reported

Chemicals:

Chemical: PCE

Quantity: 17 micrograms per liter

Chemical: TCE

Quantity: 72 micrograms per liter

Location Type: UNKOWN Source: UNKNOWN

Direction Distance

Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

RCRA NonGen / NLR:

Date form received by agency: 02/02/1998

430 BOSTON POST ROAD Facility name: Site name: **RAYTHEON COMPANY** Facility address: 430 BOSTON POST ROAD WAYLAND, MA 01778-0000

MAD990685554

EPA ID:

528 BOSTON POST ROAD Mailing address:

SUDBURY, MA 01776-0000

Contact: OWEN T O'ROURKE

Contact address: Not reported Not reported

Contact country: US

508-440-3585 Contact telephone:

Telephone ext.: 3585 Contact email: Not reported EPA Region: 01

Land type: Private Classification: Non-Generator

Description: Handler: Non-Generators do not presently generate hazardous waste

Handler Activities Summary:

U.S. importer of hazardous waste: No Mixed waste (haz. and radioactive): No Recycler of hazardous waste: No Transporter of hazardous waste: Nο Treater, storer or disposer of HW: No Underground injection activity: No On-site burner exemption: No Furnace exemption: No Used oil fuel burner: No Used oil processor: No User oil refiner: No Used oil fuel marketer to burner: No Used oil Specification marketer: No Used oil transfer facility: No Used oil transporter: No

Historical Generators:

Date form received by agency: 02/28/1996

Site name: RAYTHEON ELECTRONIC SERVICES

Classification: Large Quantity Generator

Date form received by agency: 03/28/1994

Site name: RAYTHEON-ED/EDL Classification: Large Quantity Generator

Date form received by agency: 03/27/1992

Site name: RAYTHEON COMPANY ED/EDL Classification: Large Quantity Generator

Date form received by agency: 03/01/1990

Site name: RAYTHEON COMPANY Classification: Large Quantity Generator

Date form received by agency: 08/18/1980

Map ID MAP FINDINGS
Direction

Distance EDR ID Number Elevation Site EDR ID Number Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

Site name: 430 BOSTON POST ROAD Classification: Not a generator, verified

. Waste code: F001

. Waste name: THE FOLLOWING SPENT HALOGENATED SOLVENTS USED IN DEGREASING:

TETRACHLOROETHYLENE, TRICHLOROETHYLENE, METHYLENE CHLORIDE, 1,1,1-TRICHLOROETHANE, CARBON TETRACHLORIDE, AND CHLORINATED

FLUOROCARBONS; ALL SPENT SOLVENT MIXTURES/BLENDS USED IN DEGREASING CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED

IN F002, F004, AND F005, AND STILL BOTTOMS FROM THE RECOVERY OF THESE

SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.

Waste code: F002

Waste name: THE FOLLOWING SPENT HALOGENATED SOLVENTS: TETRACHLOROETHYLENE,

METHYLENE CHLORIDE, TRICHLOROETHYLENE, 1,1,1-TRICHLOROETHANE,

CHLOROBENZENE, 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE, ORTHO-DICHLOROBENZENE, TRICHLOROFLUOROMETHANE, AND

1,1,2-TRICHLOROETHANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE LISTED IN F001, F004, OR F005, AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND

SPENT SOLVENT MIXTURES.

Waste code: F003

. Waste name: THE FOLLOWING SPENT NON-HALOGENATED SOLVENTS: XYLENE, ACETONE, ETHYL

ACETATE, ETHYL BENZENE, ETHYL ETHER, METHYL ISOBUTYL KETONE, N-BUTYL

ALCOHOL, CYCLOHEXANONE, AND METHANOL; ALL SPENT SOLVENT
MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE ABOVE SPENT
NON-HALOGENATED SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS
CONTAINING, BEFORE USE, ONE OR MORE OF THE ABOVE NON-HALOGENATED
SOLVENTS, AND, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR
MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, AND F005, AND STILL
BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT

MIXTURES.

. Waste code: F005

Waste name: THE FOLLOWING SPENT NON-HALOGENATED SOLVENTS: TOLUENE, METHYL ETHYL

KETONE, CARBON DISULFIDE, ISOBUTANOL, PYRIDINE, BENZENE,

2-ETHOXYETHANOL, AND 2-NITROPROPANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE NON-HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F002, OR F004; AND STILL BOTTOMS FROM THE RECOVERY OF

THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.

Waste code: F006

. Waste name: WASTEWATER TREATMENT SLUDGES FROM ELECTROPLATING OPERATIONS EXCEPT

FROM THE FOLLOWING PROCESSES: (1) SULFURIC ACID ANODIZING OF ALUMINUM; (2) TIN PLATING ON CARBON STEEL; (3) ZINC PLATING (SEGREGATED BASIS) ON CARBON STEEL; (4) ALUMINUM OR ZINC-ALUMINUM PLATING ON CARBON STEEL; (5) CLEANING/STRIPPING ASSOCIATED WITH TIN, ZINC AND ALUMINUM PLATING ON CARBON STEEL; AND (6) CHEMICAL ETCHING AND MILLING OF

ALUMINUM.

. Waste code: F009

. Waste name: SPENT STRIPPING AND CLEANING BATH SOLUTIONS FROM ELECTROPLATING

OPERATIONS WHERE CYANIDES ARE USED IN THE PROCESS.

Direction Distance Elevation

Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

. Waste code: P030

. Waste name: CYANIDES (SOLUBLE CYANIDE SALTS), NOT OTHERWISE SPECIFIED

Waste code: U002

. Waste name: ACETONE (I)

Waste code: U126

Waste name: GLYCIDYLALDEHYDE

Waste code: U133

. Waste name: HYDRAZINE (R,T)

Waste code: U151
Waste name: MERCURY

Waste code: U154

Waste name: METHANOL (I)

. Waste code: U159

. Waste name: 2-BUTANONE (I,T)

. Waste code: U161

Waste name: METHYL ISOBUTYL KETONE (I)

Waste code: U220

. Waste name: BENZENE, METHYL-

. Waste code: U228

. Waste name: ETHENE, TRICHLORO-

Waste code: U239

. Waste name: BENZENE, DIMETHYL- (I,T)

Date form received by agency: 08/18/1980

Site name: 430 BOSTON POST ROAD Classification: Not a generator, verified

Facility Has Received Notices of Violations:

Regulation violated: Not reported
Area of violation: Generators - General

Date violation determined: 01/24/1990
Date achieved compliance: 05/24/1990
Violation lead agency: State

Enforcement action: WRITTEN INFORMAL

Enforcement action date: 02/12/1990
Enf. disposition status: Not reported
Enf. disp. status date: Not reported
Enforcement lead agency: State
Proposed penalty amount: Not reported
Final penalty amount: Not reported
Paid penalty amount: Not reported

Evaluation Action Summary:

Evaluation date: 02/29/1996

Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE

Area of violation: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Date achieved compliance: Not reported Evaluation lead agency: State

Evaluation date: 02/28/1994

Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE

Area of violation:
Date achieved compliance:
Evaluation lead agency:

Not reported
Not reported
State

Evaluation date: 05/07/1993

Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE

Area of violation:
Date achieved compliance:
Evaluation lead agency:

Not reported
Not reported
State

Evaluation date: 05/24/1990

Evaluation: COMPLIANCE SCHEDULE EVALUATION

Area of violation:

Date achieved compliance:

Evaluation lead agency:

Not reported

Not reported

State

Evaluation date: 01/24/1990

Evaluation: COMPLIANCE EVALUATION INSPECTION ON-SITE

Area of violation: Generators - General

Date achieved compliance: 05/24/1990 Evaluation lead agency: State

ICIS:

Enforcement Action ID: MA000A0000251190127500039

FRS ID: 110043922342

Action Name: TWENTY WAYLAND LLC 251190127500039

Facility Name: TWENTY WAYLAND LLC
Facility Address: 430 BOSTON POST ROAD
WAYLAND, MA 017780000

Enforcement Action Type: Notice of Violation Facility County: MIDDLESEX

Program System Acronym: AIR

Enforcement Action Forum Desc: Administrative - Informal

EA Type Code: NOV
Facility SIC Code: 3622
Federal Facility ID: Not reported
Latitude in Decimal Degrees: 42.363316
Longitude in Decimal Degrees: -71.373896
Permit Type Desc: Not reported

Program System Acronym: MA0000002511901275

Facility NAICS Code: 335999
Tribal Land Code: Not reported

Enforcement Action ID: MA000A0000251190127500016

FRS ID: 110043922342

Action Name: TWENTY WAYLAND LLC 251190127500016

Facility Name: TWENTY WAYLAND LLC
Facility Address: 430 BOSTON POST ROAD
WAYLAND, MA 017780000

Enforcement Action Type: Notice of Violation Facility County: MIDDLESEX

Program System Acronym: AIR

Enforcement Action Forum Desc: Administrative - Informal

Direction Distance

Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

EA Type Code: NOV Facility SIC Code: 3622 Federal Facility ID: Not reported Latitude in Decimal Degrees: 42.363316 Longitude in Decimal Degrees: -71.373896 Permit Type Desc: Not reported

Program System Acronym: MA0000002511901275

Facility NAICS Code: 335999 Tribal Land Code: Not reported

US AIRS MINOR:

Envid: 1000407718

Region Code:

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342 D and B Number: Not reported Primary SIC Code: 3622 NAICS Code: 335999 Default Air Classification Code: MIN Facility Type of Ownership Code: POF Air CMS Category Code: Not reported

HPV Status: Not reported

US AIRS MINOR:

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards Air Program:

Activity Date: 1985-12-11 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Inspection/Evaluation Activity Type:

Activity Status: Not reported

Region Code: 01

AIR MA0000002511901275 Programmatic ID:

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1988-04-21 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

OPR Air Operating Status Code: Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1988-05-17 00:00:00

Activity Status Date: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1988-07-27 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1989-04-06 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1989-08-25 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1990-02-02 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1991-03-01 00:00:00

Activity Status Date: Not reported
Activity Group: Compliance Mo

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1991-10-24 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342
Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1992-01-31 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 0°

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1993-02-25 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Default Air Classification Code:

Programmatic ID: AIR MA0000002511901275

MIN

Facility Registry ID: 110043922342 Air Operating Status Code: OPR

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1993-05-07 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1994-02-28 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation
Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1996-02-29 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 0°

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1996-04-23 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1999-03-03 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 2005-12-05 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Region Code: 0°

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1989-10-20 00:00:00
Activity Status Date: 1989-10-20 00:00:00
Activity Group: Enforcement Action
Activity Type: Administrative - Informal

Activity Status: Achieved

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 2005-10-28 00:00:00
Activity Status Date: 2005-10-28 00:00:00
Activity Group: Enforcement Action
Activity Type: Administrative - Informal

Activity Status: Achieved

US AIRS MINOR:

Envid: 1000407718

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342
D and B Number: Not reported
Primary SIC Code: 3622
NAICS Code: 335999
Default Air Classification Code: MIN
Facility Type of Ownership Code: POF
Air CMS Category Code: Not reported
HPV Status: Not reported

US AIRS MINOR:

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1985-12-11 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Activity Date: 1988-04-21 00:00:00
Activity Status Date: Not reported
Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation
Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1988-05-17 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342 Air Operating Status Code: OPR

Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1988-07-27 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1989-04-06 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1989-08-25 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 0°

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1990-02-02 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1991-03-01 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1991-10-24 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1992-01-31 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1993-02-25 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Region Code: 0°

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1993-05-07 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1994-02-28 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1996-02-29 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1996-04-23 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring
Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1999-03-03 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 2005-12-05 00:00:00

Activity Status Date: Not reported

Activity Group: Compliance Monitoring Activity Type: Inspection/Evaluation

Activity Status: Not reported

Region Code: 01

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR
Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 1989-10-20 00:00:00
Activity Status Date: 1989-10-20 00:00:00
Activity Group: Enforcement Action
Activity Type: Administrative - Informal

Activity Status: Achieved

Region Code: 0°

Programmatic ID: AIR MA0000002511901275

Facility Registry ID: 110043922342

Air Operating Status Code: OPR Default Air Classification Code: MIN

Air Program: State Implementation Plan for National Primary and Secondary Ambient Air Quality Standards

Activity Date: 2005-10-28 00:00:00
Activity Status Date: 2005-10-28 00:00:00
Activity Group: Enforcement Action
Activity Type: Administrative - Informal

Activity Status: Achieved

FINDS:

Registry ID: 110043922342

Environmental Interest/Information System

AFS (Aerometric Information Retrieval System (AIRS) Facility Subsystem) replaces the former Compliance Data System (CDS), the National Emission Data System (NEDS), and the Storage and Retrieval of Aerometric Data (SAROAD). AIRS is the national repository for information concerning airborne pollution in the United States. AFS is used to track emissions and compliance data from industrial plants. AFS data are utilized by states to prepare State Implementation Plans to comply with regulatory programs and by EPA as an input for the estimation of total national emissions. AFS is undergoing a major redesign to support facility operating permits required under Title V

of the Clean Air Act.

Direction Distance Elevation

Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

AIR EMISSIONS CLASSIFICATION UNKNOWN

RCRAInfo is a national information system that supports the Resource Conservation and Recovery Act (RCRA) program through the tracking of events and activities related to facilities that generate, transport, and treat, store, or dispose of hazardous waste. RCRAInfo allows RCRA program staff to track the notification, permit, compliance, and corrective action activities required under RCRA.

US National Pollutant Discharge Elimination System (NPDES) module of the Compliance Information System (ICIS) tracks surface water permits issued under the Clean Water Act. Under NPDES, all facilities that discharge pollutants from any point source into waters of the United States are required to obtain a permit. The permit will likely contain limits on what can be discharged, impose monitoring and reporting requirements, and include other provisions to ensure that the discharge does not adversely affect water quality.

MA-EPICS - Massachussetts Environmental Protection Integrated Computer System

AIR MINOR

Click this hyperlink while viewing on your computer to access additional FINDS: detail in the EDR Site Report.

ECHO:

Envid: 1000407718 Registry ID: 110043922342

DFR URL: http://echo.epa.gov/detailed-facility-report?fid=110043922342

12/29/2009

ENFORCEMENT:

NERO Region: DEP Region: **NERO** DEP Program: ЗА DEP Bureau: **BWSC** Program: Not reported Program Id: 3-0013302 High Or Low Level Enforcement: LLE FMF #: Not reported Comptroller Billing Name: Not reported Town Where Violation Occurred: Not reported Date Executed:

ENF #: Not reported Document Type: IDL

AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported EJ Community (Y/N): Not reported Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

SEP \$: Not reported
Demand \$: Not reported
Suspended \$: Not reported

Ownership: Commercially Owned

HW GEN:

EPA Id: MAC300008828
RCRA Generator Status: VSQG
State Generator Status: Not reported

NY MANIFEST:

Country: USA

EPA ID: MAD990685554 Facility Status: Not reported

Location Address 1: 430 BOSTON POST ROAD

Code: BP

Location Address 2: Not reported Total Tanks: Not reported Location City: WAYLAND Location State: MA Location Zip: 01778 Location Zip 4: Not reported

NY MANIFEST:

EPAID: MAD990685554

Mailing Name: RAYTHEON CORPORATION BUILDING 6
Mailing Contact: RAYTHEON CORPORATION BUILDING 6

Mailing Address 1: BOSTON POST ROAD

Mailing Address 2:Not reportedMailing City:WAYLANDMailing State:MAMailing Zip:01778Mailing Zip 4:Not reportedMailing Country:USA

Mailing Phone: 6173582721

NY MANIFEST:

Document ID: NYB7393725

Manifest Status: C

seq: Not reported
Year: 1996
Trans1 State ID: T695KBOH
Trans2 State ID: Not reported
Generator Ship Date: 01/18/1996
Trans1 Recv Date: 01/18/1996
Trans2 Recv Date: / /

01/19/1996 TSD Site Recv Date: Part A Recv Date: 02/05/1996 Part B Recv Date: 02/02/1996 Generator EPA ID: MAD990685554 Trans1 EPA ID: OHD009865825 Trans2 EPA ID: Not reported TSDF ID 1: NYD049836679 TSDF ID 2: Not reported Manifest Tracking Number: Not reported Import Indicator: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

430 BOSTON POST ROAD (Continued)

1000407718

EDR ID Number

Export Indicator: Not reported Discr Quantity Indicator: Not reported Discr Type Indicator: Not reported Discr Residue Indicator: Not reported Discr Partial Reject Indicator: Not reported Discr Full Reject Indicator: Not reported Manifest Ref Number: Not reported Alt Facility RCRA ID: Not reported Alt Facility Sign Date: Not reported MGMT Method Type Code: Not reported

Waste Code: D006 - CADMIUM 1.0 MG/L TCLP

Waste Code:
Wot reported
Waste Code:
Wot reported
Unantity:
12583

Units: K - Kilograms (2.2 pounds)

Number of Containers: 001

Container Type: CM - Metal boxes, cases, roll-offs

Handling Method: L Landfill. Specific Gravity: 100

<u>Click this hyperlink</u> while viewing on your computer to access -1 additional NY MANIFEST: record(s) in the EDR Site Report.

TIER 2:

Report Year: 2015

Facility Id: FATR2015000000006411

Facility Dept: Not reported Latitude: 42.3666 Longitude: -71.3711

Mailing Address: 50 Apple Hill Drive

Mailing City/State/Zip: 01876Mailing Country: United States
Notes: Not reported
All Chemicals Same As Last Yr: Not reported
Date Signed: 02/25/2016

Dike Or Other Safeguard: F

Failed Validation:

Date Modified:

O5/19/2016

Fees Total:

Not reported

Not reported

Num Of Employees: 3
Site Coord Abbreviated?: F
Site Map: T

State Label Code:

Submitted By:

Validation Report:

Fire District:

Latlong Location Description:

Latlong Method:

Not reported

Not reported

Not reported

Not reported

Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

430 BOSTON POST ROAD (Continued)

1000407718

UIC:

RTN Number: 3-0013302 Permit Date: 05/16/2018

Actor Name: **RAYTHEON COMPANY**

Air Sparging: Injection Well: Yes/Active ReInjection Well: Yes/Active

Latitude: 42.364502549999997 Longitude: -71.367250979999994

C19 **NSTAR GAS & ELECTRIC**

MA SHWS S108117649

MBTA ROW NR400-440BOSTONPOSTRD **East MA RELEASE** N/A **MA ENF**

1/4-1/2 WAYLAND, MA 01778

0.480 mi.

2533 ft. Site 2 of 2 in cluster C

Relative: SHWS:

Lower 3-0026027 Facility ID: Source Type: UNKNOWN Actual: Release Town: WAYLAND 127 ft. Notification Date: 07/06/2006 Category: TWO HR Associated ID: Not reported **Current Status: DEPNFA**

Status Date: 04/23/2009 Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Release:

Release Tracking Number/Current Status: 3-0026027 / DEPNFA

Primary ID: Not reported Official City: WAYLAND Notification: 07/06/2006 Category: TWO HR Status Date: 04/23/2009 Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Compliance and Enforcement Action

Action Status: CILS Action Date: 1/8/2008 Response Action Outcome: Not reported

Action Type: Compliance and Enforcement Action Interim Deadline Letter Issued Action Status:

Action Date: 1/8/2008 Response Action Outcome: Not reported

Action Type: **RAO Not Required**

Action Status: **DEPNFA** Action Date: 4/23/2009

Distance EDR ID Number
Elevation Site EDR ID Number
Database(s) EPA ID Number

NSTAR GAS & ELECTRIC (Continued)

S108117649

Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 4/23/2009
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 6/22/2009
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FLDD1A
Action Date: 7/10/2006
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 7/6/2006
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 7/6/2006
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: IRA Assessment Only

Action Date: 7/6/2006
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 8/21/2006
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 8/21/2006
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 8/8/2006
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 8/8/2006
Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Approval of Plan

Action Date: 9/26/2006
Response Action Outcome: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

NSTAR GAS & ELECTRIC (Continued)

S108117649

EDR ID Number

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 9/28/2006 Response Action Outcome: 9/28/2006 Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 9/6/2006
Response Action Outcome: 9/6/2006
Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 9/6/2006
Response Action Outcome: 9/6/2006
Not reported

Chemicals:

Chemical: ARSENIC

Quantity: 130 milligrams per kilogram

Location Type: RIGHTOFWAY Source: UNKNOWN

ENFORCEMENT:

Region: NERO
DEP Region: NERO
DEP Program: 3C
DEP Bureau: BWSC
Program: Not reported
Program Id: 3-0026027
High Or Low Level Enforcement: LLE

FMF #: Not reported
Comptroller Billing Name: Not reported
Town Where Violation Occurred: Not reported
Date Executed: 02/13/2008
ENF #: Not reported
Document Type: IDL

AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported EJ Community (Y/N): Not reported Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported SEP \$: Not reported Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

Region: NERO
DEP Region: NERO
DEP Program: 3C
DEP Bureau: BWSC
Program: Not reported
Program Id: 3-0026027

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NSTAR GAS & ELECTRIC (Continued)

S108117649

S101018399

N/A

High Or Low Level Enforcement: LLE

FMF #: Not reported Not reported Comptroller Billing Name: Town Where Violation Occurred: Not reported Date Executed: 01/08/2008 ENF #: Not reported

Document Type: IDL

AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported EJ Community (Y/N): Not reported Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported SEP \$: Not reported Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

3-0002545

20 West 1/2-1 0.617 mi. 3258 ft.

UNION CARBIDE LINDE DIV 141 BOSTON POST RD SUDBURY, MA 01776

MA SHWS **MA LUST MA RELEASE**

MA SPILLS

SHWS: Relative:

Lower

Facility ID: Source Type: **LAGOON** Actual: Release Town: **SUDBURY** 133 ft. Notification Date: 08/15/1989 NONE Category:

Associated ID: Not reported **Current Status: WCSPRM** Status Date: 03/11/1996 Phase: Not reported Response Action Outcome: Not reported

Oil Or Haz Material: Oil

Facility ID: 3-0002545 Source Type: UNKNOWN Release Town: **SUDBURY** 08/15/1989 Notification Date: Category: NONE Associated ID: Not reported **WCSPRM Current Status:** Status Date: 03/11/1996 Phase: Not reported Response Action Outcome: Not reported

Oil Or Haz Material: Oil

LUST:

Release Tracking Number/Current Status: 3-0002545 / WCSPRM

Status Date: 03/11/1996

Direction Distance Elevation

ation Site Database(s) EPA ID Number

UNION CARBIDE LINDE DIV (Continued)

S101018399

EDR ID Number

Source Type:

Release Town:

Notification Date:

Category:

Associated ID:

Phase:

UST

SUDBURY

08/15/1989

NONE

NONE

Not reported

Not reported

Response Action Outcome: Oil Or Haz Material: Oil

Location Type: FORMER
Location Type: MANUFACT
Source: UNKNOWN
Source: LAGOON
Source: UST

Click here to access the MA DEP site for this facility:

Chemicals:

Chemical: WASTE OIL Quantity: Not reported

Actions:

Action Type: TREGS
Action Status: WAVSIG
Action Date: 12/21/1993
Response Action Outcome: Not reported

Action Type: TREGS
Action Status: WAVACC
Action Date: 2/4/1994
Response Action Outcome: Not reported

Action Type: TREGS
Action Status: WCSPRM
Action Date: 3/11/1996
Response Action Outcome: Not reported

Action Type: TREGS
Action Status: WAVREC
Action Date: 6/18/1993
Response Action Outcome: Not reported

Action Type: Release Disposition
Action Status: Valid Transition Site

Action Date: 8/15/1989
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 8/15/1989
Response Action Outcome: Not reported

MA Spills:

Facility ID: 3-2545 Spill ID: N88-0430

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

UNION CARBIDE LINDE DIV (Continued)

Staff Lead: BRADLEY, R Last Entered: 19931101 Spill Date: 19880325 Report Date: 19880325 Case Closed: YES Virgin Waste: WASTE Env Impact: SOIL Material: WASTE OIL Qty Reported: NONE

Qty Reported: CAS No: Not reported Source: U.S.T.

TANK REMOVAL Incident:

Cleanup Type: SA Referral:

Report Prep: Not reported

Notifier: D RENNER/UNION CARBIDE

Notif Tel: Not reported

Days/Close:

S101018399

PCB Lev (ppm): Other Source: Not reported Other Incdnt: Not reported Contractor: NOT USED LUST Elig: NO

19880526 19880325

11:30AM

02:00PM

PETROLEUM

Not reported

Not reported

Not reported

NONE

Date Entered:

Spill Time:

Mat Type:

Report Time:

Contam Soil:

Other Impact:

Qty Actual:

Qty Actual:

Other Material:

First Response:

Category: Not reported

Release:

Release Tracking Number/Current Status: 3-0002545 / WCSPRM

Primary ID: Not reported Official City: **SUDBURY** 08/15/1989 Notification: Category: NONE Status Date: 03/11/1996 Phase: Not reported

Response Action Outcome: Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: **TREGS** Action Status: **WAVSIG** Action Date: 12/21/1993 Response Action Outcome: Not reported

Action Type: **TREGS** Action Status: WAVACC Action Date: 2/4/1994 Response Action Outcome: Not reported

TREGS Action Type: Action Status: **WCSPRM** Action Date: 3/11/1996 Response Action Outcome: Not reported

Action Type: **TREGS** Action Status: WAVREC Action Date: 6/18/1993 Response Action Outcome: Not reported

Action Type: Release Disposition Action Status: Valid Transition Site

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

UNION CARBIDE LINDE DIV (Continued)

S101018399

MA RELEASE

Action Date: 8/15/1989 Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: Response Action Outcome: Not reported

Chemicals:

Chemical: WASTE OIL Quantity: Not reported Location Type: **FORMER** Location Type: MANUFACT Source: UNKNOWN **LAGOON** Source: UST Source:

D21 **COOKS AUTOMOTIVE OF WAYLAND** MA SHWS U001006636

Not reported

356 BOSTON POST RD **MA LUST East** N/A WAYLAND, MA 01778 MA UST 1/2-1

0.694 mi.

MA ENF 3665 ft. Site 1 of 3 in cluster D MA HW GEN

Relative:

Lower SHWS:

Facility ID: 3-0017974 Actual: Source Type: PIPE 124 ft. WAYLAND Release Town: Notification Date: 02/04/1999 Category: 120 DY Associated ID: Not reported RAO **Current Status:** 06/07/2013 Status Date:

> Response Action Outcome: A2 Oil Or Haz Material: Oil

LUST:

Phase:

Release Tracking Number/Current Status: 3-0017974 / RAO

06/07/2013 Status Date: Source Type: UST Release Town: WAYLAND Notification Date: 02/04/1999 120 DY Category: Associated ID: Not reported Not reported Phase:

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil Or Haz Material: Oil

PIPE Source: Source: UST

Direction Distance Elevation

vation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Click here to access the MA DEP site for this facility:

Chemicals:

Chemical: C9 THRU C10 AROMATIC HYDROCARBONS

Quantity: 5620 milligrams per kilogram

Chemical: C5 THRU C8 ALIPHATIC HYDROCARBONS

Quantity: 3930 milligrams per kilogram

Chemical: C9 THRU C12 ALIPHATIC HYDROCARBONS

Quantity: 8220 milligrams per kilogram

Actions:

Action Type: Compliance and Enforcement Action Action Status: Notice of Non-Compliance Issued

Action Date: 1/29/2003

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 3

Action Status: Notice of Delay in Meeting RA Deadline Received

Action Date: 1/7/2002

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 2

Action Status: Notice of Delay in Meeting RA Deadline Received

Action Date: 1/7/2002

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure

Action Status: Modified Revised or Updated Plan Received

Action Date: 10/13/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 10/9/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINI
Action Date: 10/9/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Compliance and Enforcement Action Action Status: Amendment Received or Issued

Action Date: 11/4/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO
Action Status: Level I - Technical Screen Audit

Direction Distance

Elevation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Action Date: 12/2/2013

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 12/22/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 12/30/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 12/30/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 3

Action Status: Completion Statement Received

Action Date: 12/31/2002

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 12/31/2002

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 2/19/2013

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 2/19/2013

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 2/3/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 2/3/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

Action Type: Release Disposition

Reportable Release under MGL 21E Action Status:

2/4/1999 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 2/4/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 2/4/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 2/4/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification Tier 1C Classification Action Status:

Action Date: 2/4/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 2/5/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5 Action Status: **RMRINT** Action Date: 2/5/2010

A permanent solution has been achieved. Contamination has not been Response Action Outcome:

reduced to background.

Action Type: Phase 5 Action Status: **RMRINT** Action Date: 3/24/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Phase 5 Action Type:

Remedy Operation Status Report Received Action Status:

Action Date: 3/24/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 4/12/2012

Direction Distance Elevation

ation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 4/12/2012

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 5/26/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 6/11/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 6/11/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 6/28/2012

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 6/28/2012

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Compliance and Enforcement Action
Action Status: Notice of Enforcement Conference

Action Date: 6/30/2009

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 4

Action Status: Written Plan Received

Action Date: 6/4/2003

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 4

Action Status: Status or Interim Report Received

Action Date: 6/5/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

Action Type: Phase 4

Completion Statement Received Action Status:

6/5/2006 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 6/5/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Tier Classification Action Type: Action Status: Permit Effective Date

Action Date: 6/7/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Completion Statement Received Action Status:

6/7/2013 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Response Action Outcome - RAO Action Type:

Action Status: **RAO Statement Received**

Action Date: 6/7/2013

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

RLFA Action Type: Action Status: **FOLOFF** Action Date: 7/20/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Tier Classification Action Type: Action Status: Legal Notice Published

Action Date: 8/2/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Compliance and Enforcement Action

Action Status: **ACOP** Action Date: 8/31/2009

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Phase 5 Action Type: **RMRINT** Action Status: Action Date: 8/4/2009

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 8/4/2009

MAP FINDINGS Map ID Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Compliance and Enforcement Action Action Type: Action Status: Notice of Non-Compliance Issued

9/19/2005 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 9/19/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5 Action Status: **RMRINT** Action Date: 9/19/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification Submittal Retracted Action Status:

Action Date: 9/20/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure Action Status: Written Plan Received

9/29/2010 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure Level I - Technical Screen Audit Action Status:

Action Date: 9/30/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5 Action Status: **RMRINT** Action Date: 9/8/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 9/8/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 9/9/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Direction Distance

Elevation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Action Type: BWS03
Action Status: APPROV
Action Date: Not reported

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: BWS20
Action Status: WITHD
Action Date: Not reported

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: BWS20
Action Status: APPROV
Action Date: Not reported

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

UST:

Facility:

Facility ID: 11320 Owner Id: 18949

Owner: CONCORD OIL COMPANY INC

Owner Address: 147 LOWELL RD
Owner City,St,Zip: CONCORD, MA 01742

Telephone: Not reported

Description: Retail Motor Vehicle Fuel

Facility address 2: Not reported Not reported Owner address 2: Latitude: 42.36340 Longitude: -71.36725 Contact name: nancy cook Contact address1: 147 lowell road Contact address2: Not reported Contact city: concord Contact state: MA Contact zip: 01742

Contact email: njcook@concordoilcompany.com

Update: 2007-05-30 00:00:00

Update by: Not reported Fac status: CLOSED

Tank ID:

Tank Status:Tank RemovedStatus Date:12/15/1998Date Installed:05/13/1982Capacity:4000.00000Contents:DieselTank Usage:Not reported

Tank Leak Detection: Manual Tank Gauging (1,000G or more capacity tank)

Pipe Leak Detection: Annual Automatic Line Leak Detection Test

Latitude: Not reported Longitude: Not reported

Tank construct: Single-walled metal tank (cathodic protection required)

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

Pipe construct: Not reported Ptype: Not reported Not reported Number of compartment: Pipe install date: Not reported Pipe leak install date: Not reported

Submersible sump:

Submersible sump install date: Not reported

Turbine sump: Ν Turbine sump sensor: Ν Intermediate sump: Ν Intermediate sump sensor: Ν

Spill bucket installed date: Not reported

Spill bucket sensor:

Overfill protect install: Not reported Overfill protect type: Not reported Automatic line leak detect: Not reported Tank corrosion type: Not reported Leak corrosion type: Not reported

Tank ID:

Tank Removed Tank Status: Status Date: 09/05/2006 Date Installed: 05/13/1969 Capacity: 4000.00000 Contents: Gasoline Tank Usage: Motor Vehi

Tank Leak Detection: In-Tank Monitoring System

Pipe Leak Detection: Annual Automatic Line Leak Detection Test

Latitude: Not reported Not reported Longitude:

Tank construct: Single-walled metal tank (cathodic protection required)

Pipe construct: Double-walled non-corrodible material (No corrosion protection required)

Ptype: Not reported Not reported Number of compartment: Pipe install date: Not reported Pipe leak install date: Not reported

Submersible sump:

Submersible sump install date: Not reported

Turbine sump: Ν Turbine sump sensor: Ν Intermediate sump: Ν Intermediate sump sensor:

Spill bucket installed date: Not reported

Spill bucket sensor:

Overfill protect install: Not reported Overfill protect type: Not reported Automatic line leak detect: Not reported

Tank corrosion type: Field Constructed Impressed Current System

Not reported Leak corrosion type:

Tank ID:

Tank Status: **Tank Removed** Status Date: 09/05/2006 Date Installed: 05/13/1969 Capacity: 4000.00000

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

Contents: Gasoline Tank Usage: Motor Vehi

Tank Leak Detection: In-Tank Monitoring System

Pipe Leak Detection: Annual Automatic Line Leak Detection Test

Latitude: Not reported Longitude: Not reported

Tank construct: Single-walled metal tank (cathodic protection required)

Pipe construct: Double-walled non-corrodible material (No corrosion protection required)

Ptype: Not reported Number of compartment: Not reported Not reported Pipe install date: Not reported Pipe leak install date:

Submersible sump:

Submersible sump install date: Not reported

Turbine sump: Turbine sump sensor: Ν Intermediate sump: Ν Intermediate sump sensor: Ν

Spill bucket installed date: Not reported

Spill bucket sensor: Ν

Overfill protect install: Not reported Overfill protect type: Not reported Automatic line leak detect: Not reported

Tank corrosion type: Field Constructed Impressed Current System

Leak corrosion type: Not reported

Tank ID:

Tank Status: **Tank Removed** 09/05/2006 Status Date: 05/13/1969 Date Installed: Capacity: 4000.00000 Contents: Gasoline Tank Usage: Motor Vehi

Tank Leak Detection: In-Tank Monitoring System

Pipe Leak Detection: Annual Automatic Line Leak Detection Test

Latitude: Not reported Longitude: Not reported

Single-walled metal tank (cathodic protection required) Tank construct:

Pipe construct: Double-walled non-corrodible material (No corrosion protection required)

Not reported Ptype: Number of compartment: Not reported Pipe install date: Not reported Pipe leak install date: Not reported

Submersible sump: Ν

Submersible sump install date: Not reported

Turbine sump: Turbine sump sensor: Intermediate sump: Ν Intermediate sump sensor: Ν

Spill bucket installed date: Not reported

Spill bucket sensor:

Overfill protect install: Not reported Overfill protect type: Not reported Automatic line leak detect: Not reported

Field Constructed Impressed Current System Tank corrosion type:

Leak corrosion type: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

Tank ID:

Tank Removed Tank Status: 09/05/2006 Status Date: 05/13/1969 Date Installed: Capacity: 4000.00000 Contents: Diesel Tank Usage: Motor Vehi

Tank Leak Detection: In-Tank Monitoring System

Annual Automatic Line Leak Detection Test Pipe Leak Detection:

Latitude: Not reported Longitude: Not reported

Tank construct: Single-walled metal tank (cathodic protection required)

Pipe construct: Double-walled non-corrodible material (No corrosion protection required)

Ptype: Not reported Number of compartment: Not reported Pipe install date: Not reported Pipe leak install date: Not reported

Submersible sump:

Submersible sump install date: Not reported

Turbine sump: Ν Turbine sump sensor: Ν Intermediate sump: Ν Intermediate sump sensor:

Spill bucket installed date: Not reported

Spill bucket sensor:

Overfill protect install: Not reported Overfill protect type: Not reported Automatic line leak detect: Not reported

Tank corrosion type: Field Constructed Impressed Current System

Leak corrosion type: Not reported

Tank ID:

Tank Status: **Tank Removed** 12/15/1998 Status Date: 05/13/1969 Date Installed: 500.00000 Capacity: Contents: Waste Oil Tank Usage: Not reported

In-Tank Monitoring System Tank Leak Detection:

Pipe Leak Detection: Not reported Latitude: Not reported Longitude: Not reported Tank construct: Not reported Pipe construct: Not reported Ptype: Not reported Number of compartment: Not reported Pipe install date: Not reported Pipe leak install date: Not reported Submersible sump: Ν

Submersible sump install date: Not reported

Turbine sump: Turbine sump sensor: Ν Intermediate sump: Ν Intermediate sump sensor:

Spill bucket installed date: Not reported

Spill bucket sensor:

Distance

Elevation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Overfill protect install: Not reported
Overfill protect type: Not reported
Automatic line leak detect: Not reported
Tank corrosion type: Not reported
Leak corrosion type: Not reported

Release:

Release Tracking Number/Current Status: 3-0017974 / RAO
Primary ID: Not reported
Official City: WAYLAND
Notification: 02/04/1999
Category: 120 DY
Status Date: 06/07/2013
Phase: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Compliance and Enforcement Action Action Status: Notice of Non-Compliance Issued

Action Date: 1/29/2003

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 3

Action Status: Notice of Delay in Meeting RA Deadline Received

Action Date: 1/7/2002

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 2

Action Status: Notice of Delay in Meeting RA Deadline Received

Action Date: 1/7/2002

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure

Action Status: Modified Revised or Updated Plan Received

Action Date: 10/13/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 10/9/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINI
Action Date: 10/9/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Distance

Elevation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Action Type: Compliance and Enforcement Action Action Status: Amendment Received or Issued

Action Date: 11/4/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO
Action Status: Level I - Technical Screen Audit

Action Date: 12/2/2013

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 12/22/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 12/30/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 12/30/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 3

Action Status: Completion Statement Received

Action Date: 12/31/2002

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 12/31/2002

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 2/19/2013

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 2/19/2013

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 2/3/2011

Distance

Elevation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 2/3/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 2/4/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 2/4/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 2/4/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 2/4/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification
Action Status: Tier 1C Classification

Action Date: 2/4/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 2/5/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 2/5/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 3/24/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Direction Distance

Elevation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 3/24/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 4/12/2012

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 4/12/2012

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 5/26/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 6/11/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 6/11/2008

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 6/28/2012

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 6/28/2012

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Compliance and Enforcement Action
Action Status: Notice of Enforcement Conference

Action Date: 6/30/2009

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 4

Action Status: Written Plan Received

Action Date: 6/4/2003

MAP FINDINGS Map ID Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 4

Action Status: Status or Interim Report Received

Action Date: 6/5/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 4

Action Status: Completion Statement Received

Action Date: 6/5/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 6/5/2006

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification Permit Effective Date Action Status:

Action Date: 6/7/2000

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Completion Statement Received

6/7/2013 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO **RAO Statement Received** Action Status:

6/7/2013 Action Date:

A permanent solution has been achieved. Contamination has not been Response Action Outcome:

reduced to background.

Action Type: **RLFA** Action Status: **FOLOFF** Action Date: 7/20/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification Action Status: Legal Notice Published

Action Date: 8/2/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Compliance and Enforcement Action

ACOP Action Status: Action Date: 8/31/2009

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Direction Distance

Elevation Site Database(s) EPA ID Number

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

EDR ID Number

Action Type: Phase 5
Action Status: RMRINT
Action Date: 8/4/2009

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 8/4/2009

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Compliance and Enforcement Action
Action Status: Notice of Non-Compliance Issued

Action Date: 9/19/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 9/19/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 9/19/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Tier Classification
Action Status: Submittal Retracted

Action Date: 9/20/2007

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 9/29/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Abatement Measure
Action Status: Level I - Technical Screen Audit

Action Date: 9/30/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5
Action Status: RMRINT
Action Date: 9/8/2010

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 9/8/2010

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Tier Classification Action Type:

Action Status: Permit Extension Received

Action Date: 9/9/2005

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: BWS03 **APPROV** Action Status: Action Date: Not reported

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: **BWS20** Action Status: WITHD Action Date: Not reported

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: **BWS20** Action Status: **APPROV** Action Date: Not reported

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

C9 THRU C10 AROMATIC HYDROCARBONS Chemical:

5620 milligrams per kilogram Quantity:

C5 THRU C8 ALIPHATIC HYDROCARBONS Chemical:

Quantity: 3930 milligrams per kilogram

C9 THRU C12 ALIPHATIC HYDROCARBONS Chemical:

8220 milligrams per kilogram Quantity:

PIPE Source: UST Source:

ENFORCEMENT:

NERO Region: DEP Region: **NERO** DEP Program: 3R DEP Bureau: **BWSC** Program: **BWSC** Program Id: 3-0017974 High Or Low Level Enforcement: HLE

Not reported Comptroller Billing Name: Not reported Town Where Violation Occurred: Not reported Date Executed: 11/04/2010

ACOP-NE-08-3R007-AMENDED ENF #:

Document Type: **AMEND** AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported

EJ Community (Y/N):

Regional Comment: Not reported Final Payment Due Date: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COOKS AUTOMOTIVE OF WAYLAND (Continued)

U001006636

ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported SEP \$: Not reported Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

NERO Region: DEP Region: **NERO** DEP Program: 3R DEP Bureau: **BWSC** Program: **BWSC** 3-0017974 Program Id: High Or Low Level Enforcement: HLE

FMF #: Not reported Comptroller Billing Name: Not reported Town Where Violation Occurred: Not reported Date Executed: 08/31/2009

ENF #: ACOP-NE-08-3R007

Document Type: **ACOP** AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported EJ Community (Y/N): Not reported Regional Comment: Not reported Final Payment Due Date: 09/30/2010 ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported

SEP (Y/N): SEP \$: 10000 Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

HW GEN:

EPA Id: MV5083584600 RCRA Generator Status: **VSQG** State Generator Status: VQG-MA

BUDDY DOG ANIMAL HOSPITAL

wsw **163 BOSTON POST RD** SUDBURY, MA 01776 1/2-1

0.704 mi. 3718 ft.

22

SHWS: Relative: Lower Facility ID:

3-0018895 Source Type: **TRANSFORM** Actual: Release Town: **SUDBURY** 136 ft. Notification Date: 10/28/1999

Category: TWO HR Associated ID: Not reported **Current Status:** RAO

S104482309

N/A

MA SHWS

MA RELEASE

MA ASBESTOS

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

BUDDY DOG ANIMAL HOSPITAL (Continued)

S104482309

Status Date: 11/19/1999 Phase: Not reported

Response Action Outcome: A2 Oil Or Haz Material: Oil

Release:

Release Tracking Number/Current Status: 3-0018895 / RAO Primary ID: Not reported Official City: **SUDBURY** Notification: 10/28/1999 Category: TWO HR Status Date: 11/19/1999 Phase: Not reported

Response Action Outcome: A2 - A permanent solution has been achieved. Contamination has not

been reduced to background.

Oil / Haz Material Type:

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action Oral Approval of Plan or Action Action Status:

Action Date: 10/28/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

10/28/1999 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: Response Action Outcome - RAO **RAO Statement Received** Action Status:

11/19/1999 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: RNF

Action Status: Reportable Release under MGL 21E

11/19/1999 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 12/6/1999

Response Action Outcome: A permanent solution has been achieved. Contamination has not been

reduced to background.

Chemicals:

MODF NON PCB Chemical: 120 gallons Quantity:

TRANSFORMER OIL Chemical:

Quantity: 105 gallons Location Type: COMMERCIAL

Direction Distance

Elevation Site Database(s) EPA ID Number

BUDDY DOG ANIMAL HOSPITAL (Continued)

S104482309

EDR ID Number

Source: TRANSFORM

ASBESTOS:

Notification: Not reported DEP Region: Not reported Not reported Notifiers Name: Start Date: 10/17/2005 10/28/2005 End Date: Date Entered: Not reported Entry Date: 10/06/2005 Quantity Materical Removed SF: 35.00 Quantity Material Removed LF: 150.00

Project Description: BOILER, ELECTRICAL CONTROL WIRING, CLOTHS

AR Tracking ID: 59813 Super Lic Number: AS052678 AM061057 Monitor Lic Number: Lab Lic Number: AA000144 Year: Not reported Sticker Number: 300752 ANF-001 Form Type: Fee Status: 85

Facility Phone: (781) 441-3192 Sub Town: Not reported

Worksite: SUBSTATION- ELECTRICAL BREAKERS

Not reported Occupied: AC000490 Contractor: Contract Type: Not reported Hours: 8A-33P Project Type: Not reported Abatement Process: Not reported Location: Not reported Decon Process: HEPA VAC

Disposal Methods: WET 2 PLY POLY BAG

Facility Usage: Not reported Waiver Given: Not reported **DEP Waiver Number:** Not reported Not reported **DLWD Waiver Number:** Small Owner Occ: Not reported Owner Name: **NSTAR ELECTRIC** Owner Address: 1 NSTAR WAY Owner City: WESTWOOD

Owner State: MA

On Site Manager Name:

On Site Manager Phone:

Ins Comp:

Policy Number:

EXP Date:

Facility Size:

Not reported

Not reported

Not reported

Not reported

Not reported

Transporter Name: ATLANTIC CONTRACTING

Transporter Address: 15 PERWAL ST Transporter City: WESTWOOD

Transporter State: MA Final Site: 7

Certified Name: THOMAS YONTZ
Cert Sign Date: 09/30/2005
Certified Company: Not reported
Certified Phone: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

BUDDY DOG ANIMAL HOSPITAL (Continued)

S104482309

EDR ID Number

Entered_by: esandler

Not reported Notification: DEP Region: Not reported Notifiers Name: Not reported 05/23/2002 Start Date: End Date: 05/26/2002 Date Entered: Not reported 05/30/2002 Entry Date: Quantity Materical Removed SF: .00

Quantity Material Removed LF: 24.00

Project Description: cloths&thermal?&ins cement

AR Tracking ID: 16747 Super Lic Number: AS052543 Monitor Lic Number: AM032359 Lab Lic Number: AA000144 Year: 2002 Sticker Number: 606174 Form Type: ANF-001 Fee Status: 20

Facility Phone: Not reported
Sub Town: Not reported
Worksite: inside manholes

Occupied: 0
Contractor: A

Contractor: AC000490
Contract Type: Not reported
Hours: m-f 7-330
Project Type: Renovation
Abatement Process: Glove Bag
Location: Not reported
Decon Process: Mini Seal"

Disposal Methods: 2 Ply Poly Bag with Label Facility Usage: elec manholes&vaults

Waiver Given: -1

DEP Waiver Number: blanket 0101821
DLWD Waiver Number: Not reported

Small Owner Occ: 0

Owner Name: boston edison co
Owner Address: 600 boylston street

Owner City: boston
Owner State: MA

On Site Manager Name:
On Site Manager Phone:
Ins Comp:
Policy Number:
EXP Date:
Not reported
Not reported
Not reported
Not reported
EXP Size:
Varies

Transporter Name: waste mgmt boston/north
Transporter Address: 204 merrimack street

Transporter City: woburn
Transporter State: MA
Final Site: 7

Certified Name: john lamberton
Cert Sign Date: 05/23/2002
Certified Company: Not reported
Certified Phone: Not reported
Entered_by: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

BUDDY DOG ANIMAL HOSPITAL (Continued)

S104482309

EDR ID Number

Notification: Not reported Not reported DEP Region: Notifiers Name: Not reported Start Date: 05/01/2006 End Date: 05/04/2006 Date Entered: Not reported 04/19/2006 Entry Date: Quantity Materical Removed SF: 100.00 Quantity Material Removed LF: 300.00

Project Description: TRANSITE BOARD, ELECTRICAL CONTROL WIRING

AR Tracking ID: 66940
Super Lic Number: AS052678
Monitor Lic Number: AM061057
Lab Lic Number: AA000144
Year: Not reported
Sticker Number: 302791
Form Type: ANF-001
Fee Status: F

Facility Phone: (781) 441-3191 Sub Town: Not reported

Worksite: SUBSTATION - ELECTRICAL PANEL

Occupied: Not reported
Contractor: AC000490
Contract Type: Not reported
Hours: 8-3:30
Project Type: Not reported
Abatement Process: Not reported
Location: Not reported

Decon Process: DOUBLE SUIT TYVEK, VACUUM

Disposal Methods: WET 2 PLY POLY BAG

Facility Usage: Not reported Waiver Given: Not reported DEP Waiver Number: Not reported DLWD Waiver Number: Not reported Small Owner Occ: Not reported

Owner Name: NSTAR ELECTRIC AND GAS

Owner Address: ONE NSTAR WAY
Owner City: WESTWOOD

Owner State: MA

On Site Manager Name: Not reported Not reported On Site Manager Phone: Ins Comp: Not reported Policy Number: Not reported EXP Date: Not reported Facility Size: Not reported Transporter Name: JOB ROLLOFF Transporter Address: PO BOX 6037 Transporter City: **CHELSEA** Transporter State: MA

Final Site: 7

Certified Name: THOMAS S YONTZ

Cert Sign Date: 04/13/2006
Certified Company: Not reported
Certified Phone: Not reported
Entered_by: esandler

Direction Distance

Distance Elevation Site EDR ID Number Database(s) EPA ID Number

MA RELEASE

MA HW GEN

MA ENF

N/A

D23 334-338 BOSTON POST ROAD NOMINEE TRUST MA SHWS U003655096

East 338 BOSTON POST ROAD 1/2-1 WAYLAND, MA 01778

0.724 mi.

3824 ft. Site 2 of 3 in cluster D

Relative: SHWS:

 Lower
 Facility ID:
 3-0030287

 Actual:
 Source Type:
 UNKNOWN

 125 ft.
 Release Town:
 WAYLAND

 Notification Date:
 09/14/2011

 Category:
 120 DY

Category: 120 DY
Associated ID: Not reported
Current Status: TMPS
Status Date: 09/20/2016
Phase: PHASE IV
Response Action Outcome: TF

Response Action Outcome.

Oil Or Haz Material: Oil and Hazardous Material

Release:

Release Tracking Number/Current Status: 3-0030287 / TMPS

Primary ID:

Official City:

WAYLAND

Notification:

O9/14/2011

Category:

Status Date:

Phase:

Response Action Outcome:

Not reported
WAYLAND

WAYLAND

09/14/2011

120 DY

Status Date:

120 DY

TF - TF

Oil / Haz Material Type: Oil and Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Tier Classification
Action Status: Permit Effective Date

Action Date: 10/23/2012

Response Action Outcome: TF

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 10/31/2012

Response Action Outcome: TF

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 11/11/2011

Response Action Outcome: TF

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 11/11/2011

Response Action Outcome: TF

Action Type: Phase 4

Action Status: Written Plan Received

Action Date: 12/17/2015

Response Action Outcome: TF

Direction Distance

Elevation Site Database(s) **EPA ID Number**

334-338 BOSTON POST ROAD NOMINEE TRUST (Continued)

U003655096

EDR ID Number

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 3/19/2014

Response Action Outcome:

Action Type: Phase 3

Action Status: Completion Statement Received

Action Date: 3/2/2015 Response Action Outcome: TF

A Notice sent to a Potentially Responsible Party (PRP) Action Type:

Action Status: **ALSENT** Action Date: 7/11/2012 Response Action Outcome:

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 9/14/2011

Response Action Outcome: TF

Action Type: Release Disposition

Reportable Release under MGL 21E Action Status:

Action Date: 9/14/2011 Response Action Outcome: TF

Action Type: Compliance and Enforcement Action Action Status: Interim Deadline Letter Issued

Action Date: 9/14/2011 Response Action Outcome: TF

Tier Classification Action Type:

Action Status: Transmittal, Notice, or Notification Received

Action Date: 9/14/2012

Response Action Outcome: TF

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 9/14/2012 Response Action Outcome: TF

Tier Classification Action Type: Action Status: Tier 1C Classification

Action Date: 9/14/2012 Response Action Outcome: TF

Response Action Outcome - RAO Action Type:

Action Status: **TSFRCD** Action Date: 9/20/2016 TF

Response Action Outcome:

Action Type: BWS03 Action Status: **APPROV** Action Date: Not reported

Response Action Outcome: TF

Chemicals:

METHYL TERT-BUTYL ETHER Chemical:

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

334-338 BOSTON POST ROAD NOMINEE TRUST (Continued)

U003655096

Quantity: 2920 micrograms per liter

Chemical: C5 THRU C8 ALIPHATIC HYDROCARBONS

Quantity: 1000 micrograms per liter

Chemical: C9 THRU C10 AROMATIC HYDROCARBONS

Quantity: 791 micrograms per liter

COMMERCIAL Location Type: UNKNOWN Source:

ENFORCEMENT:

Region: **NERO** DEP Region: **NERO** DEP Program: 3A DEP Bureau: **BWSC** Program: Not reported Program Id: 3-0030287 High Or Low Level Enforcement: LLE FMF #: Not reported Comptroller Billing Name: Not reported Town Where Violation Occurred: Not reported 09/14/2011 Date Executed: ENF #: Not reported

Document Type: IDL

AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported

EJ Community (Y/N):

Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported SEP \$: Not reported Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

HW GEN:

MAD981885551 EPA Id: **RCRA Generator Status: VSQG** State Generator Status: Not reported

EPA Id: MV5083587760 RCRA Generator Status: Not reported State Generator Status: SQG-MA

NO LOCATION AID MA SHWS S110124997 325 BOSTON POST RD **MA LUST** N/A

WAYLAND, MA 01778 **MA RELEASE** 0.738 mi. **MA ASBESTOS**

3898 ft. Site 3 of 3 in cluster D

SHWS: Relative:

D24

East

1/2-1

Lower Facility ID: 3-0029040 Source Type: UNKNOWN Actual: Release Town: WAYLAND 121 ft. Notification Date: 01/28/2010

Direction Distance

Elevation Site Database(s) **EPA ID Number**

NO LOCATION AID (Continued)

S110124997

EDR ID Number

Category: 120 DY Associated ID: Not reported **Current Status:** DPS Status Date: 02/26/2010 Phase: Not reported Response Action Outcome: Not reported

Oil Or Haz Material: Oil and Hazardous Material

LUST:

Facility:

Release Tracking Number/Current Status: 3-0029040 / DPS

Status Date: 02/26/2010 Source Type: Release Town: WAYLAND 01/28/2010 Notification Date: Category: 120 DY Associated ID: Not reported Phase: Not reported

Response Action Outcome:

Oil Or Haz Material: Oil and Hazardous Material

Location Type: UNKNOWN Location Type: COMMERCIAL UNKNOWN Source: Source: UST

Click here to access the MA DEP site for this facility:

Chemicals:

METHYL TERT-BUTYL ETHER Chemical: Quantity: 2920 micrograms per liter

Chemical: **ARSENIC**

Quantity: 97 micrograms per liter

Chemical: C9 THRU C10 AROMATIC HYDROCARBONS

Quantity: 1410 micrograms per liter

C9 THRU C12 ALIPHATIC HYDROCARBONS Chemical:

Quantity: 1270 micrograms per liter

Chemical: **BENZENE**

Quantity: 193 micrograms per liter

Actions:

Release Disposition Action Type:

Action Status: Reportable Release under MGL 21E

Action Date: 1/28/2010 Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 1/28/2010 Not reported Response Action Outcome:

Action Type: **Downgradient Property Status**

Action Status: Modified Transmittal Received - DPS Transfer

Action Date: 11/11/2010

Distance

Elevation Site Database(s) EPA ID Number

NO LOCATION AID (Continued)

S110124997

EDR ID Number

Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 11/2/2010
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Modified Transmittal Received - DPS Transfer

Action Date: 12/16/2010
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 2/24/2010
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 2/26/2010
Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Fee Received - FMCRA Use Only

Action Date: 3/2/2010
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 4/20/2010 Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Level I - Technical Screen Audit

Action Date: 4/22/2010
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Fee Received - FMCRA Use Only

Action Date: 4/22/2010
Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Level I - Technical Screen Audit

Action Date: 8/10/2011
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 8/18/2010
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 9/14/2011
Response Action Outcome: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

NO LOCATION AID (Continued)

S110124997

EDR ID Number

Release:

Release Tracking Number/Current Status: 3-0029040 / DPS
Primary ID: Not reported
Official City: WAYLAND
Notification: 01/28/2010
Category: 120 DY
Status Date: 02/26/2010
Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Oil and Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 1/28/2010 Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 1/28/2010
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Modified Transmittal Received - DPS Transfer

Action Date: 11/11/2010
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Completion Statement Received

Action Date: 11/2/2010
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Modified Transmittal Received - DPS Transfer

Action Date: 12/16/2010
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 2/24/2010
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 2/26/2010 Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Fee Received - FMCRA Use Only

Action Date: 3/2/2010
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Direction Distance Elevation

EDR ID Number Site Database(s) **EPA ID Number**

NO LOCATION AID (Continued)

S110124997

Action Date: 4/20/2010 Not reported Response Action Outcome:

Action Type: Release Abatement Measure Action Status: Level I - Technical Screen Audit

Action Date: 4/22/2010 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Fee Received - FMCRA Use Only

Action Date: 4/22/2010 Response Action Outcome: Not reported

Action Type: **Downgradient Property Status** Level I - Technical Screen Audit Action Status:

Action Date: 8/10/2011 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Status or Interim Report Received Action Status:

Action Date: 8/18/2010 Response Action Outcome: Not reported

Action Type: **RLFA** FOLOFF Action Status: Action Date: 9/14/2011 Response Action Outcome: Not reported

Chemicals:

METHYL TERT-BUTYL ETHER Chemical: Quantity: 2920 micrograms per liter

Chemical: **ARSENIC**

Quantity: 97 micrograms per liter

C9 THRU C10 AROMATIC HYDROCARBONS Chemical: Quantity: 1410 micrograms per liter C9 THRU C12 ALIPHATIC HYDROCARBONS Chemical:

Quantity: 1270 micrograms per liter

Chemical: **BENZENE**

193 micrograms per liter Quantity:

Location Type: UNKNOWN COMMERCIAL Location Type: Source: UNKNOWN

Source: UST

ASBESTOS:

Notification: Not reported DEP Region: Not reported Notifiers Name: Not reported Start Date: 03/17/2010 03/18/2010 End Date: Date Entered: Not reported 03/17/2010 Entry Date: Quantity Materical Removed SF: 750.00 Quantity Material Removed LF: 101.00 Project Description: Ctr.Trns AR Tracking ID: 124027

Direction Distance

Elevation Site Database(s) EPA ID Number

NO LOCATION AID (Continued)

S110124997

EDR ID Number

Super Lic Number: AS032025 AA000144 Monitor Lic Number: Lab Lic Number: AA000156 Year: 2010 100102855 Sticker Number: Form Type: ANF-001 Fee Status: Fifty Facility Phone: 6033821422 Sub Town: Not reported

Worksite: BARBER SHOP Occupied: 0

Contractor: AC000407 Contract Type: WRITTEN

Hours: Week days: 7AM-3:30PM Week end:

Project Type: Dem,Oth:ASBESTOS Abatement Process: Encl,Clnp,Fcontain

Location: Indoors

Decon Process: 3 CHAMBER REMOTE

Disposal Methods: 6MIL POLY BAGS OR LND DRMS PROPERLY LABELED & DSPD IN APPRVD LANDFILL

Facility Usage: RETAIL
Waiver Given: Not reported
DEP Waiver Number: 10039933
DLWD Waiver Number: HV10081
Small Owner Occ: 5

Owner Name: CVS PHARMACY
Owner Address: 1 CVS DRIVE
Owner City: WOONSOCKET

Owner State: MA

On Site Manager Name: GEORGE MELLO

On Site Manager Phone: SAME Ins Comp: AIG Policy Number: AIG EXP Date: 3/20/2010 Facility Size: 10000 Transporter Name: Not reported Transporter Address: Not reported Transporter City: Not reported Transporter State: Not reported

Final Site: 39

Certified Name:
Cert Sign Date:
03/17/2010
Certified Company:
Certified Phone:
Entered_by:
LAUREN RUSSO
03/17/2010
ECSI
ECSI
6036429200
Not reported

Notification: Not reported DEP Region: Not reported Notifiers Name: Not reported 03/08/2010 Start Date: End Date: 03/12/2010 Date Entered: Not reported Entry Date: 02/19/2010 Quantity Materical Removed SF: .00 Quantity Material Removed LF: 400.00 Project Description: Ctr AR Tracking ID: 123191

AS032025

Super Lic Number:

Direction Distance

Elevation Site Database(s) EPA ID Number

NO LOCATION AID (Continued)

S110124997

EDR ID Number

Monitor Lic Number: AA000144 AA000156 Lab Lic Number: 2010 Year: Sticker Number: 100101830 Form Type: ANF-001 Fee Status: Fifty Facility Phone: 6033821422 Sub Town: Not reported Worksite: **EXTERIOR**

Occupied: 0

Contractor: AC000407 Contract Type: WRITTEN

Hours: Week days: 7AM-3:30PM Week end:

Project Type: Dem,Oth:ASBESTOS

Abatement Process: CInp,Disp
Location: Not reported
Decon Process: DOUBLE SUIT

Disposal Methods: 6MIL POLY BAGS OR LND DRMS PRPLY LABELED & DSPD IN APPRVD LANDFILL

Facility Usage: RETAIL
Waiver Given: Not reported
DEP Waiver Number: Not reported
DLWD Waiver Number: Not reported

Small Owner Occ: 5

Owner Name: CVS PHARMACY
Owner Address: 1 CVS DRIVE
Owner City: WOONSOCKET

Owner State: MA

On Site Manager Name: GEORGE MELLO

SAME On Site Manager Phone: Ins Comp: AIG Policy Number: AIG EXP Date: 3/20/2010 Facility Size: 10000 Transporter Name: Not reported Not reported Transporter Address: Transporter City: Not reported Transporter State: Not reported

Final Site: 39

Certified Name: LAUREN RUSSO
Cert Sign Date: 02/19/2010
Certified Company: ECSI
Certified Phone: 6036429200
Entered_by: Not reported

NO LOCATION AID 86 OLD SUDBURY ROAD WAYLAND, MA 01778 MA SHWS S117405699 MA RELEASE N/A

1/2-1 0.749 mi. 3954 ft.

25

ΝE

Relative: SHWS:

 Higher
 Facility ID:
 3-0032618

 Actual:
 Source Type:
 LINE

 143 ft.
 Release Town:
 WAYLAND

 Notification Date:
 11/28/2014

 Category:
 TWO HR

Category: TWO HR
Associated ID: Not reported
Current Status: PSNC

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NO LOCATION AID (Continued)

S117405699

Status Date: 01/26/2015 Not reported Phase:

Response Action Outcome: PΝ Oil Or Haz Material: Oil

Facility ID: 3-0032618 **VEHICLE** Source Type: Release Town: WAYLAND Notification Date: 11/28/2014 Category: TWO HR Associated ID: Not reported **Current Status: PSNC** 01/26/2015 Status Date: Phase: Not reported

Response Action Outcome: PΝ Oil Or Haz Material: Oil

3-0032618 Facility ID: Source Type: SADDLE Release Town: WAYLAND Notification Date: 11/28/2014 Category: TWO HR Associated ID: Not reported **Current Status: PSNC** 01/26/2015 Status Date: Not reported Phase:

Response Action Outcome: PΝ Oil Or Haz Material: Oil

3-0032618 Facility ID: Source Type: TANK Release Town: WAYLAND Notification Date: 11/28/2014 Category: TWO HR Associated ID: Not reported **Current Status: PSNC** Status Date: 01/26/2015 Phase: Not reported

Response Action Outcome: PΝ Oil Or Haz Material: Oil

Release:

Release Tracking Number/Current Status: 3-0032618 / PSNC

Primary ID: Not reported Official City: WAYLAND Notification: 11/28/2014 Category: TWO HR Status Date: 01/26/2015 Phase: Not reported Response Action Outcome: PN - PN Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: **BOL**

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NO LOCATION AID (Continued)

S117405699

SHPFAC Action Status: 1/22/2015 Action Date:

Response Action Outcome: PΝ

RNF Action Type:

Action Status: Reportable Release under MGL 21E

Action Date: 1/22/2015 Response Action Outcome: PΝ

Action Type: **RNFE**

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/22/2015 Response Action Outcome: PΝ

Action Type: Response Action Outcome - RAO

Action Status: **PSNRCD** Action Date: 1/26/2015 Response Action Outcome: PΝ

Action Type: Immediate Response Action Oral Approval of Plan or Action Action Status:

11/28/2014 Action Date:

Response Action Outcome:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 11/28/2014

Response Action Outcome: PΝ

Action Type: **RLFA** Action Status: **FOLOFF** Action Date: 11/28/2014 Response Action Outcome: PΝ

BOL Action Type:

Action Status: Transmittal, Notice, or Notification Received

Action Date: 12/12/2014

Response Action Outcome: PΝ

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 12/12/2014

Response Action Outcome: PΝ

Action Type: Immediate Response Action Action Status: Oral Approval of a Modified Plan

Action Date: 12/8/2014 Response Action Outcome: PΝ

Action Type: **RLFA** Action Status: **FOLOFF** Action Date: 12/8/2014 Response Action Outcome: PΝ

Chemicals:

Chemical: **DIESEL FUEL** Quantity: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NO LOCATION AID (Continued) S117405699

Chemical: **HYDRAULIC FLUID &**

Quantity: 50 gallons Location Type: RESIDNTIAL Location Type: **ROADWAY** Source: LINE **VEHICLE** Source: SADDLE Source: Source: **TANK**

NO LOCATION AID S111277328 26 MA SHWS SW 19 HAWTHORNE ROAD **MA RELEASE** N/A SUDBURY, MA 01776

1/2-1 0.795 mi. 4195 ft.

Relative: SHWS:

Lower Facility ID: 3-0030271 Source Type: **TRANSFORM** Actual: 135 ft. Release Town: **SUDBURY** Notification Date: 08/31/2011 Category: TWO HR

Associated ID: Not reported **Current Status:** RAO 10/12/2011 Status Date: Phase: Not reported

Response Action Outcome: A1 Oil Or Haz Material: Oil

Release:

Release Tracking Number/Current Status: 3-0030271 / RAO Primary ID: Not reported Official City: **SUDBURY** Notification: 08/31/2011 TWO HR Category: Status Date: 10/12/2011 Phase: Not reported

Response Action Outcome: A1 - A permanent solution has been achieved. Contamination has been

reduced to background or a threat of release has been eliminated.

Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Response Action Outcome - RAO Action Type: Action Status: **RAO Statement Received**

Action Date: 10/12/2011

A permanent solution has been achieved. Contamination has been reduced Response Action Outcome:

to background or a threat of release has been eliminated.

Action Type: Response Action Outcome - RAO Level I - Technical Screen Audit Action Status:

7/11/2012 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: Immediate Response Action Action Status: Oral Approval of Plan or Action

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NO LOCATION AID (Continued) S111277328

Action Date: 8/31/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 8/31/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 9/19/2011

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

RNFE Action Type:

Action Status: Transmittal, Notice, or Notification Received

Action Date: 9/23/2011

A permanent solution has been achieved. Contamination has been reduced Response Action Outcome:

to background or a threat of release has been eliminated.

Action Type:

Action Status: Reportable Release under MGL 21E

9/23/2011 Action Date:

Response Action Outcome: A permanent solution has been achieved. Contamination has been reduced

to background or a threat of release has been eliminated.

Chemicals:

MODF NON PCB Chemical: Quantity: 22 gallons Location Type: WATERBODY Location Type: RESIDNTIAL Location Type: **ROADWAY** Source: **TRANSFORM**

WAYLAND CLEANERS S107405588 **E27** MA SHWS **304 BOSTON POST RD MA RELEASE East** N/A WAYLAND, MA 01778 **MA UIC** 1/2-1

0.808 mi.

4264 ft. Site 1 of 3 in cluster E

SHWS: Relative:

3-0025196 Lower Facility ID: Source Type: Not reported Actual: Release Town: WAYLAND 118 ft. Notification Date: 08/22/2005 120 DY Category: Associated ID: Not reported **Current Status:** DPS 03/30/2006 Status Date:

> Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Facility ID: 3-0025637 Source Type: UNKNOWN

Direction Distance

Elevation Site Database(s) EPA ID Number

WAYLAND CLEANERS (Continued)

S107405588

EDR ID Number

Release Town: WAYLAND 02/02/2006 Notification Date: TWO HR Category: Associated ID: Not reported **Current Status: RAONR** 04/03/2006 Status Date: Not reported Phase: Response Action Outcome: Not reported Oil Or Haz Material: Hazardous Material

Release:

Release Tracking Number/Current Status: 3-0025196 / DPS
Primary ID: Not reported
Official City: WAYLAND
Notification: 08/22/2005
Category: 120 DY
Status Date: 03/30/2006
Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: An activity type that is related to an Audit

Action Status: NAFNVD
Action Date: 1/10/2007
Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Level III - Comprehensive Audit

Action Date: 1/10/2007 Response Action Outcome: 1/10/2007 Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 1/10/2007
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 3/30/2006 Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 8/22/2005
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 8/22/2005
Response Action Outcome: Not reported

Chemicals:

Chemical: ETHANE, 1,2-DICHLORO-

Distance

Elevation Site Database(s) EPA ID Number

WAYLAND CLEANERS (Continued)

S107405588

EDR ID Number

Quantity:170 parts per billionChemical:ETHENE, TETRACHLORO-Quantity:12000 parts per billion

Release Tracking Number/Current Status: 3-0025637 / RAONR

Primary ID: Not reported Official City: WAYLAND Notification: 02/02/2006 Category: TWO HR Status Date: 04/03/2006 Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 1/25/2007
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 1/30/2008 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 1/30/2008
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 1/30/2008
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 10/28/2008 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 10/28/2008
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 10/31/2007
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 11/16/2009
Response Action Outcome: Not reported

Distance

Elevation Site Database(s) EPA ID Number

WAYLAND CLEANERS (Continued)

S107405588

EDR ID Number

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 11/16/2009
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 11/28/2007
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 11/6/2006
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 11/8/2010 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 11/8/2010
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 12/21/2006 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 12/21/2006
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 12/31/2007
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 12/31/2007 Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 2/14/2006 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Modified Revised or Updated Plan Received

Action Date: 2/15/2007 Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FLDD1A

Direction
Distance
Elevation

vation Site Database(s) EPA ID Number

WAYLAND CLEANERS (Continued)

S107405588

EDR ID Number

Action Date: 2/16/2006 Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FLDD1A
Action Date: 2/2/2006
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 2/2/2006
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 2/2/2006
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 2/2/2006
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 2/24/2006
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 2/26/2007
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 2/29/2008
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 2/3/2006
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 4/15/2004
Response Action Outcome: 4/15/2004
Not reported

Action Type: Tier Classification
Action Status: Tier 1C Classification

Action Date: 4/15/2004
Response Action Outcome: 4/15/2004
Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 4/2/2007
Response Action Outcome: Not reported

Distance EDR ID Number
Elevation Site EDR ID Number
Database(s) EPA ID Number

WAYLAND CLEANERS (Continued)

S107405588

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 4/22/2004
Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Approval of Plan

Action Date: 4/24/2006
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Permit Extension Received

Action Date: 4/27/2006 Response Action Outcome: 4/27/2006 Not reported

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 4/27/2006 Response Action Outcome: 4/27/2006 Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 4/27/2007
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Written Plan Received

Action Date: 4/3/2006
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 4/3/2006
Response Action Outcome: 4/3/2006
Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 4/3/2006
Response Action Outcome: 4/3/2006
Not reported

Action Type: RAO Not Required

Action Status: Linked to a Tier Classified Site

Action Date: 4/3/2006
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

Action Date: 4/3/2006
Response Action Outcome: 4/3/2006
Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 5/10/2011
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

WAYLAND CLEANERS (Continued)

S107405588

Action Date: 5/11/2009
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 5/11/2009 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 5/29/2007
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 5/3/2010
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 5/3/2010
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Modified Revised or Updated Plan Received

Action Date: 5/6/2011
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: RMRINT
Action Date: 5/6/2011
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 5/6/2011
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 5/8/2009
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 6/1/2006
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 6/20/2006
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 6/20/2006
Response Action Outcome: Not reported

MAP FINDINGS Map ID Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

WAYLAND CLEANERS (Continued)

S107405588

Action Type: Immediate Response Action Status or Interim Report Received Action Status:

Action Date: 6/20/2007 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: **RMRINT** 6/20/2007 Action Date: Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Completion Statement Received

6/27/2011 Action Date: Response Action Outcome: Not reported

Action Type: Tier Classification Action Status: Permit Effective Date

Action Date: 6/3/2004 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: **RMRINT** Action Date: 7/19/2006 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: **RMRINT** Action Date: 7/20/2007 Response Action Outcome: Not reported

Immediate Response Action Action Type: Action Status: Level I - Technical Screen Audit

Action Date: 7/25/2011 Response Action Outcome: Not reported

RLFA Action Type: Action Status: **FOLOFF** Action Date: 7/26/2006 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: **RMRINT** Action Date: 8/16/2006 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Modified Revised or Updated Plan Received

Action Date: 8/21/2006 Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: **RMRINT** 8/29/2007 Action Date: Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: **RMRINT**

MAP FINDINGS Map ID Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

WAYLAND CLEANERS (Continued)

S107405588

N/A

Action Date: 9/21/2006 Response Action Outcome: Not reported

Chemicals:

Chemical: **TETRACHLOROETHYLENE**

Quantity: 5.4 parts per million

PCE Chemical: 130 UG/M3 Quantity: Location Type: COMMERCIAL Source: UNKNOWN

UIC:

RTN Number: 3-0025637 Permit Date: 11/08/2010

Actor Name: **R&E REALTY TRUST**

Air Sparging: Nο Injection Well: Yes/Active

ReInjection Well: No

42.363317709999997 Latitude: Longitude: -71.365076360000003

28 **WAYLAND VILLAGE** MA SHWS S113411773 East 297-319 BOSTON POST RD MA RELEASE

1/2-1 0.811 mi. 4282 ft.

SHWS: Relative:

Lower Facility ID: 3-0031423 Source Type: Not reported Actual: WAYLAND Release Town: 118 ft. Notification Date: 03/13/2013 120 DY Category: Associated ID: Not reported **Current Status:** DPS

Status Date: 05/01/2013 Phase: Not reported Not reported Response Action Outcome: Oil Or Haz Material: Hazardous Material

Release:

WAYLAND, MA 01778

Release Tracking Number/Current Status: 3-0031423 / DPS Primary ID: Not reported Official City: WAYLAND 03/13/2013 Notification: Category: 120 DY Status Date: 05/01/2013 Phase: Not reported

Response Action Outcome:

Hazardous Material Oil / Haz Material Type:

Click here to access the MA DEP site for this facility:

Actions:

Downgradient Property Status Action Type: Action Status: Level I - Technical Screen Audit

Direction Distance

Elevation Site Database(s) EPA ID Number

WAYLAND VILLAGE (Continued)

S113411773

EDR ID Number

Action Date: 12/23/2015
Response Action Outcome: Not reported

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 3/13/2013
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 3/13/2013
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 3/13/2013
Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Level I - Technical Screen Audit

Action Date: 4/14/2014
Response Action Outcome: 4/14/2014
Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 4/4/2013
Response Action Outcome: Not reported

Action Type: Downgradient Property Status

Action Status: Transmittal, Notice, or Notification Received

Action Date: 5/1/2013
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 5/1/2013
Response Action Outcome: Not reported

Action Type: Downgradient Property Status
Action Status: Fee Received - FMCRA Use Only

Action Date: 6/3/2013
Response Action Outcome: Not reported

Chemicals:

VINYL CHLORIDE Chemical: Quantity: 73.3 micrograms per liter CIS-1,2-DICHLOROETHENE Chemical: 910 micrograms per liter Quantity: **TETRACHLOROETHYLENE** Chemical: 1920 micrograms per liter Quantity: Chemical: **TRICHLOROETHENE** Quantity: 669 micrograms per liter

Direction Distance

Distance Elevation Site EDR ID Number

EDR ID Number

EPA ID Number

E29 RTE 20 MA SHWS S105810781

East 298 BOSTON POST RD MA RELEASE N/A

1/2-1 WAYLAND, MA 01778 MA DRYCLEANERS 0.824 mi. MA ENF

0.824 mi.
4352 ft. Site 2 of 3 in cluster E MA HW GEN

MA UIC

Relative:

Lower SHWS:

 Actual:
 Facility ID:
 3-0022753

 119 ft.
 Source Type:
 UNKNOWN

 Release Town:
 WAYLAND

 Notification Date:
 06/09/2003

 Category:
 120 DY

 Associated ID:
 3-0022753

Current Status: REMOPS
Status Date: 06/27/2011
Phase: PHASE V
Response Action Outcome: Not reported
Oil Or Haz Material: Hazardous Material

Release:

Release Tracking Number/Current Status: 3-0022753 / REMOPS

 Primary ID:
 3-0022753

 Official City:
 WAYLAND

 Notification:
 06/09/2003

 Category:
 120 DY

 Status Date:
 06/27/2011

 Phase:
 PHASE V

Response Action Outcome: -

Oil / Haz Material Type: Hazardous Material

Click here to access the MA DEP site for this facility:

Actions:

Action Type: RLFA
Action Status: FOLOFF
Action Date: 1/10/2007
Response Action Outcome: Not reported

Action Type: An activity type that is related to an Audit

Action Status: NON-A
Action Date: 1/12/2015
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 1/27/2014
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 1/27/2014
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 1/3/2012
Response Action Outcome: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

RTE 20 (Continued) S105810781

Action Type: Phase 5

Remedy Operation Status Report Received Action Status:

1/3/2012 Action Date: Response Action Outcome: Not reported

Phase 5 Action Type:

Action Status: Remedy Operation Status Report Received

Action Date: 1/3/2013 Response Action Outcome: Not reported

Phase 5 Action Type: Action Status: **RMRINT** Action Date: 1/3/2013 Response Action Outcome: Not reported

Action Type: **RLFA** FOLOFF Action Status: Action Date: 10/20/2015 Response Action Outcome: Not reported

Phase 4 Action Type: Action Status: **RMRINI** Action Date: 11/8/2010 Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Status or Interim Report Received

Action Date: 11/8/2010 Response Action Outcome: Not reported

Release Disposition Action Type:

Action Status: Reportable Release under MGL 21E

Action Date: 12/1/2008 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Scope of Work Received

Action Date: 3/16/2005 Response Action Outcome: Not reported

Phase 5 Action Type: Action Status: **RMRINT** Action Date: 3/3/2015 Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

3/3/2015 Action Date: Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Completion Statement Received

4/15/2004 Action Date: Response Action Outcome: Not reported

Action Type: Tier Classification Action Status: Tier 1C Classification

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

RTE 20 (Continued) S105810781

Action Date: 4/15/2004 Not reported Response Action Outcome:

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

4/15/2004 Action Date: Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Completion Statement Received

4/19/2006 Action Date: Response Action Outcome: Not reported

Action Type: Phase 3

Action Status: Completion Statement Received

4/19/2006 Action Date: Response Action Outcome: Not reported

Action Type: Phase 4

Written Plan Received Action Status:

Action Date: 4/20/2010 Response Action Outcome: Not reported

Action Type: Phase 2

Revised Statement or Transmittal Received Action Status:

4/20/2010 Action Date: Response Action Outcome: Not reported

Action Type: Phase 3

Action Status: Completion Statement Received

Action Date: 4/20/2010 Response Action Outcome: Not reported

Action Type: Tier Classification Legal Notice Published Action Status:

Action Date: 4/22/2004 Response Action Outcome: Not reported

Action Type: Tier Classification

Permit Extension Received Action Status:

Action Date: 4/27/2006 Response Action Outcome: Not reported

Tier Classification Action Type: Action Status: Legal Notice Published

Action Date: 4/27/2006 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: RTN Linked to TCLASS Via Tier Classification Submittal

4/3/2006 Action Date: Response Action Outcome: Not reported

Action Type: Release Disposition

Reportable Release under MGL 21E Action Status:

Action Date: 4/9/2003 Response Action Outcome: Not reported

Distance

Elevation Site Database(s) EPA ID Number

RTE 20 (Continued) S105810781

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 4/9/2003
Response Action Outcome: Not reported

Action Type: RLFA
Action Status: FOLOFF
Action Date: 5/1/2013
Response Action Outcome: Not reported

Action Type: An activity type that is related to an Audit
Action Status: Notice of Non-compliance related to an Audit

Action Date: 5/15/2014
Response Action Outcome: Not reported

Action Type: An activity type that is related to an Audit
Action Status: Audit Follow-up Completion Statement Received

Action Date: 5/29/2015 Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Revised Statement or Transmittal Received

Action Date: 5/29/2015
Response Action Outcome: Not reported

Action Type: Phase 4
Action Status: RMRINT
Action Date: 5/6/2011
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Status or Interim Report Received

Action Date: 5/6/2011
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Level I - Technical Screen Audit

Action Date: 6/2/2015
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Submittal Received

Action Date: 6/27/2011
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: Work Started
Action Date: 6/27/2011
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Completion Statement Received

Action Date: 6/27/2011
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Permit Effective Date

Direction Distance Elevation

ation Site Database(s) EPA ID Number

RTE 20 (Continued) S105810781

Action Date: 6/3/2004
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 6/9/2003
Response Action Outcome: Not reported

Action Type: Compliance and Enforcement Action Action Status: Notice of Non-Compliance Issued

Action Date: 7/21/2009
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 7/5/2013
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 7/5/2013
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Scope of Work Received

Action Date: 8/12/2008
Response Action Outcome: Not reported

Action Type: Phase 4

Action Status: Notice of Delay in Meeting RA Deadline Received Action Date: 8/25/2008

Action Date: 8/25/2008
Response Action Outcome: Not reported

Action Type: Phase 5
Action Status: RMRINT
Action Date: 8/30/2012
Response Action Outcome: Not reported

Action Type: Phase 5

Action Status: Remedy Operation Status Report Received

Action Date: 8/30/2012
Response Action Outcome: Not reported

Action Type: Compliance and Enforcement Action Action Status: Interim Deadline Letter Issued

Action Date: 8/7/2014
Response Action Outcome: Not reported

Action Type: Compliance and Enforcement Action

Action Status: REQACC
Action Date: 8/7/2014
Response Action Outcome: Not reported

Action Type: BWS20
Action Status: APPROV
Action Date: Not reported
Response Action Outcome: Not reported

Direction Distance

Elevation Site Database(s) **EPA ID Number**

RTE 20 (Continued) S105810781

BWS03 Action Type: **APPROV** Action Status: Not reported Action Date: Response Action Outcome: Not reported

Chemicals:

ETHENE, 1,2-DICHLORO-Chemical: 73 milligrams per liter Quantity: Chemical: ETHENE, TRICHLORO-Quantity: 58 milligrams per liter ETHENE, TETRACHLORO-Chemical: Quantity: 2210 milligrams per liter COMMERCIAL Location Type:

Source: UNKNOWN

DRYCLEANERS:

398645 Facility ID:

Classification Type: Active use of Perc Hyung K Kim Reg Obj Contact: Reg Obj Mail Address: Not reported Mail Town Name: Not reported Mail Zip Code: Not reported **DEP Region Code:** NE

Mailing State: Not reported Reg Obj Phone: Not reported

ENFORCEMENT:

NERO Region: DEP Region: **NERO** DEP Program: 3P DEP Bureau: **BWSC** Program: Not reported 3-0022753 Program Id: High Or Low Level Enforcement: LLE

FMF #: Not reported Comptroller Billing Name: Not reported Town Where Violation Occurred: Not reported Date Executed: 07/21/2009

ENF #: NON-NE-09-3P007

Document Type: NON AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported EJ Community (Y/N): Not reported Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported SEP \$: Not reported Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

NERO Region:

Direction Distance

Elevation Site Database(s) EPA ID Number

RTE 20 (Continued) S105810781

 DEP Region:
 NERO

 DEP Program:
 3A

 DEP Bureau:
 BWSC

 Program:
 BWSC

 Program Id:
 3-0022753

 High Or Low Level Enforcement:
 LLE

FMF #: Not reported Comptroller Billing Name: Not reported Town Where Violation Occurred: Wayland Date Executed: 01/12/2015

ENF #: NON-NE-14-3R048-A

Document Type: NON
AG Ref (Y/N): Not reported
Doc Archived (Y/N): Not reported

EJ Community (Y/N): N

Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported SEP \$: Not reported Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

Region: NERO
DEP Region: NERO
DEP Program: 3A
DEP Bureau: BWSC
Program: BWSC
Program Id: 3-0022753
High Or Low Level Enforcement: LLE

FMF #: Not reported
Comptroller Billing Name: Not reported
Town Where Violation Occurred: Wayland
Date Executed: 08/07/2014
ENF #: Not reported
Document Type: IDL

AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported

EJ Community (Y/N): N

Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported Not reported SEP \$: Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

Region: NERO DEP Region: NERO

Direction Distance

Elevation Site Database(s) **EPA ID Number**

RTE 20 (Continued) S105810781

DEP Program: ЗА **BWSC** DEP Bureau: **BWSC** Program: Program Id: 3-0022753 High Or Low Level Enforcement: LLE

FMF #: Not reported Comptroller Billing Name: Not reported Town Where Violation Occurred: Wayland Date Executed: 08/07/2014 ENF #: Not reported Document Type: IDL

AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported

EJ Community (Y/N):

Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported SEP \$: Not reported Demand \$: Not reported Suspended \$: Not reported

Ownership: Commercially Owned

Region: **NERO** DEP Region: **NERO** DEP Program: 3R DEP Bureau: **BWSC BWSC** Program: Program Id: 3-0022753 High Or Low Level Enforcement: LLE

FMF #: Not reported Comptroller Billing Name: Not reported Town Where Violation Occurred: Wayland Date Executed: 05/15/2014 NON-NE-14-3R048 ENF #:

NON Document Type: AG Ref (Y/N): Not reported Doc Archived (Y/N): Not reported

EJ Community (Y/N): Ν

Regional Comment: Not reported Final Payment Due Date: Not reported ACOP \$: Not reported PAN \$: Not reported EMS (Y/N): Not reported EMS\$: Not reported SEP (Y/N): Not reported SEP \$: Not reported Demand \$: Not reported Suspended \$: Not reported Т

Ownership:

HW GEN:

EPA Id: MAD980669139

RCRA Generator Status: **VSQG**

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

RTE 20 (Continued) S105810781

State Generator Status: Not reported

UIC:

RTN Number: 3-0022753 Permit Date: 03/03/2015

WAYLEX REALTY CORP Actor Name:

Air Sparging:

Yes/Inactive Injection Well:

ReInjection Well: No

Latitude: 42.363227629999997 Longitude: -71.364710259999995

E30 **SEPTAGE FACILITY** MA SHWS S100829934 **BOSTON POST RD East MA RELEASE** N/A

WAYLAND, MA 01778 1/2-1

0.839 mi.

4430 ft. Site 3 of 3 in cluster E

Relative: SHWS:

Lower Facility ID: 3-0001724 Source Type: Not reported Actual: Release Town: WAYLAND 120 ft. 04/15/1987 Notification Date: Category: NONE Associated ID: Not reported **Current Status: DEPNDS** 07/23/1993 Status Date:

Phase: Not reported Response Action Outcome: Not reported Oil Or Haz Material: Not reported

Release:

Release Tracking Number/Current Status: 3-0001724 / DEPNDS

Primary ID: Not reported Official City: WAYLAND Notification: 04/15/1987 Category: NONE Status Date: 07/23/1993 Phase: Not reported

Response Action Outcome:

Oil / Haz Material Type: Not reported

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition Action Status: Valid Transition Site

4/15/1987 Action Date: Response Action Outcome: Not reported

Action Type: **TREGS** Action Status: **DEPNDS** Action Date: 7/23/1993 Response Action Outcome: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

SEPTAGE FACILITY (Continued)

S100829934

Chemicals:

UNKNOWN Chemical: Quantity: Not reported

31 **NO LOCATION AID** S108962861 MA SHWS West **BOSTON POST ROAD AT LANDHAM RD MA RELEASE** N/A

1/2-1 SUDBURY, MA 01776 0.912 mi.

4816 ft.

SHWS: Relative: Higher

Facility ID: 3-0027224 Source Type: UNKNOWN Actual: 150 ft. Release Town: **SUDBURY** Notification Date: 10/31/2007 Category: 120 DY Associated ID: Not reported **Current Status:** URAM

Status Date: 11/07/2007 Phase: Not reported Response Action Outcome: Not reported

Oil Or Haz Material: Oil

Release:

Release Tracking Number/Current Status: 3-0027224 / URAM

Primary ID: Not reported Official City: **SUDBURY** 10/31/2007 Notification: Category: 120 DY Status Date: 11/07/2007 Phase: Not reported

Response Action Outcome: Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 10/31/2007 Response Action Outcome: Not reported

Utility-related Abatement Measure Action Type: Action Status: Notice of Intent to Conduct a URAM

Action Date: 10/31/2007 Response Action Outcome: Not reported

Utility-related Abatement Measure Action Type: Action Status: Level I - Technical Screen Audit

11/5/2007 Action Date: Response Action Outcome: Not reported

Action Type: Utility-related Abatement Measure Action Status: Notification of URAM Received

11/7/2007 Action Date: Response Action Outcome: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NO LOCATION AID (Continued) S108962861

Action Type: Utility-related Abatement Measure Level I - Technical Screen Audit Action Status:

Action Date: 3/5/2008 Response Action Outcome: Not reported

Action Type: Utility-related Abatement Measure Action Status: Completion Statement Received

Action Date: 3/5/2008 Response Action Outcome: Not reported

Chemicals:

Chemical: **GASOLINE** Quantity: Not reported RIGHTOFWAY Location Type: Location Type: **ROADWAY** UNKNOWN Source:

SUDBURY AUTOMOTIVE 32 MA SHWS U002007836 West 209 BOSTON POST RD **MA LUST** N/A

SUDBURY, MA 01776 MA UST 1/2-1 0.985 mi. **MA RELEASE MA HW GEN** 5199 ft.

Relative: SHWS: Higher Facility ID: 3-0033240 Source Type: **TANK** Actual: **SUDBURY** Release Town: 155 ft.

Notification Date: 11/03/2015 72 HR Category: Associated ID: Not reported **Current Status: TIERII** Status Date: 11/08/2016 Phase: PHASE III Response Action Outcome: Not reported

Oil Or Haz Material:

Facility ID: 3-0033240 Source Type: UNKNOWN **SUDBURY** Release Town: Notification Date: 11/03/2015 Category: 72 HR Associated ID: Not reported **Current Status:** TIERII Status Date: 11/08/2016 Phase: PHASE III Response Action Outcome: Not reported

Oil Or Haz Material: Oil

3-0033240 Facility ID: Source Type: **FUELTANK SUDBURY** Release Town: Notification Date: 11/03/2015 Category: 72 HR Not reported Associated ID: **Current Status: TIERII** Status Date: 11/08/2016 Phase: PHASE III

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

SUDBURY AUTOMOTIVE (Continued)

U002007836

Response Action Outcome: Not reported Oil

Oil Or Haz Material:

Facility ID: 3-0033240 Source Type: PIPE Release Town: **SUDBURY** Notification Date: 11/03/2015 Category: 72 HR Associated ID: Not reported **Current Status: TIERII** Status Date: 11/08/2016 PHASE III Phase: Response Action Outcome: Not reported

Oil Or Haz Material:

LUST:

Facility:

Release Tracking Number/Current Status: 3-0033240 / TIERII

11/08/2016 Status Date: Source Type: UST Release Town: **SUDBURY** Notification Date: 11/03/2015 Category: 72 HR Associated ID: Not reported Phase: PHASE III

Response Action Outcome:

Oil Or Haz Material: Oil

COMMERCIAL Location Type: **USTOTHER** Source: Source: UNKNOWN Source: **FUELTANK** Source: PIPE **TANK** Source: UST Source:

Click here to access the MA DEP site for this facility:

Chemicals:

Chemical: **GASOLINE VOCS** Quantity: 1453 parts per million

Chemical: **GASOLINE**

1000 parts per million Quantity:

Actions:

Action Type: Immediate Response Action Action Status: Level I - Technical Screen Audit

1/12/2016 Action Date: Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 1/5/2016 Response Action Outcome: Not reported

MAP FINDINGS Map ID Direction

Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

SUDBURY AUTOMOTIVE (Continued)

U002007836

RNFE Action Type:

Transmittal, Notice, or Notification Received Action Status:

1/5/2016 Action Date: Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 1/8/2016 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 1/8/2016 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Oral Approval of a Modified Plan

11/13/2015 Action Date: Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Completion Statement Received

11/2/2016 Action Date: Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 11/27/2015 Response Action Outcome: Not reported

Release Disposition Action Type:

Action Status: Reportable Release under MGL 21E

Action Date: 11/3/2015 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Oral Approval of Plan or Action

Action Date: 11/3/2015 Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 11/8/2016 Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 11/8/2016 Response Action Outcome: Not reported

Tier Classification Action Type: Action Status: Tier 2 Classification

Action Date: 11/8/2016 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Oral Approval of a Modified Plan

Direction Distance Elevation

on Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

EDR ID Number

Action Date: 11/9/2015 Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 12/12/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 12/15/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Modified Revised or Updated Plan Received

Action Date: 12/15/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Level I - Technical Screen Audit

Action Date: 12/16/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 12/21/2017
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 3/3/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 3/8/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 5/24/2017
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 6/22/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Fee Received - FMCRA Use Only

Action Date: 6/24/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 6/29/2016
Response Action Outcome: Not reported

Distance

Elevation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

EDR ID Number

Action Type: Release Abatement Measure
Action Status: Level I - Technical Screen Audit

Action Date: 6/29/2016
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 6/4/2018
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/11/2018
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 8/2/2018
Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Revised Statement or Transmittal Received

Action Date: 8/30/2017
Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 9/20/2016
Response Action Outcome: 9/20/2016
Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 9/22/2016
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: ALSENT
Action Date: 9/7/2016
Response Action Outcome: Not reported

Facility:

Release Tracking Number/Current Status: 3-0033240 / TIERII

Status Date: 11/08/2016
Source Type: USTOTHER
Release Town: SUDBURY
Notification Date: 11/03/2015
Category: 72 HR
Associated ID: Not reported
Phase: PHASE III

Response Action Outcome: Oil Or Haz Material: Oil

Location Type: COMMERCIAL
Source: USTOTHER
Source: UNKNOWN
Source: FUELTANK

Distance

Elevation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

EDR ID Number

Source: PIPE Source: TANK Source: UST

Click here to access the MA DEP site for this facility:

Chemicals:

Chemical: GASOLINE VOCS
Quantity: 1453 parts per million

Chemical: GASOLINE

Quantity: 1000 parts per million

Actions:

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 1/12/2016
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 1/5/2016
Response Action Outcome: Not reported

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/5/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 1/8/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 1/8/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of a Modified Plan

Action Date: 11/13/2015
Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 11/2/2016
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 11/27/2015
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

SUDBURY AUTOMOTIVE (Continued)

U002007836

Action Date: 11/3/2015 Not reported Response Action Outcome:

Action Type: Immediate Response Action Action Status: Oral Approval of Plan or Action

Action Date: 11/3/2015 Not reported Response Action Outcome:

Action Type: Phase 1

Action Status: Completion Statement Received

11/8/2016 Action Date: Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 11/8/2016 Response Action Outcome: Not reported

Action Type: Tier Classification Tier 2 Classification Action Status:

Action Date: 11/8/2016 Response Action Outcome: Not reported

Action Type: Immediate Response Action Oral Approval of a Modified Plan Action Status:

Action Date: 11/9/2015 Response Action Outcome: Not reported

Tier Classification Action Type: Action Status: Legal Notice Published

Action Date: 12/12/2016 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Status or Interim Report Received Action Status:

Action Date: 12/15/2016 Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Modified Revised or Updated Plan Received Action Status:

Action Date: 12/15/2016 Response Action Outcome: Not reported

Release Abatement Measure Action Type: Action Status: Level I - Technical Screen Audit

Action Date: 12/16/2016 Response Action Outcome: Not reported

Action Type: Release Abatement Measure Action Status: Status or Interim Report Received

Action Date: 12/21/2017 Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Status or Interim Report Received

Action Date: 3/3/2016 Response Action Outcome: Not reported

Direction
Distance
Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 3/8/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 5/24/2017 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 6/22/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Fee Received - FMCRA Use Only

Action Date: 6/24/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 6/29/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Level I - Technical Screen Audit

Action Date: 6/29/2016
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 6/4/2018
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/11/2018
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 8/2/2018
Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Revised Statement or Transmittal Received

Action Date: 8/30/2017
Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 9/20/2016
Response Action Outcome: 9/20/2016
Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Direction Distance

Elevation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

EDR ID Number

Action Date: 9/22/2016
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: ALSENT
Action Date: 9/7/2016
Response Action Outcome: Not reported

UST:

Facility:

Facility ID: 11003 Owner Id: 6417

Owner: DELTA LAND TRUST OF SUDBURY

Owner Address: 172 BISHOPS FOREST DR Owner City,St,Zip: WALTHAM, MA 02452

Telephone: 9784437374

Description: Retail Motor Vehicle Fuel

Facility address 2: Not reported
Owner address 2: Not reported
Latitude: 42.36097
Longitude: -71.40234
Contact name: Patrick Bond

Contact address1: 209 Boston Post Road

Contact address2: Not reported
Contact city: Sudbury
Contact state: MA
Contact zip: 01776

Contact email: pbond2010@verizon.net Update: 2016-05-11 00:00:00

Update by: Not reported Fac status: OPEN

Tank ID:

Tank Status:Tank RemovedStatus Date:11/03/2015Date Installed:05/25/1976Capacity:8000.00000Contents:GasolineTank Usage:Motor Vehi

Tank Leak Detection: In-Tank Monitoring System

Pipe Leak Detection: Continuous Interstitial Space Monitoring

Latitude: Not reported Longitude: Not reported

Tank construct: Single-walled metal tank (cathodic protection required)

Pipe construct: Double-walled non-corrodible material (No corrosion protection required)

Ptype: Not reported
Number of compartment: Not reported
Pipe install date: Not reported
Pipe leak install date: Not reported
Submersible sump: N

Outriersible sump.

Submersible sump install date: Not reported

Turbine sump: N
Turbine sump sensor: N
Intermediate sump: N

Direction Distance

Elevation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

EDR ID Number

Intermediate sump sensor: N

Spill bucket installed date: Not reported

Spill bucket sensor: N

Overfill protect install: Not reported
Overfill protect type: Not reported
Automatic line leak detect: Not reported

Tank corrosion type: Field Constructed Impressed Current System

Leak corrosion type: Not reported

Tank ID: 2

Tank Status:Tank RemovedStatus Date:11/03/2015Date Installed:05/25/1966Capacity:5000.00000Contents:GasolineTank Usage:Motor Vehi

Tank Leak Detection: In-Tank Monitoring System

Pipe Leak Detection: Not reported Latitude: Not reported Longitude: Not reported

Tank construct: Single-walled metal tank (cathodic protection required)

Pipe construct: Not reported
Ptype: Not reported
Number of compartment: Not reported
Pipe install date: Not reported
Pipe leak install date: Not reported

Submersible sump: N

Submersible sump install date: Not reported

Turbine sump: N
Turbine sump sensor: N
Intermediate sump: N
Intermediate sump sensor: N

Spill bucket installed date: Not reported

Spill bucket sensor: N

Overfill protect install: Not reported
Overfill protect type: Not reported
Automatic line leak detect: Not reported

Tank corrosion type: Field Constructed Impressed Current System

Leak corrosion type: Not reported

Tank ID: 3

Tank Status:Tank RemovedStatus Date:11/03/2015Date Installed:05/25/1966Capacity:4000.00000Contents:GasolineTank Usage:Motor Vehi

Tank Leak Detection: In-Tank Monitoring System

Pipe Leak Detection: Continuous Interstitial Space Monitoring

Latitude: Not reported Longitude: Not reported

Tank construct: Single-walled metal tank (cathodic protection required)

Pipe construct: Double-walled non-corrodible material (No corrosion protection required)

Ptype: Not reported
Number of compartment: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

EDR ID Number

Pipe install date: Not reported Pipe leak install date: Not reported

Submersible sump: N

Submersible sump install date: Not reported

Turbine sump: N
Turbine sump sensor: N
Intermediate sump: N
Intermediate sump sensor:

Spill bucket installed date: Not reported

Spill bucket sensor: N

Overfill protect install: Not reported
Overfill protect type: Not reported
Automatic line leak detect: Not reported

Tank corrosion type: Field Constructed Impressed Current System

Leak corrosion type: Not reported

Tank ID: 4

Tank Status:Tank RemovedStatus Date:01/01/2002Date Installed:05/25/1966Capacity:500.00000Contents:Waste OilTank Usage:Not reported

Tank Leak Detection: In-Tank Monitoring System

Pipe Leak Detection: Not reported Latitude: Not reported Longitude: Not reported

Tank construct: Single-walled metal tank (cathodic protection required)
Pipe construct: Single-walled metal (Corrosion protection required)

Ptype: Not reported
Number of compartment: Not reported
Pipe install date: Not reported
Pipe leak install date: Not reported

Submersible sump: N

Submersible sump install date: Not reported

Turbine sump: N
Turbine sump sensor: N
Intermediate sump: N
Intermediate sump sensor: N

Spill bucket installed date: Not reported

Spill bucket sensor: N

Overfill protect install: Not reported
Overfill protect type: Not reported
Automatic line leak detect: Not reported

Tank corrosion type: Field Constructed Impressed Current System
Leak corrosion type: Field Constructed Impressed Current System

Tank ID: 5

Tank Status: In Use
Status Date: 01/22/2016
Date Installed: 11/20/2015
Capacity: 10000.00000
Contents: Gasoline
Tank Usage: Motor Vehi

Tank Leak Detection: Continuous Interstitial Monitoring

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

SUDBURY AUTOMOTIVE (Continued)

U002007836

Pipe Leak Detection: Continuous Interstitial Space Monitoring

42.36097 Latitude: -71.40234 Longitude:

Double-walled non-corrodible (including "composite") material (cathodic protection not required) Tank construct:

Pipe construct: Double-walled non-corrodible material (No corrosion protection required) Ptype: Pressurized piping system with electronic automatic line leak detection

Number of compartment: Not reported Pipe install date: 11/20/2015 11/20/2015 Pipe leak install date:

Submersible sump:

Submersible sump install date: 11/20/2015

Turbine sump: Turbine sump sensor: Υ Intermediate sump: Intermediate sump sensor:

Spill bucket installed date: 11/20/2015

Spill bucket sensor: Ν

Overfill protect install: 06/07/2016 Overfill protect type: High level alarm Automatic line leak detect: 11/20/2015 Not reported Tank corrosion type: Leak corrosion type: Not reported

Tank ID: Tank Status: In Use Status Date: 01/22/2016 Date Installed: 11/20/2015 Capacity: 4000.00000 Contents: Gasoline Tank Usage: Motor Vehi

Tank Leak Detection: Continuous Interstitial Monitoring Pipe Leak Detection: Continuous Interstitial Space Monitoring

Latitude: 42.36097 Longitude: -71.40234

Tank construct: Double-walled non-corrodible (including "composite") material (cathodic protection not required)

Double-walled non-corrodible material (No corrosion protection required) Pipe construct: Ptype: Pressurized piping system with electronic automatic line leak detection

Number of compartment: Not reported Pipe install date: 11/20/2015 Pipe leak install date: 11/20/2015

Submersible sump:

Submersible sump install date: 11/20/2015

Turbine sump: Υ Turbine sump sensor: Υ Intermediate sump: Υ Intermediate sump sensor:

Spill bucket installed date: 11/20/2015

Spill bucket sensor: N Overfill protect install: 06/07/2016 Overfill protect type: High level alarm Automatic line leak detect: 11/20/2015 Tank corrosion type: Not reported Not reported Leak corrosion type:

Release Tracking Number/Current Status: 3-0033240 / TIERII

Direction Distance

Elevation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

EDR ID Number

Primary ID: Not reported
Official City: SUDBURY
Notification: 11/03/2015
Category: 72 HR
Status Date: 11/08/2016
Phase: PHASE III

Response Action Outcome: Oil / Haz Material Type: Oil

Click here to access the MA DEP site for this facility:

Actions:

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 1/12/2016
Response Action Outcome: Not reported

Action Type: RNF

Action Status: Reportable Release under MGL 21E

Action Date: 1/5/2016
Response Action Outcome: Not reported

Action Type: RNFE

Action Status: Transmittal, Notice, or Notification Received

Action Date: 1/5/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action

Action Status: Imminent Hazard Evaluation Received

Action Date: 1/8/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action Action Status: Written Plan Received

Action Date: 1/8/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of a Modified Plan

Action Date: 11/13/2015
Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 11/2/2016
Response Action Outcome: Not reported

Action Type: A Notice sent to a Potentially Responsible Party (PRP)

Action Status: A MassDEP piece of correspondence was issued (approvals, NORs, etc.

Action Date: 11/27/2015
Response Action Outcome: Not reported

Action Type: Release Disposition

Action Status: Reportable Release under MGL 21E

Action Date: 11/3/2015 Response Action Outcome: Not reported

Direction Distance Elevation

vation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

EDR ID Number

Action Type: Immediate Response Action
Action Status: Oral Approval of Plan or Action

Action Date: 11/3/2015
Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Completion Statement Received

Action Date: 11/8/2016
Response Action Outcome: Not reported

Action Type: Tier Classification

Action Status: Transmittal, Notice, or Notification Received

Action Date: 11/8/2016
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Tier 2 Classification

Action Date: 11/8/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Oral Approval of a Modified Plan

Action Date: 11/9/2015
Response Action Outcome: Not reported

Action Type: Tier Classification
Action Status: Legal Notice Published

Action Date: 12/12/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 12/15/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure

Action Status: Modified Revised or Updated Plan Received

Action Date: 12/15/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Level I - Technical Screen Audit

Action Date: 12/16/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 12/21/2017
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Status or Interim Report Received

Action Date: 3/3/2016
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

SUDBURY AUTOMOTIVE (Continued)

U002007836

Action Date: 3/8/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 5/24/2017 Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Completion Statement Received

Action Date: 6/22/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Fee Received - FMCRA Use Only

Action Date: 6/24/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Written Plan Received

Action Date: 6/29/2016
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Level I - Technical Screen Audit

Action Date: 6/29/2016
Response Action Outcome: Not reported

Action Type: Phase 2

Action Status: Completion Statement Received

Action Date: 6/4/2018
Response Action Outcome: Not reported

Action Type: Release Abatement Measure
Action Status: Status or Interim Report Received

Action Date: 7/11/2018
Response Action Outcome: Not reported

Action Type: Immediate Response Action
Action Status: Level I - Technical Screen Audit

Action Date: 8/2/2018
Response Action Outcome: Not reported

Action Type: Phase 1

Action Status: Revised Statement or Transmittal Received

Action Date: 8/30/2017
Response Action Outcome: Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 9/20/2016 Response Action Outcome: 9/20/2016 Not reported

Action Type: BOL

Action Status: Transmittal, Notice, or Notification Received

Action Date: 9/22/2016
Response Action Outcome: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

SUDBURY AUTOMOTIVE (Continued)

U002007836

A Notice sent to a Potentially Responsible Party (PRP) Action Type:

Action Status: **ALSENT** Action Date: 9/7/2016 Response Action Outcome: Not reported

Chemicals:

Chemical: **GASOLINE VOCS** Quantity: 1453 parts per million

Chemical: **GASOLINE**

Quantity: 1000 parts per million Location Type: COMMERCIAL Source: **USTOTHER** Source: UNKNOWN Source: **FUELTANK** PIPE Source: Source: TANK Source: UST

HW GEN:

MAV000011143 EPA Id: RCRA Generator Status: Not reported State Generator Status: SQG-MA

Count: 5 records. ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
SUDBURY	S109489446	INTERSECTION	BOSTON POST RD	01776	MA SHWS, MA RELEASE
SUDBURY	S102687468	CONCORD ST	BOSTON POST RD (RTE 20)	01776	MA SHWS, MA RELEASE
SUDBURY	1007444497	SAND HILL SANITARY LANDFILL	OFF BOSTON POST ROAD ROUTE 20		ODI
WAYLAND	S105810591	NO LOCATION AID	LK COCHITUATE	01778	MA SHWS, MA RELEASE
WAYLAND	S114965536	MUNICIPAL ROADWAY	NEARBY 44 RIVER ROAD		MA SHWS, MA RELEASE

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 03/11/2019 Source: EPA Date Data Arrived at EDR: 03/14/2019 Telephone: N/A

Date Made Active in Reports: 04/01/2019 Last EDR Contact: 03/14/2019

Number of Days to Update: 18 Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

NPL Site Boundaries

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1 EPA Region 6

Telephone 617-918-1143 Telephone: 214-655-6659

EPA Region 3 EPA Region 7

Telephone 215-814-5418 Telephone: 913-551-7247

EPA Region 4 **EPA Region 8**

Telephone 404-562-8033 Telephone: 303-312-6774

EPA Region 5 EPA Region 9

Telephone 312-886-6686 Telephone: 415-947-4246

EPA Region 10

Telephone 206-553-8665

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 03/11/2019 Date Data Arrived at EDR: 03/14/2019 Date Made Active in Reports: 04/01/2019

Number of Days to Update: 18

Source: EPA Telephone: N/A

Last EDR Contact: 03/14/2019

Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994

Number of Days to Update: 56

Source: EPA

Telephone: 202-564-4267 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Federal Delisted NPL site list

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 03/11/2019 Date Data Arrived at EDR: 03/14/2019 Date Made Active in Reports: 04/01/2019

Number of Days to Update: 18

Source: EPA Telephone: N/A

Last EDR Contact: 03/14/2019

Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Quarterly

Federal CERCLIS list

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 11/07/2016 Date Data Arrived at EDR: 01/05/2017 Date Made Active in Reports: 04/07/2017

Number of Days to Update: 92

Source: Environmental Protection Agency Telephone: 703-603-8704

Last EDR Contact: 01/04/2019

Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/06/2019 Date Data Arrived at EDR: 02/15/2019 Date Made Active in Reports: 03/15/2019

Number of Days to Update: 28

Source: EPA Telephone: 800-424-9346 Last EDR Contact: 03/14/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Quarterly

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 02/06/2019 Date Data Arrived at EDR: 02/15/2019 Date Made Active in Reports: 03/15/2019

Number of Days to Update: 28

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 03/14/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Quarterly

Federal RCRA CORRACTS facilities list

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 03/27/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Quarterly

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (888) 372-7341 Last EDR Contact: 03/27/2019

Next Scheduled EDR Contact: 07/08/2019
Data Release Frequency: Quarterly

Federal RCRA generators list

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (888) 372-7341 Last EDR Contact: 03/27/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (888) 372-7341 Last EDR Contact: 03/27/2019

Next Scheduled EDR Contact: 07/08/2019
Data Release Frequency: Quarterly

RCRA-CESQG: RCRA - Conditionally Exempt Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (888) 372-7341 Last EDR Contact: 03/27/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 10/17/2018 Date Data Arrived at EDR: 10/25/2018 Date Made Active in Reports: 12/07/2018

Number of Days to Update: 43

Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 02/07/2019

Next Scheduled EDR Contact: 05/27/2019 Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 01/31/2019 Date Data Arrived at EDR: 02/04/2019 Date Made Active in Reports: 03/08/2019

Number of Days to Update: 32

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 02/04/2019

Next Scheduled EDR Contact: 06/10/2019 Data Release Frequency: Varies

US INST CONTROL: Sites with Institutional Controls

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 01/31/2019 Date Data Arrived at EDR: 02/04/2019 Date Made Active in Reports: 03/08/2019

Number of Days to Update: 32

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 02/04/2019

Next Scheduled EDR Contact: 06/10/2019

Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous

substances.

Date of Government Version: 02/04/2019 Date Data Arrived at EDR: 02/08/2019 Date Made Active in Reports: 03/08/2019

Number of Days to Update: 28

Source: National Response Center, United States Coast Guard

Telephone: 202-267-2180 Last EDR Contact: 03/26/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Quarterly

State- and tribal - equivalent CERCLIS

SHWS: Site Transition List

Contains information on releases of oil and hazardous materials that have been reported to DEP.

Date of Government Version: 12/21/2018 Date Data Arrived at EDR: 01/09/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 33

Source: Department of Environmental Protection

Telephone: 617-292-5990 Last EDR Contact: 01/09/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Quarterly

State and tribal landfill and/or solid waste disposal site lists

LF PROFILES: Landfill Profiles Listing

This spreadsheet describes landfills that have actively accepted waste or have closed under MassDEP Solid Waste Regulations first adopted in 1971 (310 CMR 16.00 and 310 CMR 19.00). The list does not include landfills that closed before 1971 (and which never had a MassDEP permit or approval), or for which agency data is incomplete.

Date of Government Version: 07/01/2015 Date Data Arrived at EDR: 10/27/2015 Date Made Active in Reports: 12/14/2015

Number of Days to Update: 48

Source: Department of Environmental Protection

Telephone: 617-292-5868 Last EDR Contact: 01/04/2019

Next Scheduled EDR Contact: 04/15/2019
Data Release Frequency: Varies

SWF/LF: Solid Waste Facility Database/Transfer Stations

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 05/01/2018 Date Data Arrived at EDR: 07/05/2018 Date Made Active in Reports: 08/14/2018

Number of Days to Update: 40

Source: Department of Environmental Protection

Telephone: 617-292-5989 Last EDR Contact: 01/04/2019

Next Scheduled EDR Contact: 04/15/2019
Data Release Frequency: Annually

State and tribal leaking storage tank lists

LUST: Leaking Underground Storage Tank Listing

Sites within the Leaking Underground Storage Tank Listing that have a UST listed as its source.

Date of Government Version: 12/21/2018 Date Data Arrived at EDR: 01/09/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 33

Source: Department of Environmental Protection

Telephone: 617-292-5990 Last EDR Contact: 01/09/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Quarterly

LAST: Leaking Aboveground Storage Tank Sites

Sites within the Releases Database that have a AST listed as its source.

Date of Government Version: 12/21/2018 Date Data Arrived at EDR: 01/09/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 33

Source: Department of Environmental Protection

Telephone: 617-292-5500 Last EDR Contact: 01/09/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Quarterly

INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land

Leaking underground storage tanks located on Indian Land in Michigan, Minnesota and Wisconsin.

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Iowa, Kansas, and Nebraska

Date of Government Version: 04/24/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 04/10/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: Environmental Protection Agency Telephone: 415-972-3372

Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.

Date of Government Version: 04/25/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 04/01/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.

Date of Government Version: 05/08/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 03/05/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 04/13/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

State and tribal registered storage tank lists

FEMA UST: Underground Storage Tank Listing

A listing of all FEMA owned underground storage tanks.

Date of Government Version: 05/15/2017 Date Data Arrived at EDR: 05/30/2017 Date Made Active in Reports: 10/13/2017

Number of Days to Update: 136

Source: FEMA

Telephone: 202-646-5797 Last EDR Contact: 03/25/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Varies

UST: Summary Listing of all the Tanks Registered in the State of Massachusetts

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 01/08/2019 Date Data Arrived at EDR: 01/17/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 25

Source: Department of Fire Services, Office of the Public Safety

Telephone: 617-556-1035 Last EDR Contact: 01/14/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Quarterly

AST 2: Aboveground Storage Tanks
Aboveground storage tanks

Date of Government Version: 01/15/2019
Date Data Arrived at EDR: 01/17/2019
Date Made Active in Reports: 02/11/2019

Number of Days to Update: 25

Source: Department of Fire Services Telephone: 978-567-3181

Last EDR Contact: 01/14/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Varies

AST: Aboveground Storage Tank Database Registered Aboveground Storage Tanks.

Date of Government Version: 12/19/2018 Date Data Arrived at EDR: 12/20/2018 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 53

Source: Department of Public Safety Telephone: 617-556-1035 Last EDR Contact: 12/20/2018

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: No Update Planned

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 04/01/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 04/24/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 05/08/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 03/05/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 04/13/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 04/25/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 04/10/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

State and tribal institutional control / engineering control registries

INST CONTROL: Sites With Activity and Use Limitation

Activity and Use Limitations establish limits and conditions on the future use of contaminated property, and therefore allow cleanups to be tailored to these uses.

Date of Government Version: 12/21/2018
Date Data Arrived at EDR: 01/09/2019
Date Made Active in Reports: 02/11/2019

Number of Days to Update: 33

Source: Department of Environmental Protection

Telephone: 617-292-5990 Last EDR Contact: 01/09/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Quarterly

State and tribal voluntary cleanup sites

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008 Date Data Arrived at EDR: 04/22/2008 Date Made Active in Reports: 05/19/2008

Number of Days to Update: 27

Source: EPA, Region 7 Telephone: 913-551-7365 Last EDR Contact: 04/20/2009

Next Scheduled EDR Contact: 07/20/2009 Data Release Frequency: Varies

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 07/27/2015 Date Data Arrived at EDR: 09/29/2015 Date Made Active in Reports: 02/18/2016

Number of Days to Update: 142

Source: EPA, Region 1 Telephone: 617-918-1102 Last EDR Contact: 03/25/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Varies

State and tribal Brownfields sites

BROWNFIELDS: Completed Brownfields Covenants Listing

Under Massachusetts law, M.G.L. c. 21E is the statute that governs the cleanup of releases of oil and/or hazardous material to the environment. The Brownfields Act of 1998 amended M.G.L. c. 21E by establishing significant liability relief and financial incentives to spur the redevelopment of brownfields, while ensuring that the Commonwealth's environmental standards are met. Most brownfields are redeveloped with the benefit of liability protections that operate automatically under M.G.L. c. 21E.

Date of Government Version: 04/05/2017 Date Data Arrived at EDR: 08/03/2017 Date Made Active in Reports: 10/10/2017

Number of Days to Update: 68

Source: Office of the Attorney General Telephone: 617-963-2423

Last EDR Contact: 02/01/2019

Next Scheduled EDR Contact: 05/13/2019 Data Release Frequency: Annually

BROWNFIELDS 2: Potential Brownfields Listing

A listing of potential brownfields site locations in the state.

Date of Government Version: 05/22/2017 Date Data Arrived at EDR: 08/03/2017 Date Made Active in Reports: 09/22/2017

Number of Days to Update: 50

Source: Department of Environmental Protection

Telephone: 617-556-1007 Last EDR Contact: 02/01/2019

Next Scheduled EDR Contact: 05/13/2019

Data Release Frequency: Varies

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 12/17/2018 Date Data Arrived at EDR: 12/18/2018 Date Made Active in Reports: 01/11/2019

Number of Days to Update: 24

Source: Environmental Protection Agency

Telephone: 202-566-2777 Last EDR Contact: 03/19/2019

Next Scheduled EDR Contact: 07/01/2019 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands

Location of open dumps on Indian land.

Date of Government Version: 12/31/1998 Date Data Arrived at EDR: 12/03/2007 Date Made Active in Reports: 01/24/2008

Number of Days to Update: 52

Source: Environmental Protection Agency

Telephone: 703-308-8245 Last EDR Contact: 01/29/2019

Next Scheduled EDR Contact: 05/13/2019 Data Release Frequency: Varies

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004

Number of Days to Update: 39

Source: Environmental Protection Agency

Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009 Date Data Arrived at EDR: 05/07/2009 Date Made Active in Reports: 09/21/2009

Number of Days to Update: 137

Source: EPA, Region 9 Telephone: 415-947-4219 Last EDR Contact: 01/17/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 04/01/2014 Date Data Arrived at EDR: 08/06/2014 Date Made Active in Reports: 01/29/2015 Number of Days to Update: 176

Telephone: 301-443-1452 Last EDR Contact: 02/01/2019

Next Scheduled EDR Contact: 05/13/2019

Source: Department of Health & Human Serivces, Indian Health Service

Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 09/21/2018 Date Data Arrived at EDR: 09/21/2018 Date Made Active in Reports: 11/09/2018

Telephone: 202-307-1000 Last EDR Contact: 02/21/2019

Number of Days to Update: 49

Next Scheduled EDR Contact: 06/10/2019 Data Release Frequency: No Update Planned

Source: Drug Enforcement Administration

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 09/21/2018 Date Data Arrived at EDR: 09/21/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 49

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 02/21/2019

Next Scheduled EDR Contact: 06/10/2019
Data Release Frequency: Quarterly

Local Land Records

LIENS: Liens Information Listing
A listing of environmental liens.

Date of Government Version: 03/07/2018 Date Data Arrived at EDR: 03/09/2018 Date Made Active in Reports: 06/21/2018

Number of Days to Update: 104

Source: Department of Environmental Protection

Telephone: 617-292-5628 Last EDR Contact: 02/15/2019

Next Scheduled EDR Contact: 06/03/2019 Data Release Frequency: Varies

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 03/11/2019 Date Data Arrived at EDR: 03/14/2019 Date Made Active in Reports: 03/21/2019

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 202-564-6023 Last EDR Contact: 03/14/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 02/08/2019 Date Data Arrived at EDR: 02/08/2019 Date Made Active in Reports: 03/21/2019

Number of Days to Update: 41

Source: U.S. Department of Transportation

Telephone: 202-366-4555 Last EDR Contact: 03/26/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Quarterly

RELEASE: Reportable Releases

Contains information on all releases of oil and hazardous materials that have been reported to DEP

Date of Government Version: 12/21/2018 Date Data Arrived at EDR: 01/09/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 33

Source: Department of Environmental Protection

Telephone: 617-292-5990 Last EDR Contact: 01/09/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Quarterly

MA SPILLS: Historical Spill List

The Spills Database was the release notification tracking system for spills that occurred prior to October 1, 1993. This information should be considered to be primarily of historical interest since all of the listed spills have either been cleaned up or assigned new tracking numbers and moved to the Reportable Releases or Sites Transition List databases.

Date of Government Version: 09/30/1993 Date Data Arrived at EDR: 12/03/2003 Date Made Active in Reports: 12/31/2003

Number of Days to Update: 28

Source: Department of Environmental Protection

Telephone: 617-292-5720 Last EDR Contact: 12/03/2003 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

SPILLS 90: SPILLS90 data from FirstSearch

Spills 90 includes those spill and release records available exclusively from FirstSearch databases. Typically, they may include chemical, oil and/or hazardous substance spills recorded after 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 90.

Date of Government Version: 12/11/2012 Date Data Arrived at EDR: 01/03/2013 Date Made Active in Reports: 02/08/2013

Number of Days to Update: 36

Source: FirstSearch Telephone: N/A

Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

SPILLS 80: SPILLS80 data from FirstSearch

Spills 80 includes those spill and release records available from FirstSearch databases prior to 1990. Typically, they may include chemical, oil and/or hazardous substance spills recorded before 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 80.

Date of Government Version: 03/10/1998 Date Data Arrived at EDR: 01/03/2013 Date Made Active in Reports: 03/05/2013

Number of Days to Update: 61

Source: FirstSearch Telephone: N/A

Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (888) 372-7341 Last EDR Contact: 03/27/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 01/31/2015 Date Data Arrived at EDR: 07/08/2015 Date Made Active in Reports: 10/13/2015

Number of Days to Update: 97

Source: U.S. Army Corps of Engineers

Telephone: 202-528-4285 Last EDR Contact: 04/03/2019

Next Scheduled EDR Contact: 06/03/2019

Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 11/10/2006 Date Made Active in Reports: 01/11/2007

Number of Days to Update: 62

Source: USGS

Telephone: 888-275-8747 Last EDR Contact: 01/11/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Semi-Annually

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 02/06/2006 Date Made Active in Reports: 01/11/2007

Number of Days to Update: 339

Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 01/11/2019

Next Scheduled EDR Contact: 04/22/2019

Data Release Frequency: N/A

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 01/01/2017 Date Data Arrived at EDR: 02/03/2017 Date Made Active in Reports: 04/07/2017

Number of Days to Update: 63

Source: Environmental Protection Agency

Telephone: 615-532-8599 Last EDR Contact: 02/15/2019

Next Scheduled EDR Contact: 05/27/2019 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 01/31/2019 Date Data Arrived at EDR: 02/04/2019 Date Made Active in Reports: 03/08/2019

Number of Days to Update: 32

Source: Environmental Protection Agency

Telephone: 202-566-1917 Last EDR Contact: 03/26/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013 Date Data Arrived at EDR: 03/21/2014 Date Made Active in Reports: 06/17/2014

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 617-520-3000 Last EDR Contact: 02/08/2019

Next Scheduled EDR Contact: 05/20/2019 Data Release Frequency: Quarterly

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 73

Source: Environmental Protection Agency

Telephone: 703-308-4044 Last EDR Contact: 02/08/2019

Next Scheduled EDR Contact: 05/20/2019 Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 06/21/2017 Date Made Active in Reports: 01/05/2018

Number of Days to Update: 198

Source: EPA

Telephone: 202-260-5521 Last EDR Contact: 03/22/2019

Next Scheduled EDR Contact: 07/01/2019 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 01/10/2018 Date Made Active in Reports: 01/12/2018

Number of Days to Update: 2

Source: EPA

Telephone: 202-566-0250 Last EDR Contact: 02/20/2019

Next Scheduled EDR Contact: 06/03/2019 Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 12/10/2010 Date Made Active in Reports: 02/25/2011

Number of Days to Update: 77

Source: EPA

Telephone: 202-564-4203 Last EDR Contact: 03/25/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 03/11/2019 Date Data Arrived at EDR: 03/14/2019 Date Made Active in Reports: 04/01/2019

Number of Days to Update: 18

Source: EPA

Telephone: 703-416-0223 Last EDR Contact: 03/14/2019

Next Scheduled EDR Contact: 06/17/2019 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 02/01/2019
Date Data Arrived at EDR: 02/14/2019
Date Made Active in Reports: 03/21/2019

Number of Days to Update: 35

Source: Environmental Protection Agency

Telephone: 202-564-8600 Last EDR Contact: 01/22/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995

Number of Days to Update: 35

Source: EPA

Telephone: 202-564-4104 Last EDR Contact: 06/02/2008

Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 08/13/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 11/09/2018

Number of Days to Update: 36

Source: EPA

Telephone: 202-564-6023 Last EDR Contact: 03/14/2019

Next Scheduled EDR Contact: 05/20/2019 Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 09/14/2018 Date Data Arrived at EDR: 10/11/2018 Date Made Active in Reports: 12/07/2018

Number of Days to Update: 57

Source: EPA

Telephone: 202-566-0500 Last EDR Contact: 01/11/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016 Date Data Arrived at EDR: 11/23/2016 Date Made Active in Reports: 02/10/2017

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 01/07/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: Quarterly

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)
A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: Quarterly

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 08/30/2016 Date Data Arrived at EDR: 09/08/2016 Date Made Active in Reports: 10/21/2016

Number of Days to Update: 43

Source: Nuclear Regulatory Commission

Telephone: 301-415-7169 Last EDR Contact: 01/22/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 08/07/2009 Date Made Active in Reports: 10/22/2009

Number of Days to Update: 76

Source: Department of Energy Telephone: 202-586-8719 Last EDR Contact: 03/07/2019

Next Scheduled EDR Contact: 06/17/2019 Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List

A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 07/01/2014 Date Data Arrived at EDR: 09/10/2014 Date Made Active in Reports: 10/20/2014

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: N/A

Last EDR Contact: 03/05/2019

Next Scheduled EDR Contact: 06/17/2019

Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 05/24/2017 Date Data Arrived at EDR: 11/30/2017 Date Made Active in Reports: 12/15/2017

Number of Days to Update: 15

Source: Environmental Protection Agency

Telephone: 202-566-0517 Last EDR Contact: 01/25/2019

Next Scheduled EDR Contact: 05/06/2019 Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S.

Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 01/02/2019 Date Data Arrived at EDR: 01/03/2019 Date Made Active in Reports: 03/15/2019

Number of Days to Update: 71

Source: Environmental Protection Agency

Telephone: 202-343-9775 Last EDR Contact: 04/02/2019

Next Scheduled EDR Contact: 07/15/2019 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2007

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2008

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 12/03/2018 Date Data Arrived at EDR: 01/29/2019 Date Made Active in Reports: 03/21/2019

Number of Days to Update: 51

Source: Department of Transporation, Office of Pipeline Safety

Telephone: 202-366-4595 Last EDR Contact: 01/29/2019

Next Scheduled EDR Contact: 05/11/2019 Data Release Frequency: Quarterly

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 12/31/2018 Date Data Arrived at EDR: 02/11/2019 Date Made Active in Reports: 03/21/2019

Number of Days to Update: 38

Source: Department of Justice, Consent Decree Library

Telephone: Varies

Last EDR Contact: 01/07/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2015
Date Data Arrived at EDR: 02/22/2017
Date Made Active in Reports: 09/28/2017

Number of Days to Update: 218

Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 02/13/2019

Next Scheduled EDR Contact: 06/03/2019 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres.

Date of Government Version: 12/31/2014
Date Data Arrived at EDR: 07/14/2015
Date Made Active in Reports: 01/10/2017

Number of Days to Update: 546

Source: USGS Telephone: 202-208-3710

Last EDR Contact: 01/07/2019 Next Scheduled EDR Contact: 04/22/2019

Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 08/08/2017 Date Data Arrived at EDR: 09/11/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 3

Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 01/31/2019

Next Scheduled EDR Contact: 05/20/2019 Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 06/23/2017 Date Data Arrived at EDR: 10/11/2017 Date Made Active in Reports: 11/03/2017

Number of Days to Update: 23

Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 02/22/2019

Next Scheduled EDR Contact: 06/03/2019 Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 03/11/2019 Date Data Arrived at EDR: 03/14/2019 Date Made Active in Reports: 03/21/2019

Number of Days to Update: 7

Source: Environmental Protection Agency

Telephone: 703-603-8787 Last EDR Contact: 03/14/2019

Next Scheduled EDR Contact: 04/15/2019 Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010

Number of Days to Update: 36

Source: American Journal of Public Health

Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

US AIRS MINOR: Air Facility System Data A listing of minor source facilities.

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

US MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 11/27/2018 Date Data Arrived at EDR: 02/27/2019 Date Made Active in Reports: 04/01/2019

Number of Days to Update: 33

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959 Last EDR Contact: 02/27/2019

Next Scheduled EDR Contact: 06/10/2019 Data Release Frequency: Semi-Annually

US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing

This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.

Date of Government Version: 12/05/2005 Date Data Arrived at EDR: 02/29/2008 Date Made Active in Reports: 04/18/2008

Number of Days to Update: 49

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 03/01/2019

Next Scheduled EDR Contact: 06/10/2019 Data Release Frequency: Varies

US MINES 3: Active Mines & Mineral Plants Database Listing

Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.

Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011

Number of Days to Update: 97

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 03/01/2019

Next Scheduled EDR Contact: 06/10/2019 Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 09/10/2018 Date Data Arrived at EDR: 09/11/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 3

Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 03/21/2019

Next Scheduled EDR Contact: 06/24/2019 Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 02/15/2019 Date Data Arrived at EDR: 03/05/2019 Date Made Active in Reports: 03/15/2019

Number of Days to Update: 10

Source: EPA

Telephone: (617) 918-1111 Last EDR Contact: 03/05/2019

Next Scheduled EDR Contact: 06/17/2019 Data Release Frequency: Quarterly

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 07/26/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 71

Source: Environmental Protection Agency

Telephone: 202-564-0527 Last EDR Contact: 03/01/2019

Next Scheduled EDR Contact: 06/10/2019 Data Release Frequency: Varies

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 01/17/2019 Date Made Active in Reports: 04/01/2019

Number of Days to Update: 74

Source: Department of Defense Telephone: 703-704-1564 Last EDR Contact: 01/14/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Varies

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 03/03/2019 Date Data Arrived at EDR: 03/05/2019 Date Made Active in Reports: 04/01/2019

Number of Days to Update: 27

Source: Environmental Protection Agency

Telephone: 202-564-2280 Last EDR Contact: 03/05/2019

Next Scheduled EDR Contact: 06/17/2019 Data Release Frequency: Quarterly

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 02/19/2019 Date Data Arrived at EDR: 02/21/2019 Date Made Active in Reports: 04/01/2019

Number of Days to Update: 39

Source: EPA

Telephone: 800-385-6164 Last EDR Contact: 02/21/2019

Next Scheduled EDR Contact: 06/03/2019 Data Release Frequency: Quarterly

AIRS: Permitted Facilities Listing

A listing of Air Quality permit applications.

Date of Government Version: 01/16/2019 Date Data Arrived at EDR: 01/17/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 25

Source: Department of Environmental Protection

Telephone: 617-292-5789 Last EDR Contact: 01/14/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Varies

ASBESTOS: Asbestos Notification Listing

Asbestos sites

Date of Government Version: 12/19/2018 Date Data Arrived at EDR: 12/20/2018 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 53

Source: Department of Environmental Protection

Telephone: 617-292-5982 Last EDR Contact: 02/21/2019

Next Scheduled EDR Contact: 06/03/2019 Data Release Frequency: Varies

DRYCLEANERS: Regulated Drycleaning Facilities

A listing of Department of Environmental Protection regulated drycleaning facilities that use perchloroethylene under the Environmental Results Program.

Date of Government Version: 12/27/2018 Date Data Arrived at EDR: 01/17/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 25

Source: Department of Environmental Protection

Telephone: 617-292-5633 Last EDR Contact: 01/14/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Varies

ENFORCEMENT: Enforcement Action Cases

A listing of enforcement action cases tracked by Department of Environmental Protection programs, including Solid Waste and Hazardous Waste.

Date of Government Version: 01/28/2019 Date Data Arrived at EDR: 01/29/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 13

Source: Department of Environmental Quality

Telephone: 617-292-5979 Last EDR Contact: 01/28/2019

Next Scheduled EDR Contact: 05/11/2019 Data Release Frequency: Varies

Financial Assurance 1: Financial Assurance Information Listing

Information for hazardous waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 12/01/2010 Date Data Arrived at EDR: 12/23/2010 Date Made Active in Reports: 02/03/2011

Number of Days to Update: 42

Source: Department of Environmental Protection

Telephone: 617-292-5970 Last EDR Contact: 03/11/2019

Next Scheduled EDR Contact: 06/24/2019 Data Release Frequency: Varies

Financial Assurance 2: Financial Assurance Information Listing

A listing of financial assurance information for underground storage tanks. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 07/11/2018 Date Data Arrived at EDR: 07/17/2018 Date Made Active in Reports: 09/05/2018

Number of Days to Update: 50

Source: Office of State Fire Marshal Telephone: 978-567-3100 Last EDR Contact: 02/19/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Varies

Financial Assurance 3: Financial Assurance Information listing

Information for solid waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay

Date of Government Version: 01/16/2018 Date Data Arrived at EDR: 04/17/2018 Date Made Active in Reports: 06/15/2018

Number of Days to Update: 59

Source: Department of Environmental Protection

Telephone: 617-292-5970 Last EDR Contact: 01/07/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Varies

GWDP: Ground Water Discharge Permits

The Ground Water Discharge Permits datalayer (formerly known as Groundwater Discharge Points) is a statewide point dataset containing approximate locations of permitted discharges to groundwater.

Date of Government Version: 01/10/2019 Date Data Arrived at EDR: 01/30/2019 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 12

Source: MassGIS Telephone: 617-556-1150 Last EDR Contact: 01/30/2019

Next Scheduled EDR Contact: 05/11/2019 Data Release Frequency: Varies

HW GEN: List of Massachusetts Hazardous Waste Generators

Permanent generator identification numbers for all Massachusetts generators of hazardous waste and waste oil that have registered with or notified MassDEP of their hazardous waste activities.

Date of Government Version: 11/13/2018 Date Data Arrived at EDR: 12/21/2018 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 52

Source: Department of Environmental Protection

Telephone: 617-292-5500 Last EDR Contact: 03/27/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Semi-Annually

MERCURY: Mercury Product Recyling Drop-Off Locations Listing

A listing of locations, collecting and recycling for mercury-added products. Mercury is toxic to the human nervous system, as well as fish and animals. Mercury can enter the body either through skin absorption or through inhalation of mercury vapors. At room temperature, small beads of mercury will vaporize.

Date of Government Version: 05/07/2018 Date Data Arrived at EDR: 05/25/2018 Date Made Active in Reports: 06/25/2018

Number of Days to Update: 31

Source: Department of Environmental Protection

Telephone: 617-292-5632 Last EDR Contact: 02/15/2019

Next Scheduled EDR Contact: 06/03/2019 Data Release Frequency: Varies

NPDES: NPDES Permit Listing

Listing of treatment plants in Massachusetts that hold permits to discharge to groundwater.

Date of Government Version: 11/14/2018 Date Data Arrived at EDR: 11/15/2018 Date Made Active in Reports: 12/17/2018

Number of Days to Update: 32

Source: Department of Environmental Protection

Telephone: 508-767-2781 Last EDR Contact: 02/15/2019

Next Scheduled EDR Contact: 05/27/2019

Data Release Frequency: Varies

TIER 2: Tier 2 Information Listing

A listing of facilities which store or manufacture hazardous materials and submit a chemical inventory report

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 05/17/2018 Date Made Active in Reports: 06/29/2018

Number of Days to Update: 43

Source: Massachusetts Emergency Management Agency

Telephone: 508-820-2019 Last EDR Contact: 01/11/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Annually

TSD: TSD Facility

List of Licensed Hazardous Waste Treatment, Storage Disposal Facilities (TSDFs) in Massachusetts.

Date of Government Version: 12/20/2018 Date Data Arrived at EDR: 12/26/2018 Date Made Active in Reports: 02/11/2019

Number of Days to Update: 47

Source: Department of Environmental Protection

Telephone: 617-292-5580 Last EDR Contact: 03/26/2019

Next Scheduled EDR Contact: 07/08/2019 Data Release Frequency: Varies

UIC: Underground Injection Control Listing

A list of UIC registration data and their locations

Date of Government Version: 09/06/2018 Date Data Arrived at EDR: 11/15/2018 Date Made Active in Reports: 03/08/2019

Number of Days to Update: 113

Source: Department of Environmental Protection

Telephone: 617-566-1172 Last EDR Contact: 02/11/2019

Next Scheduled EDR Contact: 05/27/2019

Data Release Frequency: Varies

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Source: EDR, Inc. Date Data Arrived at EDR: N/A Telephone: N/A Date Made Active in Reports: N/A Last EDR Contact: N/A

Number of Days to Update: N/A Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A

Number of Days to Update: N/A

Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Source: EDR, Inc.
Date Data Arrived at EDR: N/A Telephone: N/A
Date Made Active in Reports: N/A Last EDR Contact: N/A

Number of Days to Update: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS: Recovered Government Archive State Hazardous Waste Facilities List

The EDR Recovered Government Archive State Hazardous Waste database provides a list of SHWS incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Protection in Massachusetts.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 12/24/2013
Number of Days to Update: 176

Telephone: N/A
Last EDR Contact: 06/01/2012
Novt Schoduled EDR Contact: N/A

Source: Department of Environmental Protection

Next Scheduled EDR Contact: N/A
Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Protection in Massachusetts.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 12/24/2013 Number of Days to Update: 176

Source: Department of Environmental Protection Telephone: N/A

Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

CT MANIFEST: Hazardous Waste Manifest Data

Facility and manifest data. Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a tsd facility.

Date of Government Version: 02/11/2019 Date Data Arrived at EDR: 02/12/2019 Date Made Active in Reports: 03/04/2019

Number of Days to Update: 20

Source: Department of Energy & Environmental Protection

Telephone: 860-424-3375 Last EDR Contact: 02/12/2019

Next Scheduled EDR Contact: 05/27/2019
Data Release Frequency: No Update Planned

NJ MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 07/13/2018 Date Made Active in Reports: 08/01/2018

Number of Days to Update: 19

Source: Department of Environmental Protection

Telephone: N/A

Last EDR Contact: 01/07/2019

Next Scheduled EDR Contact: 04/22/2019 Data Release Frequency: Annually

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD

facility.

Date of Government Version: 01/01/2019 Date Data Arrived at EDR: 01/30/2019 Date Made Active in Reports: 02/14/2019

Number of Days to Update: 15

Source: Department of Environmental Conservation

Telephone: 518-402-8651 Last EDR Contact: 01/30/2019

Next Scheduled EDR Contact: 05/11/2019 Data Release Frequency: Quarterly

PA MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 10/23/2018 Date Made Active in Reports: 11/27/2018

Number of Days to Update: 35

Source: Department of Environmental Protection

Telephone: 717-783-8990 Last EDR Contact: 01/11/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Annually

RI MANIFEST: Manifest information

Hazardous waste manifest information

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 02/23/2018 Date Made Active in Reports: 04/09/2018

Number of Days to Update: 45

Source: Department of Environmental Management

Telephone: 401-222-2797 Last EDR Contact: 02/19/2019

Next Scheduled EDR Contact: 06/03/2019 Data Release Frequency: Annually

VT MANIFEST: Hazardous Waste Manifest Data Hazardous waste manifest information.

Date of Government Version: 01/16/2019 Date Data Arrived at EDR: 01/17/2019 Date Made Active in Reports: 02/19/2019

Number of Days to Update: 33

Source: Department of Environmental Conservation

Telephone: 802-241-3443 Last EDR Contact: 01/14/2019

Next Scheduled EDR Contact: 04/29/2019 Data Release Frequency: Annually

WI MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 06/15/2018 Date Made Active in Reports: 07/09/2018

Number of Days to Update: 24

Source: Department of Natural Resources

Telephone: N/A

Last EDR Contact: 03/11/2019

Next Scheduled EDR Contact: 06/24/2019 Data Release Frequency: Annually

Oil/Gas Pipelines

Source: PennWell Corporation

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Electric Power Transmission Line Data

Source: PennWell Corporation

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory

Source: MassDEP Telephone: 617-292-5907

Areas of Critical Environmental Concern Datalayer: The Areas of Critical Environmental Concern (ACEC) datalayer shows the location of areas that have been designated ACECs by the Secretary of Environmental Affairs. ACEC designation requires greater environmental review of certain kinds of proposed development under state jurisdiction within the ACEC boundaries. The ACEC Program is administered by the Department of Environmental Management (DEM) on behalf of the Secretary of Environmental Affairs. The Massachusetts Coastal Zone Management (MCZM) Office managed the original Coastal ACEC Program from 1978 to 1993, and continues to play a key role in monitoring coastal ACECs. Procedures for ACEC designation and the general policies governing the effects of designation are contained in the ACEC regulations (301 CMR 12.00). The ACEC datalayer has been compiled by MCZM and DEM and includes both coastal and inland areas.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

APPENDIX J: LABORATORY ANALYTICAL REPORTS

April 19, 2019

Kristen Sarson Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114

Project Location: Wayland, MA

Client Job Number: Project Number: 46047

Laboratory Work Order Number: 19D0736

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on April 12, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	9
19D0736-01	9
19D0736-02	13
19D0736-03	17
19D0736-04	21
19D0736-05	25
19D0736-06	29
19D0736-07	33
Sample Preparation Information	41
QC Data	43
Volatile Organic Compounds by GC/MS	43
B228262	43
Semivolatile Organic Compounds by GC/MS	48
B228235	48
Polychlorinated Biphenyls with 3540 Soxhlet Extraction	52
B228231	52
Petroleum Hydrocarbons Analyses	53
B228233	53
Metals Analyses (Total)	54
B228326	54
B228464	54
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	56
B228169	56

Table of Contents (continued)

B228496	56
B228498	56
B228560	56
TCLP - Metals Analyses	57
B228378	57
Dual Column RPD Report	58
Flag/Qualifier Summary	60
Certifications	61
Chain of Custody/Sample Receipt	67

Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114 ATTN: Kristen Sarson

PURCHASE ORDER NUMBER:

REPORT DATE: 4/19/2019

PROJECT NUMBER: 46047

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19D0736

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wayland, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
V-201	19D0736-01	Soil		-	MA M-CT007/CT
				SM 2540G	PH-0618/NY11301
				SW-846 6010D	
X 202	1000726.02	G 1			MAM CT007/CT
V-202	19D0736-02	Soil		-	MA M-CT007/CT PH-0618/NY11301
				SM 2540G	
				SW-846 6010D	
V-203	19D0736-03	Soil		-	MA M-CT007/CT
					PH-0618/NY11301
				SM 2540G	
				SW-846 6010D	
V-204	19D0736-04	Soil		-	MA M-CT007/CT
				GM 2540C	PH-0618/NY11301
				SM 2540G	
****	4050506	a ::		SW-846 6010D	MAN CTOOT/CT
V-205	19D0736-05	Soil		-	MA M-CT007/CT PH-0618/NY11301
				SM 2540G	111 0010/11111301
				SW-846 6010D	
V-206	19D0736-06	Soil		-	MA M-CT007/CT
					PH-0618/NY11301
				SM 2540G	
				SW-846 6010D	
Firing Range	19D0736-07	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	. 1
				SW-846 8100 Modifi	ieu
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 6010, only a select list of metals was requested and reported.

SW-846 6010D

Qualifications:

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated. Analyte & Samples(s) Qualified:

19D0736-01[V-201], B228378-MS1

SW-846 8082A

Qualifications:

O-32

A dilution was performed as part of the standard analytical procedure.

Analyte & Samples(s) Qualified:

19D0736-07[Firing Range]

SW-846 8260C

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

1,1-Dichloroethylene

B228262-BS1, B228262-BSD1

Carbon Disulfide

B228262-BS1, B228262-BSD1

Chloroethane

B228262-BS1, B228262-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Trichlorofluoromethane (Freon 11)

B228262-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

1,2-Dibromo-3-chloropropane (DB)

19D0736-07[Firing Range], B228262-BLK1, B228262-BS1, B228262-BSD1, S034704-CCV1

1.4-Dioxane (SIM)

B228262-BS1, B228262-BSD1, S034704-CCV1

2,2-Dichloropropane

19D0736-07[Firing Range], B228262-BLK1, B228262-BS1, B228262-BSD1, S034704-CCV1

Dichlorodifluoromethane (Freon 12

19D0736-07[Firing Range], B228262-BLK1, B228262-BS1, B228262-BSD1, S034704-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result

Analyte & Samples(s) Qualified:

1.4-Dioxane

19D0736-07[Firing Range], B228262-BLK1, B228262-BS1, B228262-BSD1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Diethyl Ether

B228262-BS1, B228262-BSD1, S034704-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated

estimated. Analyte & Samples(s) Qualified:

Bromomethane

19D0736-07[Firing Range], B228262-BLK1, B228262-BS1, B228262-BSD1, S034704-CCV1

SW-846 8270D

Qualifications:

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2-Methylphenol

19D0736-07[Firing Range], S034774-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Bis(2-Ethylhexyl)phthalate

19D0736-07[Firing Range], S034774-CCV1

Butylbenzylphthalate

19D0736-07[Firing Range], S034774-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

estimated. Analyte & Samples(s) Qualified:

4-Chloroaniline

B228235-BLK1, B228235-BS1, B228235-BSD1, S034781-CCV1

Aniline

B228235-BLK1, B228235-BS1, B228235-BSD1, S034781-CCV1

SW-846 9045C

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

pН

19D0736-07[Firing Range]

SW-846 8100 Modified

TPH (C9-C36) is quantitated against a calibration made with a diesel standard.

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

SW-846 8270D

Laboratory control sample recoveries for required MCP Data Enhancement 8270 compounds were all within control limits specified by the method, 40-140% for base/neutrals and 30-130% for acids except for "difficult analytes" listed below and/or otherwise listed in this narrative. Difficult analytes limits are 15 and 140%: 2,4-dinitrophenol, 4-chloroaniline, 4-nitrophenol, and phenol.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Sample Description: Work Order: 19D0736

Date Received: 4/12/2019 Field Sample #: V-201

Project Location: Wayland, MA

Sampled: 4/11/2019 13:30

Sample ID: 19D0736-01 Sample Matrix: Soil

Metals Analyses (Total)		

								Date	Date/Time	
A	nalyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony		41	1.7	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:13	EJB
Copper		4200	1.7	mg/Kg dry	5		SW-846 6010D	4/17/19	4/19/19 9:56	EJB
Lead		4000	2.6	mg/Kg dry	5		SW-846 6010D	4/17/19	4/19/19 9:56	EJB
Zinc		18	0.69	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:13	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-201

Sampled: 4/11/2019 13:30

Sample ID: 19D0736-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		93.3		% Wt	1		SM 2540G	4/14/19	4/15/19 12:39	CJT

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/12/2019
Field Sample #: V-201

Sampled: 4/11/2019 13:30

Sample ID: 19D0736-01
Sample Matrix: Soil

TCLP - Metals Analyses

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Lead		180	0.050	mg/L	5	MS-19	SW-846 6010D	4/16/19	4/17/19 16:33	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/12/2019

Field Sample #: V-201
Sample ID: 19D0736-01
Sample Matrix: Soil

Sampled: 4/11/2019 13:30

Tungsten 200.7

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Tungsten 200.7		<0.4	0.4	mg/Kg	1		Tungsten 200.7		4/17/19 0:00	PEL

Sample Description:

Work Order: 19D0736

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-202

Sampled: 4/11/2019 13:35

Sample ID: 19D0736-02
Sample Matrix: Soil

Metals	Ana	lvees	(Total)
MICLAIS	Alla	Lyses	(Iviai)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony		140	1.7	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:18	EJB
Copper		4200	1.7	mg/Kg dry	5		SW-846 6010D	4/17/19	4/19/19 10:01	EJB
Lead		13000	2.6	mg/Kg dry	5		SW-846 6010D	4/17/19	4/19/19 10:01	EJB
Zinc		29	0.68	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:18	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

, MA Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-202

Sampled: 4/11/2019 13:35

Sample ID: 19D0736-02
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		95.4		% Wt	1		SM 2540G	4/14/19	4/15/19 12:39	CJT

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

MA Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-202

Sampled: 4/11/2019 13:35

Sample ID: 19D0736-02
Sample Matrix: Soil

TCLP - Metals Analyses

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Lead		360	0.10	mg/L	10		SW-846 6010D	4/16/19	4/17/19 16:39	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-202

Sampled: 4/11/2019 13:35

Sample ID: 19D0736-02
Sample Matrix: Soil

Tungsten 200.7

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Tungsten 200.7		14	0.3	mg/Kg	1		Tungsten 200.7		4/17/19 0:00	PEL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 4/12/2019
Field Sample #: V-203

Project Location: Wayland, MA

Sampled: 4/11/2019 13:40

Sample ID: 19D0736-03
Sample Matrix: Soil

Metals	Analyses	(Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:23	EJB
Copper	120	0.34	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:23	EJB
Lead	46	0.52	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:23	EJB
Zinc	27	0.69	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:23	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA Date Received: 4/12/2019 Field Sample #: V-203

Sampled: 4/11/2019 13:40

Sample ID: 19D0736-03 Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		95.3		% Wt	1		SM 2540G	4/14/19	4/15/19 12:39	CJT

Project Location: Wayland, MA

Sample Description:

Work Order: 19D0736

Date Received: 4/12/2019 Field Sample #: V-203

Sampled: 4/11/2019 13:40

Sample ID: 19D0736-03 Sample Matrix: Soil

TCLP - Metals Analyses

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Lead		7.5	0.010	mg/L	1		SW-846 6010D	4/16/19	4/17/19 16:46	EJB

Sample Description:

Work Order: 19D0736

Date Received: 4/12/2019 Field Sample #: V-203

Project Location: Wayland, MA

Sampled: 4/11/2019 13:40

Sample ID: 19D0736-03 Sample Matrix: Soil

Tungsten 200.7

								Date	Date/Time	
An	ıalyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Tungsten 200.7		5	0.3	mg/Kg	1		Tungsten 200.7		4/17/19 0:00	PEL

Sample Description:

Work Order: 19D0736

Date Received: 4/12/2019
Field Sample #: V-204

Project Location: Wayland, MA

Sampled: 4/11/2019 13:45

Sample ID: 19D0736-04
Sample Matrix: Soil

Metals	Anal	vses i	(Total)
MICCAIS	Lina	iyaca i	(Iutai)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	3.3	1.8	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:39	EJB
Copper	74	0.36	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:39	EJB
Lead	290	0.54	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:39	EJB
Zinc	37	0.72	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:39	EJB

Sample Description: Work Order: 19D0736

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-204

Sampled: 4/11/2019 13:45

Sample ID: 19D0736-04
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		92.1		% Wt	1		SM 2540G	4/14/19	4/15/19 12:39	CJT

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-204

Sampled: 4/11/2019 13:45

Sample ID: 19D0736-04
Sample Matrix: Soil

TCLP - Metals Analyses

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Lead		8.3	0.010	mg/L	1		SW-846 6010D	4/16/19	4/17/19 16:53	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample

Sample Description:

Date Received: 4/12/2019
Field Sample #: V-204

Sampled: 4/11/2019 13:45

Sample ID: 19D0736-04
Sample Matrix: Soil

Tungsten 200.7

						Date	Date/Time	
Analyte	Results	RL	Units Dilut	on Flag/Qual	Method	Prepared	Analyzed	Analyst
Tungsten 200.7	< 0.4	0.4	mg/Kg 1		Tungsten 200.7		4/17/19 0:00	PEL

Sample Description:

Work Order: 19D0736

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-205

Sampled: 4/11/2019 13:50

Sample ID: 19D0736-05
Sample Matrix: Soil

Metals	Δn	alveec	(Total)	

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	5.1	1.8	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:44	EJB
Copper	1000	0.35	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:44	EJB
Lead	630	0.53	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:44	EJB
Zinc	23	0.71	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:44	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-205

Sampled: 4/11/2019 13:50

Sample ID: 19D0736-05
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		92.3		% Wt	1		SM 2540G	4/14/19	4/15/19 12:40	CJT

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-205

Sampled: 4/11/2019 13:50

Sample ID: 19D0736-05
Sample Matrix: Soil

TCLP - Metals Analyses

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Lead		48	0.010	mg/L	1		SW-846 6010D	4/16/19	4/17/19 17:00	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

IA Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: V-205

Sampled: 4/11/2019 13:50

Sample ID: 19D0736-05
Sample Matrix: Soil

Tungsten 200.7

						Date	Date/Time	
Analyte	Results	RL	Units Dilut	on Flag/Qual	Method	Prepared	Analyzed	Analyst
Tungsten 200.7	< 0.4	0.4	mg/Kg 1		Tungsten 200.7		4/17/19 0:00	PEL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA Date Received: 4/12/2019 Field Sample #: V-206

Sample ID: 19D0736-06 Sample Matrix: Soil

Sampled: 4/11/2019 13:55

Metals Analyses (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony		140	1.8	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:49	EJB
Copper		7100	3.5	mg/Kg dry	10		SW-846 6010D	4/17/19	4/19/19 10:06	EJB
Lead		24000	5.3	mg/Kg dry	10		SW-846 6010D	4/17/19	4/19/19 10:06	EJB
Zinc		69	0.70	mg/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:49	EJB

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/12/2019
Field Sample #: V-206

Sampled: 4/11/2019 13:55

Sample ID: 19D0736-06
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		92.9		% Wt	1		SM 2540G	4/14/19	4/15/19 12:40	CJT

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA Date Received: 4/12/2019

Field Sample #: V-206 Sample ID: 19D0736-06 Sample Matrix: Soil

Sampled: 4/11/2019 13:55

TCLP - Metals Analyses

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Lead		830	0.10	mg/L	10		SW-846 6010D	4/16/19	4/17/19 17:07	EJB

Project Location: Wayland, MA

Sample Description:

Work Order: 19D0736

Date Received: 4/12/2019 Field Sample #: V-206

Sampled: 4/11/2019 13:55

Sample ID: 19D0736-06 Sample Matrix: Soil

Tungsten 200.7

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Tungsten 200.7		< 0.3	0.3	mg/Kg	1		Tungsten 200.7		4/17/19 0:00	PEL

Sample Description: Work Order: 19D0736

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: Firing Range

Sampled: 4/11/2019 14:00

Sample ID: 19D0736-07
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Benzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Bromobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Bromochloromethane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Bromodichloromethane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Bromoform	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Bromomethane	ND	0.0083	mg/Kg dry	1	V-34	SW-846 8260C	4/15/19	4/15/19 11:29	MFF
2-Butanone (MEK)	ND	0.033	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
n-Butylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
sec-Butylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
tert-Butylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Carbon Disulfide	ND	0.0050	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Carbon Tetrachloride	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Chlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Chlorodibromomethane	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Chloroethane	ND	0.0083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Chloroform	ND	0.0033	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Chloromethane	ND	0.0083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
2-Chlorotoluene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
4-Chlorotoluene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0033	mg/Kg dry	1	V-05	SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2-Dibromoethane (EDB)	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Dibromomethane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2-Dichlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,3-Dichlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,4-Dichlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0083	mg/Kg dry	1	V-05	SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,1-Dichloroethane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2-Dichloroethane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,1-Dichloroethylene	ND	0.0033	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
cis-1,2-Dichloroethylene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
trans-1,2-Dichloroethylene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2-Dichloropropane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,3-Dichloropropane	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
2,2-Dichloropropane	ND	0.0017	mg/Kg dry	1	V-05	SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,1-Dichloropropene	ND	0.0033	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
cis-1,3-Dichloropropene	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
trans-1,3-Dichloropropene	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Diethyl Ether	ND	0.0083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Diisopropyl Ether (DIPE)	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,4-Dioxane	ND	0.17	mg/Kg dry	1	V-16	SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Ethylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF

Page 33 of 69

Sample Description: Work Order: 19D0736

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: Firing Range

Sampled: 4/11/2019 14:00

Sample ID: 19D0736-07
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			o - g o	P					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
2-Hexanone (MBK)	ND	0.017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Isopropylbenzene (Cumene)	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0033	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Methylene Chloride	ND	0.0083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Naphthalene	ND	0.0033	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
n-Propylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Styrene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,1,1,2-Tetrachloroethane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,1,2,2-Tetrachloroethane	ND	0.00083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Tetrachloroethylene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Tetrahydrofuran	ND	0.0083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Toluene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2,3-Trichlorobenzene	ND	0.0033	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2,4-Trichlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,1,1-Trichloroethane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,1,2-Trichloroethane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Trichloroethylene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2,3-Trichloropropane	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,2,4-Trimethylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
1,3,5-Trimethylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Vinyl Chloride	ND	0.0083	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
m+p Xylene	ND	0.0033	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
o-Xylene	ND	0.0017	mg/Kg dry	1		SW-846 8260C	4/15/19	4/15/19 11:29	MFF
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		93.8	70-130					4/15/19 11:29	
Toluene-d8		101	70-130					4/15/19 11:29	
4-Bromofluorobenzene		98.2	70-130					4/15/19 11:29	

Sample Description: Work Order: 19D0736

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: Firing Range

Sampled: 4/11/2019 14:00

Sample ID: 19D0736-07
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

change Keyle Loss Date Part			\$	Semivolatile Organic C	ompounds by	GC/MS				
Accapathones								Date	Date/Time	
Accomplain/year Accomplain	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acade Acad	Acenaphthene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Authore No 0.35 mg/kg dys 1	Acenaphthylene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Authracene ND 0.17 mgKg dry 1 SW-866 2700 4 1510 41710 1352 BGB Bemodiphilemene ND 0.17 mgKg dry 1 SW-866 2700 4 1519 41719 1352 BGB Bemodiphylemene ND 0.17 mgKg dry 1 SW-866 2700 41519 41719 1352 BGB Banodiphylorene ND 0.17 mgKg dry 1 SW-866 2700 41519 41719 1352 BGB Bill-Calchrostylorene ND 0.17 mgKg dry 1 SW-868 2700 41519 41719 1352 BG Bill-Calchrostylorene ND 0.35 mgKg dry 1 Ws-86 2700 41519 41719 1352 BG Bill-Calchrostylorene ND 0.35 mgKg dry 1 Ws-86 2700 41519 41719 1352 BG Bill-Calchrostylorene deliyolere ND 0.35 mgKg dry 1 Ws-86 2700 41519 41719 1352 BG Bill-Calchrostylorene deliyolere ND 0.35 <td>Acetophenone</td> <td>ND</td> <td>0.35</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8270D</td> <td>4/15/19</td> <td>4/17/19 13:58</td> <td>BGL</td>	Acetophenone	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Personal parameter 19	Aniline	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Permotolytopreme No	Anthracene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Beamon(h) Illustratione ND 0.17 mg/Kg dy 1 SW-846-82700 41519 41719 13-88 RB Beamon(h) Illustratione ND 0.17 mg/Kg dy 1 SW-846-82700 41519 41719 13-88 RB Bistocolcilinory interliane ND 0.35 mg/Kg dy 1 SW-846-82700 41519 41719 13-88 RB Bisto-Chiloroposity interliane ND 0.35 mg/Kg dy 1 SW-846-82700 41519 41719 13-88 RB Bisto-Chiloroposity interliane ND 0.35 mg/Kg dy 1 VA66 NW-846-82700 41519 41719 13-88 RB Bisto-Chiloroposity Interliane ND 0.35 mg/Kg dy 1 VA66 NW-846-82700 41519 41719 13-88 RB 4-Bromposity Interliane ND 0.35 mg/Kg dy 1 VA66 NW-846-82700 41519 41719 13-88 RB 4-Bromposity Interliane ND 0.35 mg/Kg dy 1 VA66 SW-846-82700 41519 <td>Benzo(a)anthracene</td> <td>ND</td> <td>0.17</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8270D</td> <td>4/15/19</td> <td>4/17/19 13:58</td> <td>BGL</td>	Benzo(a)anthracene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Personge	Benzo(a)pyrene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Percentification Percentific	Benzo(b)fluoranthene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Bill	Benzo(g,h,i)perylene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Big Part P	Benzo(k)fluoranthene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Big-2-blorisoprophylindiales ND 0.35 mg/Kg dry 1 No.6 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 No.6 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 No.6 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 No.6 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 No.6 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 41519 41719 1.58 Big-2-blorisophylindiales ND 0.35 mg/Kg dry 1 SW-846 82700 415	Bis(2-chloroethoxy)methane	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Big Part Big	Bis(2-chloroethyl)ether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
4-Bromophenylphenyletherine ND 0.35 mg/kg dry 1 SW-466 82700 41519 41719 13-88 RDL Butyberrylphthaltare ND 0.55 mg/Kg dry 1 406 SW-464 82700 41519 41719 13-88 RDL 4-Chlororaphilather ND 0.56 mg/Kg dry 1 SW-466 82700 41519 41719 13-88 RDL 2-Chlororaphallather ND 0.35 mg/Kg dry 1 SW-466 82700 41519 41719 13-88 RDL Chrysene ND 0.17 mg/Kg dry 1 SW-466 82700 41519 41719 13-88 RDL Diberzofian ND 0.35 mg/Kg dry 1 SW-466 82700 41519 41719 13-88 RDL Diberzofian ND 0.35 mg/Kg dry 1 SW-466 82700 41519 41719 13-88 RDL Di-berzofian ND 0.35 mg/Kg dry 1 SW-466 82700 41519 41719 13-88 RDL 1,2-Dehlororbenzide ND	Bis(2-chloroisopropyl)ether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Buylberryiphthalate	Bis(2-Ethylhexyl)phthalate	ND	0.35	mg/Kg dry	1	V-06	SW-846 8270D	4/15/19	4/17/19 13:58	BGL
4-Chloroamiline ND 6.68 mg/Kg dry 1 SW-846 82700 4/15/19 4/17/19 13-88 BGL 2-Chloroamphthalene ND 0.35 mg/Kg dry 1 SW-846 82700 4/15/19 4/17/19 13-88 BGL 2-Chlorophenol ND 0.35 mg/Kg dry 1 SW-846 82700 4/15/19 4/17/19 13-88 BGL Chrysene ND 0.17 mg/Kg dry 1 SW-846 82700 4/15/19 4/17/19 13-88 BGL Dibenziah)mitracene ND 0.35 mg/Kg dry 1 SW-846 82700 4/15/19 4/17/19 13-88 BGL Di-horbighidhalita ND 0.35 mg/Kg dry 1 SW-846 82700 4/15/19 4/17/19 13-88 BGL 1-2-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 82700 4/15/19 4/17/19 13-88 BGL 1-2-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 82700 4/15/19 4/17/19 13-88 BGL 1-2-Dichlorobenzene <td< td=""><td>4-Bromophenylphenylether</td><td>ND</td><td>0.35</td><td>mg/Kg dry</td><td>1</td><td></td><td>SW-846 8270D</td><td>4/15/19</td><td>4/17/19 13:58</td><td>BGL</td></td<>	4-Bromophenylphenylether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2-Chloronaphthalene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13-S8 BG 2-Chlorophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13-S8 BG Chrysene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13-S8 BG Dibenz/La/hanthracene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13-S8 BG Dibenz/La/hanthracene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13-S8 BG Di-benz/La/hanthracene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13-S8 BG 1,2-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13-S8 BGL 1,4-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13-S8 BGL 2,4-Dichlorobenzene	Butylbenzylphthalate	ND	0.35	mg/Kg dry	1	V-06	SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2-Chlorophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG Chrysene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG Dibenzofurun ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Di-h-brylphthalter ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1-2-Di-hlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1-2-Di-hlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1-2-Di-hlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2-4-Di-hlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2-4-Di-hlorobenzene ND </td <td>4-Chloroaniline</td> <td>ND</td> <td>0.68</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8270D</td> <td>4/15/19</td> <td>4/17/19 13:58</td> <td>BGL</td>	4-Chloroaniline	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Chrysene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG Dibenzical-banthracene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG Di-ne-butylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG L2-Di-chlorybpthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 1,3-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 1,4-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 1,4-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 2,4-Dinklorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 2,4-Dimichylphthalate	2-Chloronaphthalene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Dienzia, D	2-Chlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Dibenzofuran ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL Di-n-butylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 1,2-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 1,3-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 1,4-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 1,4-Dichlorobenzene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dichlorobenzidine ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 3,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 4,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 4,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 4,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58 BGL 4,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13.58	Chrysene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Disability plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Dichlorobenzene ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,4-Dichlorobenzene ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,4-Dichlorobenzene ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dichlorobenzidine ND 0.17 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dichlorobenzidine ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dichlorobenzidine ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 3,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 4,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 4,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 4,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 4,4-Dinity plantate ND 0.35 ng/Kg dry 1 SW-846 8	Dibenz(a,h)anthracene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
1,2-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 1,3-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 1,4-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 3,3-Dichlorobenzidine ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 2,4-Dichlorophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG Diethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 2,4-Dinitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 2,4-Dinitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG 2,4-Dinitrophenol	Dibenzofuran	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
1.3-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,4-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 3,3-Dichlorobenzidine ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dichlorophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dichlorophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,6-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenze	Di-n-butylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
1.4-Dichlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 3.3-Dichlorobenzidine ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dichlorophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dinethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2.4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1.4-Dimorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58	1,2-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
3.3-Dichlorobenzidine ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dichlorophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimethylphenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BG	1,3-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2,4-Dichlorophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Diethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimethylphenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrophenol ND 0.68 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,6-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Di-n-octylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azob	1,4-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Diethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrophenol ND 0.68 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,6-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzen	3,3-Dichlorobenzidine	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2,4-Dimethylphenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrophenol ND 0.68 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,6-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluorene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene	2,4-Dichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Dimethylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrophenol ND 0.68 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrophenol ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,6-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,6-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluorene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hodeno(1,2,3-cd)pyrene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hodeno(1,2,3-cd)pyrene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hodeno(1,2,3-cd)pyrene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hodeno(1,2,3-cd)pyrene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hodeno(1,2,3-cd)pyrene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hodeno(1,2,3-cd)pyrene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hodeno(1,2,3-cd)pyrene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hodeno(1,2,3-cd)pyrene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19	Diethylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2,4-Dinitrophenol ND 0.68 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,4-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,6-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Di-n-octylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethan	2,4-Dimethylphenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2,4-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 2,6-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Di-n-octylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluorene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 <	Dimethylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2,6-Dinitrotoluene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Di-n-octylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluorene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-ed)pyrene <td>2,4-Dinitrophenol</td> <td>ND</td> <td>0.68</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8270D</td> <td>4/15/19</td> <td>4/17/19 13:58</td> <td>BGL</td>	2,4-Dinitrophenol	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Di-n-octylphthalate ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL 1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluorene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorochane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone	2,4-Dinitrotoluene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
1,2-Diphenylhydrazine/Azobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluorene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL	2,6-Dinitrotoluene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Fluoranthene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Fluorene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone	Di-n-octylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Fluorene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL SW-846 8270D 4/15/19 4/17/19 13:58	1,2-Diphenylhydrazine/Azobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL	Fluoranthene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Hexachlorobenzene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL	Fluorene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Hexachlorobutadiene ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL	Hexachlorobenzene									
Hexachloroethane ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL	Hexachlorobutadiene			0 0 3						
Indeno(1,2,3-cd)pyrene ND 0.17 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL										
Isophorone ND 0.35 mg/Kg dry 1 SW-846 8270D 4/15/19 4/17/19 13:58 BGL										
	•									

Page 35 of 69

Project Location: Wayland, MA Sample Description: Work Order: 19D0736

Date Received: 4/12/2019

Field Sample #: Firing Range

Sampled: 4/11/2019 14:00

Sample ID: 19D0736-07
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	0.35	mg/Kg dry	1	V-05	SW-846 8270D	4/15/19	4/17/19 13:58	BGL
3/4-Methylphenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Naphthalene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Nitrobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2-Nitrophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
4-Nitrophenol	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Pentachlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Phenanthrene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Phenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Pyrene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
1,2,4-Trichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2,4,5-Trichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
2,4,6-Trichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/15/19	4/17/19 13:58	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		64.6	30-130					4/17/19 13:58	
Phenol-d6		78.1	30-130					4/17/19 13:58	
Nitrobenzene-d5		77.0	30-130					4/17/19 13:58	
2-Fluorobiphenyl		83.8	30-130					4/17/19 13:58	
2,4,6-Tribromophenol		64.4	30-130					4/17/19 13:58	
p-Terphenyl-d14		95.5	30-130					4/17/19 13:58	

4/16/19 17:02

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description: Work Order: 19D0736

Date Received: 4/12/2019
Field Sample #: Firing Range

Sampled: 4/11/2019 14:00

99.9

Sample ID: 19D0736-07
Sample Matrix: Soil

Tetrachloro-m-xylene [2]

Sample Flags: O-32		Polychlori	nated Biphenyls wit	th 3540 Soxh	let Extraction				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Aroclor-1221 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Aroclor-1232 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Aroclor-1242 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Aroclor-1248 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Aroclor-1254 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Aroclor-1260 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Aroclor-1262 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Aroclor-1268 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/15/19	4/16/19 17:02	JMB
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		97.2	30-150					4/16/19 17:02	
Decachlorobiphenyl [2]		97.5	30-150					4/16/19 17:02	
Tetrachloro-m-xylene [1]		94.6	30-150					4/16/19 17:02	

30-150

Sample Description: Work Order: 19D0736

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: Firing Range

Sampled: 4/11/2019 14:00

Sample ID: 19D0736-07
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH (C9-C36)	27	8.6	mg/Kg dry	1		SW-846 8100 Modified	4/15/19	4/19/19 5:15	KLB
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
2-Fluorobiphenyl		82.1	40-140					4/19/19 5:15	

Work Order: 19D0736

4/19/19 12:23

4/18/19 18:55

4/18/19 18:55

4/18/19 18:55

4/18/19 18:55

4/18/19 18:55

4/18/19 18:55

AJL

EJB

EJB

EJB

EJB

EJB

EJB

4/18/19

4/17/19

4/17/19

4/17/19

4/17/19

4/17/19

4/17/19

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

1

mg/Kg dry

Sample Description:

RL

1.7

1.7

1.7

0.17

0.17

0.33

5.0

0.025

0.33

3.3

0.33

1.7

0.67

0.67

Results

290

9.2

13

ND

0.40

4.3

24000

ND

3.6

ND

1.2

ND

7.7

46

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: Firing Range

Sampled: 4/11/2019 14:00

Sample ID: 19D0736-07
Sample Matrix: Soil

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Lead

Mercury

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Me	etals Analys	es (Total)					
					Date	Date/Time	
	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
m	g/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:55	EJB
m	g/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:55	EJB
m	g/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:55	EJB
m	g/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:55	EJB
m	g/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:55	EJB
m	g/Kg dry	1		SW-846 6010D	4/17/19	4/18/19 18:55	EJB
m	g/Kg dry	10		SW-846 6010D	4/17/19	4/19/19 10:11	EJB

SW-846 7471B

SW-846 6010D

SW-846 6010D

SW-846 6010D

SW-846 6010D

SW-846 6010D

SW-846 6010D

Work Order: 19D0736

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/12/2019
Field Sample #: Firing Range

Sampled: 4/11/2019 14:00

Sample ID: 19D0736-07
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	96.4		% Wt	1		SM 2540G	4/14/19	4/15/19 12:40	CJT
Ignitability	Absent		present/absent	1		SW-846 1030	4/18/19	4/18/19 16:16	KMV
pH @21.2°C	6.6		pH Units	1	H-03	SW-846 9045C	4/13/19	4/13/19 14:54	AIA
Reactive Cyanide	ND	3.9	mg/Kg	1		SW-846 9014	4/17/19	4/18/19 13:15	KMV
Reactive Sulfide	20	20	mg/Kg	1		SW-846 9030A	4/17/19	4/18/19 12:51	KMV
Specific conductance	2.0	2.0	μmhos/cm	1		SM21-22 2510B Modified	4/18/19	4/18/19 16:30	EC

Sample Extraction Data

Prep Method	l: %	Solids-SM	2540G
Trep Miction	. , 0	Solids Sivi	20.00

Lab Number [Field ID]	Batch	Date
19D0736-01 [V-201]	B228183	04/14/19
19D0736-02 [V-202]	B228183	04/14/19
19D0736-03 [V-203]	B228183	04/14/19
19D0736-04 [V-204]	B228183	04/14/19
19D0736-05 [V-205]	B228183	04/14/19
19D0736-06 [V-206]	B228183	04/14/19
19D0736-07 [Firing Range]	B228183	04/14/19

SM21-22 2510B Modified

Lab Number [Field ID]	Batch	Initial [g]	Date
19D0736-07 [Firing Range]	B228560	1.00	04/18/19

SW-846 1030

Lab Number [Field ID]	Batch	Initial [g]	Date
19D0736-07 [Firing Range]	B228597	50.0	04/18/19

Prep Method: SW-846 3050B-SW-846 6010D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
19D0736-01 [V-201]	B228464	1.55	50.0	04/17/19
19D0736-02 [V-202]	B228464	1.54	50.0	04/17/19
19D0736-03 [V-203]	B228464	1.53	50.0	04/17/19
19D0736-04 [V-204]	B228464	1.50	50.0	04/17/19
19D0736-05 [V-205]	B228464	1.53	50.0	04/17/19
19D0736-06 [V-206]	B228464	1.54	50.0	04/17/19
19D0736-07 [Firing Range]	B228464	1.55	50.0	04/17/19

Prep Method: SW-846 3010A-SW-846 6010D

Leachates were extracted on 4/15/2019 per SW-846 1311 in Batch B228239

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0736-01 [V-201]	B228378	50.0	50.0	04/16/19	
19D0736-02 [V-202]	B228378	50.0	50.0	04/16/19	
19D0736-03 [V-203]	B228378	50.0	50.0	04/16/19	
19D0736-04 [V-204]	B228378	50.0	50.0	04/16/19	
19D0736-05 [V-205]	B228378	50.0	50.0	04/16/19	
19D0736-06 [V-206]	B228378	50.0	50.0	04/16/19	

Prep Method: SW-846 7471-SW-846 7471B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
19D0736-07 [Firing Range]	B228326	0.630	50.0	04/18/19

Prep Method: SW-846 3540C-SW-846 8082A

	Lab Number [Field ID]		Initial [g]	Final [mL]	Date
--	-----------------------	--	-------------	------------	------

Sample Extraction Data

Prep Method: SW-846 3540C-SW-846 808

19D0736-07 [Firing Range]

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19D0736-07 [Firing Range]	B228231	10.3	10.0	04/15/19	
Prep Method: SW-846 3546-SW-846 8100 Modified					
Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19D0736-07 [Firing Range]	B228233	30.0	1.00	04/15/19	
Prep Method: SW-846 5035-SW-846 8260C					
Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19D0736-07 [Firing Range]	B228262	6.25	10.0	04/15/19	
Prep Method: SW-846 3546-SW-846 8270D					
Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19D0736-07 [Firing Range]	B228235	30.4	1.00	04/15/19	
SW-846 9014					
Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19D0736-07 [Firing Range]	B228496	25.5	250	04/17/19	
SW-846 9030A					
Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19D0736-07 [Firing Range]	B228498	25.5	250	04/17/19	
SW-846 9045C					
Lab Number [Field ID]	Batch	Initial [g]		Date	

20.0

B228169

04/13/19

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B228262 - SW-846 5035										
lank (B228262-BLK1)				Prepared: 04	1/05/19 Anal	yzed: 04/15/1	9			
cetone	ND	0.10	mg/Kg wet							
ert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
enzene	ND	0.0020	mg/Kg wet							
romobenzene	ND	0.0020	mg/Kg wet							
romochloromethane	ND	0.0020	mg/Kg wet							
romodichloromethane	ND	0.0020	mg/Kg wet							
romoform	ND	0.0020	mg/Kg wet							
romomethane	ND	0.010	mg/Kg wet							V-34
Butanone (MEK)	ND	0.040	mg/Kg wet							
Butylbenzene	ND	0.0020	mg/Kg wet							
c-Butylbenzene	ND	0.0020	mg/Kg wet							
t-Butylbenzene	ND	0.0020	mg/Kg wet							
rt-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
arbon Disulfide	ND	0.0060	mg/Kg wet							
arbon Tetrachloride	ND	0.0020	mg/Kg wet							
nlorobenzene	ND	0.0020	mg/Kg wet							
nlorodibromomethane	ND	0.0010	mg/Kg wet							
nloroethane	ND	0.010	mg/Kg wet							
nloroform	ND	0.0040	mg/Kg wet							
nloromethane	ND	0.010	mg/Kg wet							
Chlorotoluene	ND	0.0020	mg/Kg wet							
Chlorotoluene	ND	0.0020	mg/Kg wet							
2-Dibromo-3-chloropropane (DBCP)	ND	0.0020	mg/Kg wet							V-05
2-Dibromoethane (EDB)	ND	0.0010	mg/Kg wet							
bromomethane	ND	0.0020	mg/Kg wet							
2-Dichlorobenzene	ND	0.0020	mg/Kg wet							
3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
4-Dichlorobenzene	ND	0.0020	mg/Kg wet							****
chlorodifluoromethane (Freon 12)	ND	0.010	mg/Kg wet							V-05
1-Dichloroethane 2-Dichloroethane	ND	0.0020	mg/Kg wet							
2-Dichloroethylene	ND	0.0020 0.0040	mg/Kg wet mg/Kg wet							
s-1,2-Dichloroethylene	ND	0.0040	mg/Kg wet							
ns-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
2-Dichloropropane	ND ND	0.0020	mg/Kg wet							
3-Dichloropropane	ND ND	0.0020	mg/Kg wet							
2-Dichloropropane	ND ND	0.0010	mg/Kg wet							V-05
-Dichloropropene	ND ND	0.0020	mg/Kg wet							v-03
:-1,3-Dichloropropene	ND ND	0.0020	mg/Kg wet							
ns-1,3-Dichloropropene	ND ND	0.0010	mg/Kg wet							
ethyl Ether	ND ND	0.010	mg/Kg wet							
isopropyl Ether (DIPE)	ND ND	0.0010	mg/Kg wet							
4-Dioxane	ND ND	0.10	mg/Kg wet							V-16
hylbenzene	ND ND	0.0020	mg/Kg wet							. 13
exachlorobutadiene	ND	0.0020	mg/Kg wet							
Hexanone (MBK)	ND	0.020	mg/Kg wet							
ppropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
ethyl tert-Butyl Ether (MTBE)	ND ND	0.0040	mg/Kg wet							
ethylene Chloride	ND ND	0.010	mg/Kg wet							
Methyl-2-pentanone (MIBK)	ND ND	0.020	mg/Kg wet							
phthalene	ND ND	0.0040	mg/Kg wet							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B228262 - SW-846 5035											
Blank (B228262-BLK1)				Prepared: 04	/05/19 Analy	yzed: 04/15/1	9				
n-Propylbenzene	ND	0.0020	mg/Kg wet								
Styrene	ND	0.0020	mg/Kg wet								
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet								
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet								
Tetrachloroethylene	ND	0.0020	mg/Kg wet								
Tetrahydrofuran	ND	0.010	mg/Kg wet								
Toluene	ND	0.0020	mg/Kg wet								
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,1,1-Trichloroethane	ND	0.0020	mg/Kg wet								
1,1,2-Trichloroethane	ND	0.0020	mg/Kg wet								
Trichloroethylene	ND	0.0020	mg/Kg wet								
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet								
1,2,3-Trichloropropane	ND	0.0020	mg/Kg wet								
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet								
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet								
Vinyl Chloride	ND	0.010	mg/Kg wet								
m+p Xylene	ND	0.0040	mg/Kg wet								
o-Xylene	ND	0.0020	mg/Kg wet								
Surrogate: 1,2-Dichloroethane-d4	0.0486		mg/Kg wet	0.0500		97.2	70-130				
Surrogate: Toluene-d8	0.0504		mg/Kg wet	0.0500		101	70-130				
Surrogate: 4-Bromofluorobenzene	0.0497		mg/Kg wet	0.0500		99.4	70-130				
LCS (B228262-BS1)				Prepared: 04	/05/19 Analy	yzed: 04/15/1	9				
Acetone	0.226	0.10	mg/Kg wet	0.200		113	40-160				
ert-Amyl Methyl Ether (TAME)	0.0197	0.0010	mg/Kg wet	0.0200		98.3	70-130				
Benzene	0.0198	0.0020	mg/Kg wet	0.0200		98.8	70-130				
Bromobenzene	0.0187	0.0020	mg/Kg wet	0.0200		93.7	70-130				
Bromochloromethane	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130				
Bromodichloromethane	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130				
Bromoform	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130				
Bromomethane	0.0194	0.010	mg/Kg wet	0.0200		97.0	40-160			V-34	
2-Butanone (MEK)	0.162	0.040	mg/Kg wet	0.200		80.9	40-160				
n-Butylbenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130				
sec-Butylbenzene	0.0215	0.0020	mg/Kg wet	0.0200		108	70-130				
tert-Butylbenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130				
tert-Butyl Ethyl Ether (TBEE)	0.0179	0.0010	mg/Kg wet	0.0200		89.4	70-130				
Carbon Disulfide	0.0317	0.0060	mg/Kg wet	0.0200		159 *	70-130			L-02	
Carbon Tetrachloride	0.0227	0.0020	mg/Kg wet	0.0200		114	70-130				
Chlorobenzene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130				
Chlorodibromomethane	0.0213	0.0010	mg/Kg wet	0.0200		106	70-130				
Chloroethane	0.0263	0.010	mg/Kg wet	0.0200		132 *	70-130			L-02	
Chloroform	0.0203	0.0040	mg/Kg wet	0.0200		101	70-130				
Chloromethane	0.0221	0.010	mg/Kg wet	0.0200		111	40-160				
2-Chlorotoluene	0.0186	0.0020	mg/Kg wet	0.0200		92.8	70-130				
4-Chlorotoluene	0.0197	0.0020	mg/Kg wet	0.0200		98.5	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	0.0153	0.0020	mg/Kg wet	0.0200		76.3	70-130			V-05	
1,2-Dibromoethane (EDB)	0.0196	0.0010	mg/Kg wet	0.0200		98.2	70-130				
Dibromomethane	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
1,2-Dichlorobenzene	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130				
1,3-Dichlorobenzene	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130				
1,4-Dichlorobenzene		0.0020	mg/Kg wet	0.0200			70-130				

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B228262 - SW-846 5035											
LCS (B228262-BS1)				Prepared: 04	/05/19 Analy	zed: 04/15/1	9				
Dichlorodifluoromethane (Freon 12)	0.0188	0.010	mg/Kg wet	0.0200		93.9	40-160			V-05	
1,1-Dichloroethane	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130				
1,2-Dichloroethane	0.0196	0.0020	mg/Kg wet	0.0200		98.1	70-130				
1,1-Dichloroethylene	0.0284	0.0040	mg/Kg wet	0.0200		142 *	70-130			L-02	
cis-1,2-Dichloroethylene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
trans-1,2-Dichloroethylene	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130				
1,2-Dichloropropane	0.0192	0.0020	mg/Kg wet	0.0200		96.2	70-130				
1,3-Dichloropropane	0.0182	0.0010	mg/Kg wet	0.0200		91.0	70-130				
2,2-Dichloropropane	0.0194	0.0020	mg/Kg wet	0.0200		97.0	70-130			V-05	
1,1-Dichloropropene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130				
cis-1,3-Dichloropropene	0.0199	0.0010	mg/Kg wet	0.0200		99.4	70-130				
trans-1,3-Dichloropropene	0.0183	0.0010	mg/Kg wet	0.0200		91.5	70-130				
Diethyl Ether	0.0254	0.010	mg/Kg wet	0.0200		127	70-130			V-20	
Diisopropyl Ether (DIPE)	0.0194	0.0010	mg/Kg wet	0.0200		96.8	70-130				
1,4-Dioxane	0.150	0.10	mg/Kg wet	0.200		75.2	40-160			V-16	
1,4-Dioxane (SIM)	0.159	0.040	mg/Kg wet	0.200		79.4	40-160			V-05	
Ethylbenzene	0.0188	0.0020	mg/Kg wet	0.0200		94.1	70-130				
Hexachlorobutadiene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130				
2-Hexanone (MBK)	0.173	0.020	mg/Kg wet	0.200		86.3	40-160				
Isopropylbenzene (Cumene)	0.0203	0.0020	mg/Kg wet	0.0200		101	70-130				
p-Isopropyltoluene (p-Cymene)	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130				
Methyl tert-Butyl Ether (MTBE)	0.0190	0.0040	mg/Kg wet	0.0200		95.1	70-130				
Methylene Chloride	0.0203	0.010	mg/Kg wet	0.0200		102	70-130				
4-Methyl-2-pentanone (MIBK)	0.178	0.020	mg/Kg wet	0.200		89.1	40-160				
Naphthalene	0.0184	0.0040	mg/Kg wet	0.0200		91.8	70-130				
n-Propylbenzene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
Styrene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130				
1,1,1,2-Tetrachloroethane	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130				
1,1,2,2-Tetrachloroethane	0.0183	0.0010	mg/Kg wet	0.0200		91.4	70-130				
Tetrachloroethylene	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130				
Tetrahydrofuran	0.0182	0.010	mg/Kg wet	0.0200		90.9	70-130				
Toluene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
1,2,3-Trichlorobenzene	0.0191	0.0020	mg/Kg wet	0.0200		95.4	70-130				
1,2,4-Trichlorobenzene	0.0196	0.0020	mg/Kg wet	0.0200		97.9	70-130				
1,1,1-Trichloroethane	0.0196	0.0020	mg/Kg wet	0.0200		97.8	70-130				
1,1,2-Trichloroethane	0.0197	0.0020	mg/Kg wet	0.0200		98.3	70-130				
Trichloroethylene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130				
Trichlorofluoromethane (Freon 11)	0.0258	0.010	mg/Kg wet	0.0200		129	70-130				
1,2,3-Trichloropropane	0.0175	0.0020	mg/Kg wet	0.0200		87.4	70-130				
1,2,4-Trimethylbenzene	0.0187	0.0020	mg/Kg wet	0.0200		93.4	70-130				
1,3,5-Trimethylbenzene	0.0191	0.0020	mg/Kg wet	0.0200		95.7	70-130				
Vinyl Chloride	0.0242	0.010	mg/Kg wet	0.0200		121	70-130				
m+p Xylene	0.0378	0.0040	mg/Kg wet	0.0400		94.5	70-130				
o-Xylene	0.0191	0.0020	mg/Kg wet	0.0200		95.5	70-130				
Surrogate: 1,2-Dichloroethane-d4	0.0478		mg/Kg wet	0.0500		95.6	70-130				
Surrogate: Toluene-d8	0.0522		mg/Kg wet	0.0500		104	70-130				
Surrogate: 4-Bromofluorobenzene	0.0498		mg/Kg wet	0.0500		99.6	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B228262 - SW-846 5035										
.CS Dup (B228262-BSD1)				Prepared: 04	/05/19 Analy	yzed: 04/15/1	9			
Acetone	0.230	0.10	mg/Kg wet	0.200		115	40-160	1.90	20	
ert-Amyl Methyl Ether (TAME)	0.0201	0.0010	mg/Kg wet	0.0200		100	70-130	2.11	20	
enzene	0.0200	0.0020	mg/Kg wet	0.0200		99.8	70-130	1.01	20	
romobenzene	0.0187	0.0020	mg/Kg wet	0.0200		93.6	70-130	0.107	20	
romochloromethane	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130	1.25	20	
romodichloromethane	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130	4.05	20	
romoform	0.0189	0.0020	mg/Kg wet	0.0200		94.5	70-130	1.16	20	
romomethane	0.0226	0.010	mg/Kg wet	0.0200		113	40-160	15.4	20	V-34
Butanone (MEK)	0.165	0.040	mg/Kg wet	0.200		82.5	40-160	1.97	20	
Butylbenzene	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130	1.06	20	
c-Butylbenzene	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130	0.925	20	
rt-Butylbenzene	0.0217	0.0020	mg/Kg wet	0.0200		106	70-130	3.54	20	
rt-Butyl Ethyl Ether (TBEE)	0.0213	0.0010	mg/Kg wet	0.0200		93.7	70-130	4.70	20	
arbon Disulfide	0.0187	0.0060	mg/Kg wet	0.0200		158 *	70-130	0.252	20	L-02
arbon Tetrachloride	0.0221	0.0020	mg/Kg wet	0.0200		110	70-130	2.77	20	1,-02
hlorobenzene		0.0020	mg/Kg wet	0.0200		103	70-130	1.47	20	
hlorodibromomethane	0.0206	0.0020	mg/Kg wet							
hloroethane	0.0230	0.0010	mg/Kg wet	0.0200 0.0200		115 142 *	70-130	7.86 7.60	20	L-02
hloroform	0.0284						70-130		20	L-02
	0.0203	0.0040	mg/Kg wet	0.0200		102	70-130	0.197	20	
hloromethane	0.0227	0.010	mg/Kg wet	0.0200		113	40-160	2.41	20	
Chlorotoluene	0.0190	0.0020	mg/Kg wet	0.0200		95.0	70-130	2.34	20	
Chlorotoluene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	1.91	20	
2-Dibromo-3-chloropropane (DBCP)	0.0165	0.0020	mg/Kg wet	0.0200		82.7	70-130	8.05	20	V-05
2-Dibromoethane (EDB)	0.0194	0.0010	mg/Kg wet	0.0200		96.8	70-130	1.44	20	
ibromomethane	0.0203	0.0020	mg/Kg wet	0.0200		101	70-130	0.197	20	
2-Dichlorobenzene	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130	1.05	20	
3-Dichlorobenzene	0.0223	0.0020	mg/Kg wet	0.0200		111	70-130	3.84	20	
4-Dichlorobenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	3.09	20	
ichlorodifluoromethane (Freon 12)	0.0199	0.010	mg/Kg wet	0.0200		99.5	40-160	5.79	20	V-05
1-Dichloroethane	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130	0.873	20	
2-Dichloroethane	0.0199	0.0020	mg/Kg wet	0.0200		99.5	70-130	1.42	20	
1-Dichloroethylene	0.0285	0.0040	mg/Kg wet	0.0200		142 *	70-130	0.352	20	L-02
s-1,2-Dichloroethylene	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130	0.853	20	
ans-1,2-Dichloroethylene	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130	3.84	20	
2-Dichloropropane	0.0192	0.0020	mg/Kg wet	0.0200		96.2	70-130	0.00	20	
3-Dichloropropane	0.0195	0.0010	mg/Kg wet	0.0200		97.6	70-130	7.00	20	
2-Dichloropropane	0.0197	0.0020	mg/Kg wet	0.0200		98.3	70-130	1.33	20	V-05
1-Dichloropropene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130	0.299	20	
s-1,3-Dichloropropene	0.0209	0.0010	mg/Kg wet	0.0200		104	70-130	4.91	20	
ans-1,3-Dichloropropene	0.0189	0.0010	mg/Kg wet	0.0200		94.4	70-130	3.12	20	
iethyl Ether	0.0252	0.010	mg/Kg wet	0.0200		126	70-130	0.789	20	V-20
iisopropyl Ether (DIPE)	0.0197	0.0010	mg/Kg wet	0.0200		98.7	70-130	1.94	20	. ••
4-Dioxane	0.138	0.10	mg/Kg wet	0.200		69.0	40-160	8.68	20	L-14, V-16
4-Dioxane (SIM)	0.158	0.040	mg/Kg wet	0.200		79.2	40-160	0.202	20	V-05
hylbenzene	0.0198	0.0020	mg/Kg wet	0.0200		98.9	70-130	4.97	20	. 05
exachlorobutadiene	0.0198	0.0020	mg/Kg wet	0.0200		102	70-130	0.488	20	
Hexanone (MBK)		0.0020	mg/Kg wet							
, ,	0.166	0.020		0.200		83.2	40-160	3.61	20	
opropylbenzene (Cumene)	0.0211		mg/Kg wet	0.0200		106	70-130	4.06	20	
-Isopropyltoluene (p-Cymene)	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130	2.88	20	
Methyl tert-Butyl Ether (MTBE)	0.0189	0.0040	mg/Kg wet	0.0200		94.6	70-130	0.527	20	
1ethylene Chloride	0.0203	0.010	mg/Kg wet	0.0200		101	70-130	0.295	20	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B228262 - SW-846 5035										
LCS Dup (B228262-BSD1)]	Prepared: 04	/05/19 Analy	zed: 04/15/1	9			
Naphthalene	0.0178	0.0040	mg/Kg wet	0.0200		88.9	70-130	3.21	20	
n-Propylbenzene	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130	1.14	20	
Styrene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	1.58	20	
1,1,1,2-Tetrachloroethane	0.0220	0.0020	mg/Kg wet	0.0200		110	70-130	8.02	20	
1,1,2,2-Tetrachloroethane	0.0174	0.0010	mg/Kg wet	0.0200		87.2	70-130	4.70	20	
Tetrachloroethylene	0.0229	0.0020	mg/Kg wet	0.0200		114	70-130	6.69	20	
Tetrahydrofuran	0.0177	0.010	mg/Kg wet	0.0200		88.4	70-130	2.79	20	
Toluene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	1.38	20	
1,2,3-Trichlorobenzene	0.0182	0.0020	mg/Kg wet	0.0200		91.1	70-130	4.61	20	
1,2,4-Trichlorobenzene	0.0193	0.0020	mg/Kg wet	0.0200		96.6	70-130	1.34	20	
1,1,1-Trichloroethane	0.0213	0.0020	mg/Kg wet	0.0200		106	70-130	8.42	20	
1,1,2-Trichloroethane	0.0188	0.0020	mg/Kg wet	0.0200		94.2	70-130	4.26	20	
Trichloroethylene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	3.62	20	
Trichlorofluoromethane (Freon 11)	0.0269	0.010	mg/Kg wet	0.0200		134 *	70-130	4.25	20	L-07
1,2,3-Trichloropropane	0.0177	0.0020	mg/Kg wet	0.0200		88.4	70-130	1.14	20	
1,2,4-Trimethylbenzene	0.0188	0.0020	mg/Kg wet	0.0200		94.0	70-130	0.640	20	
1,3,5-Trimethylbenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.3	70-130	3.69	20	
Vinyl Chloride	0.0243	0.010	mg/Kg wet	0.0200		122	70-130	0.577	20	
m+p Xylene	0.0388	0.0040	mg/Kg wet	0.0400		97.1	70-130	2.71	20	
o-Xylene	0.0198	0.0020	mg/Kg wet	0.0200		99.2	70-130	3.80	20	
Surrogate: 1,2-Dichloroethane-d4	0.0495		mg/Kg wet	0.0500		99.1	70-130			
Surrogate: Toluene-d8	0.0521		mg/Kg wet	0.0500		104	70-130			
Surrogate: 4-Bromofluorobenzene	0.0501		mg/Kg wet	0.0500		100	70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B228235 - SW-846 3546										
Blank (B228235-BLK1)				Prepared: 04	1/15/19 Anal	yzed: 04/16/1	9			
Acenaphthene	ND	0.17	mg/Kg wet							
Acenaphthylene	ND	0.17	mg/Kg wet							
Acetophenone	ND	0.34	mg/Kg wet							
Aniline	ND	0.34	mg/Kg wet							V-34
Anthracene	ND	0.17	mg/Kg wet							
Benzo(a)anthracene	ND	0.17	mg/Kg wet							
Benzo(a)pyrene	ND	0.17	mg/Kg wet							
Benzo(b)fluoranthene	ND	0.17	mg/Kg wet							
Benzo(g,h,i)perylene	ND	0.17	mg/Kg wet							
Benzo(k)fluoranthene	ND	0.17	mg/Kg wet							
Bis(2-chloroethoxy)methane	ND	0.34	mg/Kg wet							
Bis(2-chloroethyl)ether	ND	0.34	mg/Kg wet							
Bis(2-chloroisopropyl)ether	ND	0.34	mg/Kg wet							
Bis(2-Ethylhexyl)phthalate	ND	0.34	mg/Kg wet							
-Bromophenylphenylether	ND	0.34	mg/Kg wet							
Butylbenzylphthalate	ND	0.34	mg/Kg wet							
-Chloroaniline	ND	0.66	mg/Kg wet							V-34
-Chloronaphthalene	ND	0.34	mg/Kg wet							
-Chlorophenol	ND	0.34	mg/Kg wet							
Chrysene	ND	0.17	mg/Kg wet							
Dibenz(a,h)anthracene	ND	0.17	mg/Kg wet							
Dibenzofuran	ND	0.34	mg/Kg wet							
Di-n-butylphthalate	ND	0.34	mg/Kg wet							
,2-Dichlorobenzene	ND	0.34	mg/Kg wet							
,3-Dichlorobenzene	ND	0.34	mg/Kg wet							
,4-Dichlorobenzene	ND	0.34	mg/Kg wet							
,3-Dichlorobenzidine	ND	0.17	mg/Kg wet							
,4-Dichlorophenol	ND ND	0.34	mg/Kg wet							
Diethylphthalate	ND ND	0.34	mg/Kg wet							
,4-Dimethylphenol	ND ND	0.34	mg/Kg wet							
Dimethylphthalate	ND ND	0.34	mg/Kg wet							
4.4-Dinitrophenol	ND ND	0.66	mg/Kg wet							
,4-Dinitrotoluene		0.34	mg/Kg wet							
,,,-Dinitrotolucie	ND ND	0.34	mg/Kg wet							
Di-n-octylphthalate	ND	0.34	mg/Kg wet							
,2-Diphenylhydrazine/Azobenzene	ND	0.34	mg/Kg wet							
Luoranthene	ND	0.34	mg/Kg wet							
luorantiene	ND	0.17	mg/Kg wet							
Iuorene Iexachlorobenzene	ND									
lexachlorobenzene Iexachlorobutadiene	ND	0.34	mg/Kg wet							
	ND	0.34	mg/Kg wet							
lexachloroethane	ND	0.34	mg/Kg wet							
ndeno(1,2,3-cd)pyrene	ND	0.17	mg/Kg wet							
sophorone Mathedra publication	ND	0.34	mg/Kg wet							
-Methylnaphthalene	ND	0.17	mg/Kg wet							
-Methylphenol	ND	0.34	mg/Kg wet							
/4-Methylphenol	ND	0.34	mg/Kg wet							
Japhthalene	ND	0.17	mg/Kg wet							
Vitrobenzene	ND	0.34	mg/Kg wet							
-Nitrophenol	ND	0.34	mg/Kg wet							
-Nitrophenol	ND	0.66	mg/Kg wet							
entachlorophenol	ND	0.34	mg/Kg wet							
Phenanthrene	ND	0.17	mg/Kg wet							

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B228235 - SW-846 3546										
Blank (B228235-BLK1)				Prepared: 04	1/15/19 Analy	yzed: 04/16/1	9			
Phenol	ND	0.34	mg/Kg wet							
Pyrene	ND	0.17	mg/Kg wet							
Pyridine	ND	0.34	mg/Kg wet							
1,2,4-Trichlorobenzene	ND	0.34	mg/Kg wet							
2,4,5-Trichlorophenol	ND	0.34	mg/Kg wet							
2,4,6-Trichlorophenol	ND	0.34	mg/Kg wet							
Surrogate: 2-Fluorophenol	5.69		mg/Kg wet	6.67		85.3	30-130			
Surrogate: Phenol-d6	6.07		mg/Kg wet	6.67		91.0	30-130			
Surrogate: Nitrobenzene-d5	2.95		mg/Kg wet	3.33		88.4	30-130			
Surrogate: 2-Fluorobiphenyl	2.88		mg/Kg wet	3.33		86.5	30-130			
Surrogate: 2,4,6-Tribromophenol	6.37		mg/Kg wet	6.67		95.5	30-130			
Surrogate: p-Terphenyl-d14	3.35		mg/Kg wet	3.33		101	30-130			
LCS (B228235-BS1)				Prepared: 04	/15/19 Anal	yzed: 04/16/1	9			
Acenaphthene	1.31	0.17	mg/Kg wet	1.67		78.8	40-140			
Acenaphthylene	1.43	0.17	mg/Kg wet	1.67		85.7	40-140			
Acetophenone	1.23	0.34	mg/Kg wet	1.67		73.6	40-140			
Aniline	0.884	0.34	mg/Kg wet	1.67		53.1	40-140			V-34
Anthracene	1.51	0.17	mg/Kg wet	1.67		90.4	40-140			
Benzo(a)anthracene	1.55	0.17	mg/Kg wet	1.67		92.9	40-140			
Benzo(a)pyrene	1.55	0.17	mg/Kg wet	1.67		93.0	40-140			
Benzo(b)fluoranthene	1.44	0.17	mg/Kg wet	1.67		86.2	40-140			
Benzo(g,h,i)perylene	1.63	0.17	mg/Kg wet	1.67		97.9	40-140			
Benzo(k)fluoranthene	1.47	0.17	mg/Kg wet	1.67		88.1	40-140			
Bis(2-chloroethoxy)methane	1.68	0.34	mg/Kg wet	1.67		101	40-140			
Bis(2-chloroethyl)ether	1.32	0.34	mg/Kg wet	1.67		79.3	40-140			
Bis(2-chloroisopropyl)ether	1.37	0.34	mg/Kg wet	1.67		82.4	40-140			
Bis(2-Ethylhexyl)phthalate	1.61	0.34	mg/Kg wet	1.67		96.8	40-140			
4-Bromophenylphenylether	1.55	0.34	mg/Kg wet	1.67		93.3	40-140			
Butylbenzylphthalate	1.62	0.34	mg/Kg wet	1.67		97.4	40-140			
4-Chloroaniline	0.856	0.66	mg/Kg wet	1.67		51.4	15-140			V-34
2-Chloronaphthalene	1.32	0.34	mg/Kg wet	1.67		78.9	40-140			
2-Chlorophenol	1.37	0.34	mg/Kg wet	1.67		82.3	30-130			
Chrysene	1.54	0.17	mg/Kg wet	1.67		92.3	40-140			
Dibenz(a,h)anthracene	1.62		mg/Kg wet	1.67		97.1	40-140			
Dibenzofuran	1.42	0.34	mg/Kg wet	1.67		85.2	40-140			
Di-n-butylphthalate	1.55	0.34	mg/Kg wet	1.67		93.3	40-140			
1,2-Dichlorobenzene	1.11	0.34	mg/Kg wet	1.67		66.8	40-140			
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1.09	0.34 0.34	mg/Kg wet mg/Kg wet	1.67		65.3	40-140			
3,3-Dichlorobenzidine	1.10	0.34	mg/Kg wet	1.67 1.67		65.8 67.6	40-140 40-140			
2,4-Dichlorophenol	1.13	0.17	mg/Kg wet	1.67		67.6 88.0	30-130			
Diethylphthalate	1.47	0.34	mg/Kg wet	1.67		88.0 87.4	40-140			
2,4-Dimethylphenol	1.46 1.49	0.34	mg/Kg wet	1.67		89.4	30-130			
Dimethylphthalate	1.49	0.34	mg/Kg wet	1.67		86.8	40-140			
2,4-Dinitrophenol	1.43	0.66	mg/Kg wet	1.67		62.6	15-140			
2,4-Dinitrotoluene	1.04	0.34	mg/Kg wet	1.67		84.4	40-140			
2,6-Dinitrotoluene	1.41	0.34	mg/Kg wet	1.67		90.4	40-140			
Di-n-octylphthalate	1.53	0.34	mg/Kg wet	1.67		91.9	40-140			
1,2-Diphenylhydrazine/Azobenzene	1.58	0.34	mg/Kg wet	1.67		94.7	40-140			
Fluoranthene	1.49	0.17	mg/Kg wet	1.67		89.4	40-140			
Fluorene	1.49	0.17	mg/Kg wet	1.67		84.5	40-140			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B228235 - SW-846 3546							· ·				
LCS (B228235-BS1)				Prepared: 04	/15/19 Analyze	ed: 04/16/1	9				
Hexachlorobenzene	1.47	0.34	mg/Kg wet	1.67		88.2	40-140				
Hexachlorobutadiene	1.13	0.34	mg/Kg wet	1.67		67.7	40-140				
Hexachloroethane	1.09	0.34	mg/Kg wet	1.67		65.4	40-140				
Indeno(1,2,3-cd)pyrene	1.66	0.17	mg/Kg wet	1.67		99.6	40-140				
Isophorone	1.44	0.34	mg/Kg wet	1.67		86.1	40-140				
2-Methylnaphthalene	1.34	0.17	mg/Kg wet	1.67		80.4	40-140				
2-Methylphenol	1.38	0.34	mg/Kg wet	1.67		82.8	30-130				
3/4-Methylphenol	1.32	0.34	mg/Kg wet	1.67		79.1	30-130				
Naphthalene	1.28	0.17	mg/Kg wet	1.67		76.5	40-140				
Nitrobenzene	1.28	0.34	mg/Kg wet	1.67		76.6	40-140				
2-Nitrophenol	1.35	0.34	mg/Kg wet	1.67		80.9	30-130				
4-Nitrophenol	1.41	0.66	mg/Kg wet	1.67		84.8	15-140				†
Pentachlorophenol	1.26	0.34	mg/Kg wet	1.67		75.4	30-130				
Phenanthrene	1.51	0.17	mg/Kg wet	1.67		90.5	40-140				
Phenol	1.49	0.34	mg/Kg wet	1.67		89.4	15-140				1
Pyrene	1.55	0.17	mg/Kg wet	1.67		92.7	40-140				
Pyridine	0.826	0.34	mg/Kg wet	1.67		49.6	30-140				†
1,2,4-Trichlorobenzene		0.34	mg/Kg wet	1.67		70.3	40-140				1
2,4,5-Trichlorophenol	1.17	0.34	mg/Kg wet								
· · ·	1.51	0.34		1.67		90.8	30-130				
2,4,6-Trichlorophenol	1.51	0.34	mg/Kg wet	1.67		90.5	30-130				
Surrogate: 2-Fluorophenol	5.32		mg/Kg wet	6.67		79.9	30-130				
Surrogate: Phenol-d6	5.95		mg/Kg wet	6.67		89.2	30-130				
Surrogate: Nitrobenzene-d5	2.79		mg/Kg wet	3.33		83.6	30-130				
Surrogate: 2-Fluorobiphenyl	3.03		mg/Kg wet	3.33		91.0	30-130				
Surrogate: 2,4,6-Tribromophenol	6.58		mg/Kg wet	6.67		98.7	30-130				
Surrogate: p-Terphenyl-d14	3.29		mg/Kg wet	3.33		98.6	30-130				
LCS Dup (B228235-BSD1)				Prepared: 04	/15/19 Analyze	ed: 04/16/1	9				
Acenaphthene	1.35	0.17	mg/Kg wet	1.67		80.9	40-140	2.55	30		
Acenaphthylene	1.47	0.17	mg/Kg wet	1.67		87.9	40-140	2.58	30		
Acetophenone	1.21	0.34	mg/Kg wet	1.67		72.7	40-140	1.23	30		
Aniline	0.880	0.34	mg/Kg wet	1.67		52.8	40-140	0.453	30	V-34	
Anthracene	1.49	0.17	mg/Kg wet	1.67		89.4	40-140	1.11	30		
Benzo(a)anthracene	1.55	0.17	mg/Kg wet	1.67		92.8	40-140	0.151	30		
Benzo(a)pyrene	1.56	0.17	mg/Kg wet	1.67		93.7	40-140	0.729	30		
Benzo(b)fluoranthene	1.44	0.17	mg/Kg wet	1.67		86.4	40-140	0.185	30		
Benzo(g,h,i)perylene	1.60	0.17	mg/Kg wet	1.67		95.8	40-140	2.09	30		
Benzo(k)fluoranthene	1.46	0.17	mg/Kg wet	1.67		87.3	40-140	0.889	30		
Bis(2-chloroethoxy)methane	1.69	0.34	mg/Kg wet	1.67		101	40-140	0.653	30		
Bis(2-chloroethyl)ether	1.27	0.34	mg/Kg wet	1.67		76.3	40-140	3.96	30		
Bis(2-chloroisopropyl)ether	1.33	0.34	mg/Kg wet	1.67		79.6	40-140	3.53	30		
Bis(2-Ethylhexyl)phthalate	1.64	0.34	mg/Kg wet	1.67		98.7	40-140	1.99	30		
4-Bromophenylphenylether	1.54	0.34	mg/Kg wet	1.67		92.3	40-140	1.03	30		
Butylbenzylphthalate	1.64	0.34	mg/Kg wet	1.67		98.1	40-140	0.757	30		
4-Chloroaniline	0.874	0.66	mg/Kg wet	1.67		52.4	15-140	2.00	30	V-34	†
2-Chloronaphthalene	1.32	0.34	mg/Kg wet	1.67		78.9	40-140	0.0254	30	Y-27	1
2-Chlorophenol	1.33	0.34	mg/Kg wet	1.67		79.8	30-130	3.11	30		
Chrysene		0.17	mg/Kg wet	1.67		92.8	40-140	0.605	30		
Dibenz(a,h)anthracene	1.55	0.17	mg/Kg wet				40-140				
Dibenz(a,n)antinacene Dibenzofuran	1.61	0.17	mg/Kg wet	1.67		96.5		0.620	30		
Di-n-butylphthalate	1.44	0.34	mg/Kg wet	1.67		86.4	40-140	1.38	30		
	1.54			1.67		92.1	40-140	1.23	30		
1,2-Dichlorobenzene	1.10	0.34	mg/Kg wet	1.67		65.9	40-140	1.33	30		

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	╛
Batch B228235 - SW-846 3546											_
LCS Dup (B228235-BSD1)			1	Prepared: 04	/15/19 Anal	yzed: 04/16/1	9				
1,3-Dichlorobenzene	1.08	0.34	mg/Kg wet	1.67		64.5	40-140	1.20	30		_
1,4-Dichlorobenzene	1.06	0.34	mg/Kg wet	1.67		63.7	40-140	3.24	30		
3,3-Dichlorobenzidine	1.10	0.17	mg/Kg wet	1.67		66.2	40-140	2.12	30		
2,4-Dichlorophenol	1.48	0.34	mg/Kg wet	1.67		88.9	30-130	0.927	30		
Diethylphthalate	1.48	0.34	mg/Kg wet	1.67		88.7	40-140	1.50	30		
2,4-Dimethylphenol	1.50	0.34	mg/Kg wet	1.67		90.1	30-130	0.869	30		
Dimethylphthalate	1.49	0.34	mg/Kg wet	1.67		89.6	40-140	3.20	30		
2,4-Dinitrophenol	1.06	0.66	mg/Kg wet	1.67		63.5	15-140	1.52	30		†
2,4-Dinitrotoluene	1.40	0.34	mg/Kg wet	1.67		84.3	40-140	0.166	30		
2,6-Dinitrotoluene	1.51	0.34	mg/Kg wet	1.67		90.7	40-140	0.265	30		
Di-n-octylphthalate	1.53	0.34	mg/Kg wet	1.67		91.6	40-140	0.283	30		
1,2-Diphenylhydrazine/Azobenzene	1.57	0.34	mg/Kg wet	1.67		94.3	40-140	0.466	30		
Fluoranthene	1.49	0.17	mg/Kg wet	1.67		89.6	40-140	0.201	30		
Fluorene	1.45	0.17	mg/Kg wet	1.67		86.8	40-140	2.76	30		
Hexachlorobenzene	1.48	0.34	mg/Kg wet	1.67		88.8	40-140	0.723	30		
Hexachlorobutadiene	1.10	0.34	mg/Kg wet	1.67		66.2	40-140	2.18	30		
Hexachloroethane	1.06	0.34	mg/Kg wet	1.67		63.8	40-140	2.45	30		
Indeno(1,2,3-cd)pyrene	1.63	0.17	mg/Kg wet	1.67		97.7	40-140	1.91	30		
Isophorone	1.44	0.34	mg/Kg wet	1.67		86.4	40-140	0.325	30		
2-Methylnaphthalene	1.33	0.17	mg/Kg wet	1.67		79.9	40-140	0.599	30		
2-Methylphenol	1.37	0.34	mg/Kg wet	1.67		82.0	30-130	0.922	30		
3/4-Methylphenol	1.34	0.34	mg/Kg wet	1.67		80.3	30-130	1.50	30		
Naphthalene	1.25	0.17	mg/Kg wet	1.67		75.3	40-140	1.63	30		
Nitrobenzene	1.27	0.34	mg/Kg wet	1.67		76.0	40-140	0.865	30		
2-Nitrophenol	1.34	0.34	mg/Kg wet	1.67		80.4	30-130	0.645	30		
4-Nitrophenol	1.46	0.66	mg/Kg wet	1.67		87.6	15-140	3.29	30		†
Pentachlorophenol	1.29	0.34	mg/Kg wet	1.67		77.2	30-130	2.41	30		
Phenanthrene	1.50	0.17	mg/Kg wet	1.67		90.2	40-140	0.288	30		
Phenol	1.50	0.34	mg/Kg wet	1.67		90.0	15-140	0.647	30		†
Pyrene	1.54	0.17	mg/Kg wet	1.67		92.2	40-140	0.627	30		
Pyridine	0.824	0.34	mg/Kg wet	1.67		49.4	30-140	0.242	30		†
1,2,4-Trichlorobenzene	1.15	0.34	mg/Kg wet	1.67		69.1	40-140	1.75	30		
2,4,5-Trichlorophenol	1.49	0.34	mg/Kg wet	1.67		89.5	30-130	1.38	30		
2,4,6-Trichlorophenol	1.56	0.34	mg/Kg wet	1.67		93.3	30-130	3.05	30		
Surrogate: 2-Fluorophenol	5.16		mg/Kg wet	6.67		77.5	30-130				_
Surrogate: Phenol-d6	5.90		mg/Kg wet	6.67		88.5	30-130				
Surrogate: Nitrobenzene-d5	2.74		mg/Kg wet	3.33		82.3	30-130				
Surrogate: 2-Fluorobiphenyl	3.06		mg/Kg wet	3.33		91.8	30-130				
Surrogate: 2,4,6-Tribromophenol	6.66		mg/Kg wet	6.67		99.9	30-130				
Surrogate: p-Terphenyl-d14	3.22		mg/Kg wet	3.33		96.7	30-130				

QUALITY CONTROL

Spike

Source

%REC

RPD

Polychlorinated Biphenyls with 3540 Soxhlet Extraction - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B228231 - SW-846 3540C										
Blank (B228231-BLK1)				Prepared: 04	/15/19 Analy	zed: 04/16/1	9			
Aroclor-1016	ND	0.020	mg/Kg wet							
Aroclor-1016 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1221	ND	0.020	mg/Kg wet							
Aroclor-1221 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1232	ND	0.020	mg/Kg wet							
aroclor-1232 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1242	ND	0.020	mg/Kg wet							
Aroclor-1242 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1248	ND	0.020	mg/Kg wet							
Aroclor-1248 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1254	ND	0.020	mg/Kg wet							
Aroclor-1254 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1260	ND	0.020	mg/Kg wet							
Aroclor-1260 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1262	ND	0.020	mg/Kg wet							
Aroclor-1262 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1268	ND	0.020	mg/Kg wet							
aroclor-1268 [2C]	ND	0.020	mg/Kg wet							
Surrogate: Decachlorobiphenyl	0.188		mg/Kg wet	0.200		94.1	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.193		mg/Kg wet	0.200		96.6	30-150			
Surrogate: Tetrachloro-m-xylene	0.180		mg/Kg wet	0.200		90.0	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.196		mg/Kg wet	0.200		98.1	30-150			
CS (B228231-BS1)				Prepared: 04	/15/19 Analy	zed: 04/16/1	9			
Aroclor-1016	0.17	0.020	mg/Kg wet	0.200		84.1	40-140			
aroclor-1016 [2C]	0.17	0.020	mg/Kg wet	0.200		82.6	40-140			
Aroclor-1260	0.16	0.020	mg/Kg wet	0.200		78.2	40-140			
aroclor-1260 [2C]	0.16	0.020	mg/Kg wet	0.200		79.5	40-140			
urrogate: Decachlorobiphenyl	0.175		mg/Kg wet	0.200		87.3	30-150			
urrogate: Decachlorobiphenyl [2C]	0.181		mg/Kg wet	0.200		90.7	30-150			
Surrogate: Tetrachloro-m-xylene	0.169		mg/Kg wet	0.200		84.7	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.184		mg/Kg wet	0.200		91.9	30-150			
.CS Dup (B228231-BSD1)				Prepared: 04	/15/19 Analy	zed: 04/16/1	9			
Aroclor-1016	0.20	0.020	mg/Kg wet	0.200		98.7	40-140	16.0	30	
Aroclor-1016 [2C]	0.20	0.020	mg/Kg wet	0.200		100	40-140	19.5	30	
Aroclor-1260	0.19	0.020	mg/Kg wet	0.200		93.2	40-140	17.5	30	
Aroclor-1260 [2C]	0.19	0.020	mg/Kg wet	0.200		92.5	40-140	15.1	30	
Surrogate: Decachlorobiphenyl	0.209		mg/Kg wet	0.200		105	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.214		mg/Kg wet	0.200		107	30-150			
urrogate: Tetrachloro-m-xylene	0.200		mg/Kg wet	0.200		100	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.217		mg/Kg wet	0.200		108	30-150			

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	LIIIII	Units	Level	Result	70KEC	Lillits	KrD	Liiiit	Notes
Batch B228233 - SW-846 3546										
Blank (B228233-BLK1)				Prepared: 04	1/15/19 Anal	yzed: 04/17/1	9			
TPH (C9-C36)	ND	8.3	mg/Kg wet							
Surrogate: 2-Fluorobiphenyl	1.95		mg/Kg wet	3.33		58.5	40-140			
LCS (B228233-BS1)				Prepared: 04	1/15/19 Anal	yzed: 04/17/1	9			
TPH (C9-C36)	29.3	8.3	mg/Kg wet	33.3		87.8	40-140			
Surrogate: 2-Fluorobiphenyl	2.62		mg/Kg wet	3.33		78.6	40-140			
LCS Dup (B228233-BSD1)		Prepared: 04/15/19 Analyzed: 04/17/19								
TPH (C9-C36)	28.8	8.3	mg/Kg wet	33.3		86.5	40-140	1.46	30	
Surrogate: 2-Fluorobiphenyl	2.77		mg/Kg wet	3.33		83.1	40-140			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	a contract of the contract of					,				
Batch B228326 - SW-846 7471										
Blank (B228326-BLK1)		Prepared: 04/18/19 Analyzed: 04/19/19								
Mercury	ND	0.025	mg/Kg wet							
LCS (B228326-BS1)		Prepared: 04/18/19 Analyzed: 04/19/19								
Mercury	4.19	0.37	mg/Kg wet	3.71		113	65-135			
LCS Dup (B228326-BSD1)		Prepared: 04/18/19 Analyzed: 04/19/19								
Mercury	3.76	0.38	mg/Kg wet	3.71		101	65-135	10.7	30	
Batch B228464 - SW-846 3050B										
Blank (B228464-BLK1)		Prepared: 04/17/19 Analyzed: 04/18/19								
Antimony	ND	1.7	mg/Kg wet							
Arsenic	ND	1.7	mg/Kg wet							
Barium	ND	1.7	mg/Kg wet							
Beryllium	ND	0.17	mg/Kg wet							
Cadmium	ND	0.17	mg/Kg wet							
Chromium	ND	0.33	mg/Kg wet							
Copper	ND	0.33	mg/Kg wet							
Lead	ND	0.50	mg/Kg wet							
Nickel	ND	0.33	mg/Kg wet							
Selenium	ND	3.3	mg/Kg wet							
Silver	ND	0.33	mg/Kg wet							
Гhallium	ND	1.7	mg/Kg wet							
Vanadium	ND	0.67	mg/Kg wet							
Zine	ND	0.67	mg/Kg wet							
LCS (B228464-BS1)				Prepared: 04	1/17/19 Anal	yzed: 04/18/	19			
Antimony	69.0	5.0	mg/Kg wet	89.6		77.1	3.3-196.4			
Arsenic	180	5.0	mg/Kg wet	202		89.2	82.7-117.3			
Barium	269	5.0	mg/Kg wet	270		99.8	82.6-117.8			
Beryllium	92.7	0.50	mg/Kg wet	96.8		95.8	83.4-116.7			
Cadmium	132	0.50	mg/Kg wet	141		93.7	83-117			
Chromium	159	1.0	mg/Kg wet	167		94.9	81.4-118			
Copper	106	1.0	mg/Kg wet	108		98.2	83.4-115.7			
Lead	69.2	1.5	mg/Kg wet	73.8		93.8	82.9-117.1			
Nickel	87.0	1.0	mg/Kg wet	89.4		97.3	82.9-117.5			
Selenium	39.8	10	mg/Kg wet	49.9		79.8	79.2-120.6			
Silver	68.6	1.0	mg/Kg wet	71.1		96.4	79.7-120.1			
Thallium	64.1	5.0	mg/Kg wet	58.5		110	80.7-119.5			
Vanadium	53.2	2.0	mg/Kg wet	58.2		91.5	79-121			
Zinc	246	2.0	mg/Kg wet	264		93.3	80.7-119.3			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

	Reporting		Spike Source			%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B228464 - SW-846 3050B										
LCS Dup (B228464-BSD1)	Prepared: 04/17/19 Analyzed: 04/18/19									
Antimony	70.6	4.8	mg/Kg wet	89.6		78.8	3.3-196.4	2.19	30	
Arsenic	184	4.8	mg/Kg wet	202		91.1	82.7-117.3	2.03	30	
Barium	271	4.8	mg/Kg wet	270		100	82.6-117.8	0.550	30	
Beryllium	95.0	0.48	mg/Kg wet	96.8		98.1	83.4-116.7	2.40	30	
Cadmium	136	0.48	mg/Kg wet	141		96.3	83-117	2.69	30	
Chromium	161	0.96	mg/Kg wet	167		96.5	81.4-118	1.67	30	
Copper	108	0.96	mg/Kg wet	108		100	83.4-115.7	1.85	30	
Lead	68.8	1.4	mg/Kg wet	73.8		93.2	82.9-117.1	0.648	30	
Nickel	89.3	0.96	mg/Kg wet	89.4		99.9	82.9-117.5	2.60	30	
Silver	70.9	0.96	mg/Kg wet	71.1		99.7	79.7-120.1	3.33	30	
Гhallium	65.8	4.8	mg/Kg wet	58.5		112	80.7-119.5	2.63	30	
Vanadium	53.9	1.9	mg/Kg wet	58.2		92.7	79-121	1.32	30	
Zinc	253	1.9	mg/Kg wet	264		95.8	80.7-119.3	2.71	30	
MRL Check (B228464-MRL1)			1	Prepared: 04	1/17/19 Anal	yzed: 04/18/	/19			
Lead	0.476	0.49	mg/Kg wet	0.489		97.2	80-120			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

	-	Reporting		Spike	Source	A/PEG	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B228169 - SW-846 9045C										
LCS (B228169-BS1)				Prepared &	Analyzed: 04	/13/19				
рН	5.95		pH Units	6.00		99.2	90-110			
Batch B228496 - SW-846 9014										
Blank (B228496-BLK1)				Prepared: 04	1/17/19 Anal	yzed: 04/18/	19			
Reactive Cyanide	ND	0.40	mg/Kg							
LCS (B228496-BS1)				Prepared: 04	1/17/19 Anal	yzed: 04/18/	19			
Reactive Cyanide	9.7	0.40	mg/Kg	10.0		96.9	83.6-111			
Batch B228498 - SW-846 9030A										
Blank (B228498-BLK1)				Prepared: 04	1/17/19 Anal	yzed: 04/18/	19			
Reactive Sulfide	ND	2.0	mg/Kg							
LCS (B228498-BS1)				Prepared: 04	1/17/19 Anal	yzed: 04/18/	19			
Reactive Sulfide	14	2.0	mg/Kg	14.8		97.3	54.9-121			
Batch B228560 - SM21-22 2510B Modified										
Blank (B228560-BLK1)				Prepared &	Analyzed: 04	/18/19				
Specific conductance	ND	2.0	μmhos/cm							
LCS (B228560-BS1)				Prepared &	Analyzed: 04	/18/19				
Specific conductance	190	<u> </u>	μmhos/cm	192		101	90-110			

QUALITY CONTROL

TCLP - Metals Analyses - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B228378 - SW-846 3010A										
Blank (B228378-BLK1)				Prepared: 04	/16/19 Anal	yzed: 04/17	/19			
Lead	ND	0.010	mg/L							
LCS (B228378-BS1)				Prepared: 04	/16/19 Anal	yzed: 04/17	/19			
Lead	0.517	0.010	mg/L	0.500		103	80-120			
LCS Dup (B228378-BSD1)				Prepared: 04	/16/19 Anal	yzed: 04/17	/19			
Lead	0.511	0.010	mg/L	0.500		102	80-120	1.14	20	
Matrix Spike (B228378-MS1)	Sour	rce: 19D0736-	01	Prepared: 04	/16/19 Anal	yzed: 04/17	/19			
Lead	183	0.010	mg/L	0.500	180	696	* 75-125			MS-19

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

SW-846 8082A

Lab Sample ID:	mple ID: B228231-BS1		Date(s) Analyzed:	04/16/2019 04/16/2		2019
Instrument ID (1):	ECD 9		Instrument ID (2):	ECD 9		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WII	NDOW	CONCENTRATION	%RPD	
7.10 (2112	OOL	111	FROM	TO	OONOLIVITUUTION		
Aroclor-1016	1	0.000	-0.030	0.030	0.17		
	2	0.000	-0.030	0.030	0.17	0.0	
Aroclor-1260	1	0.000	-0.030	0.030	0.16		
	2	0.000	-0.030	0.030	0.16	0.0	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

SW-846 8082A

Lab Sample ID:	ab Sample ID: B228231-BSD1		Date(s) Analyzed:	04/16/2019	04/16/	2019
Instrument ID (1):	ECD 9	_	Instrument ID (2):	ECD 9		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	COL RT		NDOW	CONCENTRATION	%RPD
7.1.0.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	-0.030	0.030	0.20	
	2	0.000	-0.030	0.030	0.20	0.0
Aroclor-1260	1	0.000	-0.030	0.030	0.19	
	2	0.000	-0.030	0.030	0.19	0.0

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-03	Sample received after recommended holding time was exceeded.
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
MS-19	Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.
O-32	A dilution was performed as part of the standard analytical procedure.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

CERTIFICATIONS

Analyte	Certifications
SW-846 1030 in Soil	Co uncations
Ignitability	NY,NH,CT,NC,ME,VA
SW-846 6010D in Soil	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,ME,VA,NC
Barium	CT,NH,NY,ME,VA,NC
Beryllium	CT,NH,NY,ME,VA,NC
Cadmium	CT,NH,NY,ME,VA,NC
Chromium	CT,NH,NY,ME,VA,NC
Copper	CT,NH,NY,ME,VA,NC
Lead	CT,NH,NY,AIHA,ME,VA,NC
Nickel	CT,NH,NY,ME,VA,NC
Selenium	CT,NH,NY,ME,VA,NC
Silver	CT,NH,NY,ME,VA,NC
Thallium	CT,NH,NY,ME,VA,NC
Vanadium	CT,NH,NY,ME,VA,NC
Zinc	CT,NH,NY,ME,VA,NC
SW-846 6010D in Water	
Lead	NY,CT,ME,NC,NH,VA
SW-846 7471B in Soil	
	CTANLANAIG ME VA
Mercury	CT,NH,NY,NC,ME,VA
SW-846 8082A in Soil	
Aroclor-1016	CT,NH,NY,ME,NC,VA
Aroclor-1016 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1221	CT,NH,NY,ME,NC,VA
Aroclor-1221 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1232	CT,NH,NY,ME,NC,VA
Aroclor-1232 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1242	CT,NH,NY,ME,NC,VA
Aroclor-1242 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1248	CT,NH,NY,ME,NC,VA
Aroclor-1248 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1254	CT,NH,NY,ME,NC,VA
Aroclor-1254 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1260	CT,NH,NY,ME,NC,VA
Aroclor-1260 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1262	NY,NC,VA
Aroclor-1262 [2C]	NY,NC,VA
Aroclor-1268	NY,NC,VA
Aroclor-1268 [2C]	NY,NC,VA
SW-846 8260C in Soil	
Acetone	CT,NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	NH,NY,ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME

CERTIFICATIONS

Analyte	Certifications	
SW-846 8260C in Soil		
Bromoform	CT,NH,NY,ME	
Bromomethane	CT,NH,NY,ME	
2-Butanone (MEK)	CT,NH,NY,ME	
n-Butylbenzene	CT,NH,NY,ME	
sec-Butylbenzene	CT,NH,NY,ME	
tert-Butylbenzene	CT,NH,NY,ME	
Carbon Disulfide	CT,NH,NY,ME	
Carbon Tetrachloride	CT,NH,NY,ME	
Chlorobenzene	CT,NH,NY,ME	
Chlorodibromomethane	CT,NH,NY,ME	
Chloroethane	CT,NH,NY,ME	
Chloroform	CT,NH,NY,ME	
Chloromethane	CT,NH,NY,ME	
2-Chlorotoluene	CT,NH,NY,ME	
4-Chlorotoluene	CT,NH,NY,ME	
1,2-Dibromo-3-chloropropane (DBCP)	NY	
Dibromomethane	NH,NY,ME	
1,2-Dichlorobenzene	CT,NH,NY,ME	
1,3-Dichlorobenzene	CT,NH,NY,ME	
1,4-Dichlorobenzene	CT,NH,NY,ME	
Dichlorodifluoromethane (Freon 12)	NY,ME	
1,1-Dichloroethane	CT,NH,NY,ME	
1,2-Dichloroethane	CT,NH,NY,ME	
1,1-Dichloroethylene	CT,NH,NY,ME	
cis-1,2-Dichloroethylene	CT,NH,NY,ME	
trans-1,2-Dichloroethylene	CT,NH,NY,ME	
1,2-Dichloropropane	CT,NH,NY,ME	
1,3-Dichloropropane	NH,NY,ME	
2,2-Dichloropropane	NH,NY,ME	
1,1-Dichloropropene	NH,NY,ME	
cis-1,3-Dichloropropene	CT,NH,NY,ME	
trans-1,3-Dichloropropene	CT,NH,NY,ME	
1,4-Dioxane	NY	
Ethylbenzene	CT,NH,NY,ME	
Hexachlorobutadiene	NH,NY,ME	
2-Hexanone (MBK)	CT,NH,NY,ME	
Isopropylbenzene (Cumene)	CT,NH,NY,ME	
p-Isopropyltoluene (p-Cymene)	NH,NY	
Methyl tert-Butyl Ether (MTBE)	NH,NY	
Methylene Chloride	CT,NH,NY,ME	
4-Methyl-2-pentanone (MIBK)	CT,NH,NY	
Naphthalene	NH,NY,ME	
n-Propylbenzene	NH,NY	
Styrene	CT,NH,NY,ME	
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME	
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME	
Tetrachloroethylene	CT,NH,NY,ME	Dana 60

CERTIFICATIONS

Analyte	Certifications
SW-846 8260C in Soil	
Toluene	CT,NH,NY,ME
1,2,3-Trichlorobenzene	NY
1,2,4-Trichlorobenzene	NH,NY,ME
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	CT,NH,NY,ME
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	CT,NH,NY,ME
1,3,5-Trimethylbenzene	CT,NH,NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME
SW-846 8270D in Soil	
Acenaphthene	CT,NY,NH
Acenaphthylene	CT,NY,NH
Acetophenone	NY,NH
Aniline	NY,NH
Anthracene	CT,NY,NH
Benzo(a)anthracene	CT,NY,NH
Benzo(a)pyrene	CT,NY,NH
Benzo(b)fluoranthene	CT,NY,NH
Benzo(g,h,i)perylene	CT,NY,NH
Benzo(k)fluoranthene	CT,NY,NH
Bis(2-chloroethoxy)methane	CT,NY,NH
Bis(2-chloroethyl)ether	CT,NY,NH
Bis(2-chloroisopropyl)ether	CT,NY,NH
Bis(2-Ethylhexyl)phthalate	CT,NY,NH
4-Bromophenylphenylether	CT,NY,NH
Butylbenzylphthalate	CT,NY,NH
4-Chloroaniline	CT,NY,NH
2-Chloronaphthalene	CT,NY,NH
2-Chlorophenol	CT,NY,NH
Chrysene	CT,NY,NH
Dibenz(a,h)anthracene	CT,NY,NH
Dibenzofuran	CT,NY,NH
Di-n-butylphthalate	CT,NY,NH
1,2-Dichlorobenzene	NY,NH
1,3-Dichlorobenzene	NY,NH
1,4-Dichlorobenzene	NY,NH
3,3-Dichlorobenzidine	CT,NY,NH
2,4-Dichlorophenol	CT,NY,NH
Diethylphthalate	CT,NY,NH
2,4-Dimethylphenol	CT,NY,NH
Dimethylphthalate	CT,NY,NH
2,4-Dinitrophenol	CT,NY,NH

CERTIFICATIONS

Analyte	Certifications
SW-846 8270D in Soil	
2,4-Dinitrotoluene	CT,NY,NH
2,6-Dinitrotoluene	CT,NY,NH
Di-n-octylphthalate	CT,NY,NH
1,2-Diphenylhydrazine/Azobenzene	NY,NH
Fluoranthene	CT,NY,NH
Fluorene	NY,NH
Hexachlorobenzene	CT,NY,NH
Hexachlorobutadiene	CT,NY,NH
Hexachloroethane	CT,NY,NH
Indeno(1,2,3-cd)pyrene	CT,NY,NH
Isophorone	CT,NY,NH
2-Methylnaphthalene	CT,NY,NH
2-Methylphenol	CT,NY,NH
3/4-Methylphenol	CT,NY,NH
Naphthalene	CT,NY,NH
Nitrobenzene	CT,NY,NH
2-Nitrophenol	CT,NY,NH
4-Nitrophenol	CT,NY,NH
Pentachlorophenol	CT,NY,NH
Phenanthrene	CT,NY,NH
Phenol	CT,NY,NH
Pyrene	CT,NY,NH
1,2,4-Trichlorobenzene	CT,NY,NH
2,4,5-Trichlorophenol	CT,NY,NH
2,4,6-Trichlorophenol	CT,NY,NH
SW-846 8270D in Water	
Acenaphthene	CT,NY,NH
Acenaphthylene	CT,NY,NH
Acetophenone	NY
Aniline	CT,NY
Anthracene	CT,NY,NH
Benzo(a)anthracene	CT,NY,NH
Benzo(a)pyrene	CT,NY,NH
Benzo(b)fluoranthene	CT,NY,NH
Benzo(g,h,i)perylene	CT,NY,NH
Benzo(k)fluoranthene	CT,NY,NH
Bis(2-chloroethoxy)methane	CT,NY,NH
Bis(2-chloroethyl)ether	CT,NY,NH
Bis(2-chloroisopropyl)ether	CT,NY,NH
Bis(2-Ethylhexyl)phthalate	CT,NY,NH
4-Bromophenylphenylether	CT,NY,NH
Butylbenzylphthalate	CT,NY,NH
4-Chloroaniline	CT,NY,NH
2-Chloronaphthalene	CT,NY,NH
2-Chlorophenol	CT,NY,NH
Chrysene	CT,NY,NH

CERTIFICATIONS

SW-84-82/DD in Water CINYNH Diberacoliran CINYNH Bri-aburyiphthalane CINYNH 1,2-Dichlorobenzeme CINYNH 1,3-Dichlorobenzeme CINYNH 3,3-Dichlorobenzeme CINYNH 3,4-Dichlorobenzeme CINYNH 2,4-Dishloropherol CINYNH 2,4-Dishloropherol CINYNH 2,4-Dishloropherol CINYNH 2,4-Dishloropherol CINYNH 2,4-Distropherol CINYNH 2,4-Distropherol CINYNH 2,4-Distropherol CINYNH 2,4-Distropherol CINYNH 2,4-Distropherol CINYNH 2,6-Distropherol CINYNH 1,2-Distropherol CINYNH 2-Metolyinghilalee CINYNH	Analyte	Certifications	
Db-benzofuran CTNYNH Dr-bryphthalate CTNYNH 1,2-Dichlorobenzone CTNYNH 1,4-Dichlorobenzone CTNYNH 1,4-Dichlorobenzone CTNYNH 3,3-Dichlorobenzone CTNYNH 3,3-Dichlorobenzone CTNYNH 2,4-Dichlorophenol CTNYNH Diedrylphthalate CTNYNH 2,4-Dinitrophenol CTNYNH 2,4-Dinitrophenol CTNYNH 2,4-Dinitrophenol CTNYNH 2,6-Dinitrotoluene CTNYNH 2,6-Dinitrotoluene CTNYNH 1,2-Diphenyllydrazine/Azohezene NY Fluoranbene CTNYNH Heachlorobenzone CTNYNH Heacablorobenzone CTNYNH Heacablorobenzone CTNYNH Leachlorobenzone CTNYNH Ja-Abethylphenol CTNYNH Sophorone CTNYNH 2-Methylphenol CTNYNH 3-4-Methylphenol CTNYNH 4-Mitrobenzone CTNYNH Pinenathrone CTNYNH Pinenath	SW-846 8270D in Water		
Di-a-butylphthalate CTNYNH 1,2-Dickloroberzene CTNYNH 1,4-Dickloroberzene CTNYNH 3,3-Dicklorobenzidine CTNYNH 3,4-Dicklorobenzidine CTNYNH 2,4-Dicklorobenzidine CTNYNH 2,4-Dinierblylphenol CTNYNH 2,4-Dinierblylphenol CTNYNH 2,4-Dinierblylphenol CTNYNH 2,4-Dinierblylphenol CTNYNH 2,4-Dinierblylphenol CTNYNH 2,4-Dinierblylphenol CTNYNH 2,6-Dinierblylphenol CTNYNH 1,2-Diphenyllydrazine/Azobenzene NY Floorandene CTNYNH 1,2-Diphenyllydrazine/Azobenzene NYNH Hexachlorobradiere CTNYNH Hexachlorobradiere CTNYNH Hexachlorobradiere CTNYNH Hexachlorobradiere CTNYNH Hosenellorochrane CTNYNH 2-Metrylphenol CTNYNH 3/4-Methylphenol CTNYNH 4-Nitrophenol CTNYNH 4-Nitrophenol CTNYNH 4-Nitrophenol	Dibenz(a,h)anthracene	CT,NY,NH	
1,2-Dichlorobenzene CT,NY,NH 1,3-Dichlorobenzene CT,NY,NH 3,3-Dichlorobenzidine CT,NY,NH 2,4-Dichlorophenol CT,NY,NH Dichylphthalate CT,NY,NH 2,4-Dimethylphenol CT,NY,NH Dimethylphthalate CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrotolucne CT,NY,NH 2,4-Dimitrotolucne CT,NY,NH 2,6-Dimitrotolucne CT,NY,NH 1,2-Diphenylhydrazine/Azobenzene NY Floorene NY,NH Hexachlorobruzene CT,NY,NH Hexachlorobruzene CT,NY,NH Hexachlorobruzene CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Johen Line CT,NY,NH Johen Line CT,NY,NH Johen Line CT,NY,NH Johnshalene CT,NY,NH Johnshalene CT,NY,NH Johnshalene CT,NY,NH Johnshalene CT,NY,NH Johnshalene CT,NY,NH Johnshalene CT,NY,NH	Dibenzofuran	CT,NY,NH	
1,3-Dichlorobenzene CT,NYNH 1,4-Dichlorobenzene CT,NYNH 2,4-Dichlorobenzidine CT,NYNH 2,4-Dichlorobenzidine CT,NYNH 1,2-4-Dichlorobenzidine CT,NYNH 2,4-Dimitrophenol CT,NYNH 2,4-Dimitrophenol CT,NYNH 2,4-Dimitrophenol CT,NYNH 2,6-Dimitrophenol CT,NYNH 2,6-Dimitrophenol CT,NYNH 1,2-Ophenythydrazine/Azobenzene NY Fluoranthene CT,NYNH 1,2-Ophenythydrazine/Azobenzene NY Fluoranthene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobutadiene CT,NY,NH Jackethylphenol CT,NY,NH 2-Methylphenol CT,NY,NH 2-Methylphenol CT,NY,NI 3,4-Methylphenol CT,NY,NI Nitrobenzene CT,NY,NI 2-Nitrophenol CT,NY,NI Phonol CT,NY,NI Phonol CT,NY,N	Di-n-butylphthalate	CT,NY,NH	
1,4-Dichlorobenzeine CTNY,NII 3,3-Dichlorobenzidine CTNY,NIH 2,4-Diniethylphthalate CTNY,NIH 2,4-Dimethylphthalate CTNY,NIH 2,4-Dimitylphthalate CTNY,NIH 2,4-Dimitrobleme CTNY,NIH 2,4-Dimitrobleme CTNY,NIH 2,6-Dimitrobleme CTNY,NIH 2,6-Dimitrobleme CTNY,NIH 1,3-Diphenyllydramie/Azobenzene NY Fluoranthene CTNY,NIH Hexachlorobenzene CTNY,NIH Hexachlorobenzene CTNY,NIH Hexachlorosthane CTNY,NIH Lophorome CTNY,NIH 2-Methylphenol CTNY,NIH 3,4-Methylphenol CTNY,NIH Nyabhtalene CTNY,NIH Nitrobenzene CTNY,NIH 2-Nitrophenol CTNY,NIH Nitrobenzene CTNY,NIH 2-Nitrophenol CTNY,NIH Phenol CTNY,NIH Phenol CTNY,NIH Phenol CTNY,NIH Phenol CTNY,NIH Phenol	1,2-Dichlorobenzene	CT,NY,NH	
3.3-Dichlorobenzidine CTNYNII 2.4-Dichlorophenol CTNYNII Dicthylphthalate CTNYNII 2.4-Dimethylphenol CTNYNII 2.4-Dimitrophenol CTNYNII 2.4-Dimitrophenol CTNYNII 2.4-Dimitrophenol CTNYNII 2.6-Dimitrophenol CTNYNII 1.2-Diphenylhydrazine/Azobenzene NY Flooranthene CTNYNII 1.2-Diphenylhydrazine/Azobenzene NY,H Hexachlorobrace CTNYNII Hexachlorobrace CTNYNII Hexachlorobrace CTNYNII Hexachlorobrace CTNYNII Lexethylphenol CTNYNII 2-Methylphenol CTNYNII 2-Methylphenol CTNYNII Nitrophenol CTNYNII Nitrophenol CTNYNII A-Mitrophenol CTNYNII Pennathrene CTNYNII Phenol CTNYNII Phenol CTNYNII Phenol CTNYNII Phenol CTNYNII Phenol CTNYNI	1,3-Dichlorobenzene	CT,NY,NH	
2.4-Dichlorophenol CT,NY,NH Diethylphthalate CT,NY,NII 2.4-Dimethylphthalate CT,NY,NII 2.4-Dimitrophenol CT,NY,NII 2.4-Dimitrobluene CT,NY,NII 2.4-Dimitrobluene CT,NY,NII 2.6-Dimitrobluene CT,NY,NII 1.2-Diphenyllydrazine/Azobenzene NY 1.2-Diphenyllydrazine/Azobenzene NY Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachloroshane CT,NY,NH 1.2-Achtylpaphthalene CT,NY,NH 2-Methylpaphthalene CT,NY,NH 2-Methylpaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Penanthrene CT,NY,NH Phenol CT,NY,NH 2,4-Trichlorobenzene CT,NY,NH 2,4-Trichlorobenzene CT,NY,NH 2,4-Trichlorobenzene	1,4-Dichlorobenzene	CT,NY,NH	
Diethylphthalate CT,NY,NII 2,4-Dimicthylphchool CT,NY,NH 2,4-Dimicthylphchool CT,NY,NH 2,4-Dimictoluene CT,NY,NH 2,4-Dimictoluene CT,NY,NH Di-n-ocylphthalate CT,NY,NH 1,2-Diphonyllydrazine/Azobenzene NY Fluoranthene CT,NY,NH Houcanthene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobenzene CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Nirobenzene CT,NY,NH 2-Nirophenol CT,NY,NH 2-Nirophenol CT,NY,NH Phenol CT,NY,NH Phenol CT,NY,NH 1,4,4-Erichlorobenzene CT,NY,NH 2,4,5-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorobenzene CT,NY,NH	3,3-Dichlorobenzidine	CT,NY,NH	
2,4-Dimethylphenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrophenol CT,NY,NH 2,4-Dimitrotoluene CT,NY,NH 2,6-Dimitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine/Azobenzene NY Fluorenthene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2)-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylphenol CT,NY,NH 34-Methylphenol CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Phenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	2,4-Dichlorophenol	CT,NY,NH	
Dimethylphthalate CT,NY,NH 2,4-Dnitrofoluene CT,NY,NH 2,6-Dnitrofoluene CT,NY,NH 2,6-Dnitrofoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine/Azobenzene NY Fluoranthene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorochtane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Nathalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Diethylphthalate	CT,NY,NH	
2,4-Dinitrotoluene CT,NY,NH 2,4-Dinitrotoluene CT,NY,NH 2,6-Dinitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine/Azobenzene NY Fluoranhene CT,NY,NH Hexachlorobutadene CT,NY,NH Hexachlorobutadene CT,NY,NH Hexachlorobutadene CT,NY,NH Indenot (1,2,3-ed)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Penachlorophenol CT,NY,NH Phenonhrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	2,4-Dimethylphenol	CT,NY,NH	
2,4-Dinitrotoluene CT,NY,NH 2,6-Dinitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NII 1,2-Diphenylhydrazine/Azobenzene NY Fluoranthene CT,NY,NH Hexachlorobenzene CT,NY,NII Hexachlorobutadiene CT,NY,NH Hexachlorobethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NII 2-Methylphenol CT,NY,NII 3/4-Methylphenol CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Penathlrone CT,NY,NH Phenonl CT,NY,NH Phenonl CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Dimethylphthalate	CT,NY,NH	
2,6-Dinitrotoluene CT,NY,NH Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine/Azobenzene NY Fluoranthene CT,NY,NH Fluorene NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobutadiene CT,NY,NH Indeno(1,2,3-ed)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorobenzene CT,NY,NH	2,4-Dinitrophenol	CT,NY,NH	
Di-n-octylphthalate CT,NY,NH 1,2-Diphenylhydrazine/Azobenzene NY Fluoranthene CT,NY,NH Fluorene NX,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobenae CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Phenanthrene CT,NY,NH Phenanthrene CT,NY,NH Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	2,4-Dinitrotoluene	CT,NY,NH	
I.2-Diphenylhydrazine/Azobenzene NY Fluoranthene CT,NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachlorobutadiene CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Nitrobenzene CT,NY,NH Nitrobenzene CT,NY,NH 4-Nitrophenol CT,NY,NH Penachlorophenol CT,NY,NH Phenanthrene CT,NY,NH Phenon CT,NY,NH Pyrene CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	2,6-Dinitrotoluene	CT,NY,NH	
Fluoranthene CT,NY,NH Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Di-n-octylphthalate	CT,NY,NH	
Fluorene NY,NH Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-ed)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	1,2-Diphenylhydrazine/Azobenzene	NY	
Hexachlorobenzene CT,NY,NH Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Fluoranthene	CT,NY,NH	
Hexachlorobutadiene CT,NY,NH Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Fluorene	NY,NH	
Hexachloroethane CT,NY,NH Indeno(1,2,3-cd)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH 1,2,4-Trichlorophenol CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH 2,4,5-Tric	Hexachlorobenzene	CT,NY,NH	
Indeno(1,2,3-ed)pyrene CT,NY,NH Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2-A,5-Trichlorophenol CT,NY,NH	Hexachlorobutadiene	CT,NY,NH	
Isophorone CT,NY,NH 2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Hexachloroethane	CT,NY,NH	
2-Methylnaphthalene CT,NY,NH 2-Methylphenol CT,NY,NH 3/4-Methylphenol CT,NY,NH Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Indeno(1,2,3-cd)pyrene	CT,NY,NH	
2-MethylphenolCT,NY,NH3/4-MethylphenolCT,NY,NHNaphthaleneCT,NY,NHNitrobenzeneCT,NY,NH2-NitrophenolCT,NY,NH4-NitrophenolCT,NY,NHPentachlorophenolCT,NY,NHPhenanthreneCT,NY,NHPhenolCT,NY,NHPyreneCT,NY,NH1,2,4-TrichlorobenzeneCT,NY,NH2,4,5-TrichlorophenolCT,NY,NH	Isophorone	CT,NY,NH	
3/4-MethylphenolCT,NY,NHNaphthaleneCT,NY,NHNitrobenzeneCT,NY,NH2-NitrophenolCT,NY,NH4-NitrophenolCT,NY,NHPentachlorophenolCT,NY,NHPhenanthreneCT,NY,NHPhenolCT,NY,NHPyreneCT,NY,NH1,2,4-TrichlorobenzeneCT,NY,NH2,4,5-TrichlorophenolCT,NY,NH	2-Methylnaphthalene	CT,NY,NH	
Naphthalene CT,NY,NH Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	2-Methylphenol	CT,NY,NH	
Nitrobenzene CT,NY,NH 2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	3/4-Methylphenol	CT,NY,NH	
2-Nitrophenol CT,NY,NH 4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Naphthalene	CT,NY,NH	
4-Nitrophenol CT,NY,NH Pentachlorophenol CT,NY,NH Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Nitrobenzene	CT,NY,NH	
Pentachlorophenol CT,NY,NH Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	2-Nitrophenol	CT,NY,NH	
Phenanthrene CT,NY,NH Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	4-Nitrophenol	CT,NY,NH	
Phenol CT,NY,NH Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Pentachlorophenol		
Pyrene CT,NY,NH 1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH	Phenanthrene	CT,NY,NH	
1,2,4-Trichlorobenzene CT,NY,NH 2,4,5-Trichlorophenol CT,NY,NH		CT,NY,NH	
2,4,5-Trichlorophenol CT,NY,NH	Pyrene	CT,NY,NH	
2,4,6-Trichlorophenol CT,NY,NH			
	2,4,6-Trichlorophenol	CT,NY,NH	

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

Preservation Codes X = Sodium Hydroxide DW = Drinking Water Sodium Bisulfate 1 Matrix Codes: GW = Ground Water 5 = Summa Canister WW = Waste Water 3 Container Codes 0 = Other (please 0 = Other (please Thiosulfate O = Other (please Non Soxhiet A = Amber Glass S = Sulfuric Acid PCB ONLY Soxhlet ² Preservation Code O Field Filtered N = Nitric Acid O Field Filtered T = Tedlar Baq O Lab to Filter Lab to Filter = Methanol Container Code ST = Sterile # of Containers SL = Sludge SOL = Solid = Sodium P = Plastic G = Glass V = Vial A = Air S = Soil H HCL pao ≈ define) define) X 0 Please use the following codes to indicate possible sample concentration NELAC and AIHA-LAP, LLC Accredited erec.contestiabs.com Chromatogram AIHA-LAP, LLC East Longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown ∖ডচি ð ANALYSIS REQUESTED 39 Spruce Street within the Conc Code column above: Other SY Doc # 381 Rev 1_03242017 d WRTA Œ SUDS X 500V ≾ X Y לכעם MCP Certification Form Required CT RCP Required MA MCP Required RCP Certification Form Required MWRA School MA State DW Required MBTA 000 'UZ 'M) hoowyuy X Special Requirements $\overline{\mathsf{X}}$ × Z Email To: Ksarsonalvertoxung.com 8 8 8 8 * Ø http://www.contestlabs.com Matrix Code CHAIN OF CUSTODY RECORD Ω Municipality Brownfield 10-Day # OISMd Q 4-Day 3-Day EXCEI Grab The Chard CLP Like Data Pkg Required: ጷ ع ጷ R X X Ces Composite ጾ PDF Government Ending Pere/Time 1255 Due Date: 500 1830 1335 13/10 1350 ax To # 1345 ormat: 7-Day Other: Federal -Day 2-Day city Project Entity 6/*/5 Phone: 413-525-2332 (4.007)% 61/ V/h Ct. 202, Passon MA Email: info@contestlabs.com 10201 Date/Time: 4//1/192622 835 112/19 1553 Client Sample ID / Description 161-0-1 Fax: 413-525-6405 61:01 Jate/Time: Date/Time ate/Time Fing Parge Wartard , and 227 262 - ٧ 1-205 7-202 V-204 V-201 Washindron good song Section K. Sosson Sosso 617-245-S407× Con-Test Quote Name/Number; ahature) ڡ | con-test Project Number: 4604 by; (s/ghature) (sygnature) Work Order# Con-Test 200 Project Location: nvoice Recipient: Project Manager: ed by: Sampled By: in ived by: comments Address: ived Phone: Page 67 of 69

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

How were the samples received? Direct from Sampling Were samples within Temperature? 2-6°C Was Custody Seal Intact? Was COS Relinquished? Are there broken/leaking/loose caps on any samples? Did COC include all pertinent Information? Are Sample labels filled out and legible? Are there Rushes? Are there Media/Containers Used? Foroper Media/Containers Used? Are there Headspace where applicable? Are there Rushes where the planks received? Are there Rushes? Are there Rushes are the proper pH? Are there Rushes are proper pH. Are there Rushes are proper pH		d By			Date	4/12/19		Time	20:20	
Direct from Sampling Ambient Melted Ice	w were the	samples	I In Cooler	T				,-	No Ice	
Were samples within Temperature? 2-6°C Was Custody Seal Intact? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Told COC include all Did COC include all Client Pertinent Information? Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? Is there enough Volume? Is there enough Volume? Is there enough Volume? Is there headspace where applicable? Are there short Holds? Is splitting samples required? And Samples have the proper pH? And Acid Base Wish was notified? Who was notified? Who was notified? Who was notified? And I Liter Plastic On COC? On COC? Do all samples have the proper pH? And Base Wish Wash I Liter Plastic I Soo mL Plastic Acid Actual Temp. Actual Temp. Told Does Chain Agree With Samples? Told Does Chain Agree With Analysis Told Does Chain Agree With Samples? Told Does Chain Agree With Samples? Told Does Chain Agree With Analysis Told Actual Temp. Told Does Chain Agree With Analysis Told Actual Temp. Tol	receive	ed?			,					
Temperature? 2-6°C T By Blank # Actual Temp - Was Custody Seal Intact?				. •	3	•		n 41	_ Worked rec	***************************************
Was Custody Seal Intact? Was COC Relinquished? Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Did COC include all pertinent Information? Project Are Sample labels filled out and legible? Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? Are there Analysis T Sampler Name T Collection Dates/Times T Collection	•		-							-
Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Did COC include all pertinent Information? Project Are Sample labels filled out and legible? Are there Rushes? Are there Rushes? F Who was notified? Are there Rushes? F Who was notified? Are there Rushes? F Who was notified? Who was notified? Who was notified? Are there Rushes? F Who was notified? Who was notified? Are there Rushes? F Who was notified? Are there Rushe	•								- 73	_
Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? T Were samples received within holding time? T Analysis T Sampler Name T ID'S T Collection Dates/Times T Collection Dates/Times T ID'S ID'S ID'S ID'S ID'S ID'S ID'S ID'S		-		1/A					NA	-
Were samples received within holding time? T Analysis T Sampler Name T				<u> </u>		s Chain Agi	ee With Sa	imples?	7	-
Did COC include all pertinent Information? Project T ID's T Collection Dates/Times T Are Sample labels filled out and legible? T Who was notified? Who was n				s on any sam			المناسئين المما	مراجات ما المام	*	
pertinent Information? Project T ID's T Collection Dates/Times T Are Sample labels filled out and legible? T Are there Lab to Filters? F Who was notified? Are there Rushes? F Who was notified? Are there Short Holds? T Who was notified? Are there Rushes? F Who was notified? Are there Rushes Notified? Ar			**************************************						<u></u>	-
Are Sample labels filled out and legible? Are there Lab to Filters? Are there Rushes? Are there Rushes? Are there Short Holds? Is there enough Volume? Is there enough Volume? Is splitting samples required? Is splitting samples required? In the splitting samples required?					-	<u> </u>	•		1	-
Are there Lab to Filters? Are there Rushes? Are there Short Holds? Are there Short Holds? I Who was notified? Who was noti			•		103		Conection	i Dates/Times		-
Are there Rushes? Are there Short Holds? Are there Short Holds? I			•	E		Who wor	notified?			
Are there Short Holds? s there enough Volume? s there Headspace where applicable? Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? Holds										
s there enough Volume? s there Headspace where applicable? Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? With Acid Base Were trip blanks received? Do all samples have the proper pH? With Acid Base Wials # Containers: # Jup- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. 500 mL Plastic 80z Amb/Clear Meoh- 1 250 mL Amb. 250 mL Plastic 16 oz Amb. Col./Bacteria 20z Amb/Clear Sisulfate- DI- C Other Glass Other Plastic Perchlorate Unused Media Wials # Containers: # Jup- 1 Liter Amb. 1 Liter Plastic 1 Encore Frozen: 4/12/14 20/3 Winds Winds # Containers: # Jup- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. Unused Media Wials # Containers: # Jup- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. Souffuric- Perchlorate Vinused Media Wials # Containers: # Jup- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. Souffuric- Perchlorate Vinused Media Wials # Containers: # Jup- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. Souffuric- Perchlorate Vinused Media Frozen: Frozen: Frozen: Frozen:										•
sthere Headspace where applicable? Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? Plastic Base # # # # # # # # # # # # #			?			vviio was	i nouneu :	MINSHOU		
Proper Media/Containers Used? Were trip blanks received? Do all samples have the proper pH? W/A Acid Base Mass	-					MS/MSD2	=			
Were trip blanks received? Oo all samples have the proper pH? Oo all samples have the proper pLants the sample samples the s				- /			Mark	- guirod?	£	
# Containers: # # # # # # # # # # # # # # # # # # #	•						1	danea :		
Vials # Containers: # # 1 Liter Plastic 16 oz Amb. Jnp- 1 Liter Amb. 1 Liter Plastic 8oz Amb/Clear 8oz Amb/Clear HCL- 500 mL Amb. 250 mL Plastic 4oz Amb/Clear Weoh- 1 250 mL Amb. 250 mL Plastic 2oz Amb/Clear Bisulfate- Col./Bacteria 2oz Amb/Clear Cher Glass Other Plastic Bag Frozen: 4/12/6 20/3 Foulfuric- Perchlorate Ziplock Unused Media Vials # Containers: # Unused Media # 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear HCL- 500 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear Chiosulfate- Other Plastic Other Glass Encore	-				Acid	011 000:	1	- Rase		
Dip-	-							Dace		
CL-		#		*	1 Litor	Diactio	#	16.0-	A ma h	#
Meoh-										13
Sisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear Ol- Col./Bacteria Other Glass Other Plastic Encore Flashpoint Frozen: 4/12/19 2000 Soc Kit Plastic Bag Frozen: 4/12/19 2000 Sulfuric- Perchlorate Ziplock Unused Media Unused Medi										17
Ol- 2 Other Glass Other Plastic						***************************************				í
Frozen: \(\frac{1}{2} \frac		2					1			L
Containers: # Unused Media # Containers: # #	osulfate-						L			. C
/ials # # Jnp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear Ol- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen:	furic-		Perchlorate					1 ``	. , -	
/ials # # Jnp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear Ol- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen:			Entry Entry		linused t	alla				
Inp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. ICL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear DI- Other Plastic Other Glass Encore Phiosulfate- SOC Kit Plastic Bag Frozen:	ls l	# 1	Containers:	# 1	Olidaed i	neola	4			#
HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen:					1 Liter	Plastic		16 oz	Amb	
Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear DI- Other Plastic Other Glass Encore hiosulfate- SOC Kit Plastic Bag Frozen:							***************************************	· · · · · · · · · · · · · · · · · · ·		
Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen:	oh-									
hiosulfate- SOC Kit Plastic Bag Frozen:			Col./Bacteria							
					Other	Glass		End	core	······································
					Plastic	Bag		Frozen:		
			Perchlorate		Ziplo	ock				
Comments:	nments:									

MADEP MCP Analytical Method Report Certification Form							
Laboratory Name: Con-Test Analytical Laboratory Project #: 19D					0736		
Proje	ect Location:	Wayland, MA			RTN:		
	•		the following data se	t: [list Laboratory Sa	mple ID Number(s)]		
190	00736-01 thru	ı 19D0736-07					
Matri	ces:	Soil					
CA	AM Protoco	l (check all that	below)				
	VOC II A (X)	7470/7471 Hg CAM IIIB (X)	MassDEP VPH CAM IV A ()	8082 PCB CAM V A (X)	9014 Total Cyanide/PAC CAM VI A ()	6860 Perchlo CAM V	orate /III B ()
	SVOC II B (X)	7010 Metals CAM III C ()	MassDEP VPH CAM IV C ()	8081 Pesticides CAM V B ()	7196 Hex Cr CAM VI B ()	MassE CAM I	DEP APH X A ()
	Metals III A (X)	6020 Metals CAM III D ()	MassDEP EPH CAM IV B ()	8151 Herbicides CAM V C ()	8330 Explosives CAM VIII A ()	TO-15 CAM I	
	A	ffirmative response	e to Questions A throu	ghF is required for "F	Presumptive Certainty"	status	
A Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?					☑ Yes	□No¹	
Were the analytical method(s) and all associated OC requirements specificed in the selected CAM					☑ Yes	□No¹	
C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? ☐ Yes ☐ No¹					No¹		
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, Quality Assurance and Quality Control Guidlines for the Acquisition and Reporting of Analytical Data?					□No¹		
E a VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).					odification(s)?	☑ Yes	□No¹
Εb	E b APH and TO-15 Methods only: Was the complete analyte list reported for each method?					□Yes	□No¹
F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all No responses to Qestions A through E)?				☑ Yes	□No¹		
	A response	e to questions G, H	and I below is require	ed for "Presumptive C	ertainty" status		
G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM ☑ Yes ☐ No¹ protocol(s)?						□No¹	
<u>Data User Note:</u> Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.							
Н	Were all QC p	erfomance standards	specified in the CAM prote	ocol(s) achieved?		□ _{Yes}	\square_{No^1}
I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? ☐ Yes ☐ No¹						☑No¹	
1 _{All}	Negative resp	onses must be addre	essed in an attached E	nvironmental Laborato	ry case narrative.		
thos	se responsible		information, the mater		pon my personal inqui nnalytical report is, to th		
Sigi	nature:	Tod	Kay	Position:	Laboratory Director		
Prin	Printed Name: Tod E. Kopyscinski Date: 04/19/19						

April 8, 2019

Kristen Sarson Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114

Project Location: Wayland, MA

Client Job Number: Project Number: 46047

Laboratory Work Order Number: 19D0030

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on April 1, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
19D0030-02	8
19D0030-03	16
19D0030-04	24
Sample Preparation Information	32
QC Data	35
Volatile Organic Compounds by GC/MS	35
B227205	35
Semivolatile Organic Compounds by GC/MS	40
B227556	40
Polychlorinated Biphenyls By GC/ECD	44
B227544	44
Metals Analyses (Total)	45
B227365	45
B227561	46
Metals Analyses (Dissolved)	47
B227576	47
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	48
B227184	48
B227187	48
B227200	48
B227249	48
B227312	49

Table of Contents (continued)

B227319	49
B227332	49
B227352	50
Dual Column RPD Report	51
Flag/Qualifier Summary	53
Certifications	54
Chain of Custody/Sample Receipt	59

Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114 ATTN: Kristen Sarson

REPORT DATE: 4/8/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 46047

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19D0030

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wayland, MA

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
V-101 (MW)	19D0030-02	Ground Water		EPA 300.0	
				SM 21-22 4500 P E	
				SM19-22 4500 NH	3 C
				SM19-22 4500-N C)rg
				B,C-NH3 C	
				SW-846 6020B	
				SW-846 7470A	
				SW-846 8082A	
				SW-846 8260C	
				SW-846 8270D	
V-102 (MW)	19D0030-03	Ground Water		EPA 300.0	
				SM 21-22 4500 P E	
				SM19-22 4500 NH	3 C
				SM19-22 4500-N C)rg
				B,C-NH3 C	
				SW-846 6020B	
				SW-846 7470A	
				SW-846 8082A	
				SW-846 8260C	
				SW-846 8270D	
V-105 (MW)	19D0030-04	Ground Water		EPA 300.0	
				SM 21-22 4500 P E	
				SM19-22 4500 NH	
				SM19-22 4500-N C	Org
				B,C-NH3 C SW-846 6020B	
				SW-846 7470A	
				SW-846 8082A	
				SW-846 8260C	
				SW-846 8270D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 300.0

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated. Analyte & Samples(s) Qualified:

19D0030-04[V-105 (MW)], B227319-MS1

SM 21-22 4500 PE

Qualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.
Analyte & Samples(s) Qualified:

Orthophosphate as P

B227187-BSD1

Phosphorus, Total

B227249-BSD1

W-17

Samples analyzed for Ortho phosphate were not filtered within 15 minutes of sampling.

Analyte & Samples(s) Qualified:

Orthophosphate as P

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)]

SW-846 6020B

Qualifications:

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated. Analyte & Samples(s) Qualified:

Manganese

19D0030-02[V-101 (MW)], B227365-MS1

SW-846 8260C

Qualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.
Analyte & Samples(s) Qualified:

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)], B227205-BLK1, B227205-BSD1, S034302-CCV1

RL-07

Elevated reporting limit based on lowest point in calibration.

MA CAM reporting limit not met.

Analyte & Samples(s) Qualified:

1.2.3-Trichlorobenzene

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)]

1,2,4-Trichlorobenzene

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)]

1,2-Dibromo-3-chloropropane (DB)

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)]

Carbon Disulfide

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)]

Methylene Chloride

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)]

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)]

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

result.
Analyte & Samples(s) Qualified:

1,4-Dioxane

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)], B227205-BLK1, B227205-BS1, B227205-BSD1, S034302-CCV1

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Styrene

B227205-BS1, B227205-BSD1, S034302-CCV1

SW-846 8270D

Qualifications:

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated

Analyte & Samples(s) Qualified:

4-Chloroaniline

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)], B227556-BLK1, B227556-BSD1, S034392-CCV1

19D0030-02[V-101 (MW)], 19D0030-03[V-102 (MW)], 19D0030-04[V-105 (MW)], B227556-BLK1, B227556-BS1, B227556-BSD1, S034392-CCV1

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

SW-846 8270D

Laboratory control sample recoveries for required MCP Data Enhancement 8270 compounds were all within control limits specified by the method, 40-140% for base/neutrals and 30-130% for acids except for "difficult analytes" listed below and/or otherwise listed in this narrative. Difficult analytes limits are 15 and 140%: 2,4-dinitrophenol, 4-chloroaniline, 4-nitrophenol, and phenol.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

na Watslengton

Page 7 of 61

Project Location: Wayland, MA Sample Description: Work Order: 19D0030

Date Received: 4/1/2019

Field Sample #: V-101 (MW)

Sampled: 4/1/2019 09:15

Sample ID: 19D0030-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Volatile Organic Co Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10	μg/L	1	R-05	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
tert-Amyl Methyl Ether (TAME)	4.5	2.0	μg/L	1	100	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Bromoform	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Bromomethane	ND	2.0	μg/L μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
2-Butanone (MEK)	ND	10	μg/L μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
n-Butylbenzene	ND	1.0		1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
sec-Butylbenzene	ND ND	1.0	μg/L	1		SW-846 8260C SW-846 8260C	4/3/19		
tert-Butylbenzene			μg/L					4/3/19 16:06	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
	ND	0.50	μg/L	1	DI 07	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Carbon Disulfide	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Chloromethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
2-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,1-Dichloropropene	ND	0.50		1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
cis-1,3-Dichloropropene	ND ND		μg/L μα/I	1			4/3/19		EEH
trans-1,3-Dichloropropene		0.40	μg/L			SW-846 8260C		4/3/19 16:06	
	ND	0.40	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Diethyl Ether (DIPE)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1	****	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH

Page 8 of 61

Project Location: Wayland, MA Sample Description: Work Order: 19D0030

Date Received: 4/1/2019 Field Sample #: V-101 (MW)

Sampled: 4/1/2019 09:15

Sample ID: 19D0030-02 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Methyl tert-Butyl Ether (MTBE)	8.2	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Naphthalene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Styrene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Tetrahydrofuran	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:06	EEH
Surrogates		% Recovery	Recovery Limits	8	Flag/Qual				
1,2-Dichloroethane-d4		88.3	70-130					4/3/19 16:06	
Toluene d8		97.0	70.130					4/3/10 16:06	

Sample Description: Work Order: 19D0030

Project Location: Wayland, MA

Date Received: 4/1/2019

Field Sample #: V-101 (MW)

Sampled: 4/1/2019 09:15

Sample ID: 19D0030-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Acenaphthylene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Acetophenone	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Aniline	ND	5.5	μg/L	1	V-34	SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Anthracene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Benzo(a)anthracene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Benzo(a)pyrene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Benzo(b)fluoranthene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Benzo(g,h,i)perylene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Benzo(k)fluoranthene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Bis(2-chloroethoxy)methane	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Bis(2-chloroethyl)ether	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Bis(2-chloroisopropyl)ether	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Bis(2-Ethylhexyl)phthalate	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
4-Bromophenylphenylether	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Butylbenzylphthalate	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
4-Chloroaniline	ND	11	$\mu g/L$	1	V-34	SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2-Chloronaphthalene	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2-Chlorophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Chrysene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Dibenz(a,h)anthracene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Dibenzofuran	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Di-n-butylphthalate	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
1,2-Dichlorobenzene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
1,3-Dichlorobenzene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
1,4-Dichlorobenzene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
3,3-Dichlorobenzidine	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2,4-Dichlorophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Diethylphthalate	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2,4-Dimethylphenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Dimethylphthalate	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2,4-Dinitrophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2,4-Dinitrotoluene	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2,6-Dinitrotoluene	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Di-n-octylphthalate	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Fluoranthene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Fluorene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Hexachlorobenzene	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Hexachlorobutadiene	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Hexachloroethane	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Indeno(1,2,3-cd)pyrene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Isophorone	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2-Methylnaphthalene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL

Page 10 of 61

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/1/2019

Sample ID: 19D0030-02

Sample Matrix: Ground Water

Field Sample #: V-101 (MW)

Sampled: 4/1/2019 09:15

Semivolatile Organic Compounds by GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
3/4-Methylphenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Naphthalene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Nitrobenzene	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2-Nitrophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
4-Nitrophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Pentachlorophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Phenanthrene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Phenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Pyrene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
1,2,4-Trichlorobenzene	ND	5.5	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2,4,5-Trichlorophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
2,4,6-Trichlorophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:02	BGL
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2-Fluorophenol		43.5	15-110					4/6/19 15:02	
TN 1.16		22.0	15 110					4/6/10 15 00	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	43.5	15-110		4/6/19 15:02
Phenol-d6	32.8	15-110		4/6/19 15:02
Nitrobenzene-d5	73.3	30-130		4/6/19 15:02
2-Fluorobiphenyl	76.5	30-130		4/6/19 15:02
2,4,6-Tribromophenol	80.3	15-110		4/6/19 15:02
p-Terphenyl-d14	88.7	30-130		4/6/19 15:02

Sample Description: Work Order: 19D0030

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-101 (MW)

Sampled: 4/1/2019 09:15

Sample ID: 19D0030-02
Sample Matrix: Ground Water

Polychlorinated	Biphenyls	By GC/ECD
-----------------	------------------	-----------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.15	μg/L	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Aroclor-1221 [1]	ND	0.15	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Aroclor-1232 [1]	ND	0.15	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Aroclor-1242 [1]	ND	0.15	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Aroclor-1248 [1]	ND	0.15	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Aroclor-1254 [1]	ND	0.15	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Aroclor-1260 [1]	ND	0.15	μg/L	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Aroclor-1262 [1]	ND	0.15	μg/L	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Aroclor-1268 [1]	ND	0.15	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 17:52	JMB
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
Decachlorobiphenyl [1]		82.2	30-150					4/6/19 17:52	
Decachlorobiphenyl [2]		84.6	30-150					4/6/19 17:52	
Tetrachloro-m-xylene [1]		73.8	30-150					4/6/19 17:52	
Tetrachloro-m-xylene [2]		78.5	30-150					4/6/19 17:52	

Sample Description:

Work Order: 19D0030

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-101 (MW)

Sampled: 4/1/2019 09:15

Sample ID: 19D0030-02
Sample Matrix: Ground Water

Meta	is Ana	lyses	(Total)	

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0	μg/L	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Arsenic	ND	0.40	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Barium	93	10	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Beryllium	ND	0.40	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Cadmium	0.52	0.50	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Chromium	ND	1.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Copper	5.1	5.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Lead	ND	1.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Manganese	4400	100	$\mu g/L$	100	MS-19	SW-846 6020B	4/3/19	4/5/19 10:53	QNW
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	4/8/19	4/8/19 14:29	EJB
Nickel	17	5.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Selenium	ND	5.0	μg/L	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Silver	ND	0.50	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Thallium	ND	0.20	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Vanadium	ND	5.0	μg/L	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW
Zinc	ND	10	μg/L	1		SW-846 6020B	4/3/19	4/4/19 13:39	QNW

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-101 (MW)

Sampled: 4/1/2019 09:15

Sample ID: 19D0030-02
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.98	0.40	ug/L	1		SW-846 6020B	4/5/19	4/8/19 10:53	ONW

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/1/2019

Field Sample #: V-101 (MW)

Sampled: 4/1/2019 09:15

Sample ID: 19D0030-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	1.5	0.30	mg/L	1		SM19-22 4500 NH3 C	4/2/19	4/3/19 10:00	EC
Chloride	260	10	mg/L	10		EPA 300.0	4/5/19	4/5/19 10:48	IS
Nitrate as N	2.7	0.10	mg/L	1		EPA 300.0	4/2/19	4/2/19 6:24	IS
Nitrite as N	0.400	0.100	mg/L	1		EPA 300.0	4/2/19	4/2/19 6:24	IS
Orthophosphate as P	ND	0.050	mg/L	1	W-17	SM 21-22 4500 P E	4/1/19	4/1/19 21:30	IS
Phosphorus, Total	ND	0.062	mg/L	1.25		SM 21-22 4500 P E	4/2/19	4/2/19 14:09	IS
Total Kjeldahl Nitrogen	2.0	1.0	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/3/19	4/4/19 9:45	EC
Total Nitrogen	5.1	0.050	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/8/19	4/8/19 7:28	LL

Sample Description: Work Order: 19D0030

Project Location: Wayland, MA

Date Received: 4/1/2019

Field Sample #: V-102 (MW)

Sampled: 4/1/2019 11:00

Sample ID: 19D0030-03
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	10	μg/L	1	R-05	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
tert-Amyl Methyl Ether (TAME)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Bromoform	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
2-Butanone (MEK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Carbon Disulfide	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Carbon Tetrachloride	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Chloromethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
2-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
4-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,1-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
cis-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
•			1.5						5.04

Page 16 of 61

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-102 (MW)

Sampled: 4/1/2019 11:00

98.7

Sample ID: 19D0030-03
Sample Matrix: Ground Water

4-Bromofluorobenzene

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1	1 mg/ 2 mm	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Methyl tert-Butyl Ether (MTBE)	1.1	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Naphthalene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 16:33	EEH
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
1,2-Dichloroethane-d4		87.6	70-130					4/3/19 16:33	
Toluene-d8		98.1	70-130					4/3/19 16:33	

70-130

4/3/19 16:33

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/1/2019

Field Sample #: V-102 (MW)

Sampled: 4/1/2019 11:00

Sample ID: 19D0030-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte Acenaphthene	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
•	ND	4.9	μg/L	1	B	SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Acenaphthylene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Acetophenone	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Aniline	ND	4.9	μg/L	1	V-34	SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Anthracene	ND	4.9	μg/L	1	, , ,	SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Benzo(a)anthracene	ND	4.9	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Benzo(a)pyrene	ND	4.9	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Benzo(b)fluoranthene	ND	4.9	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Benzo(g,h,i)perylene	ND	4.9	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Benzo(k)fluoranthene	ND	4.9	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Bis(2-chloroethoxy)methane	ND ND	9.8	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Bis(2-chloroethyl)ether	ND	9.8		1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Bis(2-chloroisopropyl)ether	ND ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Bis(2-Ethylhexyl)phthalate		9.8	μg/L	1		SW-846 8270D SW-846 8270D			
4-Bromophenylphenylether	ND		μg/L				4/5/19	4/6/19 15:28	BGL
	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Butylbenzylphthalate 4-Chloroaniline	ND	9.8	μg/L	1	3/24	SW-846 8270D	4/5/19	4/6/19 15:28	BGL
	ND	9.8	μg/L	1	V-34	SW-846 8270D	4/5/19	4/6/19 15:28	BGL
2-Chloronaphthalene	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
2-Chlorophenol	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Chrysene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Dibenz(a,h)anthracene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Dibenzofuran	ND	4.9	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Di-n-butylphthalate	ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
1,2-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
1,3-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
1,4-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
3,3-Dichlorobenzidine	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
2,4-Dichlorophenol	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Diethylphthalate	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
2,4-Dimethylphenol	ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Dimethylphthalate	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
2,4-Dinitrophenol	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
2,4-Dinitrotoluene	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
2,6-Dinitrotoluene	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Di-n-octylphthalate	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Fluoranthene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Fluorene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Hexachlorobenzene	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Hexachlorobutadiene	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Hexachloroethane	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Indeno(1,2,3-cd)pyrene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
Isophorone	ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
2-Methylnaphthalene	ND	4.9	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL

Page 18 of 61

Project Location: Wayland, MA Sample Description:

Work Order: 19D0030

Date Received: 4/1/2019 Field Sample #: V-102 (MW)

Sampled: 4/1/2019 11:00

Sample ID: 19D0030-03 Sample Matrix: Ground Water

						Date	Date/Time	
Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
ND	9.8	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	4.9	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	4.9	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	4.9	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	4.9	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:28	BGL
	% Recovery	Recovery Limits		Flag/Qual				
	45.3	15-110					4/6/19 15:28	
	33.7	15-110					4/6/19 15:28	
	ND N	ND 9.8 ND 9.8 ND 4.9 ND 9.8 ND 9.8 ND 9.8 ND 9.8 ND 9.8 ND 9.8 ND 4.9 ND 4.9 ND 4.9 ND 4.9 ND 4.9 ND 4.9 ND 9.8 ND 4.9 ND 9.8 ND 4.9 ND 9.8 ND 4.9 ND 9.8 ND 9.8 ND 9.8	ND 9.8 μg/L ND 9.8 μg/L ND 4.9 μg/L ND 9.8 μg/L ND 4.9 μg/L ND 9.8 μg/L	ND 9.8 μg/L 1 ND 9.8 μg/L 1 ND 4.9 μg/L 1 ND 9.8 μg/L 1 ND 4.9 μg/L 1 ND 9.8 μg/L 1 ND 4.9 μg/L 1 ND 9.8 μg/L 1	ND 9.8 μg/L 1 ND 9.8 μg/L 1 ND 9.8 μg/L 1 ND 4.9 μg/L 1 ND 9.8 μg/L 1 ND 4.9 μg/L 1 ND 9.8 μg/L 1	ND 9.8 μg/L 1 SW-846 8270D ND 9.8 μg/L 1 SW-846 8270D ND 4.9 μg/L 1 SW-846 8270D ND 9.8 μg/L 1 SW-846 8270D ND 4.9 μg/L 1 SW-846 8270D ND 9.8 μg/L 1 SW-846 8270D ND 9.8 μg/L 1 SW-846 8270D ND 4.9 μg/L 1 SW-846 8270D ND 4.9 μg/L 1 SW-846 8270D ND 4.9 μg/L 1 SW-846 8270D ND 9.8 μg/L 1 SW-846 8270D	Results RL Units Dilution Flag/Qual Method Prepared ND 9.8 μg/L 1 SW-846 8270D 4/5/19 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 ND 4.9 μg/L 1 SW-846 8270D 4/5/19 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 ND 4.9 μg/L 1 SW-846 8270D 4/5/19 ND 9.8 μg/L 1 SW-846 8270D 4/5/19	Results RL Units Dilution Flag/Qual Method Prepared Analyzed ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 4.9 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/19 15:28 ND 9.8 μg/L 1 SW-846 8270D 4/5/19 4/6/1

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	45.3	15-110		4/6/19 15:28
Phenol-d6	33.7	15-110		4/6/19 15:28
Nitrobenzene-d5	81.0	30-130		4/6/19 15:28
2-Fluorobiphenyl	83.7	30-130		4/6/19 15:28
2,4,6-Tribromophenol	91.8	15-110		4/6/19 15:28
p-Terphenyl-d14	97.0	30-130		4/6/19 15:28

Sample Description: Work Order: 19D0030

Project Location: Wayland, MA

Date Received: 4/1/2019

Field Sample #: V-102 (MW)

Sampled: 4/1/2019 11:00

Sample ID: 19D0030-03
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECI	
	١.

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Aroclor-1221 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Aroclor-1232 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Aroclor-1242 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Aroclor-1248 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Aroclor-1254 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Aroclor-1260 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Aroclor-1262 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Aroclor-1268 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:10	JMB
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Decachlorobiphenyl [1]		76.1	30-150					4/6/19 18:10	
Decachlorobiphenyl [2]		78.5	30-150					4/6/19 18:10	
Tetrachloro-m-xylene [1]		77.1	30-150					4/6/19 18:10	
Tetrachloro-m-xylene [2]		81.2	30-150					4/6/19 18:10	

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

RL

1.0

0.40

50

0.40

0.50

1.0

5.0

1.0

100

0.00010

5.0

5.0

0.50

0.20

5.0

10

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

1

1

1

Results

ND

22

210

ND

ND

ND

ND

ND

7000

ND

9.0

ND

ND

ND

ND

ND

Work Order: 19D0030

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-102 (MW)

Sampled: 4/1/2019 11:00

Sample ID: 19D0030-03
Sample Matrix: Ground Water

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Manganese

Mercury

Selenium

Thallium

Vanadium

Nickel

Silver

Zinc

Copper

Lead

Metals Anal	yses (Total)					
Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
μg/L	1		SW-846 6020B	4/3/19	4/4/19 15:22	QNW
$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:22	QNW
$\mu g/L$	5		SW-846 6020B	4/3/19	4/5/19 11:07	QNW
$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:22	QNW
$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:22	QNW
$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:22	QNW
$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:22	QNW
$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:22	QNW
$\mu g/L$	100		SW-846 6020B	4/3/19	4/5/19 11:00	QNW
mg/L	1		SW-846 7470A	4/8/19	4/8/19 14:30	EJB
μg/L	1		SW-846 6020B	4/3/19	4/4/19 15:22	QNW

SW-846 6020B

SW-846 6020B

SW-846 6020B

SW-846 6020B

SW-846 6020B

4/3/19

4/3/19

4/3/19

4/3/19

4/3/19

4/4/19 15:22

4/4/19 15:22

4/4/19 15:22

4/5/19 12:12

4/4/19 15:22

QNW

QNW

QNW

QNW

QNW

Sample Description:

Work Order: 19D0030

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-102 (MW)

Sampled: 4/1/2019 11:00

Sample ID: 19D0030-03
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		26	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 10:56	ONW

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA

Date Received: 4/1/2019

Field Sample #: V-102 (MW)

Sampled: 4/1/2019 11:00

Sample ID: 19D0030-03
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	1.5	0.30	mg/L	1		SM19-22 4500 NH3 C	4/2/19	4/3/19 10:00	EC
Chloride	95	10	mg/L	10		EPA 300.0	4/5/19	4/5/19 11:03	IS
Nitrate as N	4.7	0.10	mg/L	1		EPA 300.0	4/2/19	4/2/19 6:38	IS
Nitrite as N	0.254	0.100	mg/L	1		EPA 300.0	4/2/19	4/2/19 6:38	IS
Orthophosphate as P	ND	0.050	mg/L	1	W-17	SM 21-22 4500 P E	4/1/19	4/1/19 21:30	IS
Phosphorus, Total	ND	0.062	mg/L	1.25		SM 21-22 4500 P E	4/2/19	4/2/19 14:09	IS
Total Kjeldahl Nitrogen	2.0	1.0	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/3/19	4/4/19 9:45	EC
Total Nitrogen	7.0	0.050	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/8/19	4/8/19 7:28	LL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/1/2019

Field Sample #: V-105 (MW)

Sampled: 4/1/2019 15:00

Sample ID: 19D0030-04
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10	μg/L	1	R-05	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
tert-Amyl Methyl Ether (TAME)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Bromoform	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
2-Butanone (MEK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Carbon Disulfide	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,1-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
cis-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH

Page 24 of 61

A Sample Description: Work Order: 19D0030

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-105 (MW)

Sampled: 4/1/2019 15:00

97.0

Sample ID: 19D0030-04
Sample Matrix: Ground Water

4-Bromofluorobenzene

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1	-	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Methyl tert-Butyl Ether (MTBE)	1.6	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Naphthalene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 17:00	EEH
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual			-	
1,2-Dichloroethane-d4		85.9	70-130					4/3/19 17:00	
Toluene-d8		97.8	70-130					4/3/19 17:00	

70-130

4/3/19 17:00

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-105 (MW)

Sampled: 4/1/2019 15:00

Sample ID: 19D0030-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Acenaphthylene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Acetophenone	ND	11	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Aniline	ND	5.7	μg/L	1	V-34	SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Anthracene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Benzo(a)anthracene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Benzo(a)pyrene	ND	5.7	$\mu g/L$	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Benzo(b)fluoranthene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Benzo(g,h,i)perylene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Benzo(k)fluoranthene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Bis(2-chloroethoxy)methane	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Bis(2-chloroethyl)ether	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Bis(2-chloroisopropyl)ether	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Bis(2-Ethylhexyl)phthalate	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
4-Bromophenylphenylether	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Butylbenzylphthalate	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
4-Chloroaniline	ND	11	μg/L	1	V-34	SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2-Chloronaphthalene	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2-Chlorophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Chrysene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Dibenz(a,h)anthracene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Dibenzofuran	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Di-n-butylphthalate	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
1,2-Dichlorobenzene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
,3-Dichlorobenzene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
1,4-Dichlorobenzene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
3,3-Dichlorobenzidine	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2,4-Dichlorophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Diethylphthalate	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2,4-Dimethylphenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Dimethylphthalate	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2,4-Dinitrophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2,4-Dinitrotoluene	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2,6-Dinitrotoluene	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Di-n-octylphthalate	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Fluoranthene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Fluorene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Hexachlorobenzene	ND	11	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Hexachlorobutadiene	ND	11	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Hexachloroethane	ND	11	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Indeno(1,2,3-cd)pyrene	ND	5.7	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Isophorone	ND ND	11	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2-Methylnaphthalene	ND ND	5.7	μg/L μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL

Page 26 of 61

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/1/2019

Field Sample #: V-105 (MW)
Sample ID: 19D0030-04
Sample Matrix: Ground Water

Sampled: 4/1/2019 15:00

		Semi	volatile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
3/4-Methylphenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Naphthalene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Nitrobenzene	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2-Nitrophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
4-Nitrophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Pentachlorophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Phenanthrene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Phenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Pyrene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
1,2,4-Trichlorobenzene	ND	5.7	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2,4,5-Trichlorophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
2,4,6-Trichlorophenol	ND	11	μg/L	1		SW-846 8270D	4/5/19	4/6/19 15:54	BGL
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2-Fluorophenol		45.8	15-110					4/6/19 15:54	
Phenol-d6		33.9	15-110					4/6/19 15:54	
Nitrobenzene-d5		74.9	30-130					4/6/19 15:54	
2-Fluorobiphenyl		76.8	30-130					4/6/19 15:54	
2,4,6-Tribromophenol		85.8	15-110					4/6/19 15:54	
p-Terphenyl-d14		87.2	30-130					4/6/19 15:54	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/1/2019

Field Sample #: V-105 (MW)

Sampled: 4/1/2019 15:00

Sample ID: 19D0030-04
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECD

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.17	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Aroclor-1221 [1]	ND	0.17	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Aroclor-1232 [1]	ND	0.17	$\mu g/L$	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Aroclor-1242 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Aroclor-1248 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Aroclor-1254 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Aroclor-1260 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Aroclor-1262 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Aroclor-1268 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/6/19 18:27	JMB
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Decachlorobiphenyl [1]		85.8	30-150					4/6/19 18:27	
Decachlorobiphenyl [2]		87.7	30-150					4/6/19 18:27	
Tetrachloro-m-xylene [1]		76.5	30-150					4/6/19 18:27	
Tetrachloro-m-xylene [2]		80.8	30-150					4/6/19 18:27	

Sample Description: Work Order: 19D0030

Project Location: Wayland, MA Date Received: 4/1/2019 Field Sample #: V-105 (MW)

Sampled: 4/1/2019 15:00

Sample ID: 19D0030-04 Sample Matrix: Ground Water

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0	μg/L	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Arsenic	ND	0.40	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Barium	150	50	$\mu g/L$	5		SW-846 6020B	4/3/19	4/5/19 11:10	QNW
Beryllium	ND	0.40	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Cadmium	ND	0.50	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Chromium	ND	1.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Copper	ND	5.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Lead	ND	1.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Manganese	870	20	$\mu g/L$	20		SW-846 6020B	4/3/19	4/4/19 15:11	QNW
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	4/8/19	4/8/19 14:32	EJB
Nickel	44	5.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Selenium	ND	5.0	μg/L	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Silver	ND	0.50	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Thallium	ND	0.20	$\mu g/L$	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW
Vanadium	ND	5.0	$\mu g/L$	1		SW-846 6020B	4/3/19	4/5/19 12:16	QNW
Zinc	ND	10	μg/L	1		SW-846 6020B	4/3/19	4/4/19 15:25	QNW

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-105 (MW)

Sampled: 4/1/2019 15:00

Sample ID: 19D0030-04
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		1.1	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 11:00	QNW

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/1/2019
Field Sample #: V-105 (MW)

Sampled: 4/1/2019 15:00

Sample ID: 19D0030-04
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	1.1	0.30	mg/L	1		SM19-22 4500 NH3 C	4/2/19	4/3/19 10:00	EC
Chloride	140	10	mg/L	10		EPA 300.0	4/5/19	4/5/19 11:18	IS
Nitrate as N	7.8	0.20	mg/L	2	MS-07	EPA 300.0	4/2/19	4/2/19 15:14	MMH
Nitrite as N	0.810	0.100	mg/L	1		EPA 300.0	4/2/19	4/2/19 14:29	MMH
Orthophosphate as P	ND	0.050	mg/L	1	W-17	SM 21-22 4500 P E	4/1/19	4/1/19 21:30	IS
Phosphorus, Total	ND	0.062	mg/L	1.25		SM 21-22 4500 P E	4/2/19	4/2/19 14:09	IS
Total Kjeldahl Nitrogen	2.0	1.0	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/3/19	4/4/19 9:45	EC
Total Nitrogen	11	0.050	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/8/19	4/8/19 7:28	LL

Sample Extraction Data

Prep Method: EPA 300.0-EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227184	10.0	10.0	04/02/19
19D0030-03 [V-102 (MW)]	B227184	10.0	10.0	04/02/19

EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-04 [V-105 (MW)]	B227319	10.0	10.0	04/02/19

EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-04 [V-105 (MW)]	B227332	10.0	10.0	04/02/19

EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227352	10.0	10.0	04/05/19
19D0030-03 [V-102 (MW)]	B227352	10.0	10.0	04/05/19
19D0030-04 [V-105 (MW)]	B227352	10.0	10.0	04/05/19

SM 21-22 4500 PE

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227187	50.0	50.0	04/01/19
19D0030-03 [V-102 (MW)]	B227187	50.0	50.0	04/01/19
19D0030-04 [V-105 (MW)]	B227187	50.0	50.0	04/01/19

SM 21-22 4500 P E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227249	50.0	50.0	04/02/19
19D0030-03 [V-102 (MW)]	B227249	50.0	50.0	04/02/19
19D0030-04 [V-105 (MW)]	B227249	50.0	50.0	04/02/19

SM19-22 4500 NH3 C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227200	100	100	04/02/19
19D0030-03 [V-102 (MW)]	B227200	100	100	04/02/19
19D0030-04 [V-105 (MW)]	B227200	100	100	04/02/19

SM19-22 4500-N Org B,C-NH3 $\scriptstyle{\rm C}$

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227312	25.0	25.0	04/03/19
19D0030-03 [V-102 (MW)]	B227312	25.0	25.0	04/03/19

Sample Extraction Data

SM19-22 4500-N Org B,C-NH3 $\rm C$

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-04 [V-105 (MW)]	B227312	25.0	25.0	04/03/19

SM19-22 4500-N Org B,C-NH3 $\scriptstyle{\rm C}$

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0030-02 [V-101 (MW)]	B227642	50.0	50.0	04/08/19	
19D0030-03 [V-102 (MW)]	B227642	50.0	50.0	04/08/19	
19D0030-04 [V-105 (MW)]	B227642	50.0	50.0	04/08/19	

Prep Method: SW-846 3005A-SW-846 6020B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227365	50.0	50.0	04/03/19
19D0030-03 [V-102 (MW)]	B227365	50.0	50.0	04/03/19
19D0030-04 [V-105 (MW)]	B227365	50.0	50.0	04/03/19

Prep Method: SW-846 3005A Dissolved-SW-846 6020B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227576	10.0	10.0	04/05/19
19D0030-03 [V-102 (MW)]	B227576	10.0	10.0	04/05/19
19D0030-04 [V-105 (MW)]	B227576	10.0	10.0	04/05/19

Prep Method: SW-846 7470A Prep-SW-846 7470A

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227561	6.00	6.00	04/08/19
19D0030-03 [V-102 (MW)]	B227561	6.00	6.00	04/08/19
19D0030-04 [V-105 (MW)]	B227561	6.00	6.00	04/08/19

Prep Method: SW-846 3510C-SW-846 8082A

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227544	130	2.00	04/05/19
19D0030-03 [V-102 (MW)]	B227544	120	2.00	04/05/19
19D0030-04 [V-105 (MW)]	B227544	120	2.00	04/05/19

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227205	5	5.00	04/03/19
19D0030-03 [V-102 (MW)]	B227205	5	5.00	04/03/19
19D0030-04 [V-105 (MW)]	B227205	5	5.00	04/03/19

Sample Extraction Data

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0030-02 [V-101 (MW)]	B227556	910	1.00	04/05/19
19D0030-03 [V-102 (MW)]	B227556	1020	1.00	04/05/19
19D0030-04 [V-105 (MW)]	B227556	870	1.00	04/05/19

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared: 04	/02/19 Analy	/zed: 04/03/1	9			
ND	10	μg/L							R-05
ND	0.50	μg/L							
ND	1.0	μg/L							
ND	1.0	μg/L							
ND	1.0	μg/L							
ND	1.0	$\mu g \! / \! L$							
ND	1.0	$\mu g\!/\!L$							
ND	2.0	μg/L							
ND	10	μg/L							
ND	1.0	μg/L							
ND	1.0	μg/L							
ND	1.0	μg/L							
ND	0.50	μg/L							
ND	5.0								
ND	1.0								
ND	1.0	μg/L							
ND									
ND									
ND									
ND									
ND									
	1.0								
	0.50								
	0.40								
	0.40								
	2.0								
	0.50								
	50								V-16
	1.0								
ND	0.60	μg/L							
ND	10	μg/L							
	1.0	μg/L							
ND	1.0	μg/L							
ND	1.0	μg/L							
ND	5.0	μg/L							
ND	10	μg/L							
	ND N	ND	ND 10	Result	ND	No	Company	Result	Result

QUALITY CONTROL

Batch B227205 - SW-846 5030B									
Satch B227203 - SW-640 5050B									
Blank (B227205-BLK1)				Prepared: 04	/02/19 Analyz	zed: 04/03/	19		
n-Propylbenzene	ND	1.0	$\mu g/L$						
Styrene	ND	1.0	$\mu g/L$						
,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$						
,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$						
Tetrachloroethylene	ND	1.0	$\mu g/L$						
Tetrahydrofuran	ND	2.0	$\mu g/L$						
Toluene	ND	1.0	$\mu g/L$						
,2,3-Trichlorobenzene	ND	2.0	$\mu g/L$						
,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$						
,1,1-Trichloroethane	ND	1.0	$\mu g/L$						
,1,2-Trichloroethane	ND	1.0	$\mu g/L$						
Trichloroethylene	ND	1.0	$\mu g/L$						
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$						
,2,3-Trichloropropane	ND	2.0	$\mu \text{g/L}$						
,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$						
,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$						
Vinyl Chloride	ND	2.0	$\mu g/L$						
n+p Xylene	ND	2.0	$\mu g/L$						
o-Xylene	ND	1.0	$\mu g/L$						
Surrogate: 1,2-Dichloroethane-d4	22.0		μg/L	25.0		87.8	70-130		
Surrogate: Toluene-d8	24.6		μg/L	25.0		98.5	70-130		
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.4	70-130		
LCS (B227205-BS1)			. -		/02/19 Analyz				
Acetone	148	10	μg/L	100	702/17 7 mary	148	40-160		L-14, R-05
ert-Amyl Methyl Ether (TAME)	9.79	0.50	μg/L μg/L	10.0		97.9	70-130		L-14, IC-03
Benzene	9.79	1.0	μg/L μg/L	10.0		96.1	70-130		
Bromobenzene	11.9	1.0	μg/L	10.0		119	70-130		
Bromochloromethane	10.1	1.0	μg/L	10.0		101	70-130		
Bromodichloromethane	10.1	1.0	μg/L	10.0		104	70-130		
Bromoform	12.3	1.0	μg/L μg/L	10.0		123	70-130		
Bromomethane		2.0	μg/L μg/L	10.0		72.8	40-160		
2-Butanone (MEK)	7.28	10	μg/L μg/L	10.0		92.0	40-160		
n-Butylbenzene	92.0	1.0	μg/L μg/L	10.0		110	70-130		
ec-Butylbenzene	11.0	1.0	μg/L μg/L						
ert-Butylbenzene	11.2	1.0	μg/L μg/L	10.0 10.0		112 110	70-130 70-130		
ert-Butyl Ethyl Ether (TBEE)	11.0	0.50	μg/L μg/L	10.0		101	70-130		
Carbon Disulfide	10.1	5.0							
Carbon Disumde Carbon Tetrachloride	12.1	1.0	μg/L μα/Ι	10.0		121	70-130		
Chlorobenzene	9.40	1.0	μg/L μg/I	10.0		94.0	70-130		
Chlorodibromomethane	12.4		μg/L μα/Ι	10.0		124	70-130		
Chloroethane	11.6	0.50 2.0	μg/L μg/I	10.0		116	70-130		
Chloroform	11.2	2.0	μg/L μg/I	10.0		112	70-130		
Chloromethane	9.49		μg/L μg/I	10.0		94.9	70-130		
2-Chlorotoluene	7.67	2.0	μg/L μg/I	10.0		76.7	40-160		
Chlorotoluene	11.4	1.0	μg/L μg/I	10.0		114	70-130		
	12.2	1.0	μg/L	10.0		122	70-130		
,2-Dibromo-3-chloropropane (DBCP)	8.73	2.0	μg/L	10.0		87.3	70-130		
,2-Dibromoethane (EDB)	11.1	0.50	μg/L	10.0		111	70-130		
Dibromomethane	11.0	1.0	μg/L	10.0		110	70-130		
,2-Dichlorobenzene	12.1	1.0	μg/L	10.0		121	70-130		
,3-Dichlorobenzene	12.2	1.0	μg/L	10.0		122	70-130		

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Satch B227205 - SW-846 5030B										
.CS (B227205-BS1)				Prepared: 04	/02/19 Analy	zed: 04/03/1	9			
Dichlorodifluoromethane (Freon 12)	7.25	2.0	$\mu g/L$	10.0		72.5	40-160			
,1-Dichloroethane	9.74	1.0	$\mu g/L$	10.0		97.4	70-130			
,2-Dichloroethane	8.80	1.0	$\mu g/L$	10.0		88.0	70-130			
,1-Dichloroethylene	10.8	1.0	$\mu g/L$	10.0		108	70-130			
s-1,2-Dichloroethylene	9.70	1.0	$\mu g/L$	10.0		97.0	70-130			
nns-1,2-Dichloroethylene	10.0	1.0	$\mu g/L$	10.0		100	70-130			
2-Dichloropropane	9.97	1.0	$\mu g/L$	10.0		99.7	70-130			
3-Dichloropropane	10.6	0.50	$\mu g/L$	10.0		106	70-130			
2-Dichloropropane	9.60	1.0	$\mu g/L$	10.0		96.0	70-130			
1-Dichloropropene	8.97	0.50	$\mu g/L$	10.0		89.7	70-130			
s-1,3-Dichloropropene	11.5	0.40	$\mu g/L$	10.0		115	70-130			
ns-1,3-Dichloropropene	11.7	0.40	$\mu g/L$	10.0		117	70-130			
ethyl Ether	13.0	2.0	$\mu g/L$	10.0		130	70-130			
isopropyl Ether (DIPE)	10.0	0.50	$\mu g/L$	10.0		100	70-130			
4-Dioxane	92.3	50	$\mu g/L$	100		92.3	40-160			V-16
hylbenzene	11.5	1.0	$\mu g/L$	10.0		115	70-130			
exachlorobutadiene	12.6	0.60	μg/L	10.0		126	70-130			
Hexanone (MBK)	104	10	μg/L	100		104	40-160			
propylbenzene (Cumene)	11.8	1.0	μg/L	10.0		118	70-130			
sopropyltoluene (p-Cymene)	11.4	1.0	μg/L	10.0		114	70-130			
ethyl tert-Butyl Ether (MTBE)	10.8	1.0	μg/L	10.0		108	70-130			
ethylene Chloride	11.5	5.0	μg/L	10.0		115	70-130			
Methyl-2-pentanone (MIBK)	101	10	μg/L	100		101	40-160			
phthalene	9.77	2.0	μg/L	10.0		97.7	70-130			
Propylbenzene	11.6	1.0	μg/L	10.0		116	70-130			
yrene	12.9	1.0	μg/L	10.0		129	70-130			V-20
1,1,2-Tetrachloroethane	12.6	1.0	μg/L	10.0		126	70-130			
1,2,2-Tetrachloroethane	13.0	0.50	μg/L	10.0		130	70-130			
trachloroethylene	10.9	1.0	μg/L	10.0		109	70-130			
trahydrofuran	10.7	2.0	μg/L	10.0		107	70-130			
bluene	10.7	1.0	μg/L	10.0		104	70-130			
2,3-Trichlorobenzene	10.4	2.0	μg/L	10.0		109	70-130			
2,4-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130			
1,1-Trichloroethane	9.10	1.0	μg/L	10.0		91.0	70-130			
1,2-Trichloroethane	11.4	1.0	μg/L μg/L	10.0		114	70-130			
ichloroethylene	10.4	1.0	μg/L μg/L	10.0		104	70-130			
chlorofluoromethane (Freon 11)	9.44	2.0	μg/L μg/L	10.0		94.4	70-130			
2,3-Trichloropropane	11.5	2.0	μg/L μg/L	10.0		115	70-130			
2,4-Trimethylbenzene	11.3	1.0	μg/L μg/L	10.0		113	70-130			
3,5-Trimethylbenzene	11.8	1.0	μg/L μg/L	10.0		118	70-130			
nyl Chloride		2.0	μg/L μg/L	10.0		117	70-130			
+p Xylene	11.7	2.0	μg/L μg/L	20.0		117	70-130			
Xylene	23.4 12.2	1.0	μg/L μg/L	10.0		122	70-130			
urrogate: 1,2-Dichloroethane-d4	21.9		μg/L	25.0		87.6	70-130			
arrogate: Toluene-d8	24.4		μg/L μg/L	25.0		97.7	70-130			
arrogate: 4-Bromofluorobenzene	26.1		μg/L μg/L	25.0		104	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227205 - SW-846 5030B										
CS Dup (B227205-BSD1)				Prepared: 04	/02/19 Anal	yzed: 04/03/1	9			
Acetone	109	10	μg/L	100		109	40-160	29.9 *	20	R-05
ert-Amyl Methyl Ether (TAME)	9.12	0.50	$\mu g/L$	10.0		91.2	70-130	7.09	20	
enzene	9.57	1.0	$\mu g/L$	10.0		95.7	70-130	0.417	20	
Bromobenzene	11.4	1.0	$\mu g/L$	10.0		114	70-130	3.86	20	
romochloromethane	10.0	1.0	$\mu g/L$	10.0		100	70-130	0.199	20	
romodichloromethane	10.4	1.0	$\mu g/L$	10.0		104	70-130	0.577	20	
romoform	12.0	1.0	$\mu g/L$	10.0		120	70-130	2.47	20	
romomethane	7.86	2.0	$\mu g/L$	10.0		78.6	40-160	7.66	20	
Butanone (MEK)	81.2	10	$\mu g/L$	100		81.2	40-160	12.5	20	
Butylbenzene	10.9	1.0	$\mu g/L$	10.0		109	70-130	0.912	20	
c-Butylbenzene	11.4	1.0	$\mu g/L$	10.0		114	70-130	1.06	20	
rt-Butylbenzene	11.1	1.0	μg/L	10.0		111	70-130	0.725	20	
rt-Butyl Ethyl Ether (TBEE)	9.46	0.50	μg/L	10.0		94.6	70-130	6.35	20	
arbon Disulfide	11.9	5.0	μg/L	10.0		119	70-130	1.67	20	
arbon Tetrachloride	9.35	1.0	μg/L	10.0		93.5	70-130	0.533	20	
hlorobenzene	12.2	1.0	μg/L	10.0		122	70-130	1.30	20	
hlorodibromomethane	11.4	0.50	μg/L	10.0		114	70-130	1.91	20	
hloroethane	10.6	2.0	μg/L	10.0		106	70-130	5.71	20	
hloroform	9.51	2.0	μg/L	10.0		95.1	70-130	0.211	20	
hloromethane	7.64	2.0	μg/L	10.0		76.4	40-160	0.392	20	
Chlorotoluene	11.1	1.0	μg/L	10.0		111	70-130	1.87	20	
Chlorotoluene	11.9	1.0	μg/L μg/L	10.0		119	70-130	2.99	20	
2-Dibromo-3-chloropropane (DBCP)	8.02	2.0	μg/L	10.0		80.2	70-130	8.48	20	
2-Dibromoethane (EDB)	10.9	0.50	μg/L	10.0		109	70-130	1.91	20	
bromomethane (EBB)	10.9	1.0	μg/L μg/L	10.0		108	70-130	1.66	20	
2-Dichlorobenzene	12.0	1.0	μg/L μg/L	10.0		120	70-130	0.747	20	
3-Dichlorobenzene	12.0	1.0	μg/L μg/L	10.0		119	70-130	2.57	20	
4-Dichlorobenzene		1.0	μg/L μg/L	10.0		117	70-130	1.70	20	
ichlorodifluoromethane (Freon 12)	11.7	2.0	μg/L μg/L	10.0		74.2	40-160	2.32	20	
1-Dichloroethane	7.42	1.0	μg/L μg/L	10.0		96.2	70-130	1.24	20	
2-Dichloroethane	9.62	1.0	μg/L μg/L							
1-Dichloroethylene	8.60	1.0		10.0		86.0	70-130	2.30	20	
	10.8	1.0	μg/L μg/I	10.0		108	70-130	0.834	20	
s-1,2-Dichloroethylene ans-1,2-Dichloroethylene	9.74		μg/L ug/I	10.0		97.4	70-130	0.412	20	
•	9.98	1.0	μg/L	10.0		99.8	70-130	0.400	20	
2-Dichloropropane	9.47	1.0	μg/L ug/I	10.0		94.7	70-130	5.14	20	
3-Dichloropropane	10.4	0.50	μg/L	10.0		104	70-130	1.14	20	
2-Dichloropropane	9.59	1.0	μg/L	10.0		95.9	70-130	0.104	20	
1-Dichloropropene	8.94	0.50	μg/L	10.0		89.4	70-130	0.335	20	
s-1,3-Dichloropropene	11.2	0.40	μg/L	10.0		112	70-130	1.94	20	
ans-1,3-Dichloropropene	11.8	0.40	μg/L	10.0		118	70-130	0.594	20	
iethyl Ether	12.7	2.0	μg/L	10.0		127	70-130	2.10	20	
iisopropyl Ether (DIPE)	9.65	0.50	μg/L	10.0		96.5	70-130	3.66	20	****
4-Dioxane	95.5	50	μg/L	100		95.5	40-160	3.47	20	V-16
hylbenzene	11.2	1.0	μg/L	10.0		112	70-130	2.46	20	
exachlorobutadiene	12.4	0.60	μg/L	10.0		124	70-130	1.28	20	
Hexanone (MBK)	93.6	10	μg/L	100		93.6	40-160	10.4	20	
opropylbenzene (Cumene)	11.6	1.0	μg/L	10.0		116	70-130	1.28	20	
Isopropyltoluene (p-Cymene)	11.2	1.0	μg/L	10.0		112	70-130	1.68	20	
ethyl tert-Butyl Ether (MTBE)	10.3	1.0	μg/L	10.0		103	70-130	5.12	20	
ethylene Chloride	11.5	5.0	μg/L	10.0		115	70-130	0.174	20	
Methyl-2-pentanone (MIBK)	94.2	10	$\mu g/L$	100		94.2	40-160	6.57	20	
aphthalene	9.14	2.0	$\mu g/L$	10.0		91.4	70-130	6.66	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227205 - SW-846 5030B										
LCS Dup (B227205-BSD1)				Prepared: 04	1/02/19 Anal	yzed: 04/03/1	19			
n-Propylbenzene	11.4	1.0	μg/L	10.0		114	70-130	1.92	20	
Styrene	12.9	1.0	$\mu g/L$	10.0		129	70-130	0.0775	20	V-20
1,1,1,2-Tetrachloroethane	12.3	1.0	$\mu g/L$	10.0		123	70-130	2.97	20	
1,1,2,2-Tetrachloroethane	12.1	0.50	$\mu g/L$	10.0		121	70-130	7.73	20	
Tetrachloroethylene	10.7	1.0	$\mu g/L$	10.0		107	70-130	1.75	20	
Tetrahydrofuran	9.26	2.0	$\mu g/L$	10.0		92.6	70-130	14.3	20	
Toluene	10.3	1.0	$\mu g/L$	10.0		103	70-130	0.677	20	
1,2,3-Trichlorobenzene	10.5	2.0	$\mu \text{g/L}$	10.0		105	70-130	3.82	20	
1,2,4-Trichlorobenzene	9.88	1.0	$\mu \text{g/L}$	10.0		98.8	70-130	5.51	20	
1,1,1-Trichloroethane	9.00	1.0	$\mu g/L$	10.0		90.0	70-130	1.10	20	
1,1,2-Trichloroethane	11.4	1.0	$\mu g/L$	10.0		114	70-130	0.00	20	
Trichloroethylene	9.95	1.0	$\mu g/L$	10.0		99.5	70-130	4.04	20	
Trichlorofluoromethane (Freon 11)	9.27	2.0	$\mu g/L$	10.0		92.7	70-130	1.82	20	
1,2,3-Trichloropropane	11.1	2.0	$\mu g/L$	10.0		111	70-130	4.07	20	
1,2,4-Trimethylbenzene	11.1	1.0	$\mu \text{g/L}$	10.0		111	70-130	1.79	20	
1,3,5-Trimethylbenzene	11.4	1.0	$\mu \text{g/L}$	10.0		114	70-130	3.18	20	
Vinyl Chloride	12.5	2.0	$\mu \text{g/L}$	10.0		125	70-130	6.70	20	
m+p Xylene	22.9	2.0	$\mu g/L$	20.0		114	70-130	2.20	20	
o-Xylene	12.0	1.0	$\mu g/L$	10.0		120	70-130	1.82	20	
Surrogate: 1,2-Dichloroethane-d4	22.2		μg/L	25.0		89.0	70-130			
Surrogate: Toluene-d8	24.8		$\mu g/L$	25.0		99.4	70-130			
Surrogate: 4-Bromofluorobenzene	25.8		μg/L	25.0		103	70-130			

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Spike

Source

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227556 - SW-846 3510C										
Blank (B227556-BLK1)				Prepared: 04	1/05/19 Anal	yzed: 04/06/1	.9			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	$\mu \text{g/L}$							
Acetophenone	ND	10	$\mu g/L$							
Aniline	ND	5.0	μg/L							V-34
Anthracene	ND	5.0	$\mu g/L$							
Benzo(a)anthracene	ND	5.0	μg/L							
Benzo(a)pyrene	ND	5.0	μg/L							
Benzo(b)fluoranthene	ND	5.0	$\mu g/L$							
Benzo(g,h,i)perylene	ND	5.0	μg/L							
Benzo(k)fluoranthene	ND	5.0	μg/L							
Bis(2-chloroethoxy)methane	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	$\mu \text{g/L}$							
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L							
4-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	μg/L							
4-Chloroaniline	ND	10	$\mu \text{g/L}$							V-34
2-Chloronaphthalene	ND	10	μg/L							
2-Chlorophenol	ND	10	$\mu \text{g/L}$							
Chrysene	ND	5.0	$\mu g/L$							
Dibenz(a,h)anthracene	ND	5.0	$\mu g/L$							
Dibenzofuran	ND	5.0	μg/L							
Di-n-butylphthalate	ND	10	μg/L							
1,2-Dichlorobenzene	ND	5.0	μg/L							
1,3-Dichlorobenzene	ND	5.0	μg/L							
1,4-Dichlorobenzene	ND	5.0	$\mu g/L$							
3,3-Dichlorobenzidine	ND	10	μg/L							
2,4-Dichlorophenol	ND	10	μg/L							
Diethylphthalate	ND	10	μg/L							
2,4-Dimethylphenol	ND	10	μg/L							
Dimethylphthalate	ND	10	μg/L							
2,4-Dinitrophenol	ND	10	$\mu g/L$							
2,4-Dinitrotoluene	ND	10	$\mu \text{g/L}$							
2,6-Dinitrotoluene	ND	10	$\mu \text{g/L}$							
Di-n-octylphthalate	ND	10	$\mu g/L$							
1,2-Diphenylhydrazine/Azobenzene	ND	10	$\mu \text{g/L}$							
Fluoranthene	ND	5.0	μg/L							
Fluorene	ND	5.0	$\mu \text{g/L}$							
Hexachlorobenzene	ND	10	μg/L							
Hexachlorobutadiene	ND	10	$\mu \text{g/L}$							
Hexachloroethane	ND	10	μg/L							
Indeno(1,2,3-cd)pyrene	ND	5.0	$\mu \text{g/L}$							
Isophorone	ND	10	$\mu \text{g/L}$							
2-Methylnaphthalene	ND	5.0	μg/L							
2-Methylphenol	ND	10	μg/L							
3/4-Methylphenol	ND	10	$\mu \text{g/L}$							
Naphthalene	ND	5.0	$\mu \text{g/L}$							
Nitrobenzene	ND	10	$\mu \text{g/L}$							
2-Nitrophenol	ND	10	$\mu g/L$							
4-Nitrophenol	ND	10	$\mu g \! / \! L$							
Pentachlorophenol	ND	10	$\mu g \! / \! L$							
Phenanthrene	ND	5.0	$\mu g\!/\!L$							

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Satch B227556 - SW-846 3510C										
Blank (B227556-BLK1)				Prepared: 04	/05/19 Analy	zed: 04/06/1	9			
henol	ND	10	μg/L							
yrene	ND	5.0	$\mu \text{g/L}$							
yridine	ND	5.0	$\mu g/L$							
,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$							
,4,5-Trichlorophenol	ND	10	$\mu g/L$							
,4,6-Trichlorophenol	ND	10	$\mu g/L$							
urrogate: 2-Fluorophenol	111		μg/L	200		55.3	15-110			
urrogate: Phenol-d6	81.8		μg/L	200		40.9	15-110			
urrogate: Nitrobenzene-d5	85.8		μg/L	100		85.8	30-130			
urrogate: 2-Fluorobiphenyl	84.7		μg/L	100		84.7	30-130			
urrogate: 2,4,6-Tribromophenol	190		μg/L	200		95.2	15-110			
urrogate: p-Terphenyl-d14	99.8		μg/L	100		99.8	30-130			
					/05/19 Analy					
CCS (B227556-BS1)	20.0	5.0	μg/L	50.0	OSI 17 Allaly	79.8	40-140			
Acenaphthylene	39.9	5.0	μg/L μg/L	50.0		79.8 79.8				
cetophenone	39.9						40-140			
•	38.7	10	μg/L	50.0		77.4	40-140			1/ 24
niline	35.4	5.0	μg/L μα/Ι	50.0		70.9	40-140			V-34
Anthracene	40.9	5.0	μg/L	50.0		81.9	40-140			
Benzo(a)anthracene	41.6	5.0	μg/L	50.0		83.2	40-140			
Benzo(a)pyrene	43.7	5.0	μg/L	50.0		87.4	40-140			
Benzo(b)fluoranthene	40.6	5.0	μg/L	50.0		81.3	40-140			
Benzo(g,h,i)perylene	44.9	5.0	μg/L	50.0		89.7	40-140			
Benzo(k)fluoranthene	41.1	5.0	μg/L	50.0		82.2	40-140			
sis(2-chloroethoxy)methane	46.6	10	μg/L	50.0		93.2	40-140			
sis(2-chloroethyl)ether	40.6	10	μg/L	50.0		81.2	40-140			
Bis(2-chloroisopropyl)ether	45.4	10	μg/L	50.0		90.7	40-140			
sis(2-Ethylhexyl)phthalate	45.9	10	μg/L	50.0		91.8	40-140			
-Bromophenylphenylether	39.6	10	μg/L	50.0		79.3	40-140			
Butylbenzylphthalate	46.0	10	$\mu g \! / \! L$	50.0		91.9	40-140			
-Chloroaniline	42.2	10	$\mu g/L$	50.0		84.5	15-140			V-34
-Chloronaphthalene	34.6	10	$\mu g/L$	50.0		69.2	40-140			
-Chlorophenol	39.2	10	$\mu g/L$	50.0		78.5	30-130			
Chrysene	42.3	5.0	$\mu g/L$	50.0		84.6	40-140			
Dibenz(a,h)anthracene	43.2	5.0	$\mu g/L$	50.0		86.5	40-140			
Dibenzofuran	40.2	5.0	$\mu g/L$	50.0		80.4	40-140			
Di-n-butylphthalate	40.6	10	$\mu g/L$	50.0		81.3	40-140			
,2-Dichlorobenzene	33.2	5.0	μg/L	50.0		66.4	40-140			
,3-Dichlorobenzene	31.8	5.0	μg/L	50.0		63.5	40-140			
,4-Dichlorobenzene	32.8	5.0	μg/L	50.0		65.6	40-140			
,3-Dichlorobenzidine	52.5	10	μg/L	50.0		105	40-140			
,4-Dichlorophenol	42.7	10	μg/L	50.0		85.4	30-130			
Diethylphthalate	41.1	10	μg/L	50.0		82.3	40-140			
,4-Dimethylphenol	39.1	10	μg/L	50.0		78.3	30-130			
Dimethylphthalate	43.9	10	μg/L	50.0		87.7	40-140			
,4-Dinitrophenol	49.7	10	μg/L	50.0		99.3	15-140			
,4-Dinitrotoluene		10	μg/L μg/L	50.0		99.5	40-140			
,6-Dinitrotoluene	45.2	10					40-140			
i-n-octylphthalate	45.7	10	μg/L μg/I	50.0		91.4				
	43.9		μg/L μα/Ι	50.0		87.9	40-140			
,2-Diphenylhydrazine/Azobenzene	38.6	10	μg/L	50.0		77.2	40-140			
luoranthene	40.9	5.0	μg/L	50.0		81.8	40-140			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B227556 - SW-846 3510C										
LCS (B227556-BS1)				Prepared: 04	/05/19 Analyzed: 04/0	06/19				
Hexachlorobenzene	38.6	10	μg/L	50.0	77.2	40-140				
Hexachlorobutadiene	34.0	10	$\mu g/L$	50.0	67.9	40-140				
Hexachloroethane	32.3	10	$\mu g/L$	50.0	64.6	40-140				
ndeno(1,2,3-cd)pyrene	44.6	5.0	$\mu g/L$	50.0	89.3	40-140				
sophorone	41.3	10	$\mu g/L$	50.0	82.7	40-140				
2-Methylnaphthalene	41.4	5.0	$\mu g/L$	50.0	82.7	40-140				
2-Methylphenol	36.2	10	$\mu g/L$	50.0	72.3	30-130				
/4-Methylphenol	33.2	10	$\mu g/L$	50.0	66.3	30-130				
Japhthalene	37.7	5.0	$\mu g/L$	50.0	75.4	40-140				
Vitrobenzene	37.6	10	$\mu g/L$	50.0	75.2	40-140				
-Nitrophenol	44.0	10	$\mu g/L$	50.0	88.1	30-130				
-Nitrophenol	23.0	10	$\mu g/L$	50.0	46.0	15-140				
entachlorophenol	44.5	10	μg/L	50.0	89.1	30-130				
nenanthrene	40.7	5.0	μg/L	50.0	81.4	40-140				
nenol	18.8	10	μg/L	50.0	37.6	15-140				
yrene	42.6	5.0	μg/L	50.0	85.2	40-140				
yridine	22.1	5.0	μg/L	50.0	44.2	10-140				
2,4-Trichlorobenzene	35.6	5.0	μg/L	50.0	71.2	40-140				
4,5-Trichlorophenol	41.3	10	μg/L	50.0	82.6	30-130				
4,6-Trichlorophenol	41.6	10	μg/L	50.0	83.1	30-130				
urrogate: 2-Fluorophenol	104		μg/L	200	51.8	15-110				_
rrogate: Phenol-d6	78.4			200	39.2	15-110				
rrogate: Pilenoi-do	84.4		μg/L μg/L	100	84.4	30-130				
arrogate: 2-Fluorobiphenyl	84.2		μg/L μg/L	100	84.2	30-130				
urrogate: 2,4,6-Tribromophenol	197		μg/L μg/L	200	98.5	15-110				
urrogate: p-Terphenyl-d14	92.2		μg/L μg/L	100	92.2	30-130				
CS Dup (B227556-BSD1)				Prepared: 04	/05/19 Analyzed: 04/0	06/19				
acenaphthene	39.4	5.0	μg/L	50.0	78.8	40-140	1.34	20		_
cenaphthylene	38.3	5.0	μg/L	50.0	76.5	40-140	4.20	20		
cetophenone	37.5	10	μg/L μg/L	50.0	75.0	40-140	3.12	20		
niline	32.6	5.0	μg/L μg/L	50.0	65.1	40-140	8.50	20	V-34	
nthracene	32.6 40.9	5.0	μg/L μg/L	50.0	81.8	40-140	0.0489	20	¥-7-4	
enzo(a)anthracene	40.9	5.0	μg/L μg/L	50.0	83.4	40-140	0.336	20		
enzo(a)pyrene		5.0	μg/L μg/L	50.0	86.0	40-140	1.64	20		
enzo(b)fluoranthene	43.0	5.0	μg/L μg/L	50.0	79.7	40-140	1.04	20		
enzo(g,h,i)perylene	39.9	5.0	μg/L μg/L	50.0	87.3	40-140	2.76	20		
enzo(g,n,1)peryiene enzo(k)fluoranthene	43.6	5.0								
* /	40.6		μg/L μα/Ι	50.0	81.1	40-140	1.40	20		
is(2-chloroethoxy)methane	45.9	10	μg/L	50.0	91.8	40-140	1.47	20		
is(2-chloroethyl)ether	38.8	10	μg/L	50.0	77.5	40-140	4.56	20		
s(2-chloroisopropyl)ether	43.3	10	μg/L	50.0	86.7	40-140	4.60	20		
is(2-Ethylhexyl)phthalate	46.3	10	μg/L	50.0	92.5	40-140	0.825	20		
Bromophenylphenylether	40.2	10	μg/L	50.0	80.3	40-140	1.33	20		
utylbenzylphthalate	45.8	10	μg/L	50.0	91.6	40-140	0.349	20	****	
Chloroaniline	39.4	10	μg/L	50.0	78.8	15-140	6.88	20	V-34	
-Chloronaphthalene	32.5	10	μg/L	50.0	65.0	40-140	6.29	20		
-Chlorophenol	36.2	10	μg/L	50.0	72.4	30-130	8.03	20		
hrysene	41.9	5.0	μg/L	50.0	83.7	40-140	0.998	20		
bibenz(a,h)anthracene	41.8	5.0	μg/L	50.0	83.5	40-140	3.46	20		
Dibenzofuran	40.5	5.0	μg/L	50.0	81.0	40-140	0.669	20		
i-n-butylphthalate	42.1	10	μg/L	50.0	84.3	40-140	3.60	20		
,2-Dichlorobenzene	32.6	5.0	μg/L	50.0	65.1	40-140	1.98	20		

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227556 - SW-846 3510C										
LCS Dup (B227556-BSD1)				Prepared: 04	/05/19 Anal	yzed: 04/06/	19			
1,3-Dichlorobenzene	31.3	5.0	μg/L	50.0		62.6	40-140	1.55	20	
1,4-Dichlorobenzene	31.5	5.0	$\mu g \! / \! L$	50.0		63.0	40-140	4.04	20	
3,3-Dichlorobenzidine	51.5	10	$\mu g \! / \! L$	50.0		103	40-140	1.90	20	
2,4-Dichlorophenol	41.4	10	$\mu g \! / \! L$	50.0		82.9	30-130	3.00	20	
Diethylphthalate	41.0	10	$\mu g \! / \! L$	50.0		82.1	40-140	0.243	20	
2,4-Dimethylphenol	37.6	10	$\mu g \! / \! L$	50.0		75.3	30-130	3.91	20	
Dimethylphthalate	42.5	10	$\mu g \! / \! L$	50.0		85.1	40-140	3.06	20	
2,4-Dinitrophenol	50.2	10	$\mu g/L$	50.0		100	15-140	1.10	20	
2,4-Dinitrotoluene	44.9	10	$\mu g/L$	50.0		89.8	40-140	0.776	20	
2,6-Dinitrotoluene	46.1	10	$\mu g/L$	50.0		92.2	40-140	0.784	20	
Di-n-octylphthalate	44.8	10	$\mu g/L$	50.0		89.6	40-140	2.01	20	
1,2-Diphenylhydrazine/Azobenzene	38.9	10	$\mu g/L$	50.0		77.8	40-140	0.852	20	
Fluoranthene	41.6	5.0	μg/L	50.0		83.1	40-140	1.58	20	
Fluorene	40.5	5.0	$\mu g/L$	50.0		81.1	40-140	1.66	20	
Hexachlorobenzene	39.4	10	μg/L	50.0		78.9	40-140	2.18	20	
Hexachlorobutadiene	34.7	10	μg/L	50.0		69.5	40-140	2.27	20	
Hexachloroethane	32.5	10	$\mu g/L$	50.0		65.0	40-140	0.648	20	
Indeno(1,2,3-cd)pyrene	43.7	5.0	μg/L	50.0		87.4	40-140	2.13	20	
Isophorone	40.8	10	μg/L	50.0		81.7	40-140	1.19	20	
2-Methylnaphthalene	40.6	5.0	μg/L	50.0		81.2	40-140	1.93	20	
2-Methylphenol	34.7	10	μg/L	50.0		69.4	30-130	4.21	20	
3/4-Methylphenol	31.5	10	μg/L	50.0		63.0	30-130	5.20	20	
Naphthalene	37.0	5.0	μg/L	50.0		74.1	40-140	1.71	20	
Nitrobenzene	37.2	10	μg/L	50.0		74.3	40-140	1.23	20	
2-Nitrophenol	43.0	10	μg/L	50.0		86.1	30-130	2.30	20	
4-Nitrophenol	23.1	10	μg/L	50.0		46.3	15-140	0.607	20	
Pentachlorophenol	44.2	10	μg/L	50.0		88.5	30-130	0.676	20	
Phenanthrene	40.2	5.0	μg/L	50.0		80.4	40-140	1.29	20	
Phenol	17.6	10	μg/L	50.0		35.1	15-140	6.82	20	-
Pyrene	42.8	5.0	μg/L	50.0		85.6	40-140	0.375	20	
Pyridine	19.6	5.0	μg/L	50.0		39.2	10-140	12.0	50	-
1,2,4-Trichlorobenzene	35.3	5.0	μg/L	50.0		70.6	40-140	0.846	20	
2,4,5-Trichlorophenol	40.1	10	μg/L	50.0		80.2	30-130	3.00	20	
2,4,6-Trichlorophenol	42.0	10	μg/L	50.0		84.1	30-130	1.15	20	
Surrogate: 2-Fluorophenol	97.5		μg/L	200		48.8	15-110			
Surrogate: Phenol-d6	70.9		μg/L	200		35.4	15-110			
Surrogate: Nitrobenzene-d5	79.4		μg/L	100		79.4	30-130			
Surrogate: 2-Fluorobiphenyl	79.8		μg/L	100		79.8	30-130			
Surrogate: 2,4,6-Tribromophenol	194		μg/L	200		97.2	15-110			
Surrogate: p-Terphenyl-d14	92.3		μg/L	100		92.3	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227544 - SW-846 3510C										
Blank (B227544-BLK1)				Prepared: 04	/05/19 Analy	yzed: 04/06/1	19			
Aroclor-1016	ND	0.10	μg/L							
Aroclor-1016 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1221	ND	0.10	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1232	ND	0.10	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1242	ND	0.10	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1248	ND	0.10	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1254	ND	0.10	$\mu g \! / \! L$							
Aroclor-1254 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1260	ND	0.10	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1262	ND	0.10	$\mu g/L$							
Aroclor-1262 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1268	ND	0.10	$\mu g/L$							
Aroclor-1268 [2C]	ND	0.10	$\mu \text{g/L}$							
Surrogate: Decachlorobiphenyl	1.48		μg/L	2.00		73.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.48		μg/L	2.00		73.9	30-150			
Surrogate: Tetrachloro-m-xylene	1.16		μg/L	2.00		58.1	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.19		μg/L	2.00		59.3	30-150			
LCS (B227544-BS1)				Prepared: 04	/05/19 Analy	yzed: 04/06/1	19			
Aroclor-1016	0.42	0.20	$\mu g/L$	0.500		85.0	40-140			
Aroclor-1016 [2C]	0.42	0.20	$\mu g/L$	0.500		84.6	40-140			
Aroclor-1260	0.40	0.20	$\mu g/L$	0.500		79.4	40-140			
Aroclor-1260 [2C]	0.41	0.20	μg/L	0.500		82.3	40-140			
Surrogate: Decachlorobiphenyl	1.73		μg/L	2.00		86.5	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.75		μg/L	2.00		87.3	30-150			
Surrogate: Tetrachloro-m-xylene	1.40		$\mu g/L$	2.00		70.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.43		$\mu g/L$	2.00		71.6	30-150			
LCS Dup (B227544-BSD1)				Prepared: 04	/05/19 Analy	yzed: 04/06/1	19			
Aroclor-1016	0.41	0.20	μg/L	0.500		81.2	40-140	4.53	20	
Aroclor-1016 [2C]	0.42	0.20	$\mu g/L$	0.500		83.2	40-140	1.67	20	
Aroclor-1260	0.38	0.20	$\mu \text{g/L}$	0.500		76.2	40-140	4.17	20	
Aroclor-1260 [2C]	0.40	0.20	μg/L	0.500		79.5	40-140	3.52	20	
Surrogate: Decachlorobiphenyl	1.67		μg/L	2.00		83.3	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.73		$\mu g/L$	2.00		86.3	30-150			
Surrogate: Tetrachloro-m-xylene	1.40		$\mu g/L$	2.00		69.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.44		μg/L	2.00		71.9	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227365 - SW-846 3005A										
Blank (B227365-BLK1)				Prepared: 04	/03/19 Anal	yzed: 04/04/1	9			
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.40	$\mu g/L$							
Barium	ND	10	$\mu g/L$							
Beryllium	ND	0.40	$\mu g/L$							
admium	ND	0.50	$\mu g/L$							
hromium	ND	1.0	$\mu g/L$							
opper	ND	5.0	μg/L							
ead	ND	1.0	$\mu g/L$							
anganese	ND	1.0	$\mu g/L$							
ickel	ND	5.0	$\mu g/L$							
elenium	ND	5.0	$\mu g/L$							
lver	ND	0.50	$\mu g/L$							
nallium	ND	0.20	$\mu g\!/\!L$							
anadium	ND	5.0	$\mu g/L$							
nc	ND	10	$\mu g/L$							
CS (B227365-BS1)				Prepared: 04	/03/19 Analy	yzed: 04/04/1	9			
ntimony	503	10	$\mu g/L$	500		101	80-120			
rsenic	501	4.0	$\mu g/L$	500		100	80-120			
arium	497	100	$\mu g/L$	500		99.5	80-120			
eryllium	468	4.0	$\mu g/L$	500		93.7	80-120			
admium	503	5.0	$\mu g/L$	500		101	80-120			
nromium	501	10	$\mu g/L$	500		100	80-120			
opper	1050	50	$\mu g/L$	1000		105	80-120			
ead	520	10	$\mu g/L$	500		104	80-120			
anganese	529	10	μg/L	500		106	80-120			
ickel	518	50	$\mu g/L$	500		104	80-120			
elenium	492	50	$\mu g/L$	500		98.5	80-120			
lver	473	5.0	μg/L	500		94.7	80-120			
nallium	507	2.0	μg/L	500		101	80-120			
nnadium	534	50	μg/L	500		107	80-120			
nc	1000	100	μg/L	1000		100	80-120			
CS Dup (B227365-BSD1)				Prepared: 04	1/03/19 Analy	yzed: 04/04/1	9			
ntimony	525	10	μg/L	500		105	80-120	4.31	20	
rsenic	527	4.0	$\mu g/L$	500		105	80-120	4.99	20	
arium	521	100	μg/L	500		104	80-120	4.62	20	
eryllium	508	4.0	$\mu g/L$	500		102	80-120	8.08	20	
admium	522	5.0	$\mu g/L$	500		104	80-120	3.84	20	
nromium	522	10	$\mu g/L$	500		104	80-120	4.05	20	
opper	1100	50	$\mu g/L$	1000		110	80-120	4.66	20	
ead	537	10	$\mu g/L$	500		107	80-120	3.22	20	
anganese	551	10	$\mu g/L$	500		110	80-120	4.06	20	
ickel	542	50	μg/L	500		108	80-120	4.56	20	
elenium	520	50	μg/L	500		104	80-120	5.40	20	
lver	491	5.0	μg/L	500		98.3	80-120	3.74	20	
nallium	523	2.0	μg/L	500		105	80-120	3.02	20	
anadium	562	50	μg/L	500		112	80-120	5.03	20	
inc	1040	100	μg/L	1000		104	80-120	3.65	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227365 - SW-846 3005A										
Duplicate (B227365-DUP1)	Sou	rce: 19D0030-	02	Prepared: 04	/03/19 Analy	zed: 04/04/	19			
Antimony	ND	1.0	μg/L		ND			NC	20	
Arsenic	ND	0.40	μg/L		ND			NC	20	
Barium	93.0	10	μg/L		93.2			0.253	20	
Beryllium	ND	0.40	μg/L		ND			NC	20	
Cadmium	0.529	0.50	μg/L		0.522			1.33	20	
Chromium	ND	1.0	μg/L		ND			NC	20	
Copper	5.13	5.0	μg/L		5.13			0.00828	20	
Lead	ND	1.0	μg/L		ND			NC	20	
Manganese	4870	100	μg/L		4360			11.0	20	
Nickel	16.8	5.0	μg/L		16.6			1.46	20	
Selenium	ND	5.0	μg/L		ND			NC	20	
Silver	ND	0.50	μg/L		ND			NC	20	
Гhallium	ND	0.20	μg/L		ND			NC	20	
Vanadium	ND	5.0	μg/L		ND			NC	20	
Zinc	ND	10	μg/L		ND			NC	20	
Matrix Spike (B227365-MS1)	Sou	rce: 19D0030-	02	Prepared: 04	/03/19 Analy	zed: 04/04/	19			
Antimony	534	10	$\mu \text{g/L}$	500	ND	107	75-125			
Arsenic	532	4.0	μg/L	500	ND	106	75-125			
Barium	618	100	μg/L	500	93.2	105	75-125			
Beryllium	535	4.0	μg/L	500	ND	107	75-125			
Cadmium	526	5.0	μg/L	500	ND	105	75-125			
Chromium	513	10	μg/L	500	ND	103	75-125			
Copper	1060	50	μg/L	1000	ND	106	75-125			
Lead	551	10	μg/L	500	ND	110	75-125			
Manganese	5000	100	μg/L	500	4360	128 *	75-125			MS-19
Nickel	544	50	$\mu g/L$	500	16.6	105	75-125			
Selenium	520	50	μg/L	500	ND	104	75-125			
Silver	468	5.0	μg/L	500	ND	93.7	75-125			
Гhallium	540	2.0	μg/L	500	ND	108	75-125			
Vanadium	585	50	μg/L	500	ND	117	75-125			
Zinc	1050	100	μg/L	1000	ND	105	75-125			
Batch B227561 - SW-846 7470A Prep										
Blank (B227561-BLK1)				Prepared & A	Analyzed: 04/	08/19				
Mercury	ND	0.00010	mg/L							
LCS (B227561-BS1)				Prepared & A	Analyzed: 04/	08/19				
Mercury	0.00379	0.00010	mg/L	0.00400		94.7	80-120			
LCS Dup (B227561-BSD1)				Prepared &	Analyzed: 04/	08/19				
Mercury	0.00381	0.00010	mg/L	0.00400	2227,200.01/	95.2	80-120	0.563	20	

QUALITY CONTROL

Metals Analyses (Dissolved) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227576 - SW-846 3005A Dissolved										
Blank (B227576-BLK1)				Prepared: 04	1/05/19 Anal	yzed: 04/08/1	19			
Arsenic	ND	0.40	μg/L							
LCS (B227576-BS1)				Prepared: 04	1/05/19 Anal	yzed: 04/08/1	19			
Arsenic	41.3	0.40	μg/L	40.0		103	80-120			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227184 - EPA 300.0		<u> </u>								
Blank (B227184-BLK1)				Prepared &	Analyzed: 04	/02/19				
Nitrate as N	ND	0.10	mg/L							
Nitrite as N	ND	0.100	mg/L							
LCS (B227184-BS1)				Prepared &	Analyzed: 04	/02/19				
Nitrate as N	0.92	0.10	mg/L	1.00		92.2	90-110			
Nitrite as N	0.977	0.100	mg/L	1.00		97.7	90-110			
LCS Dup (B227184-BSD1)				Prepared &	Analyzed: 04	/02/19				
Nitrate as N	0.91	0.10	mg/L	1.00		91.5	90-110	0.752	20	
Nitrite as N	0.973	0.100	mg/L	1.00		97.3	90-110	0.410	20	
Batch B227187 - SM 21-22 4500 P E										
Blank (B227187-BLK1)				Prepared &	Analyzed: 04	/01/19				
Orthophosphate as P	ND	0.050	mg/L							
LCS (B227187-BS1)				Prepared &	Analyzed: 04	/01/19				
Orthophosphate as P	0.18	0.050	mg/L	0.170		105	72-122			
LCS Dup (B227187-BSD1)				Prepared &	Analyzed: 04	/01/19				
Orthophosphate as P	0.20	0.050	mg/L	0.170		118	72-122	12.3	* 10.6	R-05
Duplicate (B227187-DUP1)	Sour	ce: 19D0030-	04	Prepared &	Analyzed: 04	/01/19				
Orthophosphate as P	ND	0.050	mg/L		NE)		NC	17	
Matrix Spike (B227187-MS1)	Sour	ce: 19D0030-	04	Prepared &	Analyzed: 04	/01/19				
Orthophosphate as P	0.30	0.050	mg/L	0.300	NE	101	55.9-148			
Batch B227200 - SM19-22 4500 NH3 C										
Blank (B227200-BLK1)				Prepared: 04	/02/19 Anal	yzed: 04/03/	19			
Ammonia as N	ND	0.30	mg/L							
LCS (B227200-BS1)				Prepared: 04	/02/19 Anal	yzed: 04/03/	19			
Ammonia as N	4.8	0.30	mg/L	5.00		95.8	81.5-113			
LCS Dup (B227200-BSD1)				Prepared: 04	/02/19 Anal	yzed: 04/03/	19			
Ammonia as N	4.8	0.30	mg/L	5.00		95.8	81.5-113	0.00	11.4	
Batch B227249 - SM 21-22 4500 P E										
Blank (B227249-BLK1)				Prepared &	Analyzed: 04	-/02/19				
Phosphorus, Total	ND	0.050	mg/L							

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227249 - SM 21-22 4500 P E										
LCS (B227249-BS1)				Prepared &	Analyzed: 04	/02/19				
Phosphorus, Total	0.21	0.050	mg/L	0.205		101	86.5-124			
LCS Dup (B227249-BSD1)				Prepared &	Analyzed: 04	/02/19				
Phosphorus, Total	0.24	0.050	mg/L	0.205		116	86.5-124	13.8	* 11	R-05
Duplicate (B227249-DUP1)	Sou	rce: 19D0030-	04	Prepared &	Analyzed: 04	/02/19				
Phosphorus, Total	ND	0.062	mg/L		ND)		NC	38.5	
Matrix Spike (B227249-MS1)	Sou	rce: 19D0030-	04	Prepared &	Analyzed: 04	/02/19				
Phosphorus, Total	0.41	0.062	mg/L	0.300	ND	136	28.2-163			
Batch B227312 - SM19-22 4500-N Org B,C-NH3 C										
Blank (B227312-BLK1)				Prepared: 04	1/03/19 Analy	yzed: 04/04	/19			
Total Kjeldahl Nitrogen	ND	1.0	mg/L							
LCS (B227312-BS1)				Prepared: 04	1/03/19 Analy	yzed: 04/04	/19			
Total Kjeldahl Nitrogen	19	1.0	mg/L	20.0		95.8	75-117			
Batch B227319 - EPA 300.0										
Blank (B227319-BLK1)				Prepared &	Analyzed: 04	/02/19				
Nitrate as N	ND	0.10	mg/L							
LCS (B227319-BS1)				Prepared &	Analyzed: 04	/02/19				
Nitrate as N	0.98	0.10	mg/L	1.00		97.8	90-110			
LCS Dup (B227319-BSD1)				Prepared &	Analyzed: 04	/02/19				
Nitrate as N	1.0	0.10	mg/L	1.00		102	90-110	4.58	20	
Duplicate (B227319-DUP1)	Sou	rce: 19D0030-	04	Prepared &	Analyzed: 04	/02/19				
Nitrate as N	7.8	0.20	mg/L		7.8			0.213	20	
Matrix Spike (B227319-MS1)	Sou	rce: 19D0030-	04	Prepared &	Analyzed: 04	/02/19				
Nitrate as N	9.2	0.20	mg/L	2.00	7.8	71.5	* 80-120			MS-07
Batch B227332 - EPA 300.0										
Blank (B227332-BLK1)				Prepared &	Analyzed: 04	/02/19				
Nitrite as N	ND	0.100	mg/L							

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227332 - EPA 300.0										
LCS (B227332-BS1)				Prepared & Analyzed: 04/02/19						
Nitrite as N	1.10	0.100	mg/L	1.00		110	90-110			
LCS Dup (B227332-BSD1)		Prepared & Analyzed: 04/02/19								
Nitrite as N	1.10	0.100	mg/L	1.00		110	90-110	0.100	20	
Duplicate (B227332-DUP1)	Sourc	e: 19D0030-	04	Prepared &	Analyzed: 04	/02/19				
Nitrite as N	0.792	0.100	mg/L		0.810	1		2.29	20	
Matrix Spike (B227332-MS1)	Sourc	e: 19D0030-	04	Prepared &	Analyzed: 04					
Nitrite as N	1.82	0.100	mg/L	1.00	0.810	101	80-120			
Batch B227352 - EPA 300.0										
Blank (B227352-BLK1)				Prepared &	Analyzed: 04	/05/19				
Chloride	ND	1.0	mg/L							
LCS (B227352-BS1)				Prepared &	Analyzed: 04	/05/19				
Chloride	5.1	1.0	mg/L	5.00		102	90-110			
LCS Dup (B227352-BSD1)				Prepared &	Analyzed: 04	/05/19				
Chloride	5.1	1.0	mg/L	5.00		103	90-110	0.224	20	
Duplicate (B227352-DUP2)	Sourc	e: 19D0030-	04	Prepared &	Analyzed: 04	/05/19				
Chloride	140	10	mg/L		140	ı		2.91	20	
Matrix Spike (B227352-MS2)	Source	e: 19D0030-	04	Prepared &	Analyzed: 04	/05/19				
Chloride	180	10	mg/L	50.0	140	82.0	80-120			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	

SW-846 8082A

Lab Sample ID:	B227544-BS1		Date(s) Analyzed:	04/06/2019	04/06	/2019
Instrument ID (1):	ECD4		Instrument ID (2):	ECD4		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10/12112	OOL	111	FROM	TO	OONOLIVITUUTION	70111 15
Aroclor-1016	1	0.000	0.000	0.000	0.42	
	2	0.000	0.000	0.000	0.42	2.4
Aroclor-1260	1	0.000	0.000	0.000	0.40	
	2	0.000	0.000	0.000	0.41	2.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	Dup	

SW-846 8082A

Lab Sample ID:	B227544-BSD1		Date(s) Analyzed:	04/06/2019	04/06/201	9
Instrument ID (1):	ECD4	_	Instrument ID (2):	ECD4		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.41	
	2	0.000	0.000	0.000	0.42	2.4
Aroclor-1260	1	0.000	0.000	0.000	0.38	
	2	0.000	0.000	0.000	0.40	5.1

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
MS-19	Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
RL-07	Elevated reporting limit based on lowest point in calibration. MA CAM reporting limit not met.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
W-17	Samples analyzed for Ortho phosphate were not filtered within 15 minutes of sampling.

CERTIFICATIONS

Aroclor-1262

Certified Analyses included in this Report	
Analyte	Certifications
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
Nitrate as N	NC,NY,MA,VA,ME,NH,CT,RI
Nitrite as N	NY,NC,NH,VA,ME,CT,RI
SM 21-22 4500 P E in Water	
Orthophosphate as P	CT,MA,NH,NY,RI,ME,VA
Phosphorus, Total	CT,MA,NH,NY,RI,NC,ME,VA
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM19-22 4500-N Org B,C-NH3 C in Water	
Total Kjeldahl Nitrogen	CT,MA,NH,NY,RI,NC,ME,VA
SW-846 6020B in Water	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,NC,ME,VA
Arsenic	CT,NH,NY,ME,VA,NC
Barium	CT,NH,NY,ME,VA,NC
Beryllium	CT,NH,NY,ME,VA,NC
Cadmium	CT,NH,NY,RI,ME,VA,NC
Chromium	CT,NH,NY,ME,VA,NC
Copper	CT,NH,NY,ME,VA,NC
Lead	CT,NH,NY,ME,VA,NC
Manganese	CT,NH,NY,ME,VA,NC
Nickel	CT,NH,NY,ME,VA,NC
Selenium	CT,NH,NY,ME,VA,NC
Silver	CT,NH,NY,ME,VA,NC
Thallium	CT,NH,NY,ME,VA,NC
Vanadium	CT,NH,NY,ME,VA,NC
Zinc	CT,NH,NY,ME,VA,NC
SW-846 7470A in Water	
Mercury	CT,NH,NY,NC,ME,VA
SW-846 8082A in Water	
Aroclor-1016	CT,NH,NY,NC,ME,VA
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1221	CT,NH,NY,NC,ME,VA
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1232	CT,NH,NY,NC,ME,VA
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1242	CT,NH,NY,NC,ME,VA
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1248	CT,NH,NY,NC,ME,VA
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1254	CT,NH,NY,NC,ME,VA
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1260	CT,NH,NY,NC,ME,VA
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA

NH,NY,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8082A in Water	
Aroclor-1262 [2C]	NH,NY,NC,ME,VA
Aroclor-1268	NH,NY,NC,ME,VA
Aroclor-1268 [2C]	NH,NY,NC,ME,VA
SW-846 8260C in Water	
Acetone	CT,NH,NY,ME
tert-Amyl Methyl Ether (TAME)	NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME
n-Butylbenzene	NY,ME
sec-Butylbenzene	NY,ME
tert-Butylbenzene	NY,ME
tert-Butyl Ethyl Ether (TBEE)	NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
2-Chlorotoluene	NY,ME
4-Chlorotoluene	NY,ME
1,2-Dibromo-3-chloropropane (DBCP)	NY
1,2-Dibromoethane (EDB)	NY
Dibromomethane	NH,NY,ME
1,2-Dichlorobenzene	CT,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NH,NY,ME
1,1-Dichloroethane	CT,NH,NY,ME
1,2-Dichloroethane	CT,NH,NY,ME
1,1-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME
1,3-Dichloropropane	NY,ME
2,2-Dichloropropane	NH,NY,ME
1,1-Dichloropropene	NH,NY,ME
cis-1,3-Dichloropropene	CT,NH,NY,ME
trans-1,3-Dichloropropene	CT,NH,NY,ME
Diisopropyl Ether (DIPE)	NH,NY,ME
Ethylbenzene	CT,NH,NY,ME

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Hexachlorobutadiene	CT,NH,NY,ME
2-Hexanone (MBK)	CT,NH,NY,ME
Isopropylbenzene (Cumene)	NY,ME
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,ME
Methyl tert-Butyl Ether (MTBE)	CT,NH,NY,ME
Methylene Chloride	CT,NH,NY,ME
4-Methyl-2-pentanone (MIBK)	CT,NH,NY,ME
Naphthalene	NH,NY,ME
n-Propylbenzene	CT,NH,NY,ME
Styrene	CT,NH,NY,ME
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME
Tetrachloroethylene	CT,NH,NY,ME
Toluene	CT,NH,NY,ME
1,2,3-Trichlorobenzene	NH,NY,ME
1,2,4-Trichlorobenzene	CT,NH,NY,ME
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	CT,NH,NY,ME
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	NY,ME
1,3,5-Trimethylbenzene	NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME
SW-846 8270D in Water	
Acenaphthene	CT,NY,NH
Acenaphthylene	CT,NY,NH
Acetophenone	NY
Aniline	CT,NY
Anthracene	CT,NY,NH
Benzo(a)anthracene	CT,NY,NH
Benzo(a)pyrene	CT,NY,NH
Benzo(b)fluoranthene	CT,NY,NH
Benzo(g,h,i)perylene	CT,NY,NH
Benzo(k)fluoranthene	CT,NY,NH
Bis(2-chloroethoxy)methane	CT,NY,NH
Bis(2-chloroethyl)ether	CT,NY,NH
Bis(2-chloroisopropyl)ether	CT,NY,NH
Bis(2-Ethylhexyl)phthalate	CT,NY,NH
4-Bromophenylphenylether	CT,NY,NH
Butylbenzylphthalate	CT,NY,NH
4-Chloroaniline	CT,NY,NH
2-Chloronaphthalene	CT,NY,NH
2-Chlorophenol	CT,NY,NH

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270D in Water		
Chrysene	CT,NY,NH	
Dibenz(a,h)anthracene	CT,NY,NH	
Dibenzofuran	CT,NY,NH	
Di-n-butylphthalate	CT,NY,NH	
1,2-Dichlorobenzene	CT,NY,NH	
1,3-Dichlorobenzene	CT,NY,NH	
1,4-Dichlorobenzene	CT,NY,NH	
3,3-Dichlorobenzidine	CT,NY,NH	
2,4-Dichlorophenol	CT,NY,NH	
Diethylphthalate	CT,NY,NH	
2,4-Dimethylphenol	CT,NY,NH	
Dimethylphthalate	CT,NY,NH	
2,4-Dinitrophenol	CT,NY,NH	
2,4-Dinitrotoluene	CT,NY,NH	
2,6-Dinitrotoluene	CT,NY,NH	
Di-n-octylphthalate	CT,NY,NH	
1,2-Diphenylhydrazine/Azobenzene	NY	
Fluoranthene	CT,NY,NH	
Fluorene	NY,NH	
Hexachlorobenzene	CT,NY,NH	
Hexachlorobutadiene	CT,NY,NH	
Hexachloroethane	CT,NY,NH	
Indeno(1,2,3-cd)pyrene	CT,NY,NH	
Isophorone	CT,NY,NH	
2-Methylnaphthalene	CT,NY,NH	
2-Methylphenol	CT,NY,NH	
3/4-Methylphenol	CT,NY,NH	
Naphthalene	CT,NY,NH	
Nitrobenzene	CT,NY,NH	
2-Nitrophenol	CT,NY,NH	
4-Nitrophenol	CT,NY,NH	
Pentachlorophenol	CT,NY,NH	
Phenanthrene	CT,NY,NH	
Phenol	CT,NY,NH	
Pyrene	CT,NY,NH	
1,2,4-Trichlorobenzene	CT,NY,NH	
2,4,5-Trichlorophenol	CT,NY,NH	
2,4,6-Trichlorophenol	CT,NY,NH	

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

CON-test®

Phone: 413-525-2332

CHAIN OF CUSTODY RECORD

39 Spruce Street East Longmeadow, MA 01028

Page	of	Montage
rage	01	!

ANALTTICAL LABORATORY	Fax: 413-525-6405		P _C	Tapraca (2008)	evensortorum SVISTILIS			1				East	. Longm	eado	w, M	A 0102	28		rage _ t_ or t ,
3L H	Email: info@contestlabs.co	'n	7-Day	П	10-Da	**************************************		1		7	2	7	,	, T					# a £ O = a a a
when we			Due Date:			Say i		N	N	1	1	1	5	1	-		\dashv		# of Containers
Address: 100 N Washin	alon St PUSTON MA			Aller Arm				P	P	1	A	A		P	\dashv			—	² Preservation Code
Phone: 781-917 -5368	<i>y</i>	····	1-Day		3-Day		7	<u> </u>	3	*			REQU		FD	\rightarrow			Container Code
Projectionic	Ruer's Edge		2-Day	ā	4-Day	, [ĺ		. , <u>J.J</u>	1 1	м	1				and the second s
Project Location: Way by	A.M.A			Date	and a standard or the		_		~				^	25					S Field Filtered
Project Number: 46647	,		Format:	Company Comments of the Commen	See Assessment Control of the Control	CONTRACTOR OF THE PARTY OF THE	<u> </u>	i	ĮŽ.				Pho s	2		- 1			C Lab to Filter
Project Manager: K SC/50/				600	, -/,-2.	- ,-		,	38				<u>a</u> :	2					
Con-Test Quote Name/Number:		***************************************	CLP Like D		equired:			ž	in Metal			,	<u> </u>	3					Orthodosoliace Sample:
Invoice Recipient: E. Scus	<u>ی</u>		Email To:				 ∠a⁄h	ે	9			25	3	8	1		l		O Field Filtered
Sampled By: K. Sasson	` <u> </u>	****	Fax To #:	<u> </u>	(m vari	exery,	60.11	*		0	70	8	与	7				-	O Lab to Filter
Con-Test Work Order#	Client Sample ID / Description	Beginning Date/Figue	Ending - Date /Time	Composite	Grab	Matrix Code	Conc Code	\$ 5 5	6th	3260	83	RB	Ammo/16thd///	Whashe for this chloride					¹ Matrix Codes:
	V 1-7 (1)				1		cooe		7-			ÇŢ.	Æ	4	_				GW = Ground Water
	V-103 (MW)	4/1/19	egig Wig		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	GW				X			×						WW = Waste Water DW = Drinking Water
2	V-101 (MW)		#\$P\$					≫	'n	R	Ø	×	XI.	Ø					A = Air S = Soil
3	V- 102 (MW)		430							X	У	M		v.	\neg	+	\dashv	\dashv	5 = 500 SL = Sludge
Y	V-105 (MW)	1 1			+1-	-		Х				`		\dashv	-		-		SOL = Solid
	102 (107)	<u> </u>	1500		-	W		ж	الكر	X	χ	K?	×	У					O = Other (please define)
																		\Box	
	·									\dashv				\dashv	\dashv		_	\dashv	² Preservation Codes:
					+			-1							_				I = Iced
																			H = HCL
								I						\top	_	_	_	\dashv	M = Methanol N = Nitric Acid
								-	_				_	+	+			\dashv	S = Sulfuric Acid
																			B = Sodium Bisulfate X = Sodium Hydroxide
	sample 01 was								- 1	- 1		- 1					T	П	T = Sodium
Comments:	moved to work			****											<u> </u>			\dashv	Thiosulfate
	order 19D0106					Please	use the	follow	ing co	odes t	o indi	cate	possible	sam	ple c	опсеп	itratio	эп	O = Other (please define)
	JLH 4/3/19, add	1					16 135-4						lumn at						
<u> </u>	Cu and Mn						H - High	I; NI -	Medit	JM); L	- Lov	v; C	· Clean;	; U -	Unkr	nwor			³ Container Codes:
Relinquished by: (signature)	Date/Time:		Maria de de	lig-rij in is		Special R	equirem	ents										\dashv	A = Amber Glass
David	4/1/19 1545	N/A			Ø		МА МСР	37.00 Sec. 10.00	ired										G = Glass P = Plastic
Received by: (signature) >	-d 4/ Date/Time: 1545						ation Fori			ll.		1	rn	_	1		_ =_0	a l	ST = Sterile
The state of the s	CR 1/1/19/1043						CT RCP	Requ	ired			9	CO	N	-(E	5 C		V = Vial
Relinquished by: (sign@ure)	4/1/9 1945	61			RC	P Certific	ation Fori	n Requ	uired	भा	Ш		ANALYI	IICAL	LAB	ORAT	ORY		S = Summa Canister T = Tedlar Bag
ived by: (signature) 3.3							****						William.	cont	estle	bs.ce	H		O = Other (please
Dived by: (signature) 3.3	// Date/Time:						State DW	Requir	ed			***							define)
	Date/Time:	Droinet Fat	<u> </u>		PWSID	#				Ä	ELAC	MARKET STATES	ATHA-LJ	₩, L	LC Ac	credi	ted		
Ö	outer rang.	Project Ent	ity Governmen	. 🗀	A.B	104		.				þ	Other	_				T	PCB ONLY
O ived by: (signature)	Date/Time:	===	Governmen Federal		Munici _l	panty	님	MWF		⊔ \	VRTA		Ļ	_		itogra			Soxhlet
			City		21 J Brownf	fiold		Scho MBT					L	J Ai	HA-L	AP,LL	С		Non Soxhlet
	·········	<u> </u>	-,	ـــا	DI GAALIL	14,144	1 1	MIDI	Α.			- 1							

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	Vectex								
Receiv	ved By	lR		Date	4-1-19		Time	1945	
	he samples	In Cooler		No Cooler		On Ice		No Ice	
recei	ved?	Direct from Sam	pling		_	Ambient		Melted Ice	
Were sam	ples within		By Gun #	3	_	Actual Tem	p-3.3,2.	7	_
	.re? 2-6°C	- T	By Blank #			Actual Tem	D -		
Was	Custody S	eal Intact?	, NA			s Tampered		NA	-
Was	s COC Relin	quished?				ree With Sai		$\overline{\tau}$	-
Are the	ere broken/l	eaking/loose caps	on any sam		F		,		-
Is COC in ir			,	•		ved within ho	oldina time?		
Did COC	include all	Client	<u> </u>	Analysis	·		er Name		-
pertinent In	formation?	Project	T	ID's	$\overline{\tau}$		Dates/Times	7	•
Are Sample	e labels filled	d out and legible?	7	•	***************************************	•	,		•
Are there La			F	•	Who was	s notified?			
Are there Ru	ushes?		F	•	Who was	s notified?			•
Are there Sh	nort Holds?		T		Who was	s notified?	Irma		-
Is there eno	ugh Volume	?	* -						•
Is there Hea	idspace whe	ere applicable?	F		MS/MSD?	F			
Proper Med	ia/Container	s Used?	T		Is splitting	samples req	uired?	F	
Were trip bla	anks receive	∍d?	T		On COC?		•		•
Do all samp	les have the	proper pH?		Acid			Base		
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.	ط	1 Liter		ヲ	16 oz	Amb.	
*****	tt 13 14	500 mL Amb.		500 mL			8oz Am	b/Clear	
Meoh-		250 mL Amb.		250 mL		Ь	4oz Am		
Bisulfate-		Flashpoint		Col./Ba	- Hardwin and -		2oz Am		
DI-		Other Glass	ط	Other I			Enc	ore	
Thiosulfate-		SOC Kit		Plasti			Frozen:		
Sulfuric-		Perchlorate		Zipl	ock				
				Unused I	Vedia				
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.		1 Liter			16 oz		
HCL-		500 mL Amb.		500 mL			8oz Am	·····	
Meoh-		250 mL Amb.		250 mL			4oz Am		
Bisulfate-		Col./Bacteria		Flash			2oz Am		
DI-	·	Other Plastic		Other			Enc	ore	
Thiosulfate- Sulfuric-		SOC Kit Perchlorate		Plastic			Frozen:		
Comments:		rerchiorate		Zipl	ock				
comments:									

Trip blank received not on COC

		MADE	P MCP Analytical N	lethod Report Cer	tification Form						
Labo	ratory Name	: Con-Test Ana	llytical Laboratory		Project #: 19D0	0030					
Proje	ect Location:	Wayland, MA			RTN:						
This Form provides certifications for the following data set: [list Laboratory Sample ID Number(s)]											
190	00030-02 thru	ı 19D0030-05									
Matri	ces:	Water									
CA	AM Protoco	l (check all that	below)								
8260 CAM	VOC II A (X)	7470/7471 Hg CAM IIIB (X)	MassDEP VPH CAM IV A ()	8082 PCB CAM V A (X)	9014 Total Cyanide/PAC CAM VI A ()	6860 Perchlo CAM V					
	SVOC II B (X)	MassD CAM IX	EP APH 〈 A ()								
	Metals III A ()	6020 Metals CAM III D (X)	MassDEP EPH CAM IV B ()	8151 Herbicides CAM V C ()	8330 Explosives CAM VIII A ()	TO-15					
	Α	ffirmative response	to Questions A throu	ghF is required for "l	Presumptive Certainty"	status					
Α		rved (including temper	tion consistent with those ature) in the field or labor			☑ Yes	□No¹				
B Were the analytical method(s) and all associated QC requirements specificed in the selected CAM protocol(s) followed?											
С	☑ Yes										
D	Does the labor	ratory report comply wi	fied performance standard ith all the reporting require ol Guidlines for the Acquis	ements specified in CAM		☑ Yes	□No¹				
Εa		•	Nas each method conduc			☐Yes	□No¹				
Εb			the complete analyte list r			☐Yes	□No¹				
F			C and performance standanduding all No responses			☑ Yes	□No¹				
			and I below is require								
G	protocol(s)?		all CAM reporting limits s			☐Yes	☑No¹				
			resumptive Certainty" described in 310 CMP	-	ssarily meet the data us WSC-07-350.	sability					
Н	Were all QC p	erfomance standards s	specified in the CAM proto	ocol(s) achieved?		□ _{Yes}	☑ _{No¹}				
I	Were results re	eported for the comple	te analyte list specified in	the selected CAM proto	col(s)?	☑ Yes	□No¹				
1 _{All}	Negative resp	onses must be addre	essed in an attached Er	nvironmental Laborato	ry case narrative.						
thos	se responsible	-	nformation, the mater		pon my personal inquin analytical report is, to th	-					
Sign	nature:	hisa W	forthungton _	Position:	Technical Represent	ative					
Prin	nted Name: _	Lisa A. Worthing	ton	Date:	04/08/19						

April 23, 2019

Kristen Sarson Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114

Project Location: Wayland, MA

Client Job Number: Project Number: 46047

Laboratory Work Order Number: 19D0106

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on April 2, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	9
19D0106-01	9
19D0106-02	17
19D0106-03	25
19D0106-04	33
Sample Preparation Information	41
QC Data	44
Volatile Organic Compounds by GC/MS	44
B227205	44
B227208	48
Semivolatile Organic Compounds by GC/MS	53
B227443	53
Polychlorinated Biphenyls By GC/ECD	57
B227544	57
Metals Analyses (Total)	58
B227554	58
B227561	59
Metals Analyses (Dissolved)	60
B227576	60
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	61
B227200	61
B227277	61
B227283	61

Table of Contents (continued)

B227312	62
B227529	62
B227568	62
B227612	62
Dual Column RPD Report	64
Flag/Qualifier Summary	66
Certifications	67
Chain of Custody/Sample Receipt	72

Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114 ATTN: Kristen Sarson

PURCHASE ORDER NUMBER:

REPORT DATE: 4/23/2019

PROJECT NUMBER: 46047

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19D0106

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wayland, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
V-103 (MW)	19D0106-01	Ground Water		EPA 300.0	
				SM 21-22 4500 P E	3
				SM19-22 4500 NH	3 C
				SM19-22 4500-N (Org
				B,C-NH3 C	
				SW-846 6020B	
				SW-846 7470A	
				SW-846 8082A	
				SW-846 8260C	
				SW-846 8270D	
V-106 (MW)	19D0106-02	Ground Water		EPA 300.0	
				SM 21-22 4500 P E	3
				SM19-22 4500 NH	3 C
				SM19-22 4500-N (Org
				B,C-NH3 C	
				SW-846 6020B	
				SW-846 7470A	
				SW-846 8082A	
				SW-846 8260C	
				SW-846 8270D	
V-104 (MW)	19D0106-03	Ground Water		EPA 300.0	
				SM 21-22 4500 P E	3
				SM19-22 4500 NH	3 C
				SM19-22 4500-N (Org
				B,C-NH3 C SW-846 6020B	
				SW-846 7470A	
				SW-846 8082A	
				SW-846 8260C	
				SW-846 8270D	
MW-3	19D0106-04	Ground Water		EPA 300.0	_
				SM 21-22 4500 P E	
				SM19-22 4500 NH	
				SM19-22 4500-N (Org
				B,C-NH3 C SW-846 6020B	
				SW-846 7470A	
				SW-846 8082A	
				SW-846 8260C	
				SW-846 8270D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 04-23-19: Per client request dissolved Ni was added to sample 19D0106-02.

EPA 300.0

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated. Analyte & Samples(s) Qualified:

19D0106-03[V-104 (MW)], B227612-MS1

SM 21-22 4500 PE

Qualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

Orthophosphate as P

B227283-BSD1

W-17

Samples analyzed for Ortho phosphate were not filtered within 15 minutes of sampling.

Analyte & Samples(s) Qualified:

Orthophosphate as P

 $19D0106-01[V-103\ (MW)],\ 19D0106-02[V-106\ (MW)],\ 19D0106-03[V-104\ (MW)],\ 19D0106-04[MW-3],\ B227283-DUP1,\ B227283-DUP2,\ B227283-MS1,\ B227283-MS2,\ B227283-MS2,\$

SW-846 8260C

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:

Diethyl Ether

B227208-BS1, B227208-BSD1

Vinyl Chloride

B227208-BS1, B227208-BSD1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

1.1.2.2-Tetrachloroethane

19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3], B227208-BLK1, B227208-BS1, B227208-BSD1, S034384-CCV1

19D0106-01[V-103 (MW)], 19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3], B227205-BLK1, B227205-BS1, B227205-BSD1, B227208-BLK1, B227208-BS1, B227208-BSD1, S034302-CCV1, S034384-CCV1

RL-07

Elevated reporting limit based on lowest point in calibration.

MA CAM reporting limit not met. Analyte & Samples(s) Qualified:

1.2.3-Trichlorobenzene

19D0106-01[V-103 (MW)], 19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3]

1.2.4-Trichlorobenzene

19D0106-01[V-103 (MW)], 19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3]

1,2-Dibromo-3-chloropropane (DB)

 $19D0106-01[V-103\ (MW)],\ 19D0106-02[V-106\ (MW)],\ 19D0106-03[V-104\ (MW)],\ 19D0106-04[MW-3]$

Carbon Disulfide

 $19D0106-01[V-103\ (MW)],\ 19D0106-02[V-106\ (MW)],\ 19D0106-03[V-104\ (MW)],\ 19D0106-04[MW-3]$

Methylene Chloride

19D0106-01[V-103 (MW)], 19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3]

Naphthalene

19D0106-01[V-103 (MW)], 19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2,2-Dichloropropane

19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3], B227208-BLK1, B227208-BS1, B227208-BSD1, S034384-CCV1

2-Butanone (MEK)

19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3], B227208-BLK1, B227208-BS1, B227208-BSD1, S034384-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result

Analyte & Samples(s) Qualified:

 $19D0106-01[V-103\ (MW)],\ 19D0106-02[V-106\ (MW)],\ 19D0106-03[V-104\ (MW)],\ 19D0106-04[MW-3],\ B227205-BLK1,\ B227205-BSD1,\ B227205-BSD1,\ B227208-BLK1,\ B227208-BLK1$ B227208-BS1, B227208-BSD1, S034302-CCV1, S034384-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Diethyl Ether

B227208-BS1, B227208-BSD1, S034384-CCV1

Styrene

B227205-BS1, B227205-BSD1, B227208-BS1, B227208-BSD1, S034302-CCV1, S034384-CCV1

Vinyl Chloride

B227208-BS1, B227208-BSD1, S034384-CCV1

SW-846 8270D

Qualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

4-Chloroaniline

19D0106-04[MW-3], B227443-BLK1, B227443-BS1, B227443-BSD1

19D0106-04[MW-3], B227443-BLK1, B227443-BS1, B227443-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

19D0106-01[V-103 (MW)], 19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], B227443-BLK1, B227443-BS1, B227443-BSD1, S034390-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated

Analyte & Samples(s) Qualified:

4-Chloroaniline

19D0106-01[V-103 (MW)], 19D0106-02[V-106 (MW)], 19D0106-03[V-104 (MW)], 19D0106-04[MW-3], B227443-BLK1, B227443-BS1, B227443-BSD1, S034390-CCV1, S034392-CCV1

 $19D0106-01[V-103\ (MW)],\ 19D0106-02[V-106\ (MW)],\ 19D0106-03[V-104\ (MW)],\ 19D0106-04[MW-3],\ B227443-BLK1,\ B227443-BS1,\ B227443-BSD1,\ S034390-CCV1,\ B227443-BSD1,\ B227443-BSD1,$ S034392-CCV1

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

SW-846 8270D

Laboratory control sample recoveries for required MCP Data Enhancement 8270 compounds were all within control limits specified by the method, 40-140% for base/neutrals and 30-130% for acids except for "difficult analytes" listed below and/or otherwise listed in this narrative. Difficult analytes limits are 15 and 140%: 2,4-dinitrophenol, 4-chloroaniline, 4-nitrophenol, and phenol.

 $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ the \ Con-Test \ Analytical \ Laboratory \ for \ testing.$

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Sample Description: Work Order: 19D0106

Project Location: Wayland, MA

Date Received: 4/2/2019

Field Sample #: V-103 (MW)

Sampled: 4/2/2019 07:30

Sample ID: 19D0106-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10	μg/L	1	R-05	SW-846 8260C	4/3/19	4/3/19 15:39	EEH
tert-Amyl Methyl Ether (TAME)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Bromoform	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
2-Butanone (MEK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Carbon Disulfide	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2-Dichloropropane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
cis-1,3-Dichloropropene	ND	0.40	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH

Page 9 of 74

Project Location: Wayland, MA Sample Description: Work Order: 19D0106

Date Received: 4/2/2019

Field Sample #: V-103 (MW)

Sampled: 4/2/2019 07:30

98.7

Sample ID: 19D0106-01
Sample Matrix: Ground Water

4-Bromofluorobenzene

Volatile Organic Compounds by GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 15:39	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Naphthalene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 15:39	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/3/19	4/3/19 15:39	EEH
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
1,2-Dichloroethane-d4		85.8	70-130					4/3/19 15:39	
Toluene-d8		99.0	70-130					4/3/19 15:39	

70-130

4/3/19 15:39

Work Order: 19D0106

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019

Field Sample #: V-103 (MW)

Sampled: 4/2/2019 07:30

Sample ID: 19D0106-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Acenaphthylene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Acetophenone	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Aniline	ND	4.9	μg/L	1	V-34	SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Anthracene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Benzo(a)anthracene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Benzo(a)pyrene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Benzo(b)fluoranthene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Benzo(g,h,i)perylene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Benzo(k)fluoranthene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Bis(2-chloroethoxy)methane	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Bis(2-chloroethyl)ether	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Bis(2-chloroisopropyl)ether	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
4-Bromophenylphenylether	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Butylbenzylphthalate	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
4-Chloroaniline	ND	9.8	$\mu g/L$	1	V-34	SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2-Chloronaphthalene	ND	9.8	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2-Chlorophenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Chrysene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Dibenz(a,h)anthracene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Dibenzofuran	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Di-n-butylphthalate	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
1,2-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
1,3-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
1,4-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
3,3-Dichlorobenzidine	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2,4-Dichlorophenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Diethylphthalate	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2,4-Dimethylphenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Dimethylphthalate	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2,4-Dinitrophenol	ND	9.8	μg/L	1	V-05	SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2,4-Dinitrotoluene	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2,6-Dinitrotoluene	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Di-n-octylphthalate	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Fluoranthene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Fluorene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Hexachlorobenzene	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Hexachlorobutadiene	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Hexachloroethane	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Indeno(1,2,3-cd)pyrene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Isophorone	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2-Methylnaphthalene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
	1,12		ro z	•		2 2.0 02,02		Dogo 11	

Page 11 of 74

Work Order: 19D0106

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019

Field Sample #: V-103 (MW)

Sampled: 4/2/2019 07:30

Sample ID: 19D0106-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
3/4-Methylphenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Naphthalene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Nitrobenzene	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2-Nitrophenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
4-Nitrophenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Pentachlorophenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Phenanthrene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Phenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Pyrene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
1,2,4-Trichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2,4,5-Trichlorophenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
2,4,6-Trichlorophenol	ND	9.8	μg/L	1		SW-846 8270D	4/4/19	4/5/19 17:43	BGL
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2-Fluorophenol		47.1	15-110					4/5/19 17:43	
Phenol-d6		33.7	15-110					4/5/19 17:43	
Nitrobenzene-d5		70.7	30-130					4/5/19 17:43	
2-Fluorobiphenyl		73.4	30-130					4/5/19 17:43	
2,4,6-Tribromophenol		71.9	15-110					4/5/19 17:43	
p-Terphenyl-d14		86.7	30-130					4/5/19 17:43	

Sample Description: Work Order: 19D0106

Project Location: Wayland, MA

Date Received: 4/2/2019

Field Sample #: V-103 (MW)

Sampled: 4/2/2019 07:30

Sample ID: 19D0106-01
Sample Matrix: Ground Water

Polychlorinated Bi	phenvls By	GC/ECD
--------------------	------------	--------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Aroclor-1221 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Aroclor-1232 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Aroclor-1242 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Aroclor-1248 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Aroclor-1254 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Aroclor-1260 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Aroclor-1262 [1]	ND	0.17	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Aroclor-1268 [1]	ND	0.17	$\mu g/L$	1		SW-846 8082A	4/5/19	4/8/19 10:25	AYH
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Decachlorobiphenyl [1]		81.1	30-150					4/8/19 10:25	
Decachlorobiphenyl [2]		73.6	30-150					4/8/19 10:25	
Tetrachloro-m-xylene [1]		75.6	30-150					4/8/19 10:25	
Tetrachloro-m-xylene [2]		73.6	30-150					4/8/19 10:25	

Work Order: 19D0106

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Metals Analyses (Total)

mg/L

 $\mu g/L$

 $\mu g/L$

μg/L

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

1

1

1

Sample Description:

RL

1.0

0.40

10

0.40

0.50

1.0

5.0

1.0

1.0

0.00010

5.0

5.0

0.50

0.20

5.0

10

Results

ND

ND

14

ND

ND

ND

ND

ND

91

ND

ND

ND

ND

ND

ND

ND

Description:

Project Location: Wayland, MA
Date Received: 4/2/2019
Field Sample #: V-103 (MW)

Sampled: 4/2/2019 07:30

Sample ID: 19D0106-01
Sample Matrix: Ground Water

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Manganese

Mercury

Selenium

Thallium

Vanadium

Nickel

Silver

Zinc

Copper

Lead

				Date	Date/Time	
Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW
μg/L	1		SW-846 6020B	4/5/19	4/8/19 14:12	QNW

SW-846 7470A

SW-846 6020B

SW-846 6020B

SW-846 6020B

SW-846 6020B

SW-846 6020B

SW-846 6020B

4/8/19

4/5/19

4/5/19

4/5/19

4/5/19

4/5/19

4/5/19

4/8/19 14:33

4/8/19 14:12

4/8/19 14:12

4/8/19 14:12

4/8/19 14:12

4/8/19 14:12

4/8/19 14:12

EJB

QNW

QNW

QNW

QNW

QNW

QNW

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 4/2/2019
Field Sample #: V-103 (MW)

Sampled: 4/2/2019 07:30

Sample ID: 19D0106-01
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.74	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 11:17	QNW

Project Location: Wayland, MA Sample Description: Work Order: 19D0106

Date Received: 4/2/2019

Field Sample #: V-103 (MW)

Sampled: 4/2/2019 07:30

Sample ID: 19D0106-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	ND	0.30	mg/L	1		SM19-22 4500 NH3 C	4/2/19	4/3/19 10:00	EC
Chloride	230	10	mg/L	10		EPA 300.0	4/9/19	4/9/19 5:48	MMH
Nitrate as N	1.7	0.10	mg/L	1		EPA 300.0	4/3/19	4/3/19 15:48	IS
Nitrite as N	ND	0.100	mg/L	1		EPA 300.0	4/3/19	4/3/19 15:48	IS
Orthophosphate as P	ND	0.050	mg/L	1	W-17	SM 21-22 4500 P E	4/2/19	4/2/19 18:30	IS
Phosphorus, Total	0.14	0.062	mg/L	1.25		SM 21-22 4500 P E	4/7/19	4/7/19 15:06	AIA
Total Kjeldahl Nitrogen	ND	1.0	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/3/19	4/4/19 9:45	EC
Total Nitrogen	1.7	0.050	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/9/19	4/9/19 7:21	LL

Sample Description: Work Order: 19D0106

Project Location: Wayland, MA

Date Received: 4/2/2019

Field Sample #: V-106 (MW)

Sampled: 4/2/2019 09:30

Sample ID: 19D0106-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	SC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	10	$\mu g/L$	1	R-05	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
tert-Amyl Methyl Ether (TAME)	6.4	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Benzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Bromobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Bromochloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Bromodichloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Bromoform	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
2-Butanone (MEK)	ND	10	$\mu g/L$	1	V-05	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Carbon Disulfide	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Carbon Tetrachloride	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
cis-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Ethylbenzene	ND	1.0	μg/L μg/L	1	. 10	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
	ND	1.0	μg/∟	1		5 11-040 02000	→ / → /17	7/3/17 0.32	136161

Page 17 of 74

Work Order: 19D0106 Sample Description:

Project Location: Wayland, MA Date Received: 4/2/2019 Field Sample #: V-106 (MW)

Sampled: 4/2/2019 09:30

Sample ID: 19D0106-02 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1	0 -	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Methyl tert-Butyl Ether (MTBE)	14	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Naphthalene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1	R-05	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:32	EEH
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
1,2-Dichloroethane-d4		92.0	70-130					4/5/19 6:32	
Toluene-d8		98.3	70-130					4/5/19 6:32	

Sample Description: Work Order: 19D0106

Project Location: Wayland, MA

Date Received: 4/2/2019

Field Sample #: V-106 (MW)

Sampled: 4/2/2019 09:30

Sample ID: 19D0106-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

		\$	Semivolatile Organic (Compounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Acenaphthylene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Acetophenone	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Aniline	ND	6.1	μg/L	1	V-34	SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Anthracene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Benzo(a)anthracene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Benzo(a)pyrene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Benzo(b)fluoranthene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Benzo(g,h,i)perylene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Benzo(k)fluoranthene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Bis(2-chloroethoxy)methane	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Bis(2-chloroethyl)ether	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Bis(2-chloroisopropyl)ether	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Bis(2-Ethylhexyl)phthalate	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
4-Bromophenylphenylether	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Butylbenzylphthalate	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
4-Chloroaniline	ND	12	μg/L	1	V-34	SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2-Chloronaphthalene	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2-Chlorophenol	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Chrysene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Dibenz(a,h)anthracene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Dibenzofuran	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Di-n-butylphthalate	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
1,2-Dichlorobenzene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
1,3-Dichlorobenzene	ND	6.1	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
1,4-Dichlorobenzene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
3,3-Dichlorobenzidine	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2,4-Dichlorophenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Diethylphthalate	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2,4-Dimethylphenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Dimethylphthalate	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2,4-Dinitrophenol	ND	12	$\mu g/L$	1	V-05	SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2,4-Dinitrotoluene	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2,6-Dinitrotoluene	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Di-n-octylphthalate	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Fluoranthene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Fluorene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Hexachlorobenzene	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Hexachlorobutadiene	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Hexachloroethane	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Indeno(1,2,3-cd)pyrene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Isophorone	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2-Methylnaphthalene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL

Page 19 of 74

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019

Field Sample #: V-106 (MW)

Sampled: 4/2/2019 09:30

89.7

Sample ID: 19D0106-02
Sample Matrix: Ground Water

p-Terphenyl-d14

Semivolatile	Ougania	Commoundo	by CC/MC

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	12	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
3/4-Methylphenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Naphthalene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Nitrobenzene	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2-Nitrophenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
4-Nitrophenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Pentachlorophenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Phenanthrene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Phenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Pyrene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
1,2,4-Trichlorobenzene	ND	6.1	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2,4,5-Trichlorophenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
2,4,6-Trichlorophenol	ND	12	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:09	BGL
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2-Fluorophenol		51.5	15-110					4/5/19 18:09	
Phenol-d6		39.8	15-110					4/5/19 18:09	
Nitrobenzene-d5		73.1	30-130					4/5/19 18:09	
2-Fluorobiphenyl		77.0	30-130					4/5/19 18:09	
2,4,6-Tribromophenol		76.2	15-110					4/5/19 18:09	

30-130

4/5/19 18:09

Project Location: Wayland, MA Sample Description: Work Order: 19D0106

Date Received: 4/2/2019

Field Sample #: V-106 (MW)

Sampled: 4/2/2019 09:30

Sample ID: 19D0106-02
Sample Matrix: Ground Water

Polychlorinated	Biphenyls	By GC/ECD
-----------------	------------------	-----------

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.12	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Aroclor-1221 [1]	ND	0.12	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Aroclor-1232 [1]	ND	0.12	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Aroclor-1242 [1]	ND	0.12	$\mu g/L$	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Aroclor-1248 [1]	ND	0.12	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Aroclor-1254 [1]	ND	0.12	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Aroclor-1260 [1]	ND	0.12	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Aroclor-1262 [1]	ND	0.12	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Aroclor-1268 [1]	ND	0.12	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:38	AYH
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		81.8	30-150					4/8/19 10:38	
Decachlorobiphenyl [2]		74.0	30-150					4/8/19 10:38	
Tetrachloro-m-xylene [1]		77.2	30-150					4/8/19 10:38	
Tetrachloro-m-xylene [2]		74.6	30-150					4/8/19 10:38	

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

RL

1.0

0.40

50

0.40

0.50

1.0

5.0

1.0

200

0.00010

25

5.0

0.50

0.20

5.0

10

 $\mu g/L$

 $\mu g/L$

μg/L

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

5

1

1

1

Results

ND

1.6

190

ND

3.0

2.8

6.9

1.6

5400

ND

110

ND

ND

ND

ND

33

Work Order: 19D0106

Project Location: Wayland, MA
Date Received: 4/2/2019
Field Sample #: V-106 (MW)

Sampled: 4/2/2019 09:30

Sample ID: 19D0106-02
Sample Matrix: Ground Water

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Manganese

Mercury

Selenium

Thallium

Vanadium

Nickel

Silver

Zinc

Copper

Lead

Metals Ana	lyses (Total)					
				Date	Date/Time	
Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 12:58	QNW
$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 12:58	QNW
$\mu g/L$	5		SW-846 6020B	4/5/19	4/9/19 14:16	QNW
$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 12:58	QNW
$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 12:58	QNW
$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 12:58	QNW
$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 12:58	QNW
$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 12:58	QNW
μg/L	200		SW-846 6020B	4/5/19	4/9/19 15:08	QNW
mg/L	1		SW-846 7470A	4/8/19	4/8/19 14:22	EJB

SW-846 6020B

SW-846 6020B

SW-846 6020B

SW-846 6020B

SW-846 6020B

SW-846 6020B

4/5/19

4/5/19

4/5/19

4/5/19

4/5/19

4/5/19

4/9/19 14:16

4/8/19 12:58

4/8/19 12:58

4/8/19 12:58

4/8/19 12:58

4/8/19 12:58

QNW

QNW

QNW

QNW

QNW

QNW

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019

Field Sample #: V-106 (MW)

Sai

Sampled: 4/2/2019 09:30

Sample ID: 19D0106-02
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		1.0	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 11:21	QNW
Nickel		110	10	μg/L	2		SW-846 6020B	4/5/19	4/23/19 9:09	MJH

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019

Field Sample #: V-106 (MW)

Sampled: 4/2/2019 09:30

Sample ID: 19D0106-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	2.0	0.30	mg/L	1		SM19-22 4500 NH3 C	4/5/19	4/6/19 11:58	KMV
Chloride	210	10	mg/L	10		EPA 300.0	4/9/19	4/9/19 6:03	MMH
Nitrate as N	35	1.0	mg/L	10		EPA 300.0	4/3/19	4/3/19 16:33	IS
Nitrite as N	0.302	0.100	mg/L	1		EPA 300.0	4/3/19	4/3/19 16:18	IS
Orthophosphate as P	ND	0.050	mg/L	1	W-17	SM 21-22 4500 P E	4/2/19	4/2/19 18:30	IS
Phosphorus, Total	0.093	0.062	mg/L	1.25		SM 21-22 4500 P E	4/7/19	4/7/19 15:06	AIA
Total Kjeldahl Nitrogen	4.0	1.0	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/3/19	4/4/19 9:45	EC
Total Nitrogen	39	0.050	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/8/19	4/8/19 14:50	LL

Sample Description: Work Order: 19D0106

Project Location: Wayland, MA

Date Received: 4/2/2019

Field Sample #: V-104 (MW)

Sampled: 4/2/2019 12:15

Sample ID: 19D0106-03
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10	μg/L	1	R-05	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
tert-Amyl Methyl Ether (TAME)	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Bromoform	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
2-Butanone (MEK)	ND	10	μg/L	1	V-05	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Carbon Disulfide	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,3-Dichloropropane	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
2,2-Dichloropropane	ND	1.0	$\mu g/L$	1	V-05	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,1-Dichloropropene	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
cis-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Diethyl Ether	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,4-Dioxane	ND	50	$\mu g/L$	1	V-16	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Ethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH

Page 25 of 74

Project Location: Wayland, MA Work Order: 19D0106 Sample Description:

Date Received: 4/2/2019 Field Sample #: V-104 (MW)

Sampled: 4/2/2019 12:15

Sample ID: 19D0106-03 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1	<u> </u>	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Naphthalene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1	R-05	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Tetrahydrofuran	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 6:59	EEH
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
1,2-Dichloroethane-d4		92.8	70-130					4/5/19 6:59	
Toluene-d8		100	70-130					4/5/19 6:59	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 4/2/2019

Field Sample #: V-104 (MW)

Project Location: Wayland, MA

Sampled: 4/2/2019 12:15

Sample ID: 19D0106-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Acenaphthylene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Acetophenone	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Aniline	ND	5.5	$\mu g/L$	1	V-34	SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Anthracene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Benzo(a)anthracene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Benzo(a)pyrene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Benzo(b)fluoranthene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Benzo(g,h,i)perylene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Benzo(k)fluoranthene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Bis(2-chloroethoxy)methane	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Bis(2-chloroethyl)ether	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Bis(2-chloroisopropyl)ether	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Bis(2-Ethylhexyl)phthalate	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
4-Bromophenylphenylether	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Butylbenzylphthalate	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
4-Chloroaniline	ND	11	$\mu g/L$	1	V-34	SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2-Chloronaphthalene	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2-Chlorophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Chrysene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Dibenz(a,h)anthracene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Dibenzofuran	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Di-n-butylphthalate	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
1,2-Dichlorobenzene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
1,3-Dichlorobenzene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
1,4-Dichlorobenzene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
3,3-Dichlorobenzidine	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2,4-Dichlorophenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Diethylphthalate	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2,4-Dimethylphenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Dimethylphthalate	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2,4-Dinitrophenol	ND	11	μg/L	1	V-05	SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2,4-Dinitrotoluene	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2,6-Dinitrotoluene	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Di-n-octylphthalate	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Fluoranthene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Fluorene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Hexachlorobenzene	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Hexachlorobutadiene	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Hexachloroethane	ND	11	μg/L μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Indeno(1,2,3-cd)pyrene	ND	5.5	μg/L μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Isophorone	ND	11	μg/L μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2-Methylnaphthalene	ND	5.5	μg/L μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL

Page 27 of 74

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019
Field Sample #: V-104 (MW)

Sampled: 4/2/2019 12:15

Sample ID: 19D0106-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

					T. (0.1		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
3/4-Methylphenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Naphthalene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Nitrobenzene	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2-Nitrophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
4-Nitrophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Pentachlorophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Phenanthrene	ND	5.5	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Phenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Pyrene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
1,2,4-Trichlorobenzene	ND	5.5	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2,4,5-Trichlorophenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
2,4,6-Trichlorophenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/5/19 18:34	BGL
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2-Fluorophenol	_	47.9	15-110			_		4/5/19 18:34	
Phenol-d6		35.0	15-110					4/5/19 18:34	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	47.9	15-110		4/5/19 18:34
Phenol-d6	35.0	15-110		4/5/19 18:34
Nitrobenzene-d5	72.0	30-130		4/5/19 18:34
2-Fluorobiphenyl	75.9	30-130		4/5/19 18:34
2,4,6-Tribromophenol	74.9	15-110		4/5/19 18:34
p-Terphenyl-d14	88.2	30-130		4/5/19 18:34

Sample Description: Work Order: 19D0106

Project Location: Wayland, MA
Date Received: 4/2/2019
Field Sample #: V-104 (MW)

Sampled: 4/2/2019 12:15

Sample ID: 19D0106-03
Sample Matrix: Ground Water

Polychl	orinated	Rinhenvls	Rv (CC/FCD

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.11	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Aroclor-1221 [1]	ND	0.11	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Aroclor-1232 [1]	ND	0.11	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Aroclor-1242 [1]	ND	0.11	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Aroclor-1248 [1]	ND	0.11	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Aroclor-1254 [1]	ND	0.11	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Aroclor-1260 [1]	ND	0.11	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Aroclor-1262 [1]	ND	0.11	μg/L	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Aroclor-1268 [1]	ND	0.11	$\mu g/L$	1		SW-846 8082A	4/5/19	4/8/19 10:51	AYH
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
Decachlorobiphenyl [1]		81.1	30-150					4/8/19 10:51	
Decachlorobiphenyl [2]		72.8	30-150					4/8/19 10:51	
Tetrachloro-m-xylene [1]		82.5	30-150					4/8/19 10:51	
Tetrachloro-m-xylene [2]		79.7	30-150					4/8/19 10:51	

Sample Description:

Work Order: 19D0106

Project Location: Wayland, MA
Date Received: 4/2/2019
Field Sample #: V-104 (MW)

Sampled: 4/2/2019 12:15

Sample ID: 19D0106-03
Sample Matrix: Ground Water

Meta	ls Ai	nalys	es (1	lotal)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Arsenic	0.50	0.40	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Barium	14	10	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Beryllium	ND	0.40	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Cadmium	ND	0.50	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Chromium	ND	1.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Copper	ND	5.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Lead	ND	1.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Manganese	95	1.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	4/8/19	4/8/19 14:35	EJB
Nickel	ND	5.0	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Selenium	ND	5.0	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Silver	ND	0.50	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Thallium	ND	0.20	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Vanadium	ND	5.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW
Zinc	ND	10	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:13	QNW

Sample Description:

Work Order: 19D0106

Project Location: Wayland, MA
Date Received: 4/2/2019
Field Sample #: V-104 (MW)

Sampled: 4/2/2019 12:15

Sample ID: 19D0106-03
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.79	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:34	QNW

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019

Field Sample #: V-104 (MW)

Sampled: 4/2/2019 12:15

Sample ID: 19D0106-03
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	ND	0.30	mg/L	1		SM19-22 4500 NH3 C	4/5/19	4/6/19 11:58	KMV
Chloride	26	1.0	mg/L	1	MS-07	EPA 300.0	4/9/19	4/9/19 6:18	MMH
Nitrate as N	2.1	0.10	mg/L	1		EPA 300.0	4/3/19	4/3/19 16:48	IS
Nitrite as N	ND	0.100	mg/L	1		EPA 300.0	4/3/19	4/3/19 16:48	IS
Orthophosphate as P	ND	0.050	mg/L	1	W-17	SM 21-22 4500 PE	4/2/19	4/2/19 18:30	IS
Phosphorus, Total	ND	0.062	mg/L	1.25		SM 21-22 4500 PE	4/7/19	4/7/19 15:06	AIA
Total Kjeldahl Nitrogen	2.0	1.0	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/3/19	4/4/19 9:45	EC
Total Nitrogen	4.1	0.050	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/8/19	4/8/19 14:50	LL

Project Location: Wayland, MA Sample Description: Work Order: 19D0106

Date Received: 4/2/2019
Field Sample #: MW-3

Sampled: 4/2/2019 14:35

Sample ID: 19D0106-04
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	SC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	10	$\mu g/L$	1	R-05	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
tert-Amyl Methyl Ether (TAME)	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Benzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Bromochloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Bromodichloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Bromoform	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
2-Butanone (MEK)	ND	10	$\mu g/L$	1	V-05	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Carbon Disulfide	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
2,2-Dichloropropane	ND	1.0	μg/L	1	V-05	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,1-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
cis-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
trans-1,3-Dichloropropene	ND	0.40	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Diethyl Ether	ND	2.0	μg/L μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,4-Dioxane	ND	50	μg/L μg/L	1	V-16	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Ethylbenzene	ND ND	1.0		1	¥-10	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Larytochizone	ND	1.0	$\mu g/L$	1		5 W-040 020UC	4/4/19	4/3/19 /:20	CEH

Page 33 of 74

Project Location: Wayland, MA Work Order: 19D0106 Sample Description:

Date Received: 4/2/2019 Field Sample #: MW-3

Sampled: 4/2/2019 14:35

Sample ID: 19D0106-04 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.60	μg/L	1	<u> </u>	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Methylene Chloride	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Naphthalene	ND	5.0	μg/L	1	RL-07	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1	R-05	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Tetrahydrofuran	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$	1	RL-07	SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	4/4/19	4/5/19 7:26	EEH
Surrogates		% Recovery	Recovery Limits	8	Flag/Qual				
1,2-Dichloroethane-d4		90.8	70-130					4/5/19 7:26	
Toluene d8		00.1	70.120					4/5/10 7:26	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019
Field Sample #: MW-3

Sampled: 4/2/2019 14:35

Sample ID: 19D0106-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.3	μg/L	1	0 -	SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Acenaphthylene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Acetophenone	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Aniline	ND	5.3	μg/L	1	V-34	SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Anthracene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Benzo(a)anthracene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Benzo(a)pyrene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Benzo(b)fluoranthene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Benzo(g,h,i)perylene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Benzo(k)fluoranthene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Bis(2-chloroethoxy)methane	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Bis(2-chloroethyl)ether	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Bis(2-chloroisopropyl)ether	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Bis(2-Ethylhexyl)phthalate	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
4-Bromophenylphenylether	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Butylbenzylphthalate	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
4-Chloroaniline	ND	11	μg/L	1	R-05, V-34	SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2-Chloronaphthalene	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2-Chlorophenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Chrysene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Dibenz(a,h)anthracene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Dibenzofuran	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Di-n-butylphthalate	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
1,2-Dichlorobenzene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
1,3-Dichlorobenzene	ND	5.3	μg/L μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
1,4-Dichlorobenzene	ND	5.3	μg/L μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
3,3-Dichlorobenzidine	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2,4-Dichlorophenol	ND	11	μ g /L μ g /L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Diethylphthalate	ND	11	μ g /L μ g /L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2.4-Dimethylphenol	ND	11	μ g /L μ g /L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Dimethylphthalate	ND	11	μg/L μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2,4-Dinitrophenol	ND	11	μ g /L μ g /L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2,4-Dinitrotoluene	ND	11	μg/L μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2,6-Dinitrotoluene	ND	11	μ g /L μ g /L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Di-n-octylphthalate	ND	11	μ g /L μ g /L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	11	μg/L μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Fluoranthene	ND	5.3	μg/L μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Fluorene	ND	5.3		1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Hexachlorobenzene	ND ND	3.3 11	μg/L μg/I	1		SW-846 8270D SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Hexachlorobutadiene	ND ND		μg/L			SW-846 8270D SW-846 8270D			
Hexachloroethane	ND ND	11 11	μg/L	1		SW-846 8270D SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Indeno(1,2,3-cd)pyrene			μg/L				4/4/19	4/6/19 17:13	BGL
Isophorone	ND ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
•	ND ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2-Methylnaphthalene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL

Page 35 of 74

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 4/2/2019
Field Sample #: MW-3

Sampled: 4/2/2019 14:35

Sample ID: 19D0106-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
3/4-Methylphenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Naphthalene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Nitrobenzene	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2-Nitrophenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
4-Nitrophenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Pentachlorophenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Phenanthrene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Phenol	ND	11	μg/L	1	R-05	SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Pyrene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
1,2,4-Trichlorobenzene	ND	5.3	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2,4,5-Trichlorophenol	ND	11	μg/L	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
2,4,6-Trichlorophenol	ND	11	$\mu g/L$	1		SW-846 8270D	4/4/19	4/6/19 17:13	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		42.7	15-110					4/6/19 17:13	
Phenol-d6		32.0	15-110					4/6/19 17:13	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	42.7	15-110		4/6/19 17:13
Phenol-d6	32.0	15-110		4/6/19 17:13
Nitrobenzene-d5	70.7	30-130		4/6/19 17:13
2-Fluorobiphenyl	67.9	30-130		4/6/19 17:13
2,4,6-Tribromophenol	78.4	15-110		4/6/19 17:13
p-Terphenyl-d14	83.7	30-130		4/6/19 17:13

Sample Description: Work Order: 19D0106

Date Received: 4/2/2019
Field Sample #: MW-3

Project Location: Wayland, MA

Sampled: 4/2/2019 14:35

Sample ID: 19D0106-04
Sample Matrix: Ground Water

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.093	μg/L	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Aroclor-1221 [1]	ND	0.093	$\mu g/L$	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Aroclor-1232 [1]	ND	0.093	$\mu g/L$	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Aroclor-1242 [1]	ND	0.093	μg/L	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Aroclor-1248 [1]	ND	0.093	μg/L	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Aroclor-1254 [1]	ND	0.093	μg/L	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Aroclor-1260 [1]	ND	0.093	μg/L	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Aroclor-1262 [1]	ND	0.093	μg/L	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Aroclor-1268 [1]	ND	0.093	$\mu g/L$	1		SW-846 8082A	4/5/19	4/8/19 11:03	AYH
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		74.0	30-150					4/8/19 11:03	
Decachlorobiphenyl [2]		67.6	30-150					4/8/19 11:03	
Tetrachloro-m-xylene [1]		83.5	30-150					4/8/19 11:03	
Tetrachloro-m-xylene [2]		80.4	30-150					4/8/19 11:03	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 4/2/2019
Field Sample #: MW-3

Project Location: Wayland, MA

Sampled: 4/2/2019 14:35

Sample ID: 19D0106-04
Sample Matrix: Ground Water

Metals Analyses (Total)

				, ()					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Arsenic	ND	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Barium	13	10	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Beryllium	ND	0.40	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Cadmium	ND	0.50	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Chromium	ND	1.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Copper	ND	5.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Lead	ND	1.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Manganese	73	1.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	4/8/19	4/8/19 14:41	EJB
Nickel	ND	5.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Selenium	ND	5.0	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Silver	ND	0.50	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Thallium	ND	0.20	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Vanadium	ND	5.0	$\mu g/L$	1		SW-846 6020B	4/5/19	4/8/19 13:17	QNW
Zinc	ND	10	ug/L	1		SW-846 6020B	4/5/19	4/8/19 13:17	ONW

Sample Description: Work Order: 19D0106

Project Location: Wayland, MA
Date Received: 4/2/2019
Field Sample #: MW-3

Sampled: 4/2/2019 14:35

Sample ID: 19D0106-04
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.74	0.40	μg/L	1		SW-846 6020B	4/5/19	4/8/19 13:37	QNW

Project Location: Wayland, MA Sample Description: Work Order: 19D0106

Date Received: 4/2/2019
Field Sample #: MW-3

Sampled: 4/2/2019 14:35

Sample ID: 19D0106-04
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	ND	0.30	mg/L	1		SM19-22 4500 NH3 C	4/5/19	4/6/19 11:58	KMV
Chloride	120	10	mg/L	10		EPA 300.0	4/9/19	4/9/19 7:04	MMH
Nitrate as N	1.5	0.10	mg/L	1		EPA 300.0	4/3/19	4/3/19 17:49	IS
Nitrite as N	ND	0.100	mg/L	1		EPA 300.0	4/3/19	4/3/19 17:49	IS
Orthophosphate as P	ND	0.050	mg/L	1	W-17	SM 21-22 4500 P E	4/2/19	4/2/19 18:30	IS
Phosphorus, Total	ND	0.062	mg/L	1.25		SM 21-22 4500 P E	4/7/19	4/7/19 15:06	AIA
Total Kjeldahl Nitrogen	2.0	1.0	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/3/19	4/4/19 9:45	EC
Total Nitrogen	3.5	0.050	mg/L	1		SM19-22 4500-N Org B,C-NH3 C	4/8/19	4/8/19 14:50	LL

Sample Extraction Data

Prep Method: EPA 300.0-EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0106-01 [V-103 (MW)]	B227277	10.0	10.0	04/03/19	
19D0106-02 [V-106 (MW)]	B227277	10.0	10.0	04/03/19	
19D0106-03 [V-104 (MW)]	B227277	10.0	10.0	04/03/19	
19D0106-04 [MW-3]	B227277	10.0	10.0	04/03/19	

Prep Method: EPA 300.0-EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0106-01 [V-103 (MW)]	B227612	10.0	10.0	04/09/19	
19D0106-02 [V-106 (MW)]	B227612	10.0	10.0	04/09/19	
19D0106-03 [V-104 (MW)]	B227612	10.0	10.0	04/09/19	
19D0106-04 [MW-3]	B227612	10.0	10.0	04/09/19	

SM 21-22 4500 PE

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0106-01 [V-103 (MW)]	B227283	50.0	50.0	04/02/19	
19D0106-02 [V-106 (MW)]	B227283	50.0	50.0	04/02/19	
19D0106-03 [V-104 (MW)]	B227283	50.0	50.0	04/02/19	
19D0106-04 [MW-3]	B227283	50.0	50.0	04/02/19	

SM 21-22 4500 PE

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-01 [V-103 (MW)]	B227568	50.0	50.0	04/07/19
19D0106-02 [V-106 (MW)]	B227568	50.0	50.0	04/07/19
19D0106-03 [V-104 (MW)]	B227568	50.0	50.0	04/07/19
19D0106-04 [MW-3]	B227568	50.0	50.0	04/07/19

SM19-22 4500 NH3 C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-01 [V-103 (MW)]	B227200	100	100	04/02/19

SM19-22 4500 NH3 C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0106-02 [V-106 (MW)]	B227529	100	100	04/05/19	
19D0106-03 [V-104 (MW)]	B227529	100	100	04/05/19	
19D0106-04 [MW-3]	B227529	100	100	04/05/19	

SM19-22 4500-N Org B,C-NH3 $\rm C$

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-01 [V-103 (MW)]	B227312	25.0	25.0	04/03/19
19D0106-02 [V-106 (MW)]	B227312	25.0	25.0	04/03/19
19D0106-03 [V-104 (MW)]	B227312	25.0	25.0	04/03/19

Sample Extraction Data

SM19-22 4500-N Org B,C-NH3 $\rm C$

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-04 [MW-3]	B227312	25.0	25.0	04/03/19

SM19-22 4500-N Org B,C-NH3 $\scriptstyle{\rm C}$

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0106-02 [V-106 (MW)]	B227705	50.0	50.0	04/08/19	
19D0106-03 [V-104 (MW)]	B227705	50.0	50.0	04/08/19	
19D0106-04 [MW-3]	B227705	50.0	50.0	04/08/19	

SM19-22 4500-N Org B,C-NH3 $\rm C$

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-01 [V-103 (MW)]	B227750	50.0	50.0	04/09/19

Prep Method: SW-846 3005A-SW-846 6020B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-01 [V-103 (MW)]	B227554	50.0	50.0	04/05/19
19D0106-02 [V-106 (MW)]	B227554	50.0	50.0	04/05/19
19D0106-03 [V-104 (MW)]	B227554	50.0	50.0	04/05/19
19D0106-04 [MW-3]	B227554	50.0	50.0	04/05/19

Prep Method: SW-846 3005A Dissolved-SW-846 6020B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-01 [V-103 (MW)]	B227576	10.0	10.0	04/05/19
19D0106-02 [V-106 (MW)]	B227576	10.0	10.0	04/05/19
19D0106-03 [V-104 (MW)]	B227576	10.0	10.0	04/05/19
19D0106-04 [MW-3]	B227576	10.0	10.0	04/05/19

Prep Method: SW-846 7470A Prep-SW-846 7470A

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0106-01 [V-103 (MW)]	B227561	6.00	6.00	04/08/19	
19D0106-02 [V-106 (MW)]	B227561	6.00	6.00	04/08/19	
19D0106-03 [V-104 (MW)]	B227561	6.00	6.00	04/08/19	
19D0106-04 [MW-3]	B227561	6.00	6.00	04/08/19	

Prep Method: SW-846 3510C-SW-846 8082A

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-01 [V-103 (MW)]	B227544	120	2.00	04/05/19
19D0106-02 [V-106 (MW)]	B227544	215	2.50	04/05/19
19D0106-03 [V-104 (MW)]	B227544	235	2.50	04/05/19
19D0106-04 [MW-3]	B227544	270	2.50	04/05/19

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-01 [V-103 (MW)]	B227205	5	5.00	04/03/19

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19D0106-02 [V-106 (MW)]	B227208	5	5.00	04/04/19
19D0106-03 [V-104 (MW)]	B227208	5	5.00	04/04/19
19D0106-04 [MW-3]	B227208	5	5.00	04/04/19

Prep Method: SW-846 3510C-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19D0106-01 [V-103 (MW)]	B227443	1020	1.00	04/04/19	
19D0106-02 [V-106 (MW)]	B227443	820	1.00	04/04/19	
19D0106-03 [V-104 (MW)]	B227443	910	1.00	04/04/19	
19D0106-04 [MW-3]	B227443	940	1.00	04/04/19	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227205 - SW-846 5030B										
Blank (B227205-BLK1)				Prepared: 04	1/02/19 Anal	yzed: 04/03/1	19			
Acetone	ND	10	μg/L							R-05
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	1.0	μg/L							
Bromoform	ND	1.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
2-Butanone (MEK)	ND	10	$\mu g/L$							
n-Butylbenzene	ND	1.0	$\mu g/L$							
sec-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							
Carbon Disulfide	ND	5.0	$\mu g/L$							
Carbon Tetrachloride	ND	1.0	$\mu g/L$							
Chlorobenzene	ND	1.0	$\mu g/L$							
Chlorodibromomethane	ND	0.50	$\mu g/L$							
Chloroethane	ND	2.0	$\mu g/L$							
Chloroform	ND	2.0	$\mu g/L$							
Chloromethane	ND	2.0	$\mu g/L$							
2-Chlorotoluene	ND	1.0	$\mu g/L$							
4-Chlorotoluene	ND	1.0	$\mu g/L$							
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	$\mu g/L$							
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	0.50	μg/L							
cis-1,3-Dichloropropene	ND	0.40	μg/L							
trans-1,3-Dichloropropene	ND	0.40	μg/L							
Diethyl Ether Diisopropyl Ether (DIPE)	ND	2.0 0.50	μg/L							
1,4-Dioxane	ND	50	μg/L μg/L							V-16
Ethylbenzene	ND	1.0	μg/L μg/L							V-10
Hexachlorobutadiene	ND	0.60	μg/L μg/L							
2-Hexanone (MBK)	ND ND	10	μg/L μg/L							
Isopropylbenzene (Cumene)	ND ND	1.0	μg/L μg/L							
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L μg/L							
Methyl tert-Butyl Ether (MTBE)	ND ND	1.0	μg/L μg/L							
Methylene Chloride	ND ND	5.0	μg/L μg/L							
4-Methyl-2-pentanone (MIBK)	ND ND	10	μg/L μg/L							
Naphthalene	ND ND	2.0	μg/L μg/L							
naphulalelle	ND	2.0	μg/∟							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B227205 - SW-846 5030B										
Blank (B227205-BLK1)				Prepared: 04	1/02/19 Anal	yzed: 04/03/1	9			
n-Propylbenzene	ND	1.0	$\mu g\!/\!L$							
Styrene	ND	1.0	μg/L							
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
Tetrachloroethylene	ND	1.0	μg/L							
Tetrahydrofuran	ND	2.0	μg/L							
Toluene	ND	1.0	μg/L							
1,2,3-Trichlorobenzene	ND	2.0	μg/L							
1,2,4-Trichlorobenzene	ND	1.0	μg/L							
1,1,1-Trichloroethane	ND	1.0	μg/L							
1,1,2-Trichloroethane	ND	1.0	μg/L							
Trichloroethylene	ND	1.0	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
1,2,3-Trichloropropane	ND	2.0	μg/L							
1,2,4-Trimethylbenzene	ND	1.0	μg/L							
1,3,5-Trimethylbenzene Vinyl Chloride	ND	1.0	μg/L							
	ND	2.0	μg/L							
m+p Xylene	ND	2.0	μg/L							
o-Xylene	ND	1.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	22.0		μg/L	25.0		87.8	70-130			
Surrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.5	70-130			
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.4	70-130			
LCS (B227205-BS1)					1/02/19 Anal	-				
Acetone	148	10	μg/L	100		148	40-160			L-14, R-05
tert-Amyl Methyl Ether (TAME)	9.79	0.50	μg/L	10.0		97.9	70-130			
Benzene	9.61	1.0	μg/L	10.0		96.1	70-130			
Bromobenzene	11.9	1.0	μg/L	10.0		119	70-130			
Bromochloromethane	10.1	1.0	μg/L	10.0		101	70-130			
Bromodichloromethane	10.4	1.0	μg/L	10.0		104	70-130			
Bromoform	12.3	1.0	μg/L	10.0		123	70-130			
Bromomethane	7.28	2.0	μg/L	10.0		72.8	40-160			
2-Butanone (MEK)	92.0	10	μg/L	100		92.0	40-160			
n-Butylbenzene	11.0	1.0 1.0	μg/L	10.0		110	70-130			
sec-Butylbenzene tert-Butylbenzene	11.2	1.0	μg/L μg/L	10.0		112	70-130			
tert-Butyl Ethyl Ether (TBEE)	11.0	0.50		10.0		110	70-130			
Carbon Disulfide	10.1	5.0	μg/L μg/L	10.0		101	70-130			
Carbon Disumde Carbon Tetrachloride	12.1	1.0	μg/L μg/L	10.0 10.0		121 94.0	70-130 70-130			
Chlorobenzene	9.40	1.0	μg/L μg/L	10.0		94.0 124	70-130 70-130			
Chlorodibromomethane	12.4	0.50	μg/L μg/L	10.0		124	70-130 70-130			
Chloroethane	11.6 11.2	2.0	μg/L μg/L	10.0		110	70-130			
Chloroform	9.49	2.0	μg/L μg/L	10.0		94.9	70-130			
Chloromethane	9.49 7.67	2.0	μg/L μg/L	10.0		76.7	40-160			
2-Chlorotoluene	11.4	1.0	μg/L μg/L	10.0		114	70-130			
4-Chlorotoluene	12.2	1.0	μg/L μg/L	10.0		122	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	8.73	2.0	μg/L μg/L	10.0		87.3	70-130			
1,2-Dibromoethane (EDB)	8.73	0.50	μg/L μg/L	10.0		111	70-130			
-,(LDD)		0.50	46/L	10.0						
Dibromomethane		1.0	μg/L	10.0		110	70-130			
Dibromomethane 1.2-Dichlorobenzene	11.0	1.0	μg/L ug/L	10.0		110 121	70-130 70-130			
Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene		1.0 1.0 1.0	μg/L μg/L μg/L	10.0 10.0 10.0		110 121 122	70-130 70-130 70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B227205 - SW-846 5030B											
LCS (B227205-BS1)				Prepared: 04	/02/19 Analy	zed: 04/03/1	9				
Dichlorodifluoromethane (Freon 12)	7.25	2.0	μg/L	10.0		72.5	40-160				
1,1-Dichloroethane	9.74	1.0	$\mu g/L$	10.0		97.4	70-130				
1,2-Dichloroethane	8.80	1.0	$\mu g/L$	10.0		88.0	70-130				
1,1-Dichloroethylene	10.8	1.0	$\mu g/L$	10.0		108	70-130				
sis-1,2-Dichloroethylene	9.70	1.0	$\mu g/L$	10.0		97.0	70-130				
rans-1,2-Dichloroethylene	10.0	1.0	$\mu g/L$	10.0		100	70-130				
,2-Dichloropropane	9.97	1.0	$\mu g/L$	10.0		99.7	70-130				
,3-Dichloropropane	10.6	0.50	$\mu g/L$	10.0		106	70-130				
2,2-Dichloropropane	9.60	1.0	$\mu g/L$	10.0		96.0	70-130				
,1-Dichloropropene	8.97	0.50	$\mu g/L$	10.0		89.7	70-130				
is-1,3-Dichloropropene	11.5	0.40	μg/L	10.0		115	70-130				
rans-1,3-Dichloropropene	11.7	0.40	μg/L	10.0		117	70-130				
Diethyl Ether	13.0	2.0	μg/L	10.0		130	70-130				
Diisopropyl Ether (DIPE)	10.0	0.50	$\mu g/L$	10.0		100	70-130				
,4-Dioxane	92.3	50	μg/L	100		92.3	40-160			V-16	
thylbenzene	11.5	1.0	μg/L	10.0		115	70-130				
Iexachlorobutadiene	12.6	0.60	μg/L	10.0		126	70-130				
-Hexanone (MBK)	104	10	μg/L	100		104	40-160				
opropylbenzene (Cumene)	11.8	1.0	μg/L	10.0		118	70-130				
-Isopropyltoluene (p-Cymene)	11.4	1.0	μg/L	10.0		114	70-130				
lethyl tert-Butyl Ether (MTBE)	10.8	1.0	μg/L	10.0		108	70-130				
Methylene Chloride	11.5	5.0	μg/L	10.0		115	70-130				
-Methyl-2-pentanone (MIBK)	101	10	μg/L	100		101	40-160				
laphthalene	9.77	2.0	μg/L	10.0		97.7	70-130				
-Propylbenzene	11.6	1.0	μg/L	10.0		116	70-130				
tyrene	12.9	1.0	μg/L	10.0		129	70-130			V-20	
,1,1,2-Tetrachloroethane	12.6	1.0	μg/L	10.0		126	70-130				
,1,2,2-Tetrachloroethane	13.0	0.50	μg/L	10.0		130	70-130				
etrachloroethylene	10.9	1.0	μg/L	10.0		109	70-130				
etrahydrofuran	10.7	2.0	μg/L	10.0		107	70-130				
Coluene	10.4	1.0	μg/L	10.0		104	70-130				
,2,3-Trichlorobenzene	10.9	2.0	μg/L	10.0		109	70-130				
,2,4-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130				
,1,1-Trichloroethane	9.10	1.0	μg/L	10.0		91.0	70-130				
,1,2-Trichloroethane	11.4	1.0	μg/L	10.0		114	70-130				
richloroethylene	10.4	1.0	μg/L	10.0		104	70-130				
richlorofluoromethane (Freon 11)	9.44	2.0	μg/L	10.0		94.4	70-130				
,2,3-Trichloropropane	11.5	2.0	μg/L	10.0		115	70-130				
,2,4-Trimethylbenzene	11.3	1.0	μg/L	10.0		113	70-130				
,3,5-Trimethylbenzene	11.8	1.0	μg/L	10.0		118	70-130				
Vinyl Chloride	11.7	2.0	μg/L	10.0		117	70-130				
n+p Xylene	23.4	2.0	μg/L	20.0		117	70-130				
-Xylene	12.2	1.0	μg/L	10.0		122	70-130				
Surrogate: 1,2-Dichloroethane-d4	21.9		μg/L	25.0		87.6	70-130				
urrogate: Toluene-d8	24.4		$\mu g/L$	25.0		97.7	70-130				
Surrogate: 4-Bromofluorobenzene	26.1		μg/L	25.0		104	70-130				

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B227205 - SW-846 5030B											
LCS Dup (B227205-BSD1)				Prepared: 04	/02/19 Analy	zed: 04/03/	19				
Acetone	109	10	μg/L	100		109	40-160	29.9 *	[*] 20	R-05	†
tert-Amyl Methyl Ether (TAME)	9.12	0.50	$\mu g/L$	10.0		91.2	70-130	7.09	20		
Benzene	9.57	1.0	$\mu g/L$	10.0		95.7	70-130	0.417	20		
Bromobenzene	11.4	1.0	$\mu g/L$	10.0		114	70-130	3.86	20		
Bromochloromethane	10.0	1.0	$\mu g/L$	10.0		100	70-130	0.199	20		
Bromodichloromethane	10.4	1.0	$\mu g/L$	10.0		104	70-130	0.577	20		
Bromoform	12.0	1.0	$\mu g/L$	10.0		120	70-130	2.47	20		
Bromomethane	7.86	2.0	$\mu g/L$	10.0		78.6	40-160	7.66	20		†
2-Butanone (MEK)	81.2	10	$\mu g/L$	100		81.2	40-160	12.5	20		†
n-Butylbenzene	10.9	1.0	$\mu g/L$	10.0		109	70-130	0.912	20		
sec-Butylbenzene	11.4	1.0	$\mu g/L$	10.0		114	70-130	1.06	20		
tert-Butylbenzene	11.1	1.0	$\mu g/L$	10.0		111	70-130	0.725	20		
tert-Butyl Ethyl Ether (TBEE)	9.46	0.50	$\mu \text{g/L}$	10.0		94.6	70-130	6.35	20		
Carbon Disulfide	11.9	5.0	$\mu \text{g/L}$	10.0		119	70-130	1.67	20		
Carbon Tetrachloride	9.35	1.0	$\mu \text{g/L}$	10.0		93.5	70-130	0.533	20		
Chlorobenzene	12.2	1.0	$\mu g/L$	10.0		122	70-130	1.30	20		
Chlorodibromomethane	11.4	0.50	$\mu g/L$	10.0		114	70-130	1.91	20		
Chloroethane	10.6	2.0	$\mu g/L$	10.0		106	70-130	5.71	20		
Chloroform	9.51	2.0	μg/L	10.0		95.1	70-130	0.211	20		
Chloromethane	7.64	2.0	μg/L	10.0		76.4	40-160	0.392	20		†
2-Chlorotoluene	11.1	1.0	μg/L	10.0		111	70-130	1.87	20		
4-Chlorotoluene	11.9	1.0	μg/L	10.0		119	70-130	2.99	20		
1,2-Dibromo-3-chloropropane (DBCP)	8.02	2.0	μg/L	10.0		80.2	70-130	8.48	20		
1,2-Dibromoethane (EDB)	10.9	0.50	μg/L	10.0		109	70-130	1.91	20		
Dibromomethane	10.8	1.0	μg/L	10.0		108	70-130	1.66	20		
1,2-Dichlorobenzene	12.0	1.0	μg/L	10.0		120	70-130	0.747	20		
1,3-Dichlorobenzene	11.9	1.0	μg/L	10.0		119	70-130	2.57	20		
1,4-Dichlorobenzene	11.7	1.0	μg/L	10.0		117	70-130	1.70	20		
Dichlorodifluoromethane (Freon 12)	7.42	2.0	μg/L	10.0		74.2	40-160	2.32	20		†
1,1-Dichloroethane	9.62	1.0	μg/L	10.0		96.2	70-130	1.24	20		
1,2-Dichloroethane	8.60	1.0	μg/L	10.0		86.0	70-130	2.30	20		
1,1-Dichloroethylene	10.8	1.0	μg/L	10.0		108	70-130	0.834	20		
cis-1,2-Dichloroethylene	9.74	1.0	μg/L	10.0		97.4	70-130	0.412	20		
trans-1,2-Dichloroethylene	9.98	1.0	μg/L	10.0		99.8	70-130	0.400	20		
1,2-Dichloropropane	9.47	1.0	μg/L	10.0		94.7	70-130	5.14	20		
1,3-Dichloropropane	10.4	0.50	μg/L	10.0		104	70-130	1.14	20		
2,2-Dichloropropane	9.59	1.0	μg/L	10.0		95.9	70-130	0.104	20		
1,1-Dichloropropene	8.94	0.50	μg/L	10.0		89.4	70-130	0.335	20		
cis-1,3-Dichloropropene	11.2	0.40	μg/L	10.0		112	70-130	1.94	20		
trans-1,3-Dichloropropene	11.8	0.40	μg/L	10.0		118	70-130	0.594	20		
Diethyl Ether	12.7	2.0	μg/L	10.0		127	70-130	2.10	20		
Diisopropyl Ether (DIPE)	9.65	0.50	μg/L	10.0		96.5	70-130	3.66	20		
1,4-Dioxane	95.5	50	μg/L	100		95.5	40-160	3.47	20	V-16	†
Ethylbenzene	11.2	1.0	μg/L	10.0		112	70-130	2.46	20	. 10	'
Hexachlorobutadiene	12.4	0.60	μg/L	10.0		124	70-130	1.28	20		
2-Hexanone (MBK)	93.6	10	μg/L μg/L	100		93.6	40-160	10.4	20		†
Isopropylbenzene (Cumene)	93.0 11.6	1.0	μg/L μg/L	10.0		116	70-130	1.28	20		'
p-Isopropyltoluene (p-Cymene)	11.0	1.0	μg/L μg/L	10.0		110	70-130	1.68	20		
Methyl tert-Butyl Ether (MTBE)		1.0	μg/L μg/L	10.0		103	70-130	5.12	20		
Methylene Chloride	10.3	5.0	μg/L μg/L	10.0		103	70-130	0.174	20		
4-Methyl-2-pentanone (MIBK)	11.5	10	μg/L μg/L	10.0		94.2	40-160	6.57	20		†
	94.2										Ţ
Naphthalene	9.14	2.0	μg/L	10.0		91.4	70-130	6.66	20		

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227205 - SW-846 5030B										
.CS Dup (B227205-BSD1)				Prepared: 04	1/02/19 Analy	yzed: 04/03/	19			
-Propylbenzene	11.4	1.0	μg/L	10.0		114	70-130	1.92	20	
Styrene	12.9	1.0	$\mu g/L$	10.0		129	70-130	0.0775	20	V-20
,1,1,2-Tetrachloroethane	12.3	1.0	$\mu g/L$	10.0		123	70-130	2.97	20	
,1,2,2-Tetrachloroethane	12.1	0.50	$\mu g/L$	10.0		121	70-130	7.73	20	
Tetrachloroethylene	10.7	1.0	$\mu g/L$	10.0		107	70-130	1.75	20	
etrahydrofuran	9.26	2.0	$\mu g/L$	10.0		92.6	70-130	14.3	20	
Coluene	10.3	1.0	$\mu g/L$	10.0		103	70-130	0.677	20	
,2,3-Trichlorobenzene	10.5	2.0	$\mu g/L$	10.0		105	70-130	3.82	20	
,2,4-Trichlorobenzene	9.88	1.0	μg/L	10.0		98.8	70-130	5.51	20	
,1,1-Trichloroethane	9.00	1.0	μg/L	10.0		90.0	70-130	1.10	20	
,1,2-Trichloroethane	11.4	1.0	μg/L	10.0		114	70-130	0.00	20	
Prichloroethylene	9.95	1.0	μg/L	10.0		99.5	70-130	4.04	20	
Crichlorofluoromethane (Freon 11)	9.27	2.0	μg/L	10.0		92.7	70-130	1.82	20	
,2,3-Trichloropropane	11.1	2.0	μg/L	10.0		111	70-130	4.07	20	
,2,4-Trimethylbenzene	11.1	1.0	μg/L	10.0		111	70-130	1.79	20	
,3,5-Trimethylbenzene	11.1	1.0	μg/L μg/L	10.0		111	70-130	3.18	20	
/inyl Chloride		2.0	μg/L μg/L	10.0		125	70-130	6.70	20	
n+p Xylene	12.5	2.0								
	22.9	1.0	μg/L μg/I	20.0		114	70-130	2.20	20	
-Xylene	12.0	1.0	μg/L	10.0		120	70-130	1.82	20	
Surrogate: 1,2-Dichloroethane-d4	22.2		μg/L	25.0		89.0	70-130			
Surrogate: Toluene-d8	24.8		μg/L	25.0		99.4	70-130			
Surrogate: 4-Bromofluorobenzene	25.8		μg/L	25.0		103	70-130			
				Prepared: 04	1/02/19 Analy	yzed: 04/05/	19			
Blank (B227208 - SW-846 5030B Cartellium (B227208-BLK1)	ND	10	μg/L	Prepared: 04	1/02/19 Analy	yzed: 04/05/	19			R-05
Blank (B227208-BLK1)	ND ND	10 0.50	μg/L μg/L	Prepared: 04	1/02/19 Analy	yzed: 04/05/	19			R-05
Blank (B227208-BLK1) Acetone				Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			R-05
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			R-05
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene	ND ND	0.50 1.0	μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			R-05
Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene	ND ND ND	0.50 1.0 1.0	μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			R-05
Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane	ND ND ND ND	0.50 1.0 1.0 1.0	μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			R-05
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND ND ND ND ND	0.50 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/:	19			R-05
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ND ND ND ND ND	0.50 1.0 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/:	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND ND ND ND	0.50 1.0 1.0 1.0 1.0 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			R-05
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Bromomethane Bromomethane Bromomethane	ND	0.50 1.0 1.0 1.0 1.0 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromoform Bromomethane	ND N	0.50 1.0 1.0 1.0 1.0 2.0 10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane Bromodform Bromomethane	ND N	0.50 1.0 1.0 1.0 1.0 2.0 10 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromoform Bromomethane B-Butanone (MEK) B-Butylbenzene ec-Butylbenzene ert-Butyl Ethyl Ether (TBEE)	ND N	0.50 1.0 1.0 1.0 1.0 1.0 2.0 10 1.0 1.0 0.50 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromoform Bromomethane B-Butanone (MEK) B-Butylbenzene ert-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) Carbon Disulfide	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 10 1.0 1.0 5.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromet	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromodichloromethane	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromet	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
slank (B227208-BLK1) acetone ert-Amyl Methyl Ether (TAME) senzene stromobenzene stromochloromethane stromoform stromomethane -Butanone (MEK) -Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) carbon Disulfide carbon Tetrachloride chlorobenzene chlorodibromomethane chloroform	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Asiank (B227208-BLK1) Accetone Bert-Amyl Methyl Ether (TAME) Benzene Bromodenzene Bromodichloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromodichloromethane Bro	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane Bromodi	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/:	19			
Askank (B227208-BLK1) Ascetone Bert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromochloromethane Bromodichloromethane Bromodichloromethan	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/:	19			
cetone ert-Amyl Methyl Ether (TAME) denzene formochloromethane formochloromethane formochloromethane formomethane formomethane formomethane formomethane e-Butanone (MEK)Butylbenzene ert-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) forbon Disulfide forhorobenzene forhorodibromomethane forhorodibromomethane forhorodibromomethane forhorothane forhorothane forhorotolueneChlorotoluene	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/:	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane Bromomet	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Hg/L Hg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Slank (B227208-BLK1) Acctone ert-Amyl Methyl Ether (TAME) Benzene Bromodenzene Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromomethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Bromodichloromethane Entyl Entyl Ether (TBEE) Brabon Disulfide Brabon Disulfide Brabon Disulfide Brabon Tetrachloride Chlorodibromomethane Chloroform Chloroform Chloromethane Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chloromo-3-chloropropane (DBCP)	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			
Blank (B227208-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane Er-Butylbenzene ert-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) Carbon Disulfide Carbon Tetrachloride Chlorodibromomethane Chlorodibromomethane Chloroform Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene	ND N	0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Hg/L Hg/L	Prepared: 04	4/02/19 Analy	yzed: 04/05/	19			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227208 - SW-846 5030B										
Blank (B227208-BLK1)				Prepared: 04	/02/19 Anal	yzed: 04/05/1	9			
,4-Dichlorobenzene	ND	1.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
,1-Dichloroethane	ND	1.0	μg/L							
,2-Dichloroethane	ND	1.0	μg/L							
,1-Dichloroethylene	ND	1.0	μg/L							
is-1,2-Dichloroethylene	ND	1.0	μg/L							
rans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
,2-Dichloropropane	ND	1.0	μg/L							
,3-Dichloropropane	ND	0.50	$\mu g/L$							
,2-Dichloropropane	ND	1.0	$\mu g/L$							V-05
,1-Dichloropropene	ND	0.50	μg/L							
s-1,3-Dichloropropene	ND	0.40	μg/L							
ans-1,3-Dichloropropene	ND	0.40	μg/L							
riethyl Ether	ND	2.0	μg/L							
hisopropyl Ether (DIPE)	ND	0.50	$\mu \text{g/L}$							
4-Dioxane	ND	50	μg/L							V-16
thylbenzene	ND	1.0	μg/L							
exachlorobutadiene	ND	0.60	$\mu \text{g/L}$							
-Hexanone (MBK)	ND	10	$\mu \text{g/L}$							
opropylbenzene (Cumene)	ND	1.0	$\mu \text{g/L}$							
Isopropyltoluene (p-Cymene)	ND	1.0	$\mu \text{g/L}$							
lethyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu \text{g/L}$							
lethylene Chloride	ND	5.0	$\mu \text{g/L}$							
-Methyl-2-pentanone (MIBK)	ND	10	$\mu \text{g/L}$							
aphthalene	ND	2.0	$\mu \text{g/L}$							
-Propylbenzene	ND	1.0	$\mu g \! / \! L$							
tyrene	ND	1.0	$\mu g \! / \! L$							
1,1,2-Tetrachloroethane	ND	1.0	$\mu g \! / \! L$							
1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							R-05
etrachloroethylene	ND	1.0	$\mu g \! / \! L$							
etrahydrofuran	ND	2.0	$\mu g \! / \! L$							
oluene	ND	1.0	$\mu g/L$							
,2,3-Trichlorobenzene	ND	2.0	$\mu g/L$							
2,4-Trichlorobenzene	ND	1.0	$\mu g \! / \! L$							
1,1-Trichloroethane	ND	1.0	$\mu g\!/\!L$							
1,2-Trichloroethane	ND	1.0	$\mu g\!/\!L$							
richloroethylene	ND	1.0	$\mu g/L$							
richlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$							
2,3-Trichloropropane	ND	2.0	$\mu g\!/\!L$							
2,4-Trimethylbenzene	ND	1.0	$\mu g\!/\!L$							
3,5-Trimethylbenzene	ND	1.0	$\mu g\!/\!L$							
inyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	$\mu g/L$							
-Xylene	ND	1.0	$\mu g/L$							
urrogate: 1,2-Dichloroethane-d4	22.9		μg/L	25.0		91.4	70-130			
urrogate: Toluene-d8	24.4		$\mu g/L$	25.0		97.6	70-130			
urrogate: 4-Bromofluorobenzene	25.6		μg/L	25.0		102	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	_
Batch B227208 - SW-846 5030B											
LCS (B227208-BS1)				Prepared: 04	1/02/19 Analyzed	d: 04/05/1	9				
Acetone	118	10	μg/L	100		118	40-160			R-05	
tert-Amyl Methyl Ether (TAME)	11.6	0.50	$\mu g/L$	10.0		116	70-130				
Benzene	9.82	1.0	$\mu g/L$	10.0	Ç	98.2	70-130				
Bromobenzene	11.8	1.0	$\mu g/L$	10.0		118	70-130				
Bromochloromethane	10.4	1.0	μg/L	10.0		104	70-130				
Bromodichloromethane	10.6	1.0	μg/L	10.0		106	70-130				
Bromoform	11.6	1.0	$\mu g/L$	10.0		116	70-130				
Bromomethane	7.42	2.0	$\mu g/L$	10.0	5	74.2	40-160				
2-Butanone (MEK)	80.1	10	μg/L	100	8	30.1	40-160			V-05	
n-Butylbenzene	11.4	1.0	μg/L	10.0		114	70-130				
sec-Butylbenzene	11.5	1.0	μg/L	10.0		115	70-130				
tert-Butylbenzene	11.4	1.0	μg/L	10.0		114	70-130				
tert-Butyl Ethyl Ether (TBEE)	11.6	0.50	μg/L	10.0		116	70-130				
Carbon Disulfide	12.8	5.0	μg/L	10.0		128	70-130				
Carbon Tetrachloride	9.98	1.0	μg/L	10.0	ģ	99.8	70-130				
Chlorobenzene	12.0	1.0	μg/L	10.0		120	70-130				
Chlorodibromomethane	12.1	0.50	μg/L	10.0		121	70-130				
Chloroethane	11.3	2.0	μg/L	10.0		113	70-130				
Chloroform	10.0	2.0	μg/L	10.0		100	70-130				
Chloromethane	8.27	2.0	μg/L	10.0		32.7	40-160				
2-Chlorotoluene	11.3	1.0	μg/L	10.0		113	70-130				
4-Chlorotoluene	12.5	1.0	μg/L	10.0		125	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	8.33	2.0	μg/L	10.0		33.3	70-130				
1,2-Dibromoethane (EDB)	11.2	0.50	μg/L	10.0		112	70-130				
Dibromomethane	11.2	1.0	μg/L	10.0		112	70-130				
1,2-Dichlorobenzene	12.2	1.0	μg/L μg/L	10.0		122	70-130				
1,3-Dichlorobenzene	11.9	1.0	μg/L μg/L	10.0		119	70-130				
1,4-Dichlorobenzene	11.5	1.0	μg/L μg/L	10.0		115	70-130				
Dichlorodifluoromethane (Freon 12)	7.30	2.0	μg/L μg/L	10.0		73.0	40-160				
1,1-Dichloroethane	10.2	1.0	μg/L μg/L	10.0		102	70-130				
1,2-Dichloroethane		1.0	μg/L μg/L	10.0		93.2	70-130				
1,1-Dichloroethylene	9.32	1.0	μg/L μg/L	10.0		120	70-130				
cis-1,2-Dichloroethylene	12.0	1.0	μg/L μg/L								
trans-1,2-Dichloroethylene	10.3	1.0		10.0		103	70-130				
1,2-Dichloropropane	10.8	1.0	μg/L	10.0		108	70-130				
	10.0		μg/L	10.0		100	70-130				
1,3-Dichloropropane	10.7	0.50	μg/L	10.0		107	70-130			1105	
2,2-Dichloropropane	7.49	1.0	μg/L	10.0		74.9	70-130			V-05	
1,1-Dichloropropene	9.62	0.50	μg/L	10.0		96.2	70-130				
cis-1,3-Dichloropropene	11.4	0.40	μg/L	10.0		114	70-130				
trans-1,3-Dichloropropene	11.9	0.40	μg/L	10.0		119	70-130			**************************************	
Diethyl Ether	14.1	2.0	μg/L	10.0		141 *	70-130			V-20, L-02	
Diisopropyl Ether (DIPE)	10.7	0.50	μg/L	10.0		107	70-130				
I,4-Dioxane	83.2	50	μg/L	100		33.2	40-160			V-16	
Ethylbenzene	11.4	1.0	μg/L	10.0		114	70-130				
Hexachlorobutadiene	12.0	0.60	μg/L	10.0		120	70-130				
2-Hexanone (MBK)	93.4	10	μg/L	100		93.4	40-160				
Isopropylbenzene (Cumene)	11.8	1.0	μg/L	10.0		118	70-130				
p-Isopropyltoluene (p-Cymene)	11.5	1.0	μg/L	10.0		115	70-130				
Methyl tert-Butyl Ether (MTBE)	11.9	1.0	μg/L	10.0		119	70-130				
Methylene Chloride	12.7	5.0	μg/L	10.0		127	70-130				
4-Methyl-2-pentanone (MIBK)	96.0	10	$\mu g/L$	100	9	96.0	40-160				
Naphthalene	96.0 9.97	2.0	μg/L μg/L	10.0		99.7	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227208 - SW-846 5030B										
LCS (B227208-BS1)				Prepared: 04	/02/19 Analy	yzed: 04/05/	19			
n-Propylbenzene	11.9	1.0	μg/L	10.0		119	70-130			
Styrene	13.0	1.0	$\mu g/L$	10.0		130	70-130			V-20
1,1,1,2-Tetrachloroethane	12.5	1.0	$\mu g/L$	10.0		125	70-130			
1,1,2,2-Tetrachloroethane	11.3	0.50	$\mu g/L$	10.0		113	70-130			R-05
Tetrachloroethylene	10.6	1.0	$\mu g/L$	10.0		106	70-130			
Tetrahydrofuran	10.0	2.0	$\mu g/L$	10.0		100	70-130			
Toluene	10.5	1.0	$\mu g/L$	10.0		105	70-130			
1,2,3-Trichlorobenzene	10.7	2.0	$\mu g/L$	10.0		107	70-130			
1,2,4-Trichlorobenzene	10.3	1.0	$\mu g/L$	10.0		103	70-130			
1,1,1-Trichloroethane	9.84	1.0	$\mu g/L$	10.0		98.4	70-130			
1,1,2-Trichloroethane	11.4	1.0	$\mu g/L$	10.0		114	70-130			
Trichloroethylene	10.4	1.0	$\mu g/L$	10.0		104	70-130			
Trichlorofluoromethane (Freon 11)	10.1	2.0	μg/L	10.0		101	70-130			
1,2,3-Trichloropropane	10.6	2.0	μg/L	10.0		106	70-130			
1,2,4-Trimethylbenzene	11.5	1.0	μg/L	10.0		115	70-130			
1,3,5-Trimethylbenzene	11.9	1.0	μg/L	10.0		119	70-130			
Vinyl Chloride	21.0	2.0	μg/L	10.0		210 *	70-130			L-02, V-20
m+p Xylene	23.3	2.0	μg/L	20.0		116	70-130			, , ,
o-Xylene	12.1	1.0	μg/L	10.0		121	70-130			
Surrogate: 1,2-Dichloroethane-d4	23.4			25.0		93.6	70-130			
Surrogate: Toluene-d8	24.7		μg/L	25.0		98.8	70-130			
Surrogate: 4-Bromofluorobenzene	26.4		μg/L	25.0		106	70-130			
_	20.4		μg/L							
LCS Dup (B227208-BSD1)					/02/19 Analy	zed: 04/05/	19			
Acetone	157	10	μg/L	100		157	40-160	28.5	* 20	L-14, R-05
tert-Amyl Methyl Ether (TAME)	11.4	0.50	μg/L	10.0		114	70-130	1.91	20	
Benzene	9.53	1.0	μg/L	10.0		95.3	70-130	3.00	20	
Bromobenzene	11.4	1.0	μg/L	10.0		114	70-130	3.61	20	
Bromochloromethane	10.3	1.0	μg/L	10.0		103	70-130	0.483	20	
Bromodichloromethane	10.3	1.0	$\mu g/L$	10.0		103	70-130	2.77	20	
Bromoform	11.6	1.0	$\mu g/L$	10.0		116	70-130	0.430	20	
Bromomethane	8.05	2.0	$\mu g/L$	10.0		80.5	40-160	8.14	20	
2-Butanone (MEK)	87.8	10	$\mu g/L$	100		87.8	40-160	9.08	20	V-05
n-Butylbenzene	10.8	1.0	$\mu g/L$	10.0		108	70-130	5.51	20	
sec-Butylbenzene	11.2	1.0	$\mu \text{g}/L$	10.0		112	70-130	2.73	20	
tert-Butylbenzene	10.9	1.0	$\mu \text{g}/L$	10.0		109	70-130	4.49	20	
tert-Butyl Ethyl Ether (TBEE)	11.6	0.50	$\mu \text{g}/L$	10.0		116	70-130	0.345	20	
Carbon Disulfide	12.1	5.0	$\mu \text{g}/L$	10.0		121	70-130	5.06	20	
Carbon Tetrachloride	9.66	1.0	$\mu \text{g}/L$	10.0		96.6	70-130	3.26	20	
Chlorobenzene	11.6	1.0	$\mu g/L$	10.0		116	70-130	3.90	20	
Chlorodibromomethane	11.7	0.50	$\mu g/L$	10.0		117	70-130	3.27	20	
Chloroethane	11.6	2.0	μg/L	10.0		116	70-130	2.88	20	
Chloroform	9.79	2.0	μg/L	10.0		97.9	70-130	2.32	20	
Chloromethane	7.95	2.0	μg/L	10.0		79.5	40-160	3.95	20	
2-Chlorotoluene	10.7	1.0	μg/L	10.0		107	70-130	5.65	20	
4-Chlorotoluene	11.7	1.0	μg/L	10.0		117	70-130	6.35	20	
1,2-Dibromo-3-chloropropane (DBCP)	8.22	2.0	μg/L	10.0		82.2	70-130	1.33	20	
1,2-Dibromoethane (EDB)	11.1	0.50	μg/L	10.0		111	70-130	1.17	20	
	11.0	1.0	μg/L μg/L	10.0		110	70-130	1.98	20	
Dibromomethane	11.0		. 0	- 0.0						
		1.0	μα/L	10.0		118	70-130	3.26	20	
Dibromometnane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	11.8 11.6	1.0 1.0	μg/L μg/L	10.0 10.0		118 116	70-130 70-130	3.26 2.30	20 20	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B227208 - SW-846 5030B											
LCS Dup (B227208-BSD1)				Prepared: 04	1/02/19 Analy	zed: 04/05/1	9				
Dichlorodifluoromethane (Freon 12)	6.91	2.0	μg/L	10.0		69.1	40-160	5.49	20	L-14	
1,1-Dichloroethane	10.0	1.0	μg/L	10.0		100	70-130	1.49	20		
1,2-Dichloroethane	9.07	1.0	μg/L	10.0		90.7	70-130	2.72	20		
1,1-Dichloroethylene	11.7	1.0	μg/L	10.0		117	70-130	2.19	20		
cis-1,2-Dichloroethylene	9.90	1.0	μg/L	10.0		99.0	70-130	3.86	20		
trans-1,2-Dichloroethylene	10.4	1.0	μg/L	10.0		104	70-130	4.34	20		
1,2-Dichloropropane	9.62	1.0	μg/L	10.0		96.2	70-130	3.87	20		
1,3-Dichloropropane	10.8	0.50	μg/L	10.0		108	70-130	0.746	20		
2,2-Dichloropropane	7.20	1.0	μg/L	10.0		72.0	70-130	3.95	20	V-05	
1,1-Dichloropropene	9.46	0.50	μg/L	10.0		94.6	70-130	1.68	20		
cis-1,3-Dichloropropene	10.9	0.40	μg/L	10.0		109	70-130	4.93	20		
trans-1,3-Dichloropropene	11.6	0.40	μg/L	10.0		116	70-130	2.39	20		
Diethyl Ether	14.2	2.0	μg/L	10.0		142 *	70-130	0.988	20	V-20, L-02	
Diisopropyl Ether (DIPE)	10.3	0.50	μg/L	10.0		103	70-130	3.24	20	, , , , _	
1,4-Dioxane	88.1	50	μg/L	100		88.1	40-160	5.75	20	V-16	
Ethylbenzene	11.0	1.0	μg/L	10.0		110	70-130	3.75	20		
Hexachlorobutadiene	11.6	0.60	μg/L	10.0		116	70-130	2.88	20		
2-Hexanone (MBK)	97.9	10	μg/L	100		97.9	40-160	4.69	20		
Isopropylbenzene (Cumene)	11.3	1.0	μg/L	10.0		113	70-130	4.59	20		
p-Isopropyltoluene (p-Cymene)	11.0	1.0	μg/L	10.0		110	70-130	4.53	20		
Methyl tert-Butyl Ether (MTBE)		1.0	μg/L μg/L	10.0		118	70-130	1.01	20		
Methylene Chloride	11.8 12.6	5.0	μg/L μg/L	10.0		126	70-130	0.793	20		
4-Methyl-2-pentanone (MIBK)		10	μg/L μg/L	10.0		93.9	40-160	2.31	20		
Naphthalene	93.9	2.0	μg/L μg/L	10.0		95.9 95.7	70-130				
n-Propylbenzene	9.57	1.0		10.0			70-130	4.09	20		
Styrene	11.3	1.0	μg/L μα/Ι			113		5.17	20	V/ 20	
1,1,1,2-Tetrachloroethane	12.7	1.0	μg/L	10.0		127	70-130	2.65	20	V-20	
1,1,2,2-Tetrachloroethane	12.2	0.50	μg/L	10.0 10.0		122 90.7	70-130 70-130	2.35 21.8 *	20	D 05	
Tetrachloroethylene	9.07	1.0	μg/L							R-05	
-	10.4		μg/L	10.0		104	70-130	2.67	20		
Tetrahydrofuran	9.86	2.0	μg/L	10.0		98.6	70-130	1.51	20		
Toluene	10.3	1.0	μg/L	10.0		103	70-130	1.54	20		
1,2,3-Trichlorobenzene	10.4	2.0	μg/L	10.0		104	70-130	2.74	20		
1,2,4-Trichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	1.96	20		
1,1,1-Trichloroethane	9.57	1.0	μg/L	10.0		95.7	70-130	2.78	20		
1,1,2-Trichloroethane	11.4	1.0	μg/L	10.0		114	70-130	0.350	20		
Trichloroethylene	12.1	1.0	μg/L	10.0		121	70-130	15.4	20		
Trichlorofluoromethane (Freon 11)	9.67	2.0	μg/L	10.0		96.7	70-130	4.65	20		
1,2,3-Trichloropropane	10.4	2.0	μg/L	10.0		104	70-130	2.48	20		
1,2,4-Trimethylbenzene	11.1	1.0	μg/L	10.0		111	70-130	4.25	20		
1,3,5-Trimethylbenzene	11.3	1.0	μg/L	10.0		113	70-130	4.57	20		
Vinyl Chloride	18.6	2.0	μg/L	10.0		186 *	70-130	12.5	20	L-02, V-20	
m+p Xylene	22.3	2.0	μg/L	20.0		112	70-130	4.30	20		
o-Xylene	11.6	1.0	μg/L	10.0		116	70-130	4.04	20		
Surrogate: 1,2-Dichloroethane-d4	23.2		μg/L	25.0		92.8	70-130				_
Surrogate: Toluene-d8	24.9		μg/L	25.0		99.6	70-130				
Surrogate: 4-Bromofluorobenzene	26.1		μg/L	25.0		104	70-130				

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Result	- Dillit	- mts	- LCACI	Result	ONLL	Limits		-mill	110105
Batch B227443 - SW-846 3510C										
Blank (B227443-BLK1)				Prepared: 04.	4/04/19 Analy	vzed: 04/05/1	9			
Acenaphthele	ND	5.0	μg/L							
Acetaphylene	ND	5.0	μg/L							
Acetophenone	ND	10	μg/L							-
Anthrocono	ND	5.0	μg/L							V-34
Anthracene	ND	5.0	μg/L							
Benzo(a)anthracene	ND	5.0	μg/L							
Benzo(a)pyrene	ND	5.0	μg/L							
Benzo(b)fluoranthene	ND	5.0	μg/L							
Benzo(g,h,i)perylene	ND	5.0	μg/L							
Benzo(k)fluoranthene	ND	5.0	μg/L							
Bis(2-chloroethoxy)methane	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10	$\mu \text{g/L}$							
4-Bromophenylphenylether	ND	10	$\mu \text{g/L}$							
Butylbenzylphthalate	ND	10	$\mu g/L$							
4-Chloroaniline	ND	10	$\mu g/L$							R-05, V-34
2-Chloronaphthalene	ND	10	μg/L							
2-Chlorophenol	ND	10	μg/L							
Chrysene	ND	5.0	μg/L							
Dibenz(a,h)anthracene	ND	5.0	μg/L							
Dibenzofuran	ND	5.0	μg/L							
Di-n-butylphthalate	ND	10	μg/L							
1,2-Dichlorobenzene	ND ND	5.0	μg/L							
1,3-Dichlorobenzene	ND ND	5.0	μg/L							
1,4-Dichlorobenzene	ND ND	5.0	μg/L μg/L							
3,3-Dichlorobenzidine	ND ND	10	μg/L μg/L							
2,4-Dichlorophenol	ND ND	10	μg/L μg/L							
Diethylphthalate	ND ND	10	μg/L μg/L							
2,4-Dimethylphenol	ND ND	10	μg/L μg/L							
Dimethylphthalate	ND ND	10	μg/L μg/L							
2,4-Dinitrophenol	ND ND	10	μg/L μg/L							V-05
2,4-Dinitrophenoi		10	μg/L μg/L							¥-03
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND ND	10	μg/L μg/L							
2,6-Dinitrotoluene Di-n-octylphthalate	ND ND	10 10	μg/L μg/L							
1,2-Diphenylhydrazine/Azobenzene	ND ND	10 10	μg/L μg/L							
1,2-Diphenylhydrazine/Azobenzene Fluoranthene	ND ND	5.0	μg/L μg/L							
Fluoranthene Fluorene	ND ND	5.0 5.0								
	ND ND		μg/L μg/L							
Hexachlorobutadiene	ND ND	10 10	μg/L μg/L							
Hexachloroethane	ND	10	μg/L							
Hexachloroethane	ND	10	μg/L							
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L							
Isophorone 2. Mathylpophthologo	ND	10	μg/L							
2-Methylnaphthalene	ND	5.0	μg/L							
2-Methylphenol	ND	10	μg/L							
3/4-Methylphenol	ND	10	μg/L							
Naphthalene	ND	5.0	μg/L							
Nitrobenzene	ND	10	$\mu \text{g/L}$							
2-Nitrophenol	ND	10	$\mu \text{g/L}$							
4-Nitrophenol	ND	10	$\mu g/L$							
Pentachlorophenol	ND	10	μg/L							
Phenanthrene	ND	5.0	μg/L							

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227443 - SW-846 3510C										
Blank (B227443-BLK1)				Prepared: 04	/04/19 Anal	yzed: 04/05/1	19			
Phenol	ND	10	μg/L							R-05
Pyrene	ND	5.0	$\mu g/L$							
1,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$							
2,4,5-Trichlorophenol	ND	10	μg/L							
2,4,6-Trichlorophenol	ND	10	μg/L							
Surrogate: 2-Fluorophenol	101		μg/L	200		50.5	15-110			
Surrogate: Phenol-d6	70.6		$\mu g/L$	200		35.3	15-110			
Surrogate: Nitrobenzene-d5	75.8		$\mu g/L$	100		75.8	30-130			
Surrogate: 2-Fluorobiphenyl	77.1		$\mu g/L$	100		77.1	30-130			
Surrogate: 2,4,6-Tribromophenol	164		$\mu g/L$	200		82.1	15-110			
Surrogate: p-Terphenyl-d14	92.3		$\mu g/L$	100		92.3	30-130			
LCS (B227443-BS1)				Prepared: 04	/04/19 Analy	yzed: 04/05/1	19			
Acenaphthene	39.6	5.0	μg/L	50.0		79.2	40-140			
Acenaphthylene	39.8	5.0	$\mu g/L$	50.0		79.5	40-140			
Acetophenone	39.2	10	$\mu g/L$	50.0		78.4	40-140			
Aniline	34.8	5.0	μg/L	50.0		69.7	40-140			V-34
Anthracene	41.4	5.0	$\mu g/L$	50.0		82.7	40-140			
Benzo(a)anthracene	42.0	5.0	$\mu g\!/\!L$	50.0		84.0	40-140			
Benzo(a)pyrene	43.9	5.0	$\mu g\!/\!L$	50.0		87.9	40-140			
Benzo(b)fluoranthene	41.7	5.0	$\mu g\!/\!L$	50.0		83.3	40-140			
Benzo(g,h,i)perylene	45.6	5.0	$\mu g\!/\!L$	50.0		91.1	40-140			
Benzo(k)fluoranthene	42.6	5.0	$\mu g\!/\!L$	50.0		85.2	40-140			
Bis(2-chloroethoxy)methane	45.4	10	$\mu g\!/\!L$	50.0		90.8	40-140			
Bis(2-chloroethyl)ether	40.9	10	$\mu g\!/\!L$	50.0		81.9	40-140			
Bis(2-chloroisopropyl)ether	44.0	10	$\mu g/L$	50.0		87.9	40-140			
Bis(2-Ethylhexyl)phthalate	39.8	10	$\mu g/L$	50.0		79.6	40-140			
4-Bromophenylphenylether	39.4	10	$\mu g/L$	50.0		78.7	40-140			
Butylbenzylphthalate	43.7	10	$\mu g/L$	50.0		87.4	40-140			
4-Chloroaniline	38.7	10	$\mu g/L$	50.0		77.5	15-140			R-05, V-34
2-Chloronaphthalene	35.1	10	$\mu g/L$	50.0		70.2	40-140			
2-Chlorophenol	39.4	10	$\mu g/L$	50.0		78.8	30-130			
Chrysene	42.8	5.0	$\mu g/L$	50.0		85.5	40-140			
Dibenz(a,h)anthracene	43.1	5.0	$\mu g/L$	50.0		86.1	40-140			
Dibenzofuran	41.7	5.0	$\mu g/L$	50.0		83.3	40-140			
Di-n-butylphthalate	39.2	10	$\mu g/L$	50.0		78.4	40-140			
1,2-Dichlorobenzene	35.1	5.0	$\mu g\!/\!L$	50.0		70.3	40-140			
1,3-Dichlorobenzene	34.8	5.0	$\mu g/L$	50.0		69.6	40-140			
1,4-Dichlorobenzene	34.6	5.0	$\mu g/L$	50.0		69.2	40-140			
3,3-Dichlorobenzidine	48.4	10	$\mu g/L$	50.0		96.7	40-140			
2,4-Dichlorophenol	42.2	10	$\mu g\!/\!L$	50.0		84.4	30-130			
Diethylphthalate	42.2	10	$\mu g \! / \! L$	50.0		84.4	40-140			
2,4-Dimethylphenol	37.9	10	$\mu g\!/\!L$	50.0		75.8	30-130			
Dimethylphthalate	43.8	10	$\mu g\!/\!L$	50.0		87.6	40-140			
2,4-Dinitrophenol	33.3	10	$\mu g \! / \! L$	50.0		66.7	15-140			V-05
2,4-Dinitrotoluene	43.6	10	$\mu g\!/\!L$	50.0		87.3	40-140			
2,6-Dinitrotoluene	45.4	10	$\mu g/L$	50.0		90.7	40-140			
Di-n-octylphthalate	36.7	10	$\mu g/L$	50.0		73.4	40-140			
,2-Diphenylhydrazine/Azobenzene	38.0	10	$\mu g/L$	50.0		76.0	40-140			
Fluoranthene	41.7	5.0	$\mu g/L$	50.0		83.3	40-140			
Fluorene	42.2	5.0	$\mu g/L$	50.0		84.3	40-140			
Hexachlorobenzene	39.1	10	μg/L	50.0		78.3	40-140			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B227443 - SW-846 3510C											
LCS (B227443-BS1)				Prepared: 04	/04/19 Analy	zed: 04/05/1	19				
Hexachlorobutadiene	34.7	10	μg/L	50.0		69.4	40-140				
Hexachloroethane	35.1	10	μg/L	50.0		70.2	40-140				
Indeno(1,2,3-cd)pyrene	45.0	5.0	μg/L	50.0		89.9	40-140				
Isophorone	40.1	10	μg/L	50.0		80.2	40-140				
2-Methylnaphthalene	40.7	5.0	μg/L	50.0		81.4	40-140				
2-Methylphenol	37.7	10	μg/L	50.0		75.4	30-130				
3/4-Methylphenol	34.5	10	μg/L	50.0		69.0	30-130				
Naphthalene	37.8	5.0	μg/L	50.0		75.7	40-140				
Nitrobenzene	37.4	10	μg/L	50.0		74.7	40-140				
2-Nitrophenol	36.2	10	μg/L	50.0		72.3	30-130				
4-Nitrophenol	23.8	10	μg/L	50.0		47.5	15-140				i
Pentachlorophenol	38.9	10	μg/L	50.0		77.8	30-130				
Phenanthrene	41.0	5.0	μg/L	50.0		82.1	40-140				
Phenol	20.5	10	μg/L	50.0		41.0	15-140			R-05	i
Pyrene	43.8	5.0	μg/L	50.0		87.5	40-140				,
1,2,4-Trichlorobenzene	36.6	5.0	μg/L	50.0		73.2	40-140				
2,4,5-Trichlorophenol	39.8	10	μg/L	50.0		79.6	30-130				
2,4,6-Trichlorophenol	41.1	10	μg/L	50.0		82.2	30-130				
Surrogate: 2-Fluorophenol	113		μg/L	200		56.5	15-110				
Surrogate: Phenol-d6	85.0		μg/L	200		42.5	15-110				
Surrogate: Nitrobenzene-d5	82.6		μg/L	100		82.6	30-130				
Surrogate: 2-Fluorobiphenyl	84.7		μg/L	100		84.7	30-130				
Surrogate: 2,4,6-Tribromophenol	197		μg/L	200		98.4	15-110				
Surrogate: p-Terphenyl-d14	94.0		μg/L	100		94.0	30-130				
LCS Dup (B227443-BSD1)				Prepared: 04	/04/19 Analy	zed: 04/05/1	19				
Acenaphthene	34.8	5.0	μg/L	50.0		69.7	40-140	12.8	20		
Acenaphthylene	34.6	5.0	μg/L	50.0		69.2	40-140	13.9	20		
Acetophenone	32.9	10	$\mu g/L$	50.0		65.8	40-140	17.5	20		
Aniline	26.2	5.0	μg/L	50.0		52.4	40-140	28.3	* 20	V-34	
Anthracene	36.3	5.0	μg/L	50.0		72.7	40-140	12.9	20		
Benzo(a)anthracene	37.3	5.0	μg/L	50.0		74.7	40-140	11.8	20		
Benzo(a)pyrene	38.3	5.0	μg/L	50.0		76.7	40-140	13.6	20		
Benzo(b)fluoranthene	36.1	5.0	μg/L	50.0		72.2	40-140	14.3	20		
Benzo(g,h,i)perylene	40.0	5.0	μg/L	50.0		79.9	40-140	13.1	20		
Benzo(k)fluoranthene	37.3	5.0	μg/L	50.0		74.5	40-140	13.3	20		
Bis(2-chloroethoxy)methane	39.4	10	μg/L	50.0		78.8	40-140	14.1	20		
Bis(2-chloroethyl)ether	34.4	10	μg/L	50.0		68.9	40-140	17.2	20		
Bis(2-chloroisopropyl)ether	37.4	10	μg/L	50.0		74.9	40-140	16.1	20		
Bis(2-Ethylhexyl)phthalate	35.9	10	μg/L	50.0		71.7	40-140	10.4	20		
4-Bromophenylphenylether	35.7	10	μg/L	50.0		71.4	40-140	9.75	20		
Butylbenzylphthalate	39.2	10	μg/L	50.0		78.3	40-140	11.0	20		
4-Chloroaniline	39.2 29.7	10	μg/L μg/L	50.0		59.5	15-140		* 20	R-05, V-34	†
2-Chloronaphthalene		10	μg/L μg/L	50.0		64.2	40-140	8.99	20	K-03, V-34	'
2-Chlorophenol	32.1	10	μg/L μg/L	50.0		66.1	30-130	8.99 17.6			
Chrysene	33.0	5.0							20		
•	38.6		μg/L μg/I	50.0		77.1	40-140	10.3	20		
Dibenz(a,h)anthracene	37.2	5.0	μg/L	50.0		74.5	40-140	14.5	20		
Dibenzofuran Di n hytylaktholoto	35.8	5.0	μg/L	50.0		71.6	40-140	15.2	20		
Di-n-butylphthalate	35.8	10	μg/L	50.0		71.7	40-140	9.01	20		
1,2-Dichlorobenzene	29.7	5.0	$\mu g/L$	50.0		59.4	40-140	16.8	20		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	29.1 29.0	5.0 5.0	μg/L μg/L	50.0 50.0		58.2 58.0	40-140 40-140	18.0 17.6	20 20		

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B227443 - SW-846 3510C											
LCS Dup (B227443-BSD1)				Prepared: 04	1/04/19 Analy	zed: 04/05/1	9				
3,3-Dichlorobenzidine	42.4	10	μg/L	50.0		84.7	40-140	13.2	20		
2,4-Dichlorophenol	34.9	10	$\mu g/L$	50.0		69.8	30-130	18.9	20		
Diethylphthalate	36.8	10	$\mu g/L$	50.0		73.5	40-140	13.8	20		
2,4-Dimethylphenol	31.0	10	$\mu g/L$	50.0		62.0	30-130	20.0	20		
Dimethylphthalate	38.5	10	μg/L	50.0		77.0	40-140	12.9	20		
2,4-Dinitrophenol	28.9	10	$\mu g/L$	50.0		57.7	15-140	14.4	20	V-05	†
2,4-Dinitrotoluene	36.8	10	μg/L	50.0		73.6	40-140	17.0	20		
2,6-Dinitrotoluene	37.8	10	$\mu g/L$	50.0		75.6	40-140	18.1	20		
Di-n-octylphthalate	32.0	10	$\mu g/L$	50.0		64.0	40-140	13.7	20		
1,2-Diphenylhydrazine/Azobenzene	34.2	10	$\mu g/L$	50.0		68.4	40-140	10.6	20		
Fluoranthene	37.0	5.0	$\mu g/L$	50.0		74.0	40-140	11.9	20		
Fluorene	36.3	5.0	μg/L	50.0		72.6	40-140	14.9	20		
Hexachlorobenzene	34.4	10	μg/L	50.0		68.8	40-140	12.9	20		
Hexachlorobutadiene	29.8	10	μg/L	50.0		59.6	40-140	15.2	20		
Hexachloroethane	29.2	10	μg/L	50.0		58.4	40-140	18.4	20		
Indeno(1,2,3-cd)pyrene	38.2	5.0	μg/L	50.0		76.5	40-140	16.2	20		
Isophorone	35.0	10	μg/L	50.0		69.9	40-140	13.7	20		
2-Methylnaphthalene	34.7	5.0	μg/L	50.0		69.5	40-140	15.8	20		
2-Methylphenol	31.4	10	μg/L	50.0		62.8	30-130	18.3	20		
3/4-Methylphenol	28.6	10	μg/L	50.0		57.2	30-130	18.6	20		
Naphthalene	32.9	5.0	μg/L	50.0		65.8	40-140	14.1	20		
Nitrobenzene	31.8	10	μg/L	50.0		63.6	40-140	16.0	20		
2-Nitrophenol	31.0	10	μg/L	50.0		62.0	30-130	15.4	20		
4-Nitrophenol	19.4	10	μg/L	50.0		38.9	15-140	20.0	20		†
Pentachlorophenol	35.4	10	μg/L	50.0		70.8	30-130	9.40	20		
Phenanthrene	36.7	5.0	μg/L	50.0		73.4	40-140	11.2	20		
Phenol	16.4	10	μg/L	50.0		32.9	15-140	21.9	* 20	R-05	†
Pyrene	39.2	5.0	μg/L	50.0		78.4	40-140	11.0	20		
1,2,4-Trichlorobenzene	31.5	5.0	μg/L	50.0		63.0	40-140	15.0	20		
2,4,5-Trichlorophenol	34.2	10	μg/L	50.0		68.4	30-130	15.1	20		
2,4,6-Trichlorophenol	35.7	10	μg/L	50.0		71.4	30-130	14.0	20		
Surrogate: 2-Fluorophenol	94.2		μg/L	200		47.1	15-110				
Surrogate: Phenol-d6	68.9		$\mu g/L$	200		34.4	15-110				
Surrogate: Nitrobenzene-d5	69.3		$\mu g/L$	100		69.3	30-130				
Surrogate: 2-Fluorobiphenyl	72.6		$\mu g/L$	100		72.6	30-130				
Surrogate: 2,4,6-Tribromophenol	166		$\mu g/L$	200		83.1	15-110				
Surrogate: p-Terphenyl-d14	83.6		$\mu g/L$	100		83.6	30-130				

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227544 - SW-846 3510C										
Blank (B227544-BLK1)				Prepared: 04	/05/19 Analy	yzed: 04/06/1	19			
Aroclor-1016	ND	0.10	μg/L							
Aroclor-1016 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1221	ND	0.10	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1232	ND	0.10	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1242	ND	0.10	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1248	ND	0.10	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1254	ND	0.10	$\mu g \! / \! L$							
Aroclor-1254 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1260	ND	0.10	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1262	ND	0.10	$\mu g/L$							
Aroclor-1262 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1268	ND	0.10	$\mu g/L$							
Aroclor-1268 [2C]	ND	0.10	$\mu \text{g/L}$							
Surrogate: Decachlorobiphenyl	1.48		μg/L	2.00		73.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.48		μg/L	2.00		73.9	30-150			
Surrogate: Tetrachloro-m-xylene	1.16		μg/L	2.00		58.1	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.19		μg/L	2.00		59.3	30-150			
LCS (B227544-BS1)				Prepared: 04	/05/19 Analy	yzed: 04/06/1	19			
Aroclor-1016	0.42	0.20	$\mu g/L$	0.500		85.0	40-140			
Aroclor-1016 [2C]	0.42	0.20	$\mu g/L$	0.500		84.6	40-140			
Aroclor-1260	0.40	0.20	$\mu g/L$	0.500		79.4	40-140			
Aroclor-1260 [2C]	0.41	0.20	μg/L	0.500		82.3	40-140			
Surrogate: Decachlorobiphenyl	1.73		μg/L	2.00		86.5	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.75		μg/L	2.00		87.3	30-150			
Surrogate: Tetrachloro-m-xylene	1.40		$\mu g/L$	2.00		70.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.43		$\mu g/L$	2.00		71.6	30-150			
LCS Dup (B227544-BSD1)				Prepared: 04	/05/19 Analy	yzed: 04/06/1	19			
Aroclor-1016	0.41	0.20	μg/L	0.500		81.2	40-140	4.53	20	
Aroclor-1016 [2C]	0.42	0.20	$\mu g/L$	0.500		83.2	40-140	1.67	20	
Aroclor-1260	0.38	0.20	$\mu \text{g/L}$	0.500		76.2	40-140	4.17	20	
Aroclor-1260 [2C]	0.40	0.20	μg/L	0.500		79.5	40-140	3.52	20	
Surrogate: Decachlorobiphenyl	1.67		μg/L	2.00		83.3	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.73		$\mu g/L$	2.00		86.3	30-150			
Surrogate: Tetrachloro-m-xylene	1.40		$\mu g/L$	2.00		69.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.44		μg/L	2.00		71.9	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227554 - SW-846 3005A										
Blank (B227554-BLK1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	9			
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.40	$\mu g/L$							
Barium	ND	10	$\mu g/L$							
Beryllium	ND	0.40	$\mu g/L$							
'admium	ND	0.50	μg/L							
hromium	ND	1.0	μg/L							
opper	ND	5.0	$\mu g/L$							
ead	ND	1.0	$\mu g/L$							
langanese	ND	1.0	$\mu g/L$							
ckel	ND	5.0	μg/L							
elenium	ND	5.0	$\mu g/L$							
lver	ND	0.50	$\mu g/L$							
nallium	ND	0.20	$\mu g/L$							
anadium	ND	5.0	$\mu g/L$							
nc	ND	10	$\mu g \! / \! L$							
CS (B227554-BS1)				Prepared: 04	/05/19 Analy	yzed: 04/08/1	9			
ntimony	550	10	μg/L	500		110	80-120			
rsenic	544	4.0	μg/L	500		109	80-120			
arium	541	100	$\mu g/L$	500		108	80-120			
eryllium	542	4.0	$\mu g/L$	500		108	80-120			
admium	555	5.0	$\mu g/L$	500		111	80-120			
nromium	563	10	μg/L	500		113	80-120			
opper	1100	50	$\mu g/L$	1000		110	80-120			
ead	556	10	μg/L	500		111	80-120			
anganese	548	10	μg/L	500		110	80-120			
ickel	563	50	μg/L	500		113	80-120			
elenium	538	50	μg/L	500		108	80-120			
lver	422	5.0	μg/L	500		84.5	80-120			
nallium	517	2.0	μg/L	500		103	80-120			
nnadium	526	50	μg/L	500		105	80-120			
nc	1090	100	μg/L	1000		109	80-120			
CS Dup (B227554-BSD1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	9			
ntimony	506	10	μg/L	500		101	80-120	8.26	20	
rsenic	504	4.0	$\mu g/L$	500		101	80-120	7.71	20	
arium	496	100	$\mu g/L$	500		99.2	80-120	8.76	20	
eryllium	505	4.0	$\mu g/L$	500		101	80-120	7.20	20	
admium	509	5.0	$\mu g/L$	500		102	80-120	8.63	20	
nromium	516	10	μg/L	500		103	80-120	8.67	20	
opper	1010	50	μg/L	1000		101	80-120	8.85	20	
ead	510	10	μg/L	500		102	80-120	8.62	20	
anganese	501	10	μg/L	500		100	80-120	8.98	20	
ickel	519	50	μg/L	500		104	80-120	8.03	20	
elenium	502	50	μg/L	500		100	80-120	6.97	20	
lver	419	5.0	μg/L	500		83.8	80-120	0.778	20	
nallium	477	2.0	μg/L	500		95.4	80-120	8.12	20	
nnadium	490	50	μg/L	500		98.1	80-120	7.02	20	
inc	1010	100	μg/L	1000		101	80-120	7.73	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227561 - SW-846 7470A Prep										
Blank (B227561-BLK1)				Prepared & A	Analyzed: 04	/08/19				
Mercury	ND	0.00010	mg/L							
LCS (B227561-BS1)				Prepared & A	Analyzed: 04	/08/19				
Mercury	0.00379	0.00010	mg/L	0.00400		94.7	80-120			
LCS Dup (B227561-BSD1)				Prepared & A	Analyzed: 04	/08/19				
Mercury	0.00381	0.00010	mg/L	0.00400		95.2	80-120	0.563	20	
Duplicate (B227561-DUP1)	Sour	ce: 19D0106-	02	Prepared & A	Analyzed: 04	/08/19				
Mercury	ND	0.00010	mg/L		ND)		NC	20	
Matrix Spike (B227561-MS1)	Sour	ce: 19D0106-	02	Prepared & A	Analyzed: 04	/08/19				
Mercury	0.00375	0.00010	mg/L	0.00400	ND	93.7	75-125			

QUALITY CONTROL

Metals Analyses (Dissolved) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227576 - SW-846 3005A Dissolved										
Blank (B227576-BLK1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	19			
Arsenic	ND	0.40	μg/L							
Blank (B227576-BLK2)				Prepared: 04	/05/19 Anal	yzed: 04/23/1	19			
Nickel	ND	5.0	$\mu g/L$							
LCS (B227576-BS1)				Prepared: 04	/05/19 Anal	yzed: 04/08/1	19			
Arsenic	41.3	0.40	μg/L	40.0		103	80-120			
LCS (B227576-BS2)				Prepared: 04	/05/19 Anal	yzed: 04/23/1	19			
Nickel	38.7	5.0	μg/L	40.0		96.8	80-120			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227200 - SM19-22 4500 NH3 C										
Blank (B227200-BLK1)				Prepared: 04	1/02/19 Anal	yzed: 04/03/	′19			
Ammonia as N	ND	0.30	mg/L							
LCS (B227200-BS1)				Prepared: 04	1/02/19 Anal	yzed: 04/03/	19			
Ammonia as N	4.8	0.30	mg/L	5.00		95.8	81.5-113			
LCS Dup (B227200-BSD1)				Prepared: 04	1/02/19 Anal	yzed: 04/03/	19			
Ammonia as N	4.8	0.30	mg/L	5.00		95.8	81.5-113	0.00	11.4	
Batch B227277 - EPA 300.0										
Blank (B227277-BLK1)				Prepared &	Analyzed: 04	/03/19				
Nitrate as N	ND	0.10	mg/L		<u>-</u>					
Nitrite as N	ND	0.100	mg/L							
LCS (B227277-BS1)				Prepared &	Analyzed: 04	/03/19				
Nitrate as N	0.96	0.10	mg/L	1.00		96.1	90-110			
Nitrite as N	1.05	0.100	mg/L	1.00		105	90-110			
LCS Dup (B227277-BSD1)				Prepared &	Analyzed: 04	/03/19				
Nitrate as N	0.92	0.10	mg/L	1.00		91.5	90-110	4.84	20	
Nitrite as N	1.06	0.100	mg/L	1.00		106	90-110	0.992	20	
Batch B227283 - SM 21-22 4500 P E										
Blank (B227283-BLK1)				Prepared &	Analyzed: 04	/02/19				
Orthophosphate as P	ND	0.050	mg/L							
LCS (B227283-BS1)				Prepared &	Analyzed: 04	/02/19				
Orthophosphate as P	0.13	0.050	mg/L	0.170		78.8	72-122			
LCS Dup (B227283-BSD1)				Prepared &	Analyzed: 04	/02/19				
Orthophosphate as P	0.19	0.050	mg/L	0.170	·	112	72-122	34.7	* 10.6	R-05
Duplicate (B227283-DUP1)	Sou	rce: 19D0106-	03	Prepared &	Analyzed: 04	/02/19				
Orthophosphate as P	ND	0.050	mg/L		NE			NC	17	W-17
Duplicate (B227283-DUP2)	Sou	rce: 19D0106-	02	Prepared &	Analyzed: 04	/02/19				
Orthophosphate as P	ND	0.050	mg/L	•	NE			NC	17	W-17
Matrix Spike (B227283-MS1)	Sou	rce: 19D0106-	03	Prepared &	Analyzed: 04	-/02/19				
Orthophosphate as P	0.30	0.050	mg/L	0.300	NE		55.9-148			W-17

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227283 - SM 21-22 4500 P E	_	_		_			_			
Matrix Spike (B227283-MS2)	Sou	rce: 19D0106-	02	Prepared &	Analyzed: 04/	/02/19				
Orthophosphate as P	0.32	0.050	mg/L	0.300	ND	108	55.9-148			W-17
Batch B227312 - SM19-22 4500-N Org B,C-NH3 C										
Blank (B227312-BLK1)				Prepared: 04	/03/19 Analy	zed: 04/04/	19			
Total Kjeldahl Nitrogen	ND	1.0	mg/L							
LCS (B227312-BS1)				Prepared: 04	/03/19 Analy	zed: 04/04/	19			
Total Kjeldahl Nitrogen	19	1.0	mg/L	20.0		95.8	75-117			
Batch B227529 - SM19-22 4500 NH3 C										
Blank (B227529-BLK1)				Prepared: 04	/05/19 Analy	zed: 04/06/	19			
Ammonia as N	ND	0.30	mg/L							
LCS (B227529-BS1)				Prepared: 04	/05/19 Analy	zed: 04/06/	19			
Ammonia as N	4.8	0.30	mg/L	5.00		95.8	81.5-113			
LCS Dup (B227529-BSD1)				Prepared: 04	/05/19 Analy	zed: 04/06/	19			
Ammonia as N	4.9	0.30	mg/L	5.00		98.2	81.5-113	2.47	11.4	
Batch B227568 - SM 21-22 4500 P E										
Blank (B227568-BLK1)				Prepared &	Analyzed: 04/	/07/19				
Phosphorus, Total	ND	0.050	mg/L							
LCS (B227568-BS1)				Prepared &	Analyzed: 04/	/07/19				
Phosphorus, Total	0.22	0.050	mg/L	0.205		107	86.5-124			
LCS Dup (B227568-BSD1)				Prepared & A	Analyzed: 04/	/07/19				
Phosphorus, Total	0.22	0.050	mg/L	0.205		109	86.5-124	2.41	11	
Duplicate (B227568-DUP2)	Sou	rce: 19D0106-	04	Prepared &	Analyzed: 04/	/07/19				
Phosphorus, Total	ND	0.062	mg/L		ND	ı		NC	38.5	
Matrix Spike (B227568-MS2)	Sou	rce: 19D0106-	04	Prepared &	Analyzed: 04/	/07/19				
Phosphorus, Total	0.30	0.062	mg/L	0.300	ND	101	28.2-163			
Batch B227612 - EPA 300.0										
Blank (B227612-BLK1)				Prepared &	Analyzed: 04/	/09/19				_
Chloride	ND	1.0	mg/L							

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227612 - EPA 300.0										
LCS (B227612-BS1)				Prepared & A	Analyzed: 04/	/09/19				
Chloride	5.4	1.0	mg/L	5.00		107	90-110			
LCS Dup (B227612-BSD1)				Prepared & A	Analyzed: 04/	/09/19				
Chloride	5.3	1.0	mg/L	5.00		106	90-110	0.906	20	
Duplicate (B227612-DUP1)	Sourc	e: 19D0106-0	03	Prepared & A	Analyzed: 04/	/09/19				
Chloride	26	1.0	mg/L		26			0.217	20	
Matrix Spike (B227612-MS1)	Sourc	e: 19D0106-0	03	Prepared & A	Analyzed: 04/	/09/19				
Chloride	29	1.0	mg/L	5.00	26	58.6 *	80-120			MS-07

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

SW-846 8082A

Lab Sample ID:	B227544-BS1		Date(s) Analyzed:	04/06/2019	04/06	/2019
Instrument ID (1):	ECD4		Instrument ID (2):	ECD4		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7.10/12112	OOL	111	FROM	TO	OONOLIVITUUTOIV	70111 15
Aroclor-1016	1	0.000	0.000	0.000	0.42	
	2	0.000	0.000	0.000	0.42	2.4
Aroclor-1260	1	0.000	0.000	0.000	0.40	
	2	0.000	0.000	0.000	0.41	2.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

1000	
LCS Dup	

SW-846 8082A

Lab Sample ID:	B227544-BSD1		Date(s) Analyzed:	04/06/2019	04/06/2019	<u> </u>
Instrument ID (1):	ECD4	_	Instrument ID (2):	ECD4		
GC Column (1):	ID:	(mm)	GC Column (2):		ID: ((mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7.1.0.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.41	
	2	0.000	0.000	0.000	0.42	2.4
Aroclor-1260	1	0.000	0.000	0.000	0.38	
	2	0.000	0.000	0.000	0.40	5.1

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
RL-07	Elevated reporting limit based on lowest point in calibration. MA CAM reporting limit not met.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
W-17	Samples analyzed for Ortho phosphate were not filtered within 15 minutes of sampling.

CERTIFICATIONS

Certified Analyses included in this Report

Aroclor-1260 Aroclor-1260 [2C]

Certified Analyses included in this Report	
Analyte	Certifications
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
Nitrate as N	NC,NY,MA,VA,ME,NH,CT,RI
Nitrite as N	NY,NC,NH,VA,ME,CT,RI
SM 21-22 4500 P E in Water	
Orthophosphate as P	CT,MA,NH,NY,RI,ME,VA
Phosphorus, Total	CT,MA,NH,NY,RI,NC,ME,VA
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM19-22 4500-N Org B,C-NH3 C in Water	N I,NIA,C I,NI, VA,NC,IVIE
Total Kjeldahl Nitrogen	CT,MA,NH,NY,RI,NC,ME,VA
SW-846 6020B in Water	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,NC,ME,VA
Arsenic	CT,NH,NY,ME,VA,NC
Barium	CT,NH,NY,ME,VA,NC
Beryllium	CT,NH,NY,ME,VA,NC
Cadmium	CT,NH,NY,RI,ME,VA,NC
Chromium	CT,NH,NY,ME,VA,NC
Copper	CT,NH,NY,ME,VA,NC
Lead	CT,NH,NY,ME,VA,NC
Manganese	CT,NH,NY,ME,VA,NC
Nickel	CT,NH,NY,NC,ME,VA
Nickel	CT,NH,NY,ME,VA,NC
Selenium	CT,NH,NY,ME,VA,NC
Silver	CT,NH,NY,ME,VA,NC
Thallium	CT,NH,NY,ME,VA,NC
Vanadium	CT,NH,NY,ME,VA,NC
Zinc	CT,NH,NY,ME,VA,NC
SW-846 7470A in Water	
Mercury	CT,NH,NY,NC,ME,VA
SW-846 8082A in Water	
Aroclor-1016	CT,NH,NY,NC,ME,VA
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1221	CT,NH,NY,NC,ME,VA
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1232	CT,NH,NY,NC,ME,VA
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1242	CT,NH,NY,NC,ME,VA
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1248	CT,NH,NY,NC,ME,VA
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA
Aroclor-1254	CT,NH,NY,NC,ME,VA
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA

CT,NH,NY,NC,ME,VA

CT,NH,NY,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8082A in Water	
Aroclor-1262	NH,NY,NC,ME,VA
Aroclor-1262 [2C]	NH,NY,NC,ME,VA
Aroclor-1268	NH,NY,NC,ME,VA
Aroclor-1268 [2C]	NH,NY,NC,ME,VA
SW-846 8260C in Water	
Acetone	CT,NH,NY,ME
tert-Amyl Methyl Ether (TAME)	NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME CT,NH,NY,ME
n-Butylbenzene	NY,ME
sec-Butylbenzene	NY,ME NY,ME
tert-Butylbenzene	NY,ME
tert-Butyl Ethyl Ether (TBEE)	NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME CT,NH,NY,ME
2-Chlorotoluene	NY,ME
4-Chlorotoluene	NY,ME
1,2-Dibromo-3-chloropropane (DBCP)	NY
1,2-Dibromoethane (EDB)	NY
Dibromomethane	NH,NY,ME
1,2-Dichlorobenzene	CT,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NH,NY,ME
1,1-Dichloroethane	CT,NH,NY,ME
1,2-Dichloroethane	CT,NH,NY,ME
1,1-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME
1,3-Dichloropropane	NY,ME
2,2-Dichloropropane	NH,NY,ME
1,1-Dichloropropene	NH,NY,ME
cis-1,3-Dichloropropene	CT,NH,NY,ME
trans-1,3-Dichloropropene	CT,NH,NY,ME
Diisopropyl Ether (DIPE)	NH,NY,ME

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Ethylbenzene	CT,NH,NY,ME
Hexachlorobutadiene	CT,NH,NY,ME
2-Hexanone (MBK)	CT,NH,NY,ME
Isopropylbenzene (Cumene)	NY,ME
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,ME
Methyl tert-Butyl Ether (MTBE)	CT,NH,NY,ME
Methylene Chloride	CT,NH,NY,ME
4-Methyl-2-pentanone (MIBK)	CT,NH,NY,ME
Naphthalene	NH,NY,ME
n-Propylbenzene	CT,NH,NY,ME
Styrene	CT,NH,NY,ME
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME
Tetrachloroethylene	CT,NH,NY,ME
Toluene	CT,NH,NY,ME
1,2,3-Trichlorobenzene	NH,NY,ME
1,2,4-Trichlorobenzene	CT,NH,NY,ME
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	CT,NH,NY,ME
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	NY,ME
1,3,5-Trimethylbenzene	NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME
SW-846 8270D in Water	
Acenaphthene	CT,NY,NH
Acenaphthylene	CT,NY,NH
Acetophenone	NY
Aniline	CT,NY
Anthracene	CT,NY,NH
Benzo(a)anthracene	CT,NY,NH
Benzo(a)pyrene	CT,NY,NH
Benzo(b)fluoranthene	CT,NY,NH
Benzo(g,h,i)perylene	CT,NY,NH
Benzo(k)fluoranthene	CT,NY,NH
Bis(2-chloroethoxy)methane	CT,NY,NH
Bis(2-chloroethyl)ether	CT,NY,NH
Bis(2-chloroisopropyl)ether	CT,NY,NH
Bis(2-Ethylhexyl)phthalate	CT,NY,NH
4-Bromophenylphenylether	CT,NY,NH
Butylbenzylphthalate	CT,NY,NH
4-Chloroaniline	CT,NY,NH
2-Chloronaphthalene	CT,NY,NH

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8270D in Water	
2-Chlorophenol	CT,NY,NH
Chrysene	CT,NY,NH
Dibenz(a,h)anthracene	CT,NY,NH
Dibenzofuran	CT,NY,NH
Di-n-butylphthalate	CT,NY,NH
1,2-Dichlorobenzene	CT,NY,NH
1,3-Dichlorobenzene	CT,NY,NH
1,4-Dichlorobenzene	CT,NY,NH
3,3-Dichlorobenzidine	CT,NY,NH
2,4-Dichlorophenol	CT,NY,NH
Diethylphthalate	CT,NY,NH
2,4-Dimethylphenol	CT,NY,NH
Dimethylphthalate	CT,NY,NH
2,4-Dinitrophenol	CT,NY,NH
2,4-Dinitrotoluene	CT,NY,NH
2,6-Dinitrotoluene	CT,NY,NH
Di-n-octylphthalate	CT,NY,NH
1,2-Diphenylhydrazine/Azobenzene	NY
Fluoranthene	CT,NY,NH
Fluorene	NY,NH
Hexachlorobenzene	CT,NY,NH
Hexachlorobutadiene	CT,NY,NH
Hexachloroethane	CT,NY,NH
Indeno(1,2,3-cd)pyrene	CT,NY,NH
Isophorone	CT,NY,NH
2-Methylnaphthalene	CT,NY,NH
2-Methylphenol	CT,NY,NH
3/4-Methylphenol	CT,NY,NH
Naphthalene	CT,NY,NH
Nitrobenzene	CT,NY,NH
2-Nitrophenol	CT,NY,NH
4-Nitrophenol	CT,NY,NH
Pentachlorophenol	CT,NY,NH
Phenanthrene	CT,NY,NH
Phenol	CT,NY,NH
Pyrene	CT,NY,NH
1,2,4-Trichlorobenzene	CT,NY,NH
2,4,5-Trichlorophenol	CT,NY,NH
2,4,6-Trichlorophenol	CT,NY,NH

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

######################################			ht	tp://www	v.conte:	stlabs.co	m	Doc	# 381	Rev 1	1_032	42017						
CON-test	Phone: 413-525-2332 Fax: 413-525-6405	1400106	#IDENTITION VENEZUA MARIA	IAIN OF CU										e Stree Imead		AA 010	28	Page of
JLH	Email: info@contestlabs.	com	7-Day		10-D	200	<u> </u>	-	T .	T	Ta	Ι	,	1.				
Sympole V KX			Due Date:	نسا		AY PAG	3	N 1	N	11	4	7	S	Н.,				# of Containers
Address: 100 N Wast	JUDDIAN SI BOSTAN	MA		Real Page				P P	R	V	TA	A	<u>ب</u>	\Rightarrow			\vdash	² Preservation Code
Phone: 781-917-	5360		1-Day		3-Da			1	1					UEST	FD	L		Container Code Used Vertillers is Seminers
Bores Complete Report	46746-c-tor	repace.	2-Day		4-Da	y [5	ı	3		1					1		Field Filtered
Project Location: Wayka				Jana					쿸				8	2				O Lab to Filter
Project Number: ((66 4			Format:	PDF 🔀			3		Metal				Mas	ξ				Cau to Filter
	SQL		Other:	$ \mathcal{Q} \oplus \mathcal{Q} $		/ ~	-	,	그					ž				Craviephosphere Semples
Con-Test Quote Name/Number:			CLP Like E	ata Pkg Re	equired	:		Ž	HCP14			٦	~	$\widetilde{\mathcal{L}}$	-			ේ Field Filtered
Invoice Recipient: C. So	100 J		Email To:	K2002X	<u> </u>	RI PEKK	21g. w	1 S	1 1			<u>ે</u>	Sta Sta	读				O Lab to Filter
Sampled By: L.SC/SO		WASANA Wasana Wasana Wasana	Fax To #:		<u> </u>		107		1 3	Q	7	ಜ	7	ğ	•			
Con-Test Work Order#	Client Sample ID / Description	Beginning Date/Time	Ending Date/Time	Composite	Grab	¹ Matrix Code	Conc Code	Diss	Total	9778	8270	fc8 8085	Anno/Potal N	Nikatelon Polisada				¹ Matrix Codes: GW = Ground Water
	V-103(MW)	4/2/19	0730		4	GW		Х	Ø	X	XI.	X	Χ	X				WW = Waste Water DW = Drinking Water
ζ	V-106 (MW)		0930					\propto	C	K	7	ĸ	x	∞				A = Air S = Soil
3	V-104 (MW)		1215					100	X	X	х	X	χ	X				SL = Sludge
1	MW-3		1435		d	V		χ	χ		X	X	./	∞				SOL = Solid O = Other (please
			112/		+	 		1~		X.	Δ	^	X	/ -				define)
						-							_					M
					-	<u> </u>												² <u>Preservation Codes</u> : I = Iced
			<u> </u>															H = HCL M = Methanol
																		N = Nitric Acid
			(0./4.0														_	S = Sulfuric Acid B = Sodium Bisulfate
	changes made per clie	ent. JLH 4	·/3/19 H						-+			\dashv						X = Sodium Hydroxide
Comments:	add Cu and Mg		L															T = Sodium Thiosulfate
	Client requested Diss	Ni on san	nple			Place		6-11										0 04
	-02 JLH 4/22/19					riease	use the	wit	virig co thin th	oaes i he Co	co ina ne Co	icate de co	Possit Lumo	ote sar above	πple	conce	ntratio	n define)
							H - Hig									cnown)	
Relinquished by: (signature)	Date/Times				0. (2) S				(Discourantists									³ <u>Container Codes</u> : A = Amber Glass
Relinquished by (signature)	Date/Time: 4/2/19 152	S 		nasinistijis)	We appoint the property	Special F	70X 5X 5X 5XX	受別(人の受別(人の意思)										G = Glass
Received by/(signature)	// / Chro/Timo	سر ₁ سر 1	L		M	I ○P Certific	MA MCF			.11	1111	b					. .	P = Plastic ST = Sterile
Jases Il Walid	Mx 4/2/19 152				+ =]	CT RCF			41		1		7		te:	St°	V ≈ Vial
Belinquished by: (statiature)///	Date/Time:	302		·	RO	a OP Certific				W	HH	-	110-07-07-00	YTICA				S = Summa Canister T = Tedlar Bag
" Cert VI July	wax 1/1-11/								\neg	7			ww	w.con	testi	lahu.c	em	0 = Other (please
ived by: (signature)	7.8 Date/Time: 4/2/19 17:30	7			L		State DW	Requir	red									define)
quished by: (signature)	Date/Time:				PWSIE) #				j	ELAC	and ,	WHA.	LAP,	LLC /	ccrec	lited	
N	Date/Time:	Project Ent	•	. [-		(IV:						- 1	Other					PCB ONLY
이 ived by: (signature)	Date/Time:		Governmen Federal			ipality		MWI		<u> </u>	WRTA			_		atogr		Soxhlet
1 (signature)			City		21 J Brown	field		Scho MB1						∐ <i>A</i>	IIHA-	LAP,LI	LC	Non Soxhlet
			,	ليسا	D. O. 8911			1410				ŀ						1

Table of Contents

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Check	list - (Rejection Criteria Listing - Using A	cceptance Policy) Any False
Statement will be	brought to the attention of the Client - St	ate True or False

	Vor1ex								
Recei	ved By	4		Date	4/2/19		Time	17:30	"
	the samples	In Cooler		No Cooler		On Ice	τ	No ice	
rece	ived?	Direct from Samp	oling	•	***	Ambient		Melted ice	
Were sam	ples within		-	5	•		np - 3.8,3.		
	ure? 2-6°C		By Blank #	···			1	0	
•			NIA	\//e	re Samples	Actual Ten		//	
	s COC Relir		7	Does	s Chain Agr	ee With Sa	willis	NA	
		leaking/loose caps	on any sam	ples?	C	CC WITH OR	impies:		
Is COC in ir	nk/ Legible?		,		nples receiv	ved within h	nolding time?	1	
	include all	Client		Analysis	7		ler Name		_
pertinent In		Project	4-	ID's	T		Dates/Times	3 T	-
		d out and legible?	_T	•	,				
Are there La		?	_F		Who was	notified?			
Are there Ru			<u> </u>		Who was	notified?		******	-
Are there Sh					Who was	notified?	Irma		
is there enough			<u> </u>			_			•••
		ere applicable?	<u> </u>		MS/MSD?_		**		
Proper Medi					ls splitting s	samples red	quired?	1/2	_
Were trip bla		e proper pH?	F		On COC?_	<u> </u>	_		
	MODEL CONTRACTOR CONTR			Acid _	762		Base	·	-
Vials Unp-	#	Containers:	#			#			#
HCL-	q	1 Liter Amb. 500 mL Amb.		1 Liter I		_4		z Amb.	
Meoh-		250 mL Amb.	6	500 mL		3		nb/Clear	
Bisulfate-		Flashpoint	9	250 mL Col./Ba		8		nb/Clear	
DI-	7711111	Other Glass	2	Other F				nb/Clear	
Thiosulfate-		SOC Kit		Plastic			Frozen:	core	
Sulfuric-		Perchlorate		Ziplo		······································	1102011.		
				Unused M					
Vials	#	Containers:	#	Ondaed II	ieula	#			2 7
Unp-		1 Liter Amb.		1 Liter F	Plastic		16.07	Amb.	#
HCL-	1	500 mL Amb.		500 mL l				b/Clear	
Meoh-		250 mL Amb.	S'	250 mL I	Plastic	2		ıb/Clear	
Bisulfate-		Col./Bacteria		Flash				b/Clear	
Di-		Other Plastic		Other C				ore	
Thiosulfate-		SOC Kit		Plastic	·········		Frozen:		
Sulfuric- Comments:		Perchlorate		Ziplo	ck				
Johnnemus:					·				

		MADE	P MCP Analytical M	lethod Report Cer	tification Form					
Labo	ratory Name	: Con-Test Ana	llytical Laboratory		Project #: 19D0	0106				
Project Location: Wayland, MA RTN:										
This F	orm provide:	s certifications for t	the following data set	:: [list Laboratory Sa	mple ID Number(s)]					
190	00106-01 thru	ı 19D0106-04								
Matri	ces:	Water								
CA	AM Protoco	l (check all that	below)							
8260 CAM	VOC II A (X)	7470/7471 Hg CAM IIIB (X)	MassDEP VPH CAM IV A ()	8082 PCB CAM V A (X)	9014 Total Cyanide/PAC CAM VI A ()		6860 Perchlorate CAM VIII B ()			
	SVOC II B (X)	7010 Metals CAM III C ()	MassDEP VPH CAM IV C ()	8081 Pesticides CAM V B ()	7196 Hex Cr CAM VI B ()	MassD CAM IX	EP APH (A ()			
	Metals III A ()	6020 Metals CAM III D (X)	MassDEP EPH CAM IV B ()	TO-15						
	A	ffirmative response	to Questions A throug	ghF is required for "l	Presumptive Certainty"	status				
Α	Were all samp properly prese method holding	☑ Yes	□No¹							
В	Were the analy	elected CAM	☑ Yes	□No¹						
Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?							□No¹			
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, Quality Assurance and Quality Control Guidlines for the Acquisition and Reporting of Analytical Data?							□No¹			
E a VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).							□No¹			
Εb		•	the complete analyte list r			□Yes	□No¹			
F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all No responses to Qestions A through E)?						☑ Yes	□No¹			
			and I below is require							
G	protocol(s)?		all CAM reporting limits sp			□Yes	☑No¹			
			resumptive Certainty" described in 310 CMF	=	ssarily meet the data us WSC-07-350.	sability				
Н	Were all QC po	erfomance standards s	specified in the CAM proto	ocol(s) achieved?		□ _{Yes}	☑ _{No¹}			
I	Were results re	eported for the comple	te analyte list specified in	the selected CAM proto	col(s)?	☑ Yes	□No¹			
1 _{All}	Negative resp	onses must be addre	essed in an attached Er	nvironmental Laborato	ry case narrative.					
thos	se responsible	-	nformation, the mater		ipon my personal inquii analytical report is, to th	-				
Sigr	nature:	hisa W	forthungton_	Position:	Technical Represent	ative				
Prin	nted Name:	Printed Name: Lisa A. Worthington Date: 04/09/19								

April 5, 2019

Kristen Sarson Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114

Project Location: Wayland, MA

Client Job Number: Project Number: 46047

Laboratory Work Order Number: 19C1572

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on March 29, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	4
Case Narrative	7
Sample Results	10
19C1572-01	10
19C1572-02	18
19C1572-03	26
19C1572-04	34
19C1572-05	42
19C1572-06	50
19C1572-07	58
19C1572-08	66
19C1572-09	74
19C1572-10	76
Sample Preparation Information	78
QC Data	81
Volatile Organic Compounds by GC/MS	81
B227113	81
B227135	85
Semivolatile Organic Compounds by GC/MS	90
B227222	90
Polychlorinated Biphenyls with 3540 Soxhlet Extraction	97
B227240	97
Petroleum Hydrocarbons Analyses	99
B227221	99
Metals Analyses (Total)	100

Table of Contents (continued)

B227094	100
B227367	100
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	102
B227022	102
B227024	102
B227052	102
B227054	102
B227087	102
B227324	103
Dual Column RPD Report	104
Flag/Qualifier Summary	108
Certifications	109
Chain of Custody/Sample Receipt	113

Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114 ATTN: Kristen Sarson

REPORT DATE: 4/5/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 46047

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19C1572

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wayland, MA

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
V-107 (5-10)	19C1572-01	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modifie	ed
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	
V-108 (0-5)	19C1572-02	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modifie	ed
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	
V-109 (5-10)	19C1572-03	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modifie	ed
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	

Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114 ATTN: Kristen Sarson

REPORT DATE: 4/5/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 46047

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19C1572

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wayland, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
V-110 (5-10)	19C1572-04	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modif	ied
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	
V-111 (0-10)	19C1572-05	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modif	ied
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	
V-112 (0-5)	19C1572-06	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Modif	řed
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	

Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114 ATTN: Kristen Sarson

REPORT DATE: 4/5/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 46047

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19C1572

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wayland, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
V-113 (0-5)	19C1572-07	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Mod	ified
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	
V-114 (5-10)	19C1572-08	Soil		SM 2540G	
				SM21-22 2510B	
				Modified	
				SW-846 1030	
				SW-846 6010D	
				SW-846 7471B	
				SW-846 8082A	
				SW-846 8100 Mod	ified
				SW-846 8260C	
				SW-846 8270D	
				SW-846 9014	
				SW-846 9030A	
				SW-846 9045C	
V-115 (5-10)	19C1572-09	Soil		SM 2540G	
				SW-846 8082A	
V-116 (0-5)	19C1572-10	Soil		SM 2540G	
				SW-846 8082A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 6010D

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated. Analyte & Samples(s) Qualified:

Antimony

19C1572-06[V-112 (0-5)], B227367-MS1

SW-846 8082A

Qualifications:

O-32

A dilution was performed as part of the standard analytical procedure.

Analyte & Samples(s) Qualified:

 $19C1572-01[V-107\ (5-10)],\ 19C1572-02[V-108\ (0-5)],\ 19C1572-03[V-109\ (5-10)],\ 19C1572-04[V-110\ (5-10)],\ 19C1572-05[V-111\ (0-10)],\ 19C1572-06[V-112\ (0-5)],\ 19C1572-05[V-112\ (0-5)],\ 19C1572-05[V-11$ 19C1572-07[V-113 (0-5)], 19C1572-08[V-114 (5-10)], 19C1572-09[V-115 (5-10)], 19C1572-10[V-116 (0-5)]

SW-846 8260C

Oualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

 $19C1572-01[V-107\ (5-10)],\ 19C1572-02[V-108\ (0-5)],\ 19C1572-03[V-109\ (5-10)],\ 19C1572-04[V-110\ (5-10)],\ 19C1572-05[V-111\ (0-10)],\ 19C1572-06[V-112\ (0-5)],\ 19C1572-05[V-112\ (0-5)],\ 19C1572-05[V-11$ 19C1572-07[V-113 (0-5)], 19C1572-08[V-114 (5-10)], B227113-BLK1, B227113-BS1, B227113-BSD1, B227135-BLK1, B227135-BS1, B227135-BSD1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result

Analyte & Samples(s) Qualified:

1.4-Dioxane

19C1572-01[V-107(5-10)], 19C1572-02[V-108(0-5)], 19C1572-03[V-109(5-10)], 19C1572-04[V-110(5-10)], 19C1572-05[V-111(0-10)], 19C1572-06[V-112(0-5)], 19C1572-06[V-112(0-5)],19C1572-07[V-113 (0-5)], 19C1572-08[V-114 (5-10)], B227113-BLK1, B227113-BS1, B227113-BSD1, B227135-BLK1, B227135-BSD1, B227135-BSD1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Bromoform

B227113-BS1, B227113-BSD1, B227135-BS1, B227135-BSD1, S034201-CCV1, S034203-CCV1

Methyl tert-Butyl Ether (MTBE)

B227113-BS1, B227113-BSD1, B227135-BS1, B227135-BSD1, S034201-CCV1, S034203-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is

estimated.
Analyte & Samples(s) Qualified:

Bromomethane

 $19C1572-01[V-107\ (5-10)],\ 19C1572-02[V-108\ (0-5)],\ 19C1572-03[V-109\ (5-10)],\ 19C1572-04[V-110\ (5-10)],\ 19C1572-05[V-111\ (0-10)],\ 19C1572-06[V-112\ (0-5)],\ 19C1572-05[V-112\ (0-5)],\ 19C1572-05[V-11$ 19C1572-07[V-113 (0-5)], 19C1572-08[V-114 (5-10)], B227113-BLK1, B227113-BS1, B227113-BSD1, B227135-BLK1, B227135-BS1, B227135-BSD1, S034201-CCV1, S034203-CCV1

SW-846 8270D

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Aniline

B227222-BS1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2-Methylphenol

19C1572-01[V-107 (5-10)], 19C1572-02[V-108 (0-5)], 19C1572-03[V-109 (5-10)], 19C1572-04[V-110 (5-10)], 19C1572-05[V-111 (0-10)], 19C1572-06[V-112 (0-5)], 19C1572-07[V-113 (0-5)], 19C1572-08[V-114 (5-10)], B227222-BK1, B227222-BS1, B227222-BS1, B227222-MS1, B227222-MS1, S034267-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

estimated. Analyte & Samples(s) Qualified:

3,3-Dichlorobenzidine

 $19C1572-01[V-107\ (5-10)],\ 19C1572-02[V-108\ (0-5)],\ 19C1572-03[V-109\ (5-10)],\ 19C1572-04[V-110\ (5-10)],\ 19C1572-05[V-111\ (0-10)],\ 19C1572-06[V-112\ (0-5)],\ 19C1572-07[V-113\ (0-5)],\ 19C1572-08[V-114\ (5-10)],\ B227222-BK1,\ B227222-BS1,\ B227222-BS1,\ B227222-MS1,\ B227222-MS1,\ S034267-CCV1$

4-Chloroaniline

 $19C1572-01[V-107\ (5-10)],\ 19C1572-02[V-108\ (0-5)],\ 19C1572-03[V-109\ (5-10)],\ 19C1572-04[V-110\ (5-10)],\ 19C1572-05[V-111\ (0-10)],\ 19C1572-06[V-112\ (0-5)],\ 19C1572-07[V-113\ (0-5)],\ 19C1572-08[V-114\ (5-10)],\ B227222-BK1,\ B227222-BS1,\ B227222-BS1,\ B227222-MS1,\ B227222-MS1,\ S034267-CCV1$

Aniline

19C1572-01[V-107 (5-10)], 19C1572-02[V-108 (0-5)], 19C1572-03[V-109 (5-10)], 19C1572-04[V-110 (5-10)], 19C1572-05[V-111 (0-10)], 19C1572-06[V-112 (0-5)], 19C1572-07[V-113 (0-5)], 19C1572-08[V-114 (5-10)], B227222-BK1, B227222-BS1, B227222-BS1, B227222-MS1, B227222-MS1, S034267-CCV1

SW-846 9045C

Qualifications:

H-03

Sample received after recommended holding time was exceeded

Analyte & Samples(s) Qualified:

nΗ

 $19C1572-01[V-107\ (5-10)],\ 19C1572-02[V-108\ (0-5)],\ 19C1572-03[V-109\ (5-10)],\ 19C1572-04[V-110\ (5-10)],\ 19C1572-05[V-111\ (0-10)],\ 19C1572-06[V-112\ (0-5)],\ 19C1572-07[V-113\ (0-5)],\ 19C1572-08[V-114\ (5-10)],\ B227052-DUP1$

SW-846 8100 Modified

TPH (C9-C36) is quantitated against a calibration made with a diesel standard.

na Watslengton

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

SW-846 8270D

Laboratory control sample recoveries for required MCP Data Enhancement 8270 compounds were all within control limits specified by the method, 40-140% for base/neutrals and 30-130% for acids except for "difficult analytes" listed below and/or otherwise listed in this narrative. Difficult analytes limits are 15 and 140%: 2,4-dinitrophenol, 4-chloroaniline, 4-nitrophenol, and phenol.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Page 9 of 115

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-107 (5-10)

Sampled: 3/27/2019 13:05

Sample ID: 19C1572-01
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Performance	Date Date/Time										
Control Michael Electr (TAME)	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Remove	Acetone	ND	0.076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Bromechetzment	tert-Amyl Methyl Ether (TAME)	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Bromochlorouchlance	Benzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Bemondichlorounchanne	Bromobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Decembar 10	Bromochloromethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Demonmentane No 0.0076 mg/kg dy 1 N-34 SW-846-8260C 4179 4179 1579 Mg 152 152 153 1	Bromodichloromethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Pathanone (MEK)	Bromoform	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Passible P	Bromomethane	ND	0.0076	mg/Kg dry	1	V-34	SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
See-Bulylbenzene	2-Butanone (MEK)	ND	0.030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Ent-Burylbenzene	n-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Part	sec-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Curbon Disulfide ND 0.0046 mg/kg dry 1 SW-846 8260C 4/1/0 4/1/19 15:19 MF Curbon Tetrachloride ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/0 4/1/19 15:19 MF Chlorochenzene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/0 4/1/19 15:19 MF Chlorochane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/0 4/1/19 15:19 MF Chlorochane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF Chlorochane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 2-Chlorochane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 4-Chlorochane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 1,2-Dehorochane DD 0.0015	tert-Butylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Carbon Tetrachloride	tert-Butyl Ethyl Ether (TBEE)	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Chlorobenzene	Carbon Disulfide	ND	0.0046	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Chlorodibromomethane	Carbon Tetrachloride	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Chlorocthane	Chlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Chloroform	Chlorodibromomethane	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Chloromethane ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/9 4/1/19 15:19 MF 2-Chlorotoluene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/9 4/1/19 15:19 MF 4-Chlorotoluene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/9 4/1/19 15:19 MF 1,2-Dibromo-3-chloropropane (DBCP) ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/9 4/1/19 15:19 MF 1,2-Dibromomethane (EDB) ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/9 4/1/19 15:19 MF 1,2-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/9 4/1/19 15:19 MF 1,3-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/9 4/1/19 15:19 MF 1,4-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/9 4/1/19 15:19 MF 1,4-Dichlorobenzene	Chloroethane	ND	0.0076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
2-Chlorotoluene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,2-Dibromo-3-chloropropane (DBCP) ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,2-Dibromo-4 ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,2-Dibromo-thane (EDB) ND 0.00076 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,2-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,2-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,2-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,2-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0015 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0016 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0016 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,1-Dichloropenae ND 0.0016 mg/kg dry 1 SW-846 8260C 4/1/9 4/1/9 15:19 MF 1,	Chloroform	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
A-Chlorotoluene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dibromo-3-chloropropane (DBCP) ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dibromoethane (EDB) ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,3-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,4-Dichlorobenzene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloroethane (Freon 12) ND 0.0076 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloroethane ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloroethylene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloroethylene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloroethylene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dichloroethylene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dichloroethylene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dichloroethylene ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dichloropropane ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,2-Dichloropropane ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloropropane ND 0.0015 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloropropane ND 0.00076 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloropropane ND 0.00076 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF 1,1-Dichloropropane ND 0.00076 mg/kg dry 1 SW-\$46 8260C 41/19 41/19 15:19 MF	Chloromethane	ND	0.0076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1.2-Dibromo-3-chloropropane (DBCP)	2-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1.2-Dibromoethane (EDB) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.2-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.3-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.4-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.4-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.4-Dichlorodifluoromethane (Freon 12) ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloroethylene ND 0.0030 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1.1-Dichloropropane ND 0.00076	4-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Dibromomethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethane (Freon 12) ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroptopane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroptopane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroptopane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroptopane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroptopane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroptopane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroptopane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroptopane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroptopane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19	1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,2-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorochane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorochane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorochane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorochylene ND 0.0030 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorochylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichlorochylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichlorochylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dich	1,2-Dibromoethane (EDB)	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,3-Dichlorobenzene ND 0,0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 1,4-Dichlorobenzene ND 0,0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF Dichlorodifluoromethane (Freon 12) ND 0,0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 1,1-Dichloroethane ND 0,0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 1,2-Dichloroethane ND 0,0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 1,1-Dichloroethylene ND 0,0030 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF t-cis-1,2-Dichloroethylene ND 0,0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 1,2-Dichloroethylene ND 0,0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MF 1	Dibromomethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,4-Dichlorobenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorocithane (Freon 12) ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorocthane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichlorocthane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorocthylene ND 0.0030 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichlorocthylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichlorocthylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichlorocthylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichlorocthylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg	1,2-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Dichlorodifluoromethane (Freon 12) ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethylene ND 0.0030 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1 trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1 trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1 trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1 trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1 trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1 trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1 trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1 trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/1	1,3-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,1-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethylene ND 0.0030 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF cis-1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,3	1,4-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,2-Dichloroethane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloroethylene ND 0.0030 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF cis-1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,	Dichlorodifluoromethane (Freon 12)	ND	0.0076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,1-Dichloroethylene ND 0.0030 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF cis-1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 2,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF cis-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diethyl Ether ND 0.00076 mg/Kg dry 1 SW-846 8260C	1,1-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
cis-1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 2,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	1,2-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
trans-1,2-Dichloroethylene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 2,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diethyl Ether ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diethyl Ether ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	1,1-Dichloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 2,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF cis-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diethyl Ether ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.0076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	cis-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,3-Dichloropropane ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 2,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF cis-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF biethyl Ether ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dioxane ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	trans-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
2,2-Dichloropropane ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF cis-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diethyl Ether ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dioxane ND 0.0076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	1,2-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,1-Dichloropropene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF cis-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diethyl Ether ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dioxane ND 0.0076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	1,3-Dichloropropane	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
cis-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diethyl Ether ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dioxane ND 0.076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	2,2-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
trans-1,3-Dichloropropene ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diethyl Ether ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dioxane ND 0.076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	1,1-Dichloropropene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Diethyl Ether ND 0.0076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dioxane ND 0.076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	cis-1,3-Dichloropropene	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Diisopropyl Ether (DIPE) ND 0.00076 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF 1,4-Dioxane ND 0.076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	trans-1,3-Dichloropropene	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
1,4-Dioxane ND 0.076 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	Diethyl Ether	ND	0.0076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
	Diisopropyl Ether (DIPE)	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
Ethylbenzene ND 0.0015 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 15:19 MFF	1,4-Dioxane	ND	0.076	mg/Kg dry	1	V-16	SW-846 8260C	4/1/19	4/1/19 15:19	MFF	
	Ethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF	

Page 10 of 115

Work Order: 19C1572 Sample Description:

Project Location: Wayland, MA Date Received: 3/29/2019 Field Sample #: V-107 (5-10)

Sampled: 3/27/2019 13:05

Sample ID: 19C1572-01 Sample Matrix: Soil

Volatile Or	ganic Com	nounds l	by G	C/MS
-------------	-----------	----------	------	------

		volume organic compounds by occurs							
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
2-Hexanone (MBK)	ND	0.015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Isopropylbenzene (Cumene)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Methylene Chloride	ND	0.0076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Naphthalene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
n-Propylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Styrene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,1,1,2-Tetrachloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,1,2,2-Tetrachloroethane	ND	0.00076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Tetrachloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Tetrahydrofuran	ND	0.0076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Toluene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,2,3-Trichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,2,4-Trichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,1,1-Trichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,1,2-Trichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Trichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0076	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,2,3-Trichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,2,4-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
1,3,5-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Vinyl Chloride	ND	0.0076	mg/Kg dry	1	L-04	SW-846 8260C	4/1/19	4/1/19 15:19	MFF
m+p Xylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
o-Xylene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:19	MFF
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		97.7	70-130					4/1/19 15:19	
Toluene-d8		97.4	70-130					4/1/19 15:19	
1 Bromofluorobenzene		07.7	70 130					1/1/10 15:10	

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-107 (5-10)

Sampled: 3/27/2019 13:05

Sample ID: 19C1572-01
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Acenaphthylene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Acetophenone	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Aniline	ND	0.34	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Anthracene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Benzo(a)anthracene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Benzo(a)pyrene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Benzo(b)fluoranthene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Benzo(g,h,i)perylene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Benzo(k)fluoranthene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Bis(2-chloroethoxy)methane	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Bis(2-chloroethyl)ether	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Bis(2-chloroisopropyl)ether	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Bis(2-Ethylhexyl)phthalate	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
4-Bromophenylphenylether	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Butylbenzylphthalate	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
4-Chloroaniline	ND	0.66	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2-Chloronaphthalene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2-Chlorophenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Chrysene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Dibenz(a,h)anthracene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Dibenzofuran	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Di-n-butylphthalate	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
1,2-Dichlorobenzene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
1,3-Dichlorobenzene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
1,4-Dichlorobenzene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
3,3-Dichlorobenzidine	ND	0.17	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2,4-Dichlorophenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Diethylphthalate	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2,4-Dimethylphenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Dimethylphthalate	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2,4-Dinitrophenol	ND	0.66	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2,4-Dinitrotoluene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2,6-Dinitrotoluene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Di-n-octylphthalate	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Fluoranthene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Fluorene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Hexachlorobenzene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Hexachlorobutadiene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Hexachloroethane	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Indeno(1,2,3-cd)pyrene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Isophorone	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2-Methylnaphthalene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR

Page 12 of 115

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 3/29/2019

Field Sample #: V-107 (5-10)

Sampled: 3/27/2019 13:05

115

Sample ID: 19C1572-01
Sample Matrix: Soil

p-Terphenyl-d14

Semivolatile Organic Compounds by GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	0.34	mg/Kg dry	1	V-05	SW-846 8270D	4/2/19	4/3/19 15:47	IMR
3/4-Methylphenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Naphthalene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Nitrobenzene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2-Nitrophenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
4-Nitrophenol	ND	0.66	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Pentachlorophenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Phenanthrene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Phenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Pyrene	ND	0.17	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
1,2,4-Trichlorobenzene	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2,4,5-Trichlorophenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
2,4,6-Trichlorophenol	ND	0.34	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 15:47	IMR
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2-Fluorophenol		70.5	30-130					4/3/19 15:47	
Phenol-d6		82.6	30-130					4/3/19 15:47	
Nitrobenzene-d5		81.6	30-130					4/3/19 15:47	
2-Fluorobiphenyl		90.5	30-130					4/3/19 15:47	
2,4,6-Tribromophenol		94.2	30-130					4/3/19 15:47	

30-130

4/3/19 15:47

4/4/19 16:55

4/4/19 16:55

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019
Field Sample #: V-107 (5-10)

Sampled: 3/27/2019 13:05

97.4

95.2

Sample ID: 19C1572-01
Sample Matrix: Soil

Tetrachloro-m-xylene [1]

Tetrachloro-m-xylene [2]

Sample Flags: O-32		Polychloria	nated Biphenyls wit	th 3540 Soxh	let Extraction				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Aroclor-1221 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Aroclor-1232 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Aroclor-1242 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Aroclor-1248 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Aroclor-1254 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Aroclor-1260 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Aroclor-1262 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Aroclor-1268 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 16:55	JMB
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
Decachlorobiphenyl [1]		97.9	30-150					4/4/19 16:55	
Decachlorobiphenyl [2]		93.9	30-150					4/4/19 16:55	

30-150

30-150

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-107 (5-10)

Sampled: 3/27/2019 13:05

Sample ID: 19C1572-01
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
TPH (C9-C36)	ND	8.4	mg/Kg dry	1		SW-846 8100 Modified	4/2/19	4/4/19 4:52	RMW
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorobiphenyl	_	69.1	40-140		_			4/4/19 4:52	

Sample Description:

Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019 **Field Sample #: V-107 (5-10)**

Sampled: 3/27/2019 13:05

Sample ID: 19C1572-01
Sample Matrix: Soil

			Metals Analy	yses (Total)					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	МЈН
Arsenic	11	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/5/19 13:00	EJB
Barium	27	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Beryllium	0.27	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Cadmium	0.34	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Chromium	12	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Lead	6.1	0.51	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Mercury	ND	0.025	mg/Kg dry	1		SW-846 7471B	4/2/19	4/3/19 12:58	TBC
Nickel	9.3	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Selenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Silver	0.42	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 22:31	EJB
Vanadium	17	0.68	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH
Zinc	26	0.68	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:34	MJH

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-107 (5-10)

Sampled: 3/27/2019 13:05

Sample ID: 19C1572-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	97.0		% Wt	1		SM 2540G	4/3/19	4/4/19 0:58	AVF
Ignitability	Absent		present/absent	1		SW-846 1030	4/2/19	4/2/19 19:15	DJM
pH @22.2°C	8.1		pH Units	1	H-03	SW-846 9045C	3/30/19	3/30/19 15:04	AIA
Reactive Cyanide	ND	3.9	mg/Kg	1		SW-846 9014	3/30/19	3/31/19 10:20	KMV
Reactive Sulfide	ND	19	mg/L	1		SW-846 9030A	3/30/19	3/31/19 9:50	KMV
Specific conductance	4.9	2.0	μmhos/cm	1		SM21-22 2510B Modified	3/31/19	3/31/19 11:45	KMV

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-108 (0-5)

Sampled: 3/27/2019 13:15

Sample ID: 19C1572-02
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Benzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Bromobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Bromochloromethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Bromodichloromethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Bromoform	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Bromomethane	ND	0.0088	mg/Kg dry	1	V-34	SW-846 8260C	4/1/19	4/1/19 15:43	MFF
2-Butanone (MEK)	ND	0.035	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
n-Butylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
sec-Butylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
tert-Butylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Carbon Disulfide	ND	0.0053	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Carbon Tetrachloride	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Chlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Chlorodibromomethane	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Chloroethane	ND	0.0088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Chloroform	ND	0.0035	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Chloromethane	ND	0.0088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
2-Chlorotoluene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
4-Chlorotoluene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2-Dibromoethane (EDB)	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Dibromomethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2-Dichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,3-Dichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,4-Dichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,1-Dichloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2-Dichloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,1-Dichloroethylene	ND	0.0035	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
cis-1,2-Dichloroethylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
trans-1,2-Dichloroethylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2-Dichloropropane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,3-Dichloropropane	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
2,2-Dichloropropane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,1-Dichloropropene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
cis-1,3-Dichloropropene	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
trans-1,3-Dichloropropene	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Diethyl Ether	ND	0.0088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Diisopropyl Ether (DIPE)	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,4-Dioxane	ND	0.088	mg/Kg dry	1	V-16	SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Ethylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF

Page 18 of 115

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-108 (0-5)

Sampled: 3/27/2019 13:15

Sample ID: 19C1572-02
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			mune organic com	pounds by G	C/1.125				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
2-Hexanone (MBK)	ND	0.018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Isopropylbenzene (Cumene)	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0035	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Methylene Chloride	ND	0.0088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Naphthalene	ND	0.0035	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
n-Propylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Styrene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,1,1,2-Tetrachloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,1,2,2-Tetrachloroethane	ND	0.00088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Tetrachloroethylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Tetrahydrofuran	ND	0.0088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Toluene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2,3-Trichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2,4-Trichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,1,1-Trichloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,1,2-Trichloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Trichloroethylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0088	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2,3-Trichloropropane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,2,4-Trimethylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
1,3,5-Trimethylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Vinyl Chloride	ND	0.0088	mg/Kg dry	1	L-04	SW-846 8260C	4/1/19	4/1/19 15:43	MFF
m+p Xylene	ND	0.0035	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
o-Xylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 15:43	MFF
Surrogates		% Recovery	Recovery Limits	8	Flag/Qual				
1,2-Dichloroethane-d4		96.9	70-130					4/1/19 15:43	_
Toluene-d8		97.4	70-130					4/1/19 15:43	
4-Bromofluorobenzene		96.6	70-130					4/1/19 15:43	

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-108 (0-5)

Sampled: 3/27/2019 13:15

Sample ID: 19C1572-02
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Acenaphthylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Acetophenone	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Aniline	ND	0.36	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Benzo(a)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Benzo(a)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Benzo(b)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Benzo(g,h,i)perylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Benzo(k)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Bis(2-chloroethoxy)methane	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Bis(2-chloroisopropyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Bis(2-Ethylhexyl)phthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
4-Bromophenylphenylether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Butylbenzylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
4-Chloroaniline	ND	0.69	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2-Chloronaphthalene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2-Chlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Chrysene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Dibenz(a,h)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Dibenzofuran	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Di-n-butylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
1,2-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
1,3-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
1,4-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2,4-Dichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Diethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2,4-Dimethylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Dimethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2,4-Dinitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2,4-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2,6-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Di-n-octylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Hexachlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Hexachlorobutadiene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Hexachloroethane	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Indeno(1,2,3-cd)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Isophorone	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR

Page 20 of 115

Date

Date/Time

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-108 (0-5)

Sampled: 3/27/2019 13:15

Sample ID: 19C1572-02
Sample Matrix: Soil

Comircolatile	Ougania	Commound	a her	CCMIC

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	0.36	mg/Kg dry	1	V-05	SW-846 8270D	4/2/19	4/3/19 16:09	IMR
3/4-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Nitrobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2-Nitrophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
4-Nitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Pentachlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Phenanthrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Phenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
1,2,4-Trichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2,4,5-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
2,4,6-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:09	IMR
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
2-Fluorophenol		73.4	30-130					4/3/19 16:09	
Phenol-d6		82.5	30-130					4/3/19 16:09	
Nitrobenzene-d5		83.1	30-130					4/3/19 16:09	
2-Fluorobiphenyl		88.6	30-130					4/3/19 16:09	
2,4,6-Tribromophenol		97.3	30-130					4/3/19 16:09	
p-Terphenyl-d14		111	30-130					4/3/19 16:09	

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019
Field Sample #: V-108 (0-5)

Sampled: 3/27/2019 13:15

ND

0.084

Sample ID: 19C1572-02
Sample Matrix: Soil

Aroclor-1268 [1]

Sample Flags: O-32		Polychlorinated Biphenyls with 3540 Soxhlet Extraction							
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.084	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:08	JMB
Aroclor-1221 [1]	ND	0.084	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:08	JMB
Aroclor-1232 [1]	ND	0.084	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:08	JMB
Aroclor-1242 [1]	ND	0.084	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:08	JMB
Aroclor-1248 [1]	ND	0.084	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:08	JMB
Aroclor-1254 [1]	ND	0.084	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:08	JMB
Aroclor-1260 [1]	ND	0.084	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:08	JMB
Aroclor-1262 [1]	ND	0.084	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:08	JMB

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	99.1	30-150		4/4/19 17:08
Decachlorobiphenyl [2]	95.7	30-150		4/4/19 17:08
Tetrachloro-m-xylene [1]	98.6	30-150		4/4/19 17:08
Tetrachloro-m-xylene [2]	96.8	30-150		4/4/19 17:08

SW-846 8082A

4/2/19

4/4/19 17:08

JMB

mg/Kg dry

Project Location: Wayland, MA Work Order: 19C1572 Sample Description:

Date Received: 3/29/2019 Field Sample #: V-108 (0-5)

Sampled: 3/27/2019 13:15

Sample ID: 19C1572-02 Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH (C9-C36)	ND	8.8	mg/Kg dry	1		SW-846 8100 Modified	4/2/19	4/4/19 10:44	RMW
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorobiphenyl		75.9	40-140					4/4/19 10:44	

Sample Description:

Work Order: 19C1572

Date Received: 3/29/2019 Field Sample #: V-108 (0-5)

Project Location: Wayland, MA

Sampled: 3/27/2019 13:15

Sample ID: 19C1572-02 Sample Matrix: Soil

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	МЈН
Arsenic	5.6	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/5/19 13:05	EJB
Barium	30	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Beryllium	0.28	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Cadmium	0.19	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Chromium	12	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Lead	5.2	0.52	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	4/2/19	4/3/19 12:59	TBC
Nickel	9.4	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Selenium	ND	3.5	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Silver	0.41	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 22:37	EJB
Vanadium	17	0.69	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH
Zinc	25	0.69	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:41	MJH

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-108 (0-5)

Sampled: 3/27/2019 13:15

Sample ID: 19C1572-02
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	93.8		% Wt	1		SM 2540G	4/3/19	4/4/19 0:59	AVF
Ignitability	Absent		present/absent	1		SW-846 1030	4/2/19	4/2/19 19:15	DJM
рН @21.9°C	8.2		pH Units	1	H-03	SW-846 9045C	3/30/19	3/30/19 15:04	AIA
Reactive Cyanide	ND	3.9	mg/Kg	1		SW-846 9014	3/30/19	3/31/19 10:20	KMV
Reactive Sulfide	ND	20	mg/L	1		SW-846 9030A	3/30/19	3/31/19 9:50	KMV
Specific conductance	5.7	2.0	μmhos/cm	1		SM21-22 2510B Modified	3/31/19	3/31/19 11:45	KMV

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-109 (5-10)

Sampled: 3/27/2019 13:25

Sample ID: 19C1572-03
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.15	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Benzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Bromobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Bromochloromethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Bromodichloromethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Bromoform	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Bromomethane	ND	0.015	mg/Kg dry	1	V-34	SW-846 8260C	4/1/19	4/1/19 16:08	MFF
2-Butanone (MEK)	ND	0.059	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
n-Butylbenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
sec-Butylbenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
tert-Butylbenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Carbon Disulfide	ND	0.0089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Carbon Tetrachloride	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Chlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Chlorodibromomethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Chloroethane	ND	0.015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Chloroform	ND	0.0059	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Chloromethane	ND	0.015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
2-Chlorotoluene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
4-Chlorotoluene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2-Dibromoethane (EDB)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Dibromomethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2-Dichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,3-Dichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,4-Dichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,1-Dichloroethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2-Dichloroethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,1-Dichloroethylene	ND	0.0059	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
cis-1,2-Dichloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
trans-1,2-Dichloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2-Dichloropropane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,3-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
2,2-Dichloropropane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,1-Dichloropropene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
cis-1,3-Dichloropropene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
trans-1,3-Dichloropropene	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Diethyl Ether	ND	0.015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Diisopropyl Ether (DIPE)	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,4-Dioxane	ND	0.15	mg/Kg dry	1	V-16	SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Ethylbenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF

Page 26 of 115

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-109 (5-10)

Sampled: 3/27/2019 13:25

Sample ID: 19C1572-03
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

		YU	iathe Organic Con	ipounus by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0030	mg/Kg dry	1	1 mg/ 2 mm	SW-846 8260C	4/1/19	4/1/19 16:08	MFF
2-Hexanone (MBK)	ND	0.030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Isopropylbenzene (Cumene)	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0059	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Methylene Chloride	ND	0.015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Naphthalene	ND	0.0059	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
n-Propylbenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Styrene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,1,1,2-Tetrachloroethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,1,2,2-Tetrachloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Tetrachloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Tetrahydrofuran	ND	0.0050	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Toluene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2,3-Trichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2,4-Trichlorobenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,1,1-Trichloroethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,1,2-Trichloroethane	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Trichloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Trichlorofluoromethane (Freon 11)	ND ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2,3-Trichloropropane	ND ND	0.013	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,2,4-Trimethylbenzene	ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
1,3,5-Trimethylbenzene	ND ND	0.0030	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:08	MFF
Vinyl Chloride	ND ND	0.0030		1	L-04	SW-846 8260C	4/1/19	4/1/19 16:08	MFF
m+p Xylene	ND ND	0.013	mg/Kg dry mg/Kg dry	1	L-04	SW-846 8260C SW-846 8260C	4/1/19	4/1/19 16:08	MFF
o-Xylene	ND ND	0.0039	mg/Kg dry	1		SW-846 8260C SW-846 8260C	4/1/19	4/1/19 16:08	MFF
	ND				FI /O I	5W-840 8200C	4/1/19	4/1/19 10.08	MIFF
Surrogates		% Recovery	Recovery Limit	S	Flag/Qual			4/1/19 16:08	
1,2-Dichloroethane-d4 Toluene-d8		95.9 96.4	70-130 70-130					4/1/19 16:08 4/1/19 16:08	
4-Bromofluorobenzene		96.0	70-130					4/1/19 16:08	

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-109 (5-10)

Sampled: 3/27/2019 13:25

Sample ID: 19C1572-03
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

		S	Semivolatile Organic C	ompounds by	GC/MS				
	ъ. н	D.	***	Dil d	EI (O. I	25.0	Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene Acenaphthylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Acetophenone	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
•	ND	0.36	mg/Kg dry	1	37.24	SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Aniline	ND	0.36	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Benzo(a)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Benzo(a)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Benzo(b)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Benzo(g,h,i)perylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Benzo(k)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Bis(2-chloroethoxy)methane	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Bis(2-chloroisopropyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Bis(2-Ethylhexyl)phthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
4-Bromophenylphenylether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Butylbenzylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
4-Chloroaniline	ND	0.69	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2-Chloronaphthalene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2-Chlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Chrysene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Dibenz(a,h)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Dibenzofuran	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Di-n-butylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
1,2-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
1,3-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
1,4-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2,4-Dichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Diethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2,4-Dimethylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Dimethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2,4-Dinitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2,4-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2,6-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Di-n-octylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Hexachlorobenzene	ND	0.16	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Hexachlorobutadiene									
Hexachloroethane	ND ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Indeno(1,2,3-cd)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Isophorone	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR

Page 28 of 115

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-109 (5-10)

Sampled: 3/27/2019 13:25

113

Sample ID: 19C1572-03
Sample Matrix: Soil

p-Terphenyl-d14

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	0.36	mg/Kg dry	1	V-05	SW-846 8270D	4/2/19	4/3/19 16:31	IMR
3/4-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Nitrobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2-Nitrophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
4-Nitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Pentachlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Phenanthrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Phenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
1,2,4-Trichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2,4,5-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
2,4,6-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:31	IMR
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2-Fluorophenol		76.2	30-130					4/3/19 16:31	
Phenol-d6		83.9	30-130					4/3/19 16:31	
Nitrobenzene-d5		86.0	30-130					4/3/19 16:31	
2-Fluorobiphenyl		89.7	30-130					4/3/19 16:31	
2,4,6-Tribromophenol		96.2	30-130					4/3/19 16:31	

30-130

4/3/19 16:31

4/4/19 17:20

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019
Field Sample #: V-109 (5-10)

Sampled: 3/27/2019 13:25

90.1

Sample ID: 19C1572-03
Sample Matrix: Soil

Tetrachloro-m-xylene [2]

Sample Flags: O-32		Polychlori							
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Aroclor-1221 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Aroclor-1232 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Aroclor-1242 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Aroclor-1248 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Aroclor-1254 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Aroclor-1260 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Aroclor-1262 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Aroclor-1268 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:20	JMB
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		101	30-150					4/4/19 17:20	
Decachlorobiphenyl [2]		98.1	30-150					4/4/19 17:20	
Tetrachloro-m-xylene [1]		92.0	30-150					4/4/19 17:20	

30-150

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-109 (5-10)

Sampled: 3/27/2019 13:25

Sample ID: 19C1572-03
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
TPH (C9-C36)	ND	8.7	mg/Kg dry	1		SW-846 8100 Modified	4/2/19	4/4/19 8:34	RMW
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2 Eluarahinhanyl		72.6	40.140					4/4/10 9-24	

Sample Description:

Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-109 (5-10)

Sampled: 3/27/2019 13:25

Sample ID: 19C1572-03
Sample Matrix: Soil

Metals Analyses (Total)										
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
Antimony	ND	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	МЈН	
Arsenic	6.5	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/5/19 13:10	EJB	
Barium	33	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Beryllium	0.28	0.18	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Cadmium	0.21	0.18	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Chromium	12	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Lead	5.0	0.53	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	4/2/19	4/3/19 13:01	TBC	
Nickel	9.6	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Selenium	ND	3.5	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Silver	0.37	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Thallium	ND	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 22:43	EJB	
Vanadium	17	0.71	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	
Zinc	23	0.71	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:47	MJH	

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-109 (5-10)

Sampled: 3/27/2019 13:25

Sample ID: 19C1572-03
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	94.2		% Wt	1		SM 2540G	4/3/19	4/4/19 0:59	AVF
Ignitability	Absent		present/absent	1		SW-846 1030	4/2/19	4/2/19 19:15	DJM
pH @22.1°C	8.1		pH Units	1	H-03	SW-846 9045C	3/30/19	3/30/19 15:04	AIA
Reactive Cyanide	ND	4.0	mg/Kg	1		SW-846 9014	3/30/19	3/31/19 10:20	KMV
Reactive Sulfide	ND	20	mg/L	1		SW-846 9030A	3/30/19	3/31/19 9:50	KMV
Specific conductance	5.8	2.0	μmhos/cm	1		SM21-22 2510B Modified	3/31/19	3/31/19 11:45	KMV

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-110 (5-10)

Sampled: 3/27/2019 13:35

Sample ID: 19C1572-04
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			Volatile Organic Con	ipounus by G	C/NIS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.11	mg/Kg dry	1	<u> </u>	SW-846 8260C	4/1/19	4/1/19 16:32	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Benzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Bromobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Bromochloromethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Bromodichloromethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Bromoform	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Bromomethane	ND	0.011	mg/Kg dry	1	V-34	SW-846 8260C	4/1/19	4/1/19 16:32	MFF
2-Butanone (MEK)	ND	0.046	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
n-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
sec-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
tert-Butylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Carbon Disulfide	ND	0.0068	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Carbon Tetrachloride	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Chlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Chlorodibromomethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Chloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Chloroform	ND ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Chloromethane		0.0040		1					MFF
2-Chlorotoluene	ND		mg/Kg dry			SW-846 8260C	4/1/19	4/1/19 16:32	
4-Chlorotoluene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2-Dibromoethane (EDB)	ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Dibromomethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2-Dichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,3-Dichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,4-Dichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,1-Dichloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2-Dichloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,1-Dichloroethylene	ND	0.0046	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
cis-1,2-Dichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
trans-1,2-Dichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2-Dichloropropane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,3-Dichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
2,2-Dichloropropane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,1-Dichloropropene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
cis-1,3-Dichloropropene	ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
trans-1,3-Dichloropropene	ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Diethyl Ether	ND	0.011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Diisopropyl Ether (DIPE)	ND	0.0011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,4-Dioxane	ND	0.11	mg/Kg dry	1	V-16	SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Ethylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF

Page 34 of 115

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-110 (5-10)

Sampled: 3/27/2019 13:35

Sample ID: 19C1572-04
Sample Matrix: Soil

Volatile Organic (Compounds	by (GC/MS
--------------------	-----------	------	-------

		YU	iathe Organic Com	ipounus by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
2-Hexanone (MBK)	ND	0.023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Isopropylbenzene (Cumene)	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0046	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Methylene Chloride	ND	0.011	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Naphthalene	ND	0.0046	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
n-Propylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Styrene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,1,1,2-Tetrachloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,1,2,2-Tetrachloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Tetrachloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Tetrahydrofuran	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Toluene	0.0045	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2,3-Trichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2,4-Trichlorobenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,1,1-Trichloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,1,2-Trichloroethane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Trichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Trichlorofluoromethane (Freon 11)	ND ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2,3-Trichloropropane	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,2,4-Trimethylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
1,3,5-Trimethylbenzene	ND	0.0023	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 16:32	MFF
Vinyl Chloride	ND ND	0.0023	mg/Kg dry	1	L-04	SW-846 8260C	4/1/19	4/1/19 16:32	MFF
m+p Xylene	ND ND	0.011	mg/Kg dry	1	L-04	SW-846 8260C	4/1/19	4/1/19 16:32	MFF
o-Xylene	ND ND	0.0046	mg/Kg dry mg/Kg dry	1		SW-846 8260C SW-846 8260C	4/1/19	4/1/19 16:32	MFF
	ND				El (O 1	5W-840 8200C	4/1/19	4/1/19 10.32	MIFF
Surrogates		% Recovery	Recovery Limit	S	Flag/Qual			4/1/19 16:32	
1,2-Dichloroethane-d4 Toluene-d8		95.8 96.5	70-130 70-130					4/1/19 16:32 4/1/19 16:32	
4-Bromofluorobenzene		96.0	70-130					4/1/19 16:32	

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-110 (5-10)

Sampled: 3/27/2019 13:35

Sample ID: 19C1572-04
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Acenaphthylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Acetophenone	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Aniline	ND	0.35	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Benzo(a)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Benzo(a)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Benzo(b)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Benzo(g,h,i)perylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Benzo(k)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Bis(2-chloroethoxy)methane	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Bis(2-chloroethyl)ether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Bis(2-chloroisopropyl)ether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Bis(2-Ethylhexyl)phthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
4-Bromophenylphenylether	ND	0.35		1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Butylbenzylphthalate			mg/Kg dry			SW-846 8270D SW-846 8270D			
4-Chloroaniline	ND	0.35	mg/Kg dry	1	37.24		4/2/19	4/3/19 16:54	IMR
	ND	0.68	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2-Chloronaphthalene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2-Chlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Chrysene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Dibenz(a,h)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Dibenzofuran	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Di-n-butylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
1,2-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
1,3-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
1,4-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2,4-Dichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Diethylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2,4-Dimethylphenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Dimethylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2,4-Dinitrophenol	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2,4-Dinitrotoluene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2,6-Dinitrotoluene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Di-n-octylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Hexachlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Hexachlorobutadiene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Hexachloroethane	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Indeno(1,2,3-cd)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Isophorone	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
	ND	0.10	mg/reg uly	1		511-0-0 02/01	7/2/19	Page 36	

Page 36 of 115

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-110 (5-10)

Sampled: 3/27/2019 13:35

Sample ID: 19C1572-04
Sample Matrix: Soil

Semivolatile Organic Comp	oounds by GC/MS
---------------------------	-----------------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	0.35	mg/Kg dry	1	V-05	SW-846 8270D	4/2/19	4/3/19 16:54	IMR
3/4-Methylphenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Nitrobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2-Nitrophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
4-Nitrophenol	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Pentachlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Phenanthrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Phenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
1,2,4-Trichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2,4,5-Trichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
2,4,6-Trichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 16:54	IMR
Surrogates		% Recovery	Recovery Limits	8	Flag/Qual				
2-Fluorophenol		75.5	30-130					4/3/19 16:54	
Phenol-d6		86.9	30-130					4/3/19 16:54	
Nitrobenzene-d5		87.7	30-130					4/3/19 16:54	
2-Fluorobiphenyl		93.9	30-130					4/3/19 16:54	
2,4,6-Tribromophenol		99.4	30-130					4/3/19 16:54	
p-Terphenyl-d14		114	30-130					4/3/19 16:54	

4/4/19 17:33

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019
Field Sample #: V-110 (5-10)

Sampled: 3/27/2019 13:35

92.4

Sample ID: 19C1572-04
Sample Matrix: Soil

Tetrachloro-m-xylene [2]

Sample Flags: O-32		Polychlori	nated Biphenyls wi	th 3540 Soxh	let Extraction				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Aroclor-1221 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Aroclor-1232 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Aroclor-1242 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Aroclor-1248 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Aroclor-1254 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Aroclor-1260 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Aroclor-1262 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Aroclor-1268 [1]	ND	0.083	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:33	JMB
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
Decachlorobiphenyl [1]		98.1	30-150					4/4/19 17:33	
Decachlorobiphenyl [2]		95.7	30-150					4/4/19 17:33	
Tetrachloro-m-xylene [1]		94.5	30-150					4/4/19 17:33	

30-150

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-110 (5-10)

Sampled: 3/27/2019 13:35

Sample ID: 19C1572-04
Sample Matrix: Soil

Patroloum	Hydrocarbons	Analyeae

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH (C9-C36)	11	8.6	mg/Kg dry	1		SW-846 8100 Modified	4/2/19	4/4/19 8:55	RMW
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
2 Eluarahinhanyl		74.2	40.140			-		4/4/10 9:55	

Work Order: 19C1572 Sample Description:

Date Received: 3/29/2019 Field Sample #: V-110 (5-10)

Project Location: Wayland, MA

Sampled: 3/27/2019 13:35

Sample ID: 19C1572-04 Sample Matrix: Soil

			Metals Analy	yses (Total)					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.7	mg/Kg dry	1	-	SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Arsenic	6.4	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/5/19 13:15	EJB
Barium	26	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Beryllium	0.26	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Cadmium	0.23	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Chromium	33	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Lead	3.9	0.52	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Mercury	ND	0.028	mg/Kg dry	1		SW-846 7471B	4/2/19	4/3/19 13:03	TBC
Nickel	11	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Selenium	ND	3.5	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Silver	ND	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 22:50	EJB
Vanadium	17	0.69	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH
Zinc	24	0.69	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 16:53	MJH

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-110 (5-10)

Sampled: 3/27/2019 13:35

Sample ID: 19C1572-04
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	94.8		% Wt	1		SM 2540G	4/3/19	4/4/19 0:59	AVF
Ignitability	Absent		present/absent	1		SW-846 1030	4/2/19	4/2/19 19:15	DJM
pH @22.2°C	8.5		pH Units	1	H-03	SW-846 9045C	3/30/19	3/30/19 15:04	AIA
Reactive Cyanide	ND	4.0	mg/Kg	1		SW-846 9014	3/30/19	3/31/19 10:20	KMV
Reactive Sulfide	ND	20	mg/L	1		SW-846 9030A	3/30/19	3/31/19 9:50	KMV
Specific conductance	5.3	2.0	μmhos/cm	1		SM21-22 2510B Modified	3/31/19	3/31/19 11:45	KMV

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-111 (0-10)

Sampled: 3/27/2019 13:45

Sample ID: 19C1572-05
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Acatops				volatile Organic Con	ipounus by G	C/MS		D-4-	D-4-/Ti	
Control Michael Electr (TAME)	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Remove	Acetone	ND	0.094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Bromechetzment	tert-Amyl Methyl Ether (TAME)	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Promochishorouchiance	Benzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Bemondichlorounchame	Bromobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Processor Proc	Bromochloromethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Demonstration Demonstratio	Bromodichloromethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
2-Hautanone (MFK) ND 0.33 mg/Kg dny 1 SW-346 \$250C 4/119 4/119 20.16 MFF n-Batylbeancen ND 0.0019 mg/Kg dny 1 SW-346 \$250C 4/119 4/119 20.16 MFF ses-Batylbaczene ND 0.0019 mg/Kg dny 1 SW-346 \$250C 4/119 4/119 20.16 MFF tert-Butylbeazene ND 0.0019 mg/Kg dny 1 SW-346 \$250C 4/119 4/119 20.16 MFF Cerbon Editadoride ND 0.0019 mg/Kg dny 1 SW-346 \$250C 4/119 4/119 20.16 MFF Chlorochrane ND 0.0019 mg/Kg dny 1 SW-346 \$250C 4/119 4/119 20.16 MFF Chlorochrane ND 0.0019 mg/Kg dny 1 SW-346 \$250C 4/119 4/119 20.16 MFF Chlorochrane ND 0.0014 mg/Kg dny 1 SW-346 \$250C 4/119 4/119 20.16 MFF Chlorochrane ND 0.0038	Bromoform	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Passylbenzene	Bromomethane	ND	0.0094	mg/Kg dry	1	V-34	SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Sec-Bulybenzene ND 0.0019	2-Butanone (MEK)	ND	0.038	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Ent-Burylbenzene	n-Butylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Part	sec-Butylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Carbon Disulfide	tert-Butylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Curbon Teirachloride ND 0.0019 mg/kg dry 1 SW-846 8200C 4/119 4/119 20.16 MFE Chlorobenzene ND 0.00094 mg/kg dry 1 SW-846 8200C 4/119 4/119 20.16 MFE Chlorodizonamechane ND 0.00094 mg/kg dry 1 SW-846 8200C 4/119 4/119 20.16 MFE Chloroform ND 0.00038 mg/kg dry 1 SW-846 8200C 4/119 4/119 20.16 MFE Chloroform ND 0.0004 mg/kg dry 1 SW-846 8200C 4/119 4/119 20.16 MFE Chloroform ND 0.0019 mg/kg dry 1 SW-846 8200C 4/119 4/119 20.16 MFE Chloroforbune ND 0.0019 mg/kg dry 1 SW-846 8200C 4/119 4/119 20.16 MFE 1-2-Dichlorodhane ND 0.0019 mg/kg dry 1 SW-846 8200C 4/119 4/119 20.16 MFE 1-2-Dichlorodhane ND 0.0019	tert-Butyl Ethyl Ether (TBEE)	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Chlorobenzene	Carbon Disulfide	ND	0.0057	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Chlorodibromomethane	Carbon Tetrachloride	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Chlorochane	Chlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Chloroform	Chlorodibromomethane	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Chloromethane ND 0.0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MF 2-Chlorotoluene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MF 4-Chlorotoluene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MF 1,2-Dibromo-3-chloropropane (DBCP) ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MF 1,2-Dibromomethane (EDB) ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MF 1,2-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MF 1,3-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MF 1,4-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MF 1,1-Dichlorobenze	Chloroethane	ND	0.0094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
2-Chlorotoluene	Chloroform	ND	0.0038	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
A-Chlorotoluene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,2-Dibromo-3-chloropropane (DBCP) ND 0.0094 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,2-Dibromoethane (EDB) ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,2-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,3-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,4-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,4-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichloroethane (Fron 12) ND 0.0094 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichloroethane ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,2-Dichlorophylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,2-Dichlorophylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichlorophylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichlorophylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichlorophylene ND 0.0019 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichlorophylene ND 0.0094 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF 1,1-Dichlorophylene ND 0.00094 mg/Kg dry 1 SW-346 8260C 41/19 41/19 20:16 MF	Chloromethane	ND	0.0094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1.2-Dibromo-3-chloropropane (DBCP)	2-Chlorotoluene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1.2-Dibromoethane (EDB) ND 0.00094 mg/Kg dry 1 Dibromomethane ND 0.0019 mg/Kg dry 1 1.2-Dichlorobenzene ND 0.0019 mg/Kg dry 1 1.3-Dichlorobenzene ND 0.0019 mg/Kg dry 1 1.3-Dichlorobenzene ND 0.0019 mg/Kg dry 1 1.4-Dichlorobenzene ND 0.0019 mg/Kg dry 1 1.4-Dichloropropene ND 0.0019 mg/Kg dry 1 1.4-Dichloropropene ND 0.0019 mg/Kg dry 1 ND	4-Chlorotoluene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Dibromomethane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethane (Freen 12) ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloroptopane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloroptopane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroptopane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroptopane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroptopane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroptopane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroptopane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroptopane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroptopane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16	1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,2-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dichlorobenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorochane (Freon 12) ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorochane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorochane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorochylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorochylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichlorochylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichlorochylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	1,2-Dibromoethane (EDB)	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,3-Dichlorobenzene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dichlorobenzene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocthane (Freon 12) ND 0,0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocthane ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocthane ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocthylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocthylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocthylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocthylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocthylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 ans-1,3-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:	Dibromomethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,4-Dichlorobenzene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocithane (Freon 12) ND 0,0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocithane ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichlorocithane ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocithylene ND 0,0038 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichlorocithylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichlorocithylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichlorocithylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichlorocithylene ND 0,0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0,000	1,2-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Dichlorodifluoromethane (Freon 12) ND 0.0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloroethane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0038 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4	1,3-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,1-Dichloroethane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloroethane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0038 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1	1,4-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,2-Dichloroethane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloroethylene ND 0.0038 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF cis-1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1 trans-1,	Dichlorodifluoromethane (Freon 12)	ND	0.0094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,1-Dichloroethylene ND 0.0038 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF cis-1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF cis-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Dichly Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4	1,1-Dichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
cis-1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 2,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	1,2-Dichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
trans-1,2-Dichloroethylene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 2,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diethyl Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diethyl Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	1,1-Dichloroethylene	ND	0.0038	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 2,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF cis-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dioxane ND 0.0094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF <td>cis-1,2-Dichloroethylene</td> <td>ND</td> <td>0.0019</td> <td>mg/Kg dry</td> <td>1</td> <td></td> <td>SW-846 8260C</td> <td>4/1/19</td> <td>4/1/19 20:16</td> <td>MFF</td>	cis-1,2-Dichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,3-Dichloropropane ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 2,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF cis-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diethyl Ether ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.0094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	trans-1,2-Dichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
2,2-Dichloropropane ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,1-Dichloropropene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF cis-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diethyl Ether ND 0.0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dioxane ND 0.094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	1,2-Dichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,1-Dichloropropene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF cis-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diethyl Ether ND 0.0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dioxane ND 0.0094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	1,3-Dichloropropane	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
cis-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF trans-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diethyl Ether ND 0.0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dioxane ND 0.094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	2,2-Dichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
trans-1,3-Dichloropropene ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diethyl Ether ND 0.0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dioxane ND 0.094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	1,1-Dichloropropene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Diethyl Ether ND 0.0094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dioxane ND 0.094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	cis-1,3-Dichloropropene	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Diisopropyl Ether (DIPE) ND 0.00094 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF 1,4-Dioxane ND 0.094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	trans-1,3-Dichloropropene	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,4-Dioxane ND 0.094 mg/Kg dry 1 V-16 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	Diethyl Ether	ND	0.0094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
	Diisopropyl Ether (DIPE)	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Ethylbenzene ND 0.0019 mg/Kg dry 1 SW-846 8260C 4/1/19 4/1/19 20:16 MFF	1,4-Dioxane	ND	0.094	mg/Kg dry	1	V-16	SW-846 8260C	4/1/19	4/1/19 20:16	MFF
	Ethylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF

Page 42 of 115

Project Location: Wayland, MA Work Order: 19C1572 Sample Description:

Date Received: 3/29/2019 Field Sample #: V-111 (0-10)

Sampled: 3/27/2019 13:45

Sample ID: 19C1572-05 Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			mene organic com	pounds by G					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
2-Hexanone (MBK)	ND	0.019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Isopropylbenzene (Cumene)	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0038	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Methylene Chloride	ND	0.0094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Naphthalene	ND	0.0038	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
n-Propylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Styrene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,1,1,2-Tetrachloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,1,2,2-Tetrachloroethane	ND	0.00094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Tetrachloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Tetrahydrofuran	ND	0.0094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Toluene	0.0041	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,2,3-Trichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,2,4-Trichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,1,1-Trichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,1,2-Trichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Trichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0094	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,2,3-Trichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,2,4-Trimethylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
1,3,5-Trimethylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Vinyl Chloride	ND	0.0094	mg/Kg dry	1	L-04	SW-846 8260C	4/1/19	4/1/19 20:16	MFF
m+p Xylene	ND	0.0038	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
o-Xylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:16	MFF
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
1,2-Dichloroethane-d4		98.7	70-130					4/1/19 20:16	
Toluene-d8		97.2	70-130					4/1/19 20:16	
1 Bromofluorobenzene		95.0	70.130					4/1/10 20:16	

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-111 (0-10)

Sampled: 3/27/2019 13:45

Sample ID: 19C1572-05
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Acenaphthylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Acetophenone	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Aniline	ND	0.35	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Benzo(a)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Benzo(a)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Benzo(b)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Benzo(g,h,i)perylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Benzo(k)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Bis(2-chloroethoxy)methane	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Bis(2-chloroethyl)ether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Bis(2-chloroisopropyl)ether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Bis(2-Ethylhexyl)phthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
4-Bromophenylphenylether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Butylbenzylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
4-Chloroaniline	ND	0.68	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2-Chloronaphthalene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2-Chlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Chrysene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Dibenz(a,h)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Dibenzofuran	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Di-n-butylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
1,2-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
1,3-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
1,4-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2,4-Dichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Diethylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2,4-Dimethylphenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Dimethylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2,4-Dinitrophenol	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2,4-Dinitrotoluene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2,6-Dinitrotoluene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Di-n-octylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Hexachlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Hexachlorobutadiene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Hexachloroethane	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Indeno(1,2,3-cd)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Isophorone	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	

Page 44 of 115

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-111 (0-10)

Sampled: 3/27/2019 13:45

Sample ID: 19C1572-05
Sample Matrix: Soil

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	0.35	mg/Kg dry	1	V-05	SW-846 8270D	4/2/19	4/3/19 17:16	IMR
3/4-Methylphenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Nitrobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2-Nitrophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
4-Nitrophenol	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Pentachlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Phenanthrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Phenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
1,2,4-Trichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2,4,5-Trichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
2,4,6-Trichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:16	IMR
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
2-Fluorophenol		80.7	30-130					4/3/19 17:16	
Phenol-d6		87.7	30-130					4/3/19 17:16	
Nitrobenzene-d5		90.6	30-130					4/3/19 17:16	
2-Fluorobiphenyl		90.5	30-130					4/3/19 17:16	
2,4,6-Tribromophenol		98.3	30-130					4/3/19 17:16	
p-Terphenyl-d14		109	30-130					4/3/19 17:16	

4/4/19 17:46

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019
Field Sample #: V-111 (0-10)

Sampled: 3/27/2019 13:45

97.5

Sample ID: 19C1572-05
Sample Matrix: Soil

Tetrachloro-m-xylene [2]

Sample Flags: O-32		Polychlori							
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Aroclor-1221 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Aroclor-1232 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Aroclor-1242 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Aroclor-1248 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Aroclor-1254 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Aroclor-1260 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Aroclor-1262 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Aroclor-1268 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:46	JMB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		97.3	30-150					4/4/19 17:46	
Decachlorobiphenyl [2]		92.2	30-150					4/4/19 17:46	
Tetrachloro-m-xylene [1]		101	30-150					4/4/19 17:46	

30-150

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-111 (0-10)

Sampled: 3/27/2019 13:45

Sample ID: 19C1572-05
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
TPH (C9-C36)	13	8.6	mg/Kg dry	1		SW-846 8100 Modified	4/2/19	4/4/19 10:16	RMW
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorobiphenyl		81.4	40-140		_			4/4/19 10:16	

Sample Description:

Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-111 (0-10)

Project Location: Wayland, MA

Sampled: 3/27/2019 13:45

Sample ID: 19C1572-05
Sample Matrix: Soil

Metals Analyses (Total)										
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	МЈН	
Arsenic	11	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/5/19 13:20	EJB	
Barium	32	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Beryllium	0.31	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Cadmium	0.37	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Chromium	11	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Lead	5.6	0.52	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	4/2/19	4/3/19 13:04	TBC	
Nickel	11	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Selenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Silver	0.44	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 22:56	EJB	
Vanadium	17	0.69	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	
Zinc	25	0.69	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:00	MJH	

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-111 (0-10)

Sampled: 3/27/2019 13:45

Sample ID: 19C1572-05
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
% Solids	95.2		% Wt	1		SM 2540G	4/3/19	4/4/19 0:59	AVF
Ignitability	Absent		present/absent	1		SW-846 1030	4/2/19	4/2/19 19:15	DJM
pH @22°C	8.2		pH Units	1	H-03	SW-846 9045C	3/30/19	3/30/19 15:04	AIA
Reactive Cyanide	ND	3.9	mg/Kg	1		SW-846 9014	3/30/19	3/31/19 10:20	KMV
Reactive Sulfide	ND	20	mg/L	1		SW-846 9030A	3/30/19	3/31/19 9:50	KMV
Specific conductance	6.5	2.0	μmhos/cm	1		SM21-22 2510B Modified	3/31/19	3/31/19 11:45	KMV

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-112 (0-5)

Sampled: 3/27/2019 14:00

Sample ID: 19C1572-06
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Benzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Bromobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Bromochloromethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Bromodichloromethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Bromoform	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Bromomethane	ND	0.0093	mg/Kg dry	1	V-34	SW-846 8260C	4/1/19	4/1/19 20:40	MFF
2-Butanone (MEK)	ND	0.037	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
n-Butylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
sec-Butylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
tert-Butylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Carbon Disulfide	ND	0.0056	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Carbon Tetrachloride	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Chlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Chlorodibromomethane	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Chloroethane	ND	0.0093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Chloroform	ND	0.0037	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Chloromethane	ND	0.0093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
2-Chlorotoluene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
4-Chlorotoluene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2-Dibromoethane (EDB)	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Dibromomethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,3-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,4-Dichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,1-Dichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2-Dichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,1-Dichloroethylene	ND	0.0037	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
cis-1,2-Dichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
trans-1,2-Dichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2-Dichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,3-Dichloropropane	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
2,2-Dichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,1-Dichloropropene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
cis-1,3-Dichloropropene	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
trans-1,3-Dichloropropene	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Diethyl Ether	ND	0.0093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Diisopropyl Ether (DIPE)	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,4-Dioxane	ND	0.093	mg/Kg dry	1	V-16	SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Ethylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF

Page 50 of 115

Work Order: 19C1572 Sample Description:

Project Location: Wayland, MA Date Received: 3/29/2019 Field Sample #: V-112 (0-5)

Sampled: 3/27/2019 14:00

Sample ID: 19C1572-06 Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			J				Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	0.0019	mg/Kg dry	1	-	SW-846 8260C	4/1/19	4/1/19 20:40	MFF
2-Hexanone (MBK)	ND	0.019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Isopropylbenzene (Cumene)	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0037	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Methylene Chloride	ND	0.0093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Naphthalene	ND	0.0037	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
n-Propylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Styrene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,1,1,2-Tetrachloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,1,2,2-Tetrachloroethane	ND	0.00093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Tetrachloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Tetrahydrofuran	ND	0.0093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Toluene	0.0030	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2,3-Trichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2,4-Trichlorobenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,1,1-Trichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,1,2-Trichloroethane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Trichloroethylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0093	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2,3-Trichloropropane	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,2,4-Trimethylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
1,3,5-Trimethylbenzene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Vinyl Chloride	ND	0.0093	mg/Kg dry	1	L-04	SW-846 8260C	4/1/19	4/1/19 20:40	MFF
m+p Xylene	ND	0.0037	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
o-Xylene	ND	0.0019	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 20:40	MFF
Surrogates		% Recovery	Recovery Limit	ts	Flag/Qual				
1,2-Dichloroethane-d4		95.7	70-130					4/1/19 20:40	
Toluene-d8		96.8	70-130					4/1/19 20:40	
4-Bromofluorobenzene		95.6	70-130					4/1/19 20:40	

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-112 (0-5)

Sampled: 3/27/2019 14:00

Sample ID: 19C1572-06
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Acenaphthylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Acetophenone	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Aniline	ND	0.35	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Benzo(a)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Benzo(a)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Benzo(b)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Benzo(g,h,i)perylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Benzo(k)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Bis(2-chloroethoxy)methane	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Bis(2-chloroethyl)ether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Bis(2-chloroisopropyl)ether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Bis(2-Ethylhexyl)phthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
4-Bromophenylphenylether	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Butylbenzylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
4-Chloroaniline	ND	0.68	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2-Chloronaphthalene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2-Chlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Chrysene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Dibenz(a,h)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Dibenzofuran	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Di-n-butylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
1,2-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
1,3-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
1,4-Dichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2,4-Dichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Diethylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2,4-Dimethylphenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Dimethylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2,4-Dinitrophenol	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2,4-Dinitrotoluene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2,6-Dinitrotoluene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Di-n-octylphthalate	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Hexachlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Hexachlorobutadiene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Hexachloroethane	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Indeno(1,2,3-cd)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Isophorone	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
* *			00-1	•			,	Dogo F2	

Page 52 of 115

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-112 (0-5)

Sampled: 3/27/2019 14:00

Sample ID: 19C1572-06
Sample Matrix: Soil

Samivalatila	Organic	Compounde	by CC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	0.35	mg/Kg dry	1	V-05	SW-846 8270D	4/2/19	4/3/19 17:38	IMR
3/4-Methylphenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Nitrobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2-Nitrophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
4-Nitrophenol	ND	0.68	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Pentachlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Phenanthrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Phenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
1,2,4-Trichlorobenzene	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2,4,5-Trichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
2,4,6-Trichlorophenol	ND	0.35	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 17:38	IMR
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		65.6	30-130					4/3/19 17:38	
Phenol-d6		73.2	30-130					4/3/19 17:38	
Nitrobenzene-d5		72.2	30-130					4/3/19 17:38	
2-Fluorobiphenyl		78.4	30-130					4/3/19 17:38	
2,4,6-Tribromophenol		92.8	30-130					4/3/19 17:38	
p-Terphenyl-d14		99.9	30-130					4/3/19 17:38	

4/4/19 17:59

4/4/19 17:59

4/4/19 17:59

4/4/19 17:59

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-112 (0-5)

Sampled: 3/27/2019 14:00

97.6

91.5

99.7

96.5

Sample ID: 19C1572-06
Sample Matrix: Soil

Decachlorobiphenyl [1]

Decachlorobiphenyl [2]

Tetrachloro-m-xylene [1]

Tetrachloro-m-xylene [2]

Sample Flags: O-32		Polychlori	nated Biphenyls wit	th 3540 Soxh	let Extraction				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Aroclor-1221 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Aroclor-1232 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Aroclor-1242 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Aroclor-1248 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Aroclor-1254 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Aroclor-1260 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Aroclor-1262 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Aroclor-1268 [1]	ND	0.079	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 17:59	JMB
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				

30-150

30-150

30-150

30-150

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-112 (0-5)

Sampled: 3/27/2019 14:00

Sample ID: 19C1572-06
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
TPH (C9-C36)	ND	8.6	mg/Kg dry	1		SW-846 8100 Modified	4/2/19	4/4/19 9:15	RMW
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2-Fluorobiphenyl		73.1	40-140		-			4/4/19 9:15	

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-112 (0-5)

Sampled: 3/27/2019 14:00

Sample ID: 19C1572-06
Sample Matrix: Soil

Metals	Analy	ses (Total)

								Date	Date/Time	
A	nalyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony		ND	1.8	mg/Kg dry	1	MS-07	SW-846 6010D	4/3/19	4/4/19 15:47	МЈН
Arsenic		5.0	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/5/19 12:19	EJB
Barium		21	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Beryllium		0.25	0.18	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Cadmium		ND	0.18	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Chromium		9.1	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Lead		3.9	0.53	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Mercury		ND	0.027	mg/Kg dry	1		SW-846 7471B	4/2/19	4/3/19 13:06	TBC
Nickel		7.1	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Selenium		ND	3.5	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Silver		ND	0.35	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Thallium		ND	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 21:40	EJB
Vanadium		12	0.71	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	MJH
Zinc		17	0.71	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 15:47	МЈН

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-112 (0-5)

Sampled: 3/27/2019 14:00

Sample ID: 19C1572-06
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

	.	D.	***	D11 - 1	FI (0 1	25.0	Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	94.5		% Wt	1		SM 2540G	4/3/19	4/4/19 0:59	AVF
Ignitability	Absent		present/absent	1		SW-846 1030	4/2/19	4/2/19 19:15	DJM
pH @20.7°C	6.3		pH Units	1	H-03	SW-846 9045C	3/30/19	3/30/19 15:04	AIA
Reactive Cyanide	ND	3.9	mg/Kg	1		SW-846 9014	3/30/19	3/31/19 10:20	KMV
Reactive Sulfide	ND	20	mg/L	1		SW-846 9030A	3/30/19	3/31/19 9:50	KMV
Specific conductance	4.7	2.0	μmhos/cm	1		SM21-22 2510B Modified	4/1/19	4/1/19 11:30	EC

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-113 (0-5)

ield Sample #: V-113 (0-5) Sampled: 3/28/2019 11:00

Sample ID: 19C1572-07
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			voiatile Organic Con	ipounus by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Benzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Bromobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Bromochloromethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Bromodichloromethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Bromoform	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Bromomethane	ND	0.0089	mg/Kg dry	1	V-34	SW-846 8260C	4/1/19	4/1/19 21:04	MFF
2-Butanone (MEK)	ND	0.036	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
n-Butylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
sec-Butylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
tert-Butylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Carbon Disulfide	ND	0.0053	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Carbon Tetrachloride	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Chlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Chlorodibromomethane	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Chloroethane	ND	0.0089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Chloroform	ND	0.0036	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Chloromethane	ND	0.0089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
2-Chlorotoluene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
4-Chlorotoluene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2-Dibromoethane (EDB)	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Dibromomethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2-Dichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,3-Dichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,4-Dichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,1-Dichloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2-Dichloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,1-Dichloroethylene	ND	0.0036	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
cis-1,2-Dichloroethylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
trans-1,2-Dichloroethylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2-Dichloropropane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,3-Dichloropropane	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
2,2-Dichloropropane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,1-Dichloropropene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
cis-1,3-Dichloropropene	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
trans-1,3-Dichloropropene	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Diethyl Ether	ND	0.0089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Diisopropyl Ether (DIPE)	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,4-Dioxane	ND	0.089	mg/Kg dry	1	V-16	SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Ethylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
			2 2 7				Г	Dogo FO	

Page 58 of 115

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-113 (0-5)

Sampled: 3/28/2019 11:00

Sample ID: 19C1572-07
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			o - g	P					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
2-Hexanone (MBK)	ND	0.018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Isopropylbenzene (Cumene)	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0036	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Methylene Chloride	ND	0.0089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Naphthalene	ND	0.0036	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
n-Propylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Styrene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,1,1,2-Tetrachloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,1,2,2-Tetrachloroethane	ND	0.00089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Tetrachloroethylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Tetrahydrofuran	ND	0.0089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Toluene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2,3-Trichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2,4-Trichlorobenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,1,1-Trichloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,1,2-Trichloroethane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Trichloroethylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0089	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2,3-Trichloropropane	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,2,4-Trimethylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
1,3,5-Trimethylbenzene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Vinyl Chloride	ND	0.0089	mg/Kg dry	1	L-04	SW-846 8260C	4/1/19	4/1/19 21:04	MFF
m+p Xylene	ND	0.0036	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
o-Xylene	ND	0.0018	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:04	MFF
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
1,2-Dichloroethane-d4		96.4	70-130					4/1/19 21:04	_
Toluene-d8		95.8	70-130					4/1/19 21:04	
4-Bromofluorobenzene		94.6	70-130					4/1/19 21:04	

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-113 (0-5)

Sampled: 3/28/2019 11:00

Sample ID: 19C1572-07
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Acenaphthylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Acetophenone	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Aniline	ND	0.36	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Benzo(a)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Benzo(a)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Benzo(b)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Benzo(g,h,i)perylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Benzo(k)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Bis(2-chloroethoxy)methane	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Bis(2-chloroisopropyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Bis(2-Ethylhexyl)phthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
4-Bromophenylphenylether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Butylbenzylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
4-Chloroaniline	ND	0.71	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2-Chloronaphthalene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2-Chlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Chrysene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Dibenz(a,h)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Dibenzofuran	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Di-n-butylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
1,2-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
1,3-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
1,4-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2,4-Dichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Diethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2,4-Dimethylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Dimethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2,4-Dinitrophenol	ND	0.71	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2,4-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2,6-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Di-n-octylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Hexachlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Hexachlorobutadiene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Hexachloroethane	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Indeno(1,2,3-cd)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Isophorone	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
=vjpuiciic	ND	0.10	mg/kg ury	1		5 11-040 02/UD	¬1/∠/17	4/3/19 18.00	

Page 60 of 115

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-113 (0-5)

Sampled: 3/28/2019 11:00

110

Sample ID: 19C1572-07
Sample Matrix: Soil

p-Terphenyl-d14

Comirrolatile	Ougania	Compound	. L.	CCIMIC

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	0.36	mg/Kg dry	1	V-05	SW-846 8270D	4/2/19	4/3/19 18:00	IMR
3/4-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Nitrobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2-Nitrophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
4-Nitrophenol	ND	0.71	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Pentachlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Phenanthrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Phenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
1,2,4-Trichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2,4,5-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
2,4,6-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:00	IMR
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2-Fluorophenol		78.8	30-130					4/3/19 18:00	
Phenol-d6		87.4	30-130					4/3/19 18:00	
Nitrobenzene-d5		87.4	30-130					4/3/19 18:00	
2-Fluorobiphenyl		87.6	30-130					4/3/19 18:00	
2,4,6-Tribromophenol		102	30-130					4/3/19 18:00	

30-130

4/3/19 18:00

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019
Field Sample #: V-113 (0-5)

Sampled: 3/28/2019 11:00

Sample ID: 19C1572-07

Sample Matrix: Soil

Sample Flags: O-32		Polychlori	nated Biphenyls wit	th 3540 Soxh	let Extraction				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Aroclor-1221 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Aroclor-1232 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Aroclor-1242 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Aroclor-1248 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Aroclor-1254 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Aroclor-1260 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Aroclor-1262 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Aroclor-1268 [1]	ND	0.080	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:12	JMB
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
Decachlorobiphenyl [1]		106	30-150					4/4/19 18:12	
Decachlorobiphenyl [2]		101	30-150					4/4/19 18:12	
Tetrachloro-m-xylene [1]		105	30-150					4/4/19 18:12	
Tetrachloro-m-xylene [2]		101	30-150					4/4/19 18:12	

Project Location: Wayland, MA Sample Description:

Work Order: 19C1572

Date Received: 3/29/2019 Field Sample #: V-113 (0-5)

Sampled: 3/28/2019 11:00

Sample ID: 19C1572-07 Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH (C9-C36)	ND	8.9	mg/Kg dry	1		SW-846 8100 Modified	4/2/19	4/4/19 9:35	RMW
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
2-Fluorobiphenyl		75.0	40-140		-			4/4/19 9:35	

Page 63 of 115

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 3/29/2019

Field Sample #: V-113 (0-5)

Project Location: Wayland, MA

Sampled: 3/28/2019 11:00

Sample ID: 19C1572-07
Sample Matrix: Soil

Metals Analyses (Total)

		• ` ` '							
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	МЈН
Arsenic	2.8	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/5/19 13:25	EJB
Barium	15	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Beryllium	ND	0.18	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Cadmium	ND	0.18	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Chromium	11	0.36	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Lead	2.3	0.54	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	4/2/19	4/3/19 13:07	TBC
Nickel	4.8	0.36	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Selenium	ND	3.6	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Silver	ND	0.36	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Thallium	ND	1.8	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 23:03	EJB
Vanadium	9.6	0.72	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH
Zinc	11	0.72	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:07	MJH

Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-113 (0-5)

Project Location: Wayland, MA

Sampled: 3/28/2019 11:00

Sample ID: 19C1572-07
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

	D 1/	DI	***	D'1 4'	FL (0. 1	M (1)	Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	93.3		% Wt	1		SM 2540G	4/3/19	4/4/19 0:59	AVF
Ignitability	Absent		present/absent	1		SW-846 1030	4/2/19	4/2/19 19:15	DJM
pH @20.4°C	6.5		pH Units	1	H-03	SW-846 9045C	3/30/19	3/30/19 15:04	AIA
Reactive Cyanide	ND	3.9	mg/Kg	1		SW-846 9014	3/30/19	3/31/19 10:20	KMV
Reactive Sulfide	ND	20	mg/L	1		SW-846 9030A	3/30/19	3/31/19 9:50	KMV
Specific conductance	ND	2.0	μmhos/cm	1		SM21-22 2510B Modified	4/1/19	4/1/19 11:30	EC

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-114 (5-10)

Sampled: 3/28/2019 11:35

Sample ID: 19C1572-08
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.10	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Benzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Bromobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Bromochloromethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Bromodichloromethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Bromoform	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Bromomethane	ND	0.010	mg/Kg dry	1	V-34	SW-846 8260C	4/1/19	4/1/19 21:29	MFF
2-Butanone (MEK)	ND	0.042	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
n-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
sec-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
tert-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Carbon Disulfide	ND	0.0062	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Carbon Tetrachloride	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Chlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Chlorodibromomethane	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Chloroethane	ND	0.010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Chloroform	ND	0.0042	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Chloromethane	ND	0.010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
2-Chlorotoluene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
4-Chlorotoluene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2-Dibromoethane (EDB)	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Dibromomethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,3-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,4-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,1-Dichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2-Dichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,1-Dichloroethylene	ND	0.0042	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
cis-1,2-Dichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
trans-1,2-Dichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2-Dichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,3-Dichloropropane	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
2,2-Dichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,1-Dichloropropene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
cis-1,3-Dichloropropene	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
trans-1,3-Dichloropropene	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Diethyl Ether	ND	0.010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Diisopropyl Ether (DIPE)	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,4-Dioxane	ND	0.10	mg/Kg dry	1	V-16	SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Ethylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
			2 2 7				Г	Page 66	

Page 66 of 115

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019 **Field Sample #: V-114 (5-10)**

Sampled: 3/28/2019 11:35

Sample ID: 19C1572-08
Sample Matrix: Soil

		VO	iathe Organic Com	pounds by G	IC/IVIS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0021	mg/Kg dry	1	1 mg/ 2 mm	SW-846 8260C	4/1/19	4/1/19 21:29	MFF
2-Hexanone (MBK)	ND	0.021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Isopropylbenzene (Cumene)	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0042	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Methylene Chloride	ND	0.0042	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Naphthalene	ND ND	0.021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
n-Propylbenzene		0.0042		1					MFF
**	ND		mg/Kg dry			SW-846 8260C	4/1/19	4/1/19 21:29	
Styrene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,1,1,2-Tetrachloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Tetrachloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Tetrahydrofuran	ND	0.010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Toluene	0.0068	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2,3-Trichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2,4-Trichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,1,1-Trichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,1,2-Trichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Trichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2,3-Trichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,2,4-Trimethylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
1,3,5-Trimethylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Vinyl Chloride	ND	0.010	mg/Kg dry	1	L-04	SW-846 8260C	4/1/19	4/1/19 21:29	MFF
m+p Xylene	ND	0.0042	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
o-Xylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C	4/1/19	4/1/19 21:29	MFF
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		99.1	70-130					4/1/19 21:29	
Toluene-d8		96.3	70-130					4/1/19 21:29	
4-Bromofluorobenzene		97.4	70-130					4/1/19 21:29	

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-114 (5-10)

Sampled: 3/28/2019 11:35

Sample ID: 19C1572-08
Sample Matrix: Soil

Semivolatile Organic Compounds by GC/MS

		50	emivolatile Organic C	ompounds by	GC/MS		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Acenaphthylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Acetophenone	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Aniline	ND	0.36	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Benzo(a)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Benzo(a)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Benzo(b)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Benzo(g,h,i)perylene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Benzo(k)fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Bis(2-chloroethoxy)methane	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Bis(2-chloroethyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Bis(2-chloroisopropyl)ether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Bis(2-Ethylhexyl)phthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
4-Bromophenylphenylether	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Butylbenzylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
4-Chloroaniline	ND	0.69	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2-Chloronaphthalene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2-Chlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Chrysene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Dibenz(a,h)anthracene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Dibenzofuran	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Di-n-butylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
1,2-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
1,3-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
1,4-Dichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
3,3-Dichlorobenzidine	ND	0.18	mg/Kg dry	1	V-34	SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2,4-Dichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Diethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2,4-Dimethylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Dimethylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2,4-Dinitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2,4-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2,6-Dinitrotoluene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Di-n-octylphthalate	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Fluoranthene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Fluorene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Hexachlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Hexachlorobutadiene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Hexachloroethane	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Indeno(1,2,3-cd)pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Isophorone	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2-Methylnaphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
y	MD	0.10	mg/Kg ury	1		5 11-0TO 02/0D	7/2/19	Page 68	

Page 68 of 115

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-114 (5-10)

Sampled: 3/28/2019 11:35

113

Sample ID: 19C1572-08
Sample Matrix: Soil

p-Terphenyl-d14

Semivolatile	Ougania	Commounda	by CC/MC	

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2-Methylphenol	ND	0.36	mg/Kg dry	1	V-05	SW-846 8270D	4/2/19	4/3/19 18:23	IMR
3/4-Methylphenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Naphthalene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Nitrobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2-Nitrophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
4-Nitrophenol	ND	0.69	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Pentachlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Phenanthrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Phenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Pyrene	ND	0.18	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
1,2,4-Trichlorobenzene	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2,4,5-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
2,4,6-Trichlorophenol	ND	0.36	mg/Kg dry	1		SW-846 8270D	4/2/19	4/3/19 18:23	IMR
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				-
2-Fluorophenol		85.4	30-130					4/3/19 18:23	
Phenol-d6		92.8	30-130					4/3/19 18:23	
Nitrobenzene-d5		94.9	30-130					4/3/19 18:23	
2-Fluorobiphenyl		97.5	30-130					4/3/19 18:23	
2,4,6-Tribromophenol		105	30-130					4/3/19 18:23	

30-130

4/3/19 18:23

Project Location: Wayland, MA Sample Description: Work Order: 19C1572

Date Received: 3/29/2019

Field Sample #: V-114 (5-10)

Sampled: 3/28/2019 11:35

Sample ID: 19C1572-08
Sample Matrix: Soil
Sample Flags: O-32

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Aroclor-1221 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Aroclor-1232 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Aroclor-1242 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Aroclor-1248 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Aroclor-1254 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Aroclor-1260 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Aroclor-1262 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Aroclor-1268 [1]	ND	0.081	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:25	JMB
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
Decachlorobiphenyl [1]		108	30-150					4/4/19 18:25	
Decachlorobiphenyl [2]		100	30-150					4/4/19 18:25	
Tetrachloro-m-xylene [1]		104	30-150					4/4/19 18:25	
Tetrachloro-m-xylene [2]		102	30-150					4/4/19 18:25	

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Sample Description:

Date Received: 3/29/2019

Field Sample #: V-114 (5-10)

Sampled: 3/28/2019 11:35

Sample ID: 19C1572-08
Sample Matrix: Soil

Petroleum Hydrocarbons Analyses

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH (C9-C36)	27	8.7	mg/Kg dry	1	0 -	SW-846 8100 Modified	4/2/19	4/4/19 9:55	RMW
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
2-Fluorobiphenyl		76.7	40-140					4/4/19 9:55	

Sample Description:

Work Order: 19C1572

Date Received: 3/29/2019 Field Sample #: V-114 (5-10)

Project Location: Wayland, MA

Sampled: 3/28/2019 11:35

Sample ID: 19C1572-08 Sample Matrix: Soil

Metals Analyses (Total)										
							Date	Date/Time		
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Antimony	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Arsenic	4.5	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/5/19 13:30	EJB	
Barium	31	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Beryllium	0.26	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Cadmium	ND	0.17	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Chromium	15	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Lead	5.8	0.51	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Mercury	ND	0.026	mg/Kg dry	1		SW-846 7471B	4/2/19	4/3/19 13:09	TBC	
Nickel	12	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Selenium	ND	3.4	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Silver	0.57	0.34	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Thallium	ND	1.7	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 23:09	EJB	
Vanadium	23	0.68	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	
Zinc	30	0.68	mg/Kg dry	1		SW-846 6010D	4/3/19	4/4/19 17:13	MJH	

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-114 (5-10)

Sampled: 3/28/2019 11:35

Sample ID: 19C1572-08
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids	95.4		% Wt	1		SM 2540G	4/3/19	4/4/19 0:59	AVF
Ignitability	Absent		present/absent	1		SW-846 1030	4/2/19	4/2/19 19:15	DJM
рН @20.3°C	6.4		pH Units	1	H-03	SW-846 9045C	3/30/19	3/30/19 15:04	AIA
Reactive Cyanide	ND	4.0	mg/Kg	1		SW-846 9014	3/30/19	3/31/19 10:20	KMV
Reactive Sulfide	ND	20	mg/L	1		SW-846 9030A	3/30/19	3/31/19 9:50	KMV
Specific conductance	2.1	2.0	μmhos/cm	1		SM21-22 2510B Modified	4/1/19	4/1/19 11:30	EC

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wayland, MA Work Order: 19C1572 Sample Description:

Date Received: 3/29/2019 Field Sample #: V-115 (5-10)

Sampled: 3/28/2019 12:00

Results

ND

ND

ND

ND

ND

ND

ND

ND

Sample ID: 19C1572-09 Sample Matrix: Soil Sample Flags: O-32

Aroclor-1016 [1]

Aroclor-1221 [1]

Aroclor-1232 [1]

Aroclor-1242 [1]

Aroclor-1248 [1]

Aroclor-1254 [1]

Aroclor-1260 [1]

Aroclor-1262 [1]

Aroclor-1268 [1]

Polychlor	Polychlorinated Biphenyls with 3540 Soxhlet Extraction										
					Date	Date/Time					
RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst				
0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB				
0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB				
0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB				
0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB				
0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB				
0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB				
0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB				
0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB				

Aroclor-1268 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:37	JMB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		107	30-150					4/4/19 18:37	
Decachlorobiphenyl [2]		97.0	30-150					4/4/19 18:37	
Tetrachloro-m-xylene [1]		97.7	30-150					4/4/19 18:37	
Tetrachloro-m-xylene [2]		95.1	30-150					4/4/19 18:37	

Sample Description: Work Order: 19C1572

Project Location: Wayland, MA
Date Received: 3/29/2019 **Field Sample #: V-115 (5-10)**

Sampled: 3/28/2019 12:00

Sample ID: 19C1572-09
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		94.6		% Wt	1		SM 2540G	4/3/19	4/4/19 1:00	AVF

Project Location: Wayland, MA Work Order: 19C1572 Sample Description:

Date Received: 3/29/2019 Field Sample #: V-116 (0-5)

Sampled: 3/28/2019 12:30

Sample ID: 19C1572-10 Sample Matrix: Soil

Sample Flags: O-32		Polychlori	nated Biphenyls wit	h 3540 Soxh	let Extraction				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Aroclor-1221 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Aroclor-1232 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Aroclor-1242 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Aroclor-1248 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Aroclor-1254 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Aroclor-1260 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Aroclor-1262 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Aroclor-1268 [1]	ND	0.082	mg/Kg dry	4		SW-846 8082A	4/2/19	4/4/19 18:50	JMB
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				

Work Order: 19C1572

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wayland, MA
Date Received: 3/29/2019
Field Sample #: V-116 (0-5)

Sampled: 3/28/2019 12:30

Sample ID: 19C1572-10
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		94.6		% Wt	1		SM 2540G	4/3/19	4/4/19 1:00	AVF

Sample Extraction Data

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
19C1572-01 [V-107 (5-10)]	B227324	04/03/19
19C1572-02 [V-108 (0-5)]	B227324	04/03/19
19C1572-03 [V-109 (5-10)]	B227324	04/03/19
19C1572-04 [V-110 (5-10)]	B227324	04/03/19
19C1572-05 [V-111 (0-10)]	B227324	04/03/19
19C1572-06 [V-112 (0-5)]	B227324	04/03/19
19C1572-07 [V-113 (0-5)]	B227324	04/03/19
19C1572-08 [V-114 (5-10)]	B227324	04/03/19
19C1572-09 [V-115 (5-10)]	B227324	04/03/19
19C1572-10 [V-116 (0-5)]	B227324	04/03/19

SM21-22 2510B Modified

Lab Number [Field ID]	Batch	Initial [g]	Date
19C1572-01 [V-107 (5-10)]	B227054	1.00	03/31/19
19C1572-02 [V-108 (0-5)]	B227054	1.00	03/31/19
19C1572-03 [V-109 (5-10)]	B227054	1.00	03/31/19
19C1572-04 [V-110 (5-10)]	B227054	1.00	03/31/19
19C1572-05 [V-111 (0-10)]	B227054	1.00	03/31/19

SM21-22 2510B Modified

Lab Number [Field ID]	Batch	Initial [g]	Date
19C1572-06 [V-112 (0-5)]	B227087	1.00	04/01/19
19C1572-07 [V-113 (0-5)]	B227087	1.00	04/01/19
19C1572-08 [V-114 (5-10)]	B227087	1.00	04/01/19

SW-846 1030

Lab Number [Field ID]	Batch	Initial [g]	Date
19C1572-01 [V-107 (5-10)]	B227278	50.0	04/02/19
19C1572-02 [V-108 (0-5)]	B227278	50.0	04/02/19
19C1572-03 [V-109 (5-10)]	B227278	50.0	04/02/19
19C1572-04 [V-110 (5-10)]	B227278	50.0	04/02/19
19C1572-05 [V-111 (0-10)]	B227278	50.0	04/02/19
19C1572-06 [V-112 (0-5)]	B227278	50.0	04/02/19
19C1572-07 [V-113 (0-5)]	B227278	50.0	04/02/19
19C1572-08 [V-114 (5-10)]	B227278	50.0	04/02/19

Prep Method: SW-846 3050B-SW-846 6010D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
19C1572-01 [V-107 (5-10)]	B227367	1.52	50.0	04/03/19
19C1572-02 [V-108 (0-5)]	B227367	1.54	50.0	04/03/19
19C1572-03 [V-109 (5-10)]	B227367	1.50	50.0	04/03/19
19C1572-04 [V-110 (5-10)]	B227367	1.52	50.0	04/03/19
19C1572-05 [V-111 (0-10)]	B227367	1.53	50.0	04/03/19
19C1572-06 [V-112 (0-5)]	B227367	1.50	50.0	04/03/19
19C1572-07 [V-113 (0-5)]	B227367	1.49	50.0	04/03/19
19C1572-08 [V-114 (5-10)]	B227367	1.53	50.0	04/03/19

Sample Extraction Data

Prep Method: SW-846 7471-SW-846 7471B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
19C1572-01 [V-107 (5-10)]	B227094	0.619	50.0	04/02/19
19C1572-02 [V-108 (0-5)]	B227094	0.606	50.0	04/02/19
19C1572-03 [V-109 (5-10)]	B227094	0.608	50.0	04/02/19
19C1572-04 [V-110 (5-10)]	B227094	0.574	50.0	04/02/19
19C1572-05 [V-111 (0-10)]	B227094	0.598	50.0	04/02/19
19C1572-06 [V-112 (0-5)]	B227094	0.594	50.0	04/02/19
19C1572-07 [V-113 (0-5)]	B227094	0.612	50.0	04/02/19
19C1572-08 [V-114 (5-10)]	B227094	0.596	50.0	04/02/19

Prep Method: SW-846 3540C-SW-846 8082A

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19C1572-01 [V-107 (5-10)]	B227240	10.2	10.0	04/02/19	
19C1572-02 [V-108 (0-5)]	B227240	10.2	10.0	04/02/19	
19C1572-03 [V-109 (5-10)]	B227240	10.3	10.0	04/02/19	
19C1572-04 [V-110 (5-10)]	B227240	10.2	10.0	04/02/19	
19C1572-05 [V-111 (0-10)]	B227240	10.6	10.0	04/02/19	
19C1572-06 [V-112 (0-5)]	B227240	10.7	10.0	04/02/19	
19C1572-07 [V-113 (0-5)]	B227240	10.7	10.0	04/02/19	
19C1572-08 [V-114 (5-10)]	B227240	10.4	10.0	04/02/19	
19C1572-09 [V-115 (5-10)]	B227240	10.3	10.0	04/02/19	
19C1572-10 [V-116 (0-5)]	B227240	10.3	10.0	04/02/19	

Prep Method: SW-846 3546-SW-846 8100 Modified

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19C1572-01 [V-107 (5-10)]	B227221	30.7	1.00	04/02/19	
19C1572-02 [V-108 (0-5)]	B227221	30.4	1.00	04/02/19	
19C1572-03 [V-109 (5-10)]	B227221	30.5	1.00	04/02/19	
19C1572-04 [V-110 (5-10)]	B227221	30.7	1.00	04/02/19	
19C1572-05 [V-111 (0-10)]	B227221	30.4	1.00	04/02/19	
19C1572-06 [V-112 (0-5)]	B227221	30.6	1.00	04/02/19	
19C1572-07 [V-113 (0-5)]	B227221	30.0	1.00	04/02/19	
19C1572-08 [V-114 (5-10)]	B227221	30.0	1.00	04/02/19	

Prep Method: SW-846 5035-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
19C1572-01 [V-107 (5-10)]	B227113	6.78	10.0	04/01/19
19C1572-02 [V-108 (0-5)]	B227113	6.06	10.0	04/01/19
19C1572-03 [V-109 (5-10)]	B227113	3.60	10.0	04/01/19
19C1572-04 [V-110 (5-10)]	B227113	4.62	10.0	04/01/19

Prep Method: SW-846 5035-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19C1572-05 [V-111 (0-10)]	B227135	5.57	10.0	04/01/19	
19C1572-06 [V-112 (0-5)]	B227135	5.67	10.0	04/01/19	
19C1572-07 [V-113 (0-5)]	B227135	6.01	10.0	04/01/19	

Sample Extraction Data

Prep Method: SW-846 5035-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
19C1572-08 [V-114 (5-10)]	B227135	5.04	10.0	04/01/19

Prep Method: SW-846 3546-SW-846 8270D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
19C1572-01 [V-107 (5-10)]	B227222	30.7	1.00	04/02/19
19C1572-02 [V-108 (0-5)]	B227222	30.4	1.00	04/02/19
19C1572-03 [V-109 (5-10)]	B227222	30.5	1.00	04/02/19
19C1572-04 [V-110 (5-10)]	B227222	30.7	1.00	04/02/19
19C1572-05 [V-111 (0-10)]	B227222	30.4	1.00	04/02/19
19C1572-06 [V-112 (0-5)]	B227222	30.6	1.00	04/02/19
19C1572-07 [V-113 (0-5)]	B227222	30.0	1.00	04/02/19
19C1572-08 [V-114 (5-10)]	B227222	30.0	1.00	04/02/19

SW-846 9014

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
19C1572-01 [V-107 (5-10)]	B227022	25.7	250	03/30/19	
19C1572-02 [V-108 (0-5)]	B227022	25.4	250	03/30/19	
19C1572-03 [V-109 (5-10)]	B227022	25.2	250	03/30/19	
19C1572-04 [V-110 (5-10)]	B227022	25.2	250	03/30/19	
19C1572-05 [V-111 (0-10)]	B227022	25.4	250	03/30/19	
19C1572-06 [V-112 (0-5)]	B227022	25.5	250	03/30/19	
19C1572-07 [V-113 (0-5)]	B227022	25.4	250	03/30/19	
19C1572-08 [V-114 (5-10)]	B227022	25.2	250	03/30/19	

SW-846 9030A

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19C1572-01 [V-107 (5-10)]	B227024	25.7	250	03/30/19	
19C1572-02 [V-108 (0-5)]	B227024	25.4	250	03/30/19	
19C1572-03 [V-109 (5-10)]	B227024	25.2	250	03/30/19	
19C1572-04 [V-110 (5-10)]	B227024	25.2	250	03/30/19	
19C1572-05 [V-111 (0-10)]	B227024	25.4	250	03/30/19	
19C1572-06 [V-112 (0-5)]	B227024	25.5	250	03/30/19	
19C1572-07 [V-113 (0-5)]	B227024	25.4	250	03/30/19	
19C1572-08 [V-114 (5-10)]	B227024	25.2	250	03/30/19	

SW-846 9045C

Lab Number [Field ID]	Batch	Initial [g]	Date
19C1572-01 [V-107 (5-10)]	B227052	20.0	03/30/19
19C1572-02 [V-108 (0-5)]	B227052	20.0	03/30/19
19C1572-03 [V-109 (5-10)]	B227052	20.0	03/30/19
19C1572-04 [V-110 (5-10)]	B227052	20.0	03/30/19
19C1572-05 [V-111 (0-10)]	B227052	20.0	03/30/19
19C1572-06 [V-112 (0-5)]	B227052	20.0	03/30/19
19C1572-07 [V-113 (0-5)]	B227052	20.0	03/30/19
19C1572-08 [V-114 (5-10)]	B227052	20.0	03/30/19

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227113 - SW-846 5035										
Blank (B227113-BLK1)				Prepared & A	Analyzed: 04	/01/19				
Acetone	ND	0.10	mg/Kg wet							
ert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
Benzene	ND	0.0020	mg/Kg wet							
Bromobenzene	ND	0.0020	mg/Kg wet							
Bromochloromethane	ND	0.0020	mg/Kg wet							
Bromodichloromethane	ND	0.0020	mg/Kg wet							
Bromoform	ND	0.0020	mg/Kg wet							
Bromomethane	ND	0.010	mg/Kg wet							V-34
2-Butanone (MEK)	ND	0.040	mg/Kg wet							
n-Butylbenzene	ND	0.0020	mg/Kg wet							
sec-Butylbenzene	ND	0.0020	mg/Kg wet							
ert-Butylbenzene	ND	0.0020	mg/Kg wet							
ert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
Carbon Disulfide	ND	0.0060	mg/Kg wet							
Carbon Tetrachloride	ND	0.0020	mg/Kg wet							
Chlorobenzene	ND	0.0020	mg/Kg wet							
Chlorodibromomethane	ND	0.0010	mg/Kg wet							
Chloroethane	ND	0.010	mg/Kg wet							
Chloroform	ND	0.0040	mg/Kg wet							
Chloromethane	ND	0.010	mg/Kg wet							
2-Chlorotoluene	ND	0.0020	mg/Kg wet							
I-Chlorotoluene	ND	0.0020	mg/Kg wet							
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0020	mg/Kg wet							
,2-Dibromoethane (EDB)	ND	0.0010	mg/Kg wet							
Dibromomethane	ND	0.0020	mg/Kg wet							
1,2-Dichlorobenzene	ND	0.0020	mg/Kg wet							
1,3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
I,4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
Dichlorodifluoromethane (Freon 12)	ND	0.010	mg/Kg wet							
1,1-Dichloroethane	ND	0.0020	mg/Kg wet							
1,2-Dichloroethane	ND	0.0020	mg/Kg wet							
1,1-Dichloroethylene	ND	0.0040	mg/Kg wet							
rans 1.2 Dichloroethylene	ND	0.0020	mg/Kg wet							
rans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
,2-Dichloropropane	ND	0.0020 0.0010	mg/Kg wet							
1,3-Dichloropropane 2,2-Dichloropropane	ND	0.0010	mg/Kg wet mg/Kg wet							
1,1-Dichloropropene	ND	0.0020	mg/Kg wet							
:s:-1,3-Dichloropropene	ND	0.0020	mg/Kg wet							
rans-1,3-Dichloropropene	ND ND	0.0010	mg/Kg wet							
Diethyl Ether	ND ND	0.0010	mg/Kg wet							
Disopropyl Ether (DIPE)	ND ND	0.010	mg/Kg wet							
J. (4-Dioxane	ND	0.0010	mg/Kg wet							V-16
Ethylbenzene	ND ND	0.0020	mg/Kg wet							V-10
Hexachlorobutadiene	ND ND	0.0020	mg/Kg wet							
2-Hexanone (MBK)	ND ND	0.0020	mg/Kg wet							
(sopropylbenzene (Cumene)	ND ND	0.020	mg/Kg wet							
p-Isopropyltoluene (p-Cymene)	ND ND	0.0020	mg/Kg wet							
Methyl tert-Butyl Ether (MTBE)	ND ND	0.0020	mg/Kg wet							
Methylene Chloride		0.010	mg/Kg wet							
4-Methyl-2-pentanone (MIBK)	ND ND	0.010	mg/Kg wet							
Naphthalene	ND ND	0.020	mg/Kg wet							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227113 - SW-846 5035										
Blank (B227113-BLK1)				Prepared & A	Analyzed: 04	/01/19				
n-Propylbenzene	ND	0.0020	mg/Kg wet							
Styrene	ND	0.0020	mg/Kg wet							
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet							
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet							
Tetrachloroethylene	ND	0.0020	mg/Kg wet							
Tetrahydrofuran	ND	0.010	mg/Kg wet							
Toluene	ND	0.0020	mg/Kg wet							
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet							
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet							
1,1,1-Trichloroethane	ND	0.0020	mg/Kg wet							
1,1,2-Trichloroethane	ND	0.0020	mg/Kg wet							
Trichloroethylene	ND	0.0020	mg/Kg wet							
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet							
1,2,3-Trichloropropane	ND	0.0020	mg/Kg wet							
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet							
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet							
Vinyl Chloride	ND	0.010	mg/Kg wet							L-04
m+p Xylene	ND	0.0040	mg/Kg wet							
o-Xylene	ND	0.0020	mg/Kg wet							
Surrogate: 1,2-Dichloroethane-d4	0.0475		mg/Kg wet	0.0500		95.0	70-130			
Surrogate: Toluene-d8	0.0483		mg/Kg wet	0.0500		96.7	70-130			
Surrogate: 4-Bromofluorobenzene	0.0480		mg/Kg wet	0.0500		95.9	70-130			
LCS (B227113-BS1)				Prepared & A	Analyzed: 04	/01/19				
Acetone	0.268	0.10	mg/Kg wet	0.200		134	40-160			L-14
tert-Amyl Methyl Ether (TAME)	0.0197	0.0010	mg/Kg wet	0.0200		98.4	70-130			
Benzene	0.0165	0.0020	mg/Kg wet	0.0200		82.4	70-130			
Bromobenzene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130			
Bromochloromethane	0.0176	0.0020	mg/Kg wet	0.0200		87.8	70-130			
Bromodichloromethane	0.0186	0.0020	mg/Kg wet	0.0200		93.0	70-130			
Bromoform	0.0231	0.0020	mg/Kg wet	0.0200		116	70-130			V-20
Bromomethane	0.0114	0.010	mg/Kg wet	0.0200		56.8	40-160			L-14, V-34
2-Butanone (MEK)	0.222	0.040	mg/Kg wet	0.200		111	40-160			
n-Butylbenzene	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130			
sec-Butylbenzene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130			
tert-Butylbenzene	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130			
tert-Butyl Ethyl Ether (TBEE)	0.0188	0.0010	mg/Kg wet	0.0200		93.8	70-130			
Carbon Disulfide	0.0178	0.0060	mg/Kg wet	0.0200		89.2	70-130			
Carbon Tetrachloride	0.0181	0.0020	mg/Kg wet	0.0200		90.6	70-130			
Chlorobenzene	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130			
Chlorodibromomethane	0.0205	0.0010	mg/Kg wet	0.0200		103	70-130			
Chloroethane	0.0182	0.010	mg/Kg wet	0.0200		91.2	70-130			
Chloroform	0.0169	0.0040	mg/Kg wet	0.0200		84.7	70-130			
Chloromethane	0.0115	0.010	mg/Kg wet	0.0200		57.3	40-160			L-14
2-Chlorotoluene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130			
4-Chlorotoluene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130			
1,2-Dibromoethane (EDB)	0.0188	0.0010	mg/Kg wet	0.0200		94.2	70-130			
Dibromomethane	0.0172	0.0020	mg/Kg wet	0.0200		85.8	70-130			
1,2-Dichlorobenzene	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130			
1,3-Dichlorobenzene			/TZ							
,	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B227113 - SW-846 5035											
LCS (B227113-BS1)				Prepared & A	Analyzed: 04/	01/19					
Dichlorodifluoromethane (Freon 12)	0.0104	0.010	mg/Kg wet	0.0200		52.2	40-160			L-14	1
1,1-Dichloroethane	0.0173	0.0020	mg/Kg wet	0.0200		86.3	70-130				
1,2-Dichloroethane	0.0176	0.0020	mg/Kg wet	0.0200		88.2	70-130				
1,1-Dichloroethylene	0.0172	0.0040	mg/Kg wet	0.0200		86.2	70-130				
cis-1,2-Dichloroethylene	0.0173	0.0020	mg/Kg wet	0.0200		86.3	70-130				
trans-1,2-Dichloroethylene	0.0173	0.0020	mg/Kg wet	0.0200		86.4	70-130				
1,2-Dichloropropane	0.0180	0.0020	mg/Kg wet	0.0200		90.1	70-130				
1,3-Dichloropropane	0.0176	0.0010	mg/Kg wet	0.0200		88.3	70-130				
2,2-Dichloropropane	0.0184	0.0020	mg/Kg wet	0.0200		92.1	70-130				
1,1-Dichloropropene	0.0171	0.0020	mg/Kg wet	0.0200		85.6	70-130				
cis-1,3-Dichloropropene	0.0190	0.0010	mg/Kg wet	0.0200		94.9	70-130				
trans-1,3-Dichloropropene	0.0197	0.0010	mg/Kg wet	0.0200		98.4	70-130				
Diethyl Ether	0.0174	0.010	mg/Kg wet	0.0200		87.2	70-130				
Diisopropyl Ether (DIPE)	0.0178	0.0010	mg/Kg wet	0.0200		89.1	70-130				
1,4-Dioxane	0.196	0.10	mg/Kg wet	0.200		98.1	40-160			V-16	
Ethylbenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.5	70-130				
Hexachlorobutadiene	0.0231	0.0020	mg/Kg wet	0.0200		116	70-130				
2-Hexanone (MBK)	0.207	0.020	mg/Kg wet	0.200		104	40-160				
Isopropylbenzene (Cumene)	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130				
p-Isopropyltoluene (p-Cymene)	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130				
Methyl tert-Butyl Ether (MTBE)	0.0241	0.0040	mg/Kg wet	0.0200		121	70-130			V-20	
Methylene Chloride	0.0187	0.010	mg/Kg wet	0.0200		93.6	70-130				
4-Methyl-2-pentanone (MIBK)	0.194	0.020	mg/Kg wet	0.200		97.1	40-160				÷
Naphthalene	0.0205	0.0040	mg/Kg wet	0.0200		103	70-130				
n-Propylbenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130				
Styrene	0.0199	0.0020	mg/Kg wet	0.0200		99.5	70-130				
1,1,1,2-Tetrachloroethane	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
1,1,2,2-Tetrachloroethane	0.0209	0.0010	mg/Kg wet	0.0200		105	70-130				
Tetrachloroethylene	0.0190	0.0020	mg/Kg wet	0.0200		95.0	70-130				
Tetrahydrofuran	0.0190	0.010	mg/Kg wet	0.0200		95.9	70-130				
Toluene	0.0172	0.0020	mg/Kg wet	0.0200		89.6	70-130				
1,2,3-Trichlorobenzene	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130				
1,2,4-Trichlorobenzene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130				
1,1,1-Trichloroethane	0.0180	0.0020	mg/Kg wet	0.0200		89.8	70-130				
1,1,2-Trichloroethane	0.0188	0.0020	mg/Kg wet	0.0200		94.2	70-130				
Trichloroethylene	0.0188	0.0020	mg/Kg wet	0.0200		85.8	70-130				
Trichlorofluoromethane (Freon 11)	0.0172	0.010	mg/Kg wet	0.0200		71.4	70-130				
1,2,3-Trichloropropane	0.0192	0.0020	mg/Kg wet	0.0200		96.0	70-130				
1,2,4-Trimethylbenzene	0.0192	0.0020	mg/Kg wet	0.0200		98.9	70-130				
1,3,5-Trimethylbenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
Vinyl Chloride	0.0202	0.010	mg/Kg wet	0.0200		66.3 *	70-130			L-04	
m+p Xylene	0.0133	0.0040	mg/Kg wet	0.0400		99.7	70-130			1-04	
o-Xylene	0.0399	0.0020	mg/Kg wet	0.0200		98.7	70-130				
Surrogate: 1,2-Dichloroethane-d4	0.0488		mg/Kg wet	0.0500		97.5	70-130				—
Surrogate: Toluene-d8	0.0476		mg/Kg wet	0.0500		95.2	70-130				
Surrogate: 101uene-us Surrogate: 4-Bromofluorobenzene	0.04/6		mg/Kg wet	0.0500		95.2 96.9	70-130				

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227113 - SW-846 5035										
.CS Dup (B227113-BSD1)				Prepared & A	Analyzed: 04	/01/19				
Acetone	0.250	0.10	mg/Kg wet	0.200		125	40-160	6.89	20	
ert-Amyl Methyl Ether (TAME)	0.0203	0.0010	mg/Kg wet	0.0200		102	70-130	3.30	20	
Benzene	0.0173	0.0020	mg/Kg wet	0.0200		86.4	70-130	4.69	20	
Bromobenzene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	1.89	20	
Bromochloromethane	0.0191	0.0020	mg/Kg wet	0.0200		95.4	70-130	8.22	20	
Bromodichloromethane	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130	2.76	20	
Bromoform	0.0240	0.0020	mg/Kg wet	0.0200		120	70-130	3.54	20	V-20
Bromomethane	0.0119	0.010	mg/Kg wet	0.0200		59.7	40-160	4.87	20	L-14, V-34
-Butanone (MEK)	0.225	0.040	mg/Kg wet	0.200		112	40-160	1.42	20	
-Butylbenzene	0.0212	0.0020	mg/Kg wet	0.0200		106	70-130	0.577	20	
ec-Butylbenzene	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130	0.702	20	
ert-Butylbenzene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	1.75	20	
ert-Butyl Ethyl Ether (TBEE)	0.0194	0.0010	mg/Kg wet	0.0200		97.1	70-130	3.45	20	
arbon Disulfide	0.0192	0.0060	mg/Kg wet	0.0200		96.2	70-130	7.49	20	
arbon Tetrachloride	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130	5.41	20	
hlorobenzene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130	3.15	20	
hlorodibromomethane	0.0215	0.0010	mg/Kg wet	0.0200		107	70-130	4.46	20	
hloroethane	0.0194	0.010	mg/Kg wet	0.0200		97.2	70-130	6.31	20	
hloroform	0.0173	0.0040	mg/Kg wet	0.0200		86.5	70-130	2.14	20	
Chloromethane	0.0118	0.010	mg/Kg wet	0.0200		58.9	40-160	2.75	20	L-14
-Chlorotoluene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130	2.25	20	
-Chlorotoluene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130	4.01	20	
2-Dibromo-3-chloropropane (DBCP)	0.0230	0.0020	mg/Kg wet	0.0200		115	70-130	3.64	20	
,2-Dibromoethane (EDB)	0.0196	0.0010	mg/Kg wet	0.0200		97.8	70-130	3.66	20	
ibromomethane	0.0190	0.0020	mg/Kg wet	0.0200		94.9	70-130	10.1	20	
2-Dichlorobenzene	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130	0.867	20	
3-Dichlorobenzene	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130	1.47	20	
4-Dichlorobenzene	0.0217	0.0020	mg/Kg wet	0.0200		102	70-130	1.74	20	
richlorodifluoromethane (Freon 12)	0.0106	0.010	mg/Kg wet	0.0200		52.8	40-160	1.12	20	L-14
1-Dichloroethane	0.0181	0.0020	mg/Kg wet	0.0200		90.4	70-130	4.56	20	L-14
2-Dichloroethane	0.0181	0.0020	mg/Kg wet	0.0200		92.7	70-130	5.02	20	
1-Dichloroethylene		0.0040	mg/Kg wet	0.0200		88.1	70-130	2.15	20	
is-1,2-Dichloroethylene	0.0176	0.0020	mg/Kg wet	0.0200		86.7	70-130	0.439	20	
ans-1,2-Dichloroethylene	0.0173	0.0020	mg/Kg wet	0.0200		86.7 89.7	70-130	3.70	20	
,2-Dichloropropane	0.0179	0.0020	mg/Kg wet	0.0200		95.2				
,3-Dichloropropane	0.0190	0.0020	mg/Kg wet	0.0200		95.2 90.6	70-130 70-130	5.50	20 20	
,2-Dichloropropane ,2-Dichloropropane	0.0181	0.0010	mg/Kg wet	0.0200			70-130 70-130	2.59	20	
,1-Dichloropropane	0.0189	0.0020	mg/Kg wet			94.6		2.72		
is-1,3-Dichloropropene	0.0179	0.0020	mg/Kg wet	0.0200		89.3	70-130	4.20	20	
rans-1,3-Dichloropropene	0.0197	0.0010	mg/Kg wet	0.0200		98.5	70-130	3.67	20	
	0.0205			0.0200		103	70-130	4.28	20	
Diethyl Ether Disopropyl Ether (DIPE)	0.0184	0.010	mg/Kg wet	0.0200		91.8	70-130	5.17	20	
4-Dioxane	0.0184	0.0010	mg/Kg wet	0.0200		92.0	70-130	3.22	20	V 16
	0.195	0.10	mg/Kg wet	0.200		97.6	40-160	0.510	20	V-16
thylbenzene evachlorobutadiane	0.0201	0.0020	mg/Kg wet	0.0200		100	70-130	0.950	20	
exachlorobutadiene	0.0228	0.0020	mg/Kg wet	0.0200		114	70-130	1.23	20	
-Hexanone (MBK)	0.215	0.020	mg/Kg wet	0.200		108	40-160	3.68	20	
opropylbenzene (Cumene)	0.0215	0.0020	mg/Kg wet	0.0200		108	70-130	2.65	20	
-Isopropyltoluene (p-Cymene)	0.0215	0.0020	mg/Kg wet	0.0200		108	70-130	0.652	20	****
Methyl tert-Butyl Ether (MTBE)	0.0260	0.0040	mg/Kg wet	0.0200		130	70-130	7.70	20	V-20
Methylene Chloride	0.0194	0.010	mg/Kg wet	0.0200		96.8	70-130	3.30	20	
-Methyl-2-pentanone (MIBK)	0.204	0.020	mg/Kg wet	0.200		102	40-160	5.04	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227113 - SW-846 5035										
.CS Dup (B227113-BSD1)				Prepared & A	Analyzed: 04	/01/19				
-Propylbenzene	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130	2.53	20	
Styrene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	2.48	20	
,1,1,2-Tetrachloroethane	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	3.22	20	
,1,2,2-Tetrachloroethane	0.0227	0.0010	mg/Kg wet	0.0200		113	70-130	8.01	20	
Tetrachloroethylene	0.0192	0.0020	mg/Kg wet	0.0200		96.1	70-130	1.20	20	
etrahydrofuran	0.0163	0.010	mg/Kg wet	0.0200		81.7	70-130	16.1	20	
Coluene	0.0185	0.0020	mg/Kg wet	0.0200		92.7	70-130	3.37	20	
,2,3-Trichlorobenzene	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130	0.875	20	
,2,4-Trichlorobenzene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	3.96	20	
,1,1-Trichloroethane	0.0182	0.0020	mg/Kg wet	0.0200		91.1	70-130	1.43	20	
,1,2-Trichloroethane	0.0195	0.0020	mg/Kg wet	0.0200		97.7	70-130	3.57	20	
richloroethylene	0.0182	0.0020	mg/Kg wet	0.0200		91.2	70-130	6.16	20	
Crichlorofluoromethane (Freon 11)	0.0147	0.010	mg/Kg wet	0.0200		73.6	70-130	3.05	20	
,2,3-Trichloropropane	0.0196	0.0020	mg/Kg wet	0.0200		98.2	70-130	2.32	20	
,2,4-Trimethylbenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.7	70-130	0.866	20	
,3,5-Trimethylbenzene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	2.96	20	
Vinyl Chloride	0.0137	0.010	mg/Kg wet	0.0200		68.3 *	70-130	2.99	20	L-04
n+p Xylene	0.0402	0.0040	mg/Kg wet	0.0400		101	70-130	0.834	20	
-Xylene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	3.72	20	
Surrogate: 1,2-Dichloroethane-d4	0.0485		mg/Kg wet	0.0500		97.0	70-130			
Surrogate: Toluene-d8	0.0488		mg/Kg wet	0.0500		97.6	70-130			
	0.0472		mg/Kg wet	0.0500		94.5	70-130			
Batch B227135 - SW-846 5035 Blank (B227135-BLK1)	0.0472				Analyzed: 04	/01/19				
Blank (B227135 - SW-846 5035 Slank (B227135-BLK1) Acetone	ND	0.10	mg/Kg wet		Analyzed: 04/	/01/19				
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME)	ND ND	0.0010	mg/Kg wet		Analyzed: 04	/01/19				
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene	ND ND ND	0.0010 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet		Analyzed: 04	/01/19				
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene	ND ND ND ND	0.0010 0.0020 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		Analyzed: 04	/01/19				
Blank (B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane	ND ND ND ND	0.0010 0.0020 0.0020 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		Analyzed: 04,	/01/19				
Blank (B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ND ND ND ND ND	0.0010 0.0020 0.0020 0.0020 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		Analyzed: 04/	/01/19				
Blank (B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromodichloromethane	ND ND ND ND ND ND ND ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		Analyzed: 04	/01/19				W24
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		Analyzed: 04,	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromodorm Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane	ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromomethane	ND	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Bromomethane Bromoform Bromomethane Bromoform Bromomethane B-Butanone (MEK) B-Butylbenzene ec-Butylbenzene	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromoform Bromomethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acctone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromomethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromothloromethane Bromothlo	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0010	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromothloromethane Bro	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0010 0.0060	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromochloromethane Bromodichloromethane Br	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0010 0.0060 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromochloromethane Bromoform Bromomethane -Butanone (MEK) -Butylbenzene ert-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0010 0.0060 0.0020 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
statch B227135 - SW-846 5035 Clank (B227135-BLK1) Cectone Cert-Amyl Methyl Ether (TAME) Genzene Gromochloromethane Gromochloromethane Gromomethane G	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0010 0.0060 0.0020 0.0020 0.0020 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acctone Ext-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0010 0.0060 0.0020 0.0010 0.0010 0.0010 0.0010	mg/Kg wet		Analyzed: 04,	/01/19				V-34
lank (B227135 - SW-846 5035 lank (B227135-BLK1) cetone ort-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) -Butylbenzene ert-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorodibromomethane hlorodithoromethane hloroform hloromethane	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0010 0.0060 0.0020 0.0010 0.0010 0.0010 0.0010 0.0010	mg/Kg wet		Analyzed: 04,	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acctone Ext-Amyl Methyl Ether (TAME) Benzene Bromodichloromethane Bromodichlorometha	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0010 0.0060 0.0020 0.0010 0.0010 0.0010 0.010 0.0040 0.010	mg/Kg wet		Analyzed: 04	/01/19				V-34
statch B227135 - SW-846 5035 clank (B227135-BLK1) ccetone crt-Amyl Methyl Ether (TAME) cenzene cromobenzene cromochloromethane cromodichloromethane cromodichloromethane cromodichloromethane cromodichloromethane cromodichloromethane cromodichloromethane cromodichloromethane cromodichloromethane cromodichloromethane crt-Butylbenzene crt-Butylbenzene crt-Butylbenzene crt-Butylbenzene crt-Butyl Ethyl Ether (TBEE) carbon Disulfide carbon Tetrachloride chlorodenzene chlorodibromomethane chloroform chloromethane chloroform chloromethane c-Chlorotoluene c-Chlorotoluene	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0040 0.010 0.0040 0.010 0.0040 0.010 0.0020 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane ert-Butylbenzene ert-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) Carbon Disulfide Carbon Tetrachloride Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorotoluene -Chlorotoluene	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0040 0.0020 0.0010 0.0040 0.010 0.0020 0.0020 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromochloromethane Bromodichloromethane E-Butylbenzene ee-Butylbenzene eert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroform Chloromethane Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chlorotoluene -Chloromoethane (EDB)	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010	mg/Kg wet		Analyzed: 04	/01/19				V-34
Batch B227135 - SW-846 5035 Blank (B227135-BLK1) Acetone ert-Amyl Methyl Ether (TAME) Benzene Bromodeloromethane Bromodichloromethane Chlorotolenzene ert-Butylbenzene ert-Butylbenzene ert-Butyl Ethyl Ether (TBEE) Carbon Disulfide Carbon Tetrachloride Chlorodibromomethane Chlorotolivene Chlorotoluene -Chlorotoluene	ND N	0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.010 0.040 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0040 0.0020 0.0010 0.0040 0.010 0.0020 0.0020 0.0020	mg/Kg wet		Analyzed: 04	/01/19				V-34

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227135 - SW-846 5035										
Blank (B227135-BLK1)			1	Prepared & A	Analyzed: 04	/01/19				
,4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
Dichlorodifluoromethane (Freon 12)	ND	0.010	mg/Kg wet							
,1-Dichloroethane	ND	0.0020	mg/Kg wet							
,2-Dichloroethane	ND	0.0020	mg/Kg wet							
,1-Dichloroethylene	ND	0.0040	mg/Kg wet							
is-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
rans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
,2-Dichloropropane	ND	0.0020	mg/Kg wet							
,3-Dichloropropane	ND	0.0010	mg/Kg wet							
,2-Dichloropropane	ND	0.0020	mg/Kg wet							
,1-Dichloropropene	ND	0.0020	mg/Kg wet							
is-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
rans-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
Piethyl Ether	ND	0.010	mg/Kg wet							
hisopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet							
,4-Dioxane	ND	0.10	mg/Kg wet							V-16
thylbenzene	ND	0.0020	mg/Kg wet							
exachlorobutadiene	ND	0.0020	mg/Kg wet							
-Hexanone (MBK)	ND	0.020	mg/Kg wet							
opropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
-Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
Iethyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
Iethylene Chloride	ND	0.010	mg/Kg wet							
Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet							
aphthalene	ND	0.0040	mg/Kg wet							
-Propylbenzene	ND	0.0020	mg/Kg wet							
tyrene	ND	0.0020	mg/Kg wet							
1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet							
1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet							
etrachloroethylene	ND	0.0020	mg/Kg wet							
etrahydrofuran	ND	0.010	mg/Kg wet							
oluene	ND	0.0020	mg/Kg wet							
2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet							
,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet							
1,1-Trichloroethane	ND	0.0020	mg/Kg wet							
,1,2-Trichloroethane	ND	0.0020	mg/Kg wet							
richloroethylene	ND	0.0020	mg/Kg wet							
richlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet							
2,3-Trichloropropane	ND	0.0020	mg/Kg wet							
,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet							
,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet							
/inyl Chloride	ND	0.010	mg/Kg wet							L-04
n+p Xylene	ND	0.0040	mg/Kg wet							
-Xylene	ND	0.0020	mg/Kg wet							
urrogate: 1,2-Dichloroethane-d4	0.0470		mg/Kg wet	0.0500		93.9	70-130			
urrogate: Toluene-d8	0.0480		mg/Kg wet	0.0500		95.9	70-130			
Surrogate: 4-Bromofluorobenzene	0.0479		mg/Kg wet	0.0500		95.8	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B227135 - SW-846 5035										
CS (B227135-BS1)				Prepared & A	Analyzed: 04	/01/19				
cetone	0.200	0.10	mg/Kg wet	0.200		99.9	40-160			
ert-Amyl Methyl Ether (TAME)	0.0187	0.0010	mg/Kg wet	0.0200		93.3	70-130			
enzene	0.0164	0.0020	mg/Kg wet	0.0200		82.0	70-130			
romobenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.5	70-130			
romochloromethane	0.0173	0.0020	mg/Kg wet	0.0200		86.4	70-130			
romodichloromethane	0.0188	0.0020	mg/Kg wet	0.0200		94.2	70-130			
romoform	0.0228	0.0020	mg/Kg wet	0.0200		114	70-130			V-20
romomethane	0.0106	0.010	mg/Kg wet	0.0200		52.8	40-160			L-14, V-34
-Butanone (MEK)	0.198	0.040	mg/Kg wet	0.200		98.9	40-160			
-Butylbenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
ec-Butylbenzene	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130			
ert-Butylbenzene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130			
ert-Butyl Ethyl Ether (TBEE)	0.0182	0.0010	mg/Kg wet	0.0200		91.1	70-130			
arbon Disulfide	0.0182	0.0060	mg/Kg wet	0.0200		91.2	70-130			
arbon Tetrachloride	0.0178	0.0020	mg/Kg wet	0.0200		89.0	70-130			
Chlorobenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
Chlorodibromomethane	0.0213	0.0010	mg/Kg wet	0.0200		106	70-130			
Chloroethane	0.0173	0.010	mg/Kg wet	0.0200		86.4	70-130			
Chloroform	0.0166	0.0040	mg/Kg wet	0.0200		83.0	70-130			
Chloromethane	0.0109	0.010	mg/Kg wet	0.0200		54.7	40-160			L-14
-Chlorotoluene	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130			
-Chlorotoluene	0.0200	0.0020	mg/Kg wet	0.0200		100	70-130			
,2-Dibromo-3-chloropropane (DBCP)	0.0230	0.0020	mg/Kg wet	0.0200		115	70-130			
,2-Dibromoethane (EDB)	0.0189	0.0010	mg/Kg wet	0.0200		94.3	70-130			
Dibromomethane	0.0178	0.0020	mg/Kg wet	0.0200		89.2	70-130			
,2-Dichlorobenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130			
,3-Dichlorobenzene	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130			
,4-Dichlorobenzene	0.0196	0.0020	mg/Kg wet	0.0200		98.2	70-130			
Dichlorodifluoromethane (Freon 12)	0.00943	0.010	mg/Kg wet	0.0200		47.2	40-160			L-14
,1-Dichloroethane	0.0171	0.0020	mg/Kg wet	0.0200		85.4	70-130			
,2-Dichloroethane	0.0179	0.0020	mg/Kg wet	0.0200		89.6	70-130			
,1-Dichloroethylene	0.0166	0.0040	mg/Kg wet	0.0200		83.0	70-130			
is-1,2-Dichloroethylene	0.0169	0.0020	mg/Kg wet	0.0200		84.4	70-130			
rans-1,2-Dichloroethylene	0.0170	0.0020	mg/Kg wet	0.0200		85.0	70-130			
,2-Dichloropropane	0.0179	0.0020	mg/Kg wet	0.0200		89.6	70-130			
3-Dichloropropane	0.0181	0.0010	mg/Kg wet	0.0200		90.6	70-130			
,2-Dichloropropane	0.0177	0.0020	mg/Kg wet	0.0200		88.6	70-130			
,1-Dichloropropene	0.0164	0.0020	mg/Kg wet	0.0200		82.1	70-130			
is-1,3-Dichloropropene	0.0188	0.0010	mg/Kg wet	0.0200		94.0	70-130			
rans-1,3-Dichloropropene	0.0195	0.0010	mg/Kg wet	0.0200		97.3	70-130			
Diethyl Ether	0.0169	0.010	mg/Kg wet	0.0200		84.5	70-130			
Dissopropyl Ether (DIPE)	0.0174	0.0010	mg/Kg wet	0.0200		87.0	70-130			
4-Dioxane	0.208	0.10	mg/Kg wet	0.200		104	40-160			V-16
thylbenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.3	70-130			
[exachlorobutadiene	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130			
-Hexanone (MBK)	0.199	0.020	mg/Kg wet	0.200		99.5	40-160			
sopropylbenzene (Cumene)	0.0213	0.0020	mg/Kg wet	0.0200		107	70-130			
-Isopropyltoluene (p-Cymene)	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130			
Methyl tert-Butyl Ether (MTBE)	0.0228	0.0040	mg/Kg wet	0.0200		114	70-130			V-20
1ethylene Chloride	0.0189	0.010	mg/Kg wet	0.0200		94.4	70-130			
-Methyl-2-pentanone (MIBK)	0.195	0.020	mg/Kg wet	0.200		97.4	40-160			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227135 - SW-846 5035										
LCS (B227135-BS1)				Prepared & A	Analyzed: 04/	01/19				
n-Propylbenzene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130			
Styrene	0.0198	0.0020	mg/Kg wet	0.0200		98.9	70-130			
1,1,1,2-Tetrachloroethane	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130			
1,1,2,2-Tetrachloroethane	0.0213	0.0010	mg/Kg wet	0.0200		106	70-130			
Tetrachloroethylene	0.0195	0.0020	mg/Kg wet	0.0200		97.4	70-130			
Tetrahydrofuran	0.0180	0.010	mg/Kg wet	0.0200		89.8	70-130			
Toluene	0.0186	0.0020	mg/Kg wet	0.0200		93.2	70-130			
1,2,3-Trichlorobenzene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130			
1,2,4-Trichlorobenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130			
1,1,1-Trichloroethane	0.0175	0.0020	mg/Kg wet	0.0200		87.7	70-130			
1,1,2-Trichloroethane	0.0199	0.0020	mg/Kg wet	0.0200		99.5	70-130			
Trichloroethylene	0.0179	0.0020	mg/Kg wet	0.0200		89.7	70-130			
Trichlorofluoromethane (Freon 11)	0.0144	0.010	mg/Kg wet	0.0200		72.0	70-130			
1,2,3-Trichloropropane	0.0183	0.0020	mg/Kg wet	0.0200		91.5	70-130			
1,2,4-Trimethylbenzene	0.0194	0.0020	mg/Kg wet	0.0200		97.2	70-130			
1,3,5-Trimethylbenzene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130			
Vinyl Chloride	0.0126	0.010	mg/Kg wet	0.0200		63.0 *	70-130			L-04
m+p Xylene	0.0398	0.0040	mg/Kg wet	0.0400		99.6	70-130			
o-Xylene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130			
Surrogate: 1,2-Dichloroethane-d4			/1/+				70-130			
•	0.0472 0.0489		mg/Kg wet	0.0500		94.5 97.9				
Surrogate: Toluene-d8	0.0485		mg/Kg wet	0.0500 0.0500		97.9	70-130 70-130			
Surrogate: 4-Bromofluorobenzene	0.0463		mg/Kg wet	0.0300		97.1	/0-130			
LCS Dup (B227135-BSD1)				Prepared & A	Analyzed: 04/	01/19				
Acetone	0.203	0.10	mg/Kg wet	0.200		101	40-160	1.51	20	
tert-Amyl Methyl Ether (TAME)	0.0200	0.0010	mg/Kg wet	0.0200		99.9	70-130	6.83	20	
Benzene	0.0173	0.0020	mg/Kg wet	0.0200		86.3	70-130	5.18	20	
Bromobenzene	0.0203	0.0020	mg/Kg wet	0.0200		101	70-130	1.97	20	
Bromochloromethane	0.0188	0.0020	mg/Kg wet	0.0200		93.8	70-130	8.26	20	
Bromodichloromethane	0.0199	0.0020	mg/Kg wet	0.0200		99.3	70-130	5.26	20	
Bromoform	0.0247	0.0020	mg/Kg wet	0.0200		124	70-130	8.19	20	V-20
Bromomethane	0.0116	0.010	mg/Kg wet	0.0200		57.9	40-160	9.27	20	L-14, V-34
2-Butanone (MEK)	0.202	0.040	mg/Kg wet	0.200		101	40-160	2.24	20	
n-Butylbenzene	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130	8.20	20	
sec-Butylbenzene	0.0226	0.0020	mg/Kg wet	0.0200		113	70-130	7.09	20	
tert-Butylbenzene	0.0224	0.0020	mg/Kg wet	0.0200		112	70-130	6.80	20	
tert-Butyl Ethyl Ether (TBEE)	0.0195	0.0010	mg/Kg wet	0.0200		97.5	70-130	6.77	20	
Carbon Disulfide	0.0190	0.0060	mg/Kg wet	0.0200		94.9	70-130	3.96	20	
Carbon Tetrachloride	0.0188	0.0020	mg/Kg wet	0.0200		93.8	70-130	5.27	20	
Chlorobenzene	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130	4.58	20	
Chlorodibromomethane	0.0223	0.0010	mg/Kg wet	0.0200		111	70-130	4.73	20	
Chloroethane	0.0183	0.010	mg/Kg wet	0.0200		91.7	70-130	6.00	20	
Chloroform	0.0175	0.0040	mg/Kg wet	0.0200		87.7	70-130	5.52	20	
Chloromethane	0.0114	0.010	mg/Kg wet	0.0200		56.9	40-160	3.87	20	L-14
2-Chlorotoluene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	4.96	20	
4-Chlorotoluene	0.0213	0.0020	mg/Kg wet	0.0200		106	70-130	6.19	20	
1,2-Dibromo-3-chloropropane (DBCP)	0.0255	0.0020	mg/Kg wet	0.0200		127	70-130	10.2	20	
1,2-Dibromoethane (EDB)	0.0206	0.0010	mg/Kg wet	0.0200		103	70-130	8.68	20	
Dibromomethane	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130	6.99	20	
1,2-Dichlorobenzene	0.0221	0.0020	mg/Kg wet	0.0200		111	70-130	8.98	20	
1,2-Diemorobenzene										
1,3-Dichlorobenzene	0.0224	0.0020	mg/Kg wet	0.0200		112	70-130	6.33	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B227135 - SW-846 5035											
LCS Dup (B227135-BSD1)				Prepared & A	Analyzed: 04/	01/19					
Dichlorodifluoromethane (Freon 12)	0.00957	0.010	mg/Kg wet	0.0200		47.9	40-160	1.52	20	L-14	
1,1-Dichloroethane	0.0180	0.0020	mg/Kg wet	0.0200		89.9	70-130	5.14	20		
1,2-Dichloroethane	0.0192	0.0020	mg/Kg wet	0.0200		95.8	70-130	6.59	20		
1,1-Dichloroethylene	0.0175	0.0040	mg/Kg wet	0.0200		87.4	70-130	5.17	20		
cis-1,2-Dichloroethylene	0.0179	0.0020	mg/Kg wet	0.0200		89.5	70-130	5.81	20		
trans-1,2-Dichloroethylene	0.0178	0.0020	mg/Kg wet	0.0200		89.0	70-130	4.60	20		
1,2-Dichloropropane	0.0193	0.0020	mg/Kg wet	0.0200		96.6	70-130	7.42	20		
1,3-Dichloropropane	0.0191	0.0010	mg/Kg wet	0.0200		95.7	70-130	5.43	20		
2,2-Dichloropropane	0.0182	0.0020	mg/Kg wet	0.0200		91.1	70-130	2.84	20		
1,1-Dichloropropene	0.0173	0.0020	mg/Kg wet	0.0200		86.5	70-130	5.19	20		
cis-1,3-Dichloropropene	0.0198	0.0010	mg/Kg wet	0.0200		99.1	70-130	5.26	20		
trans-1,3-Dichloropropene	0.0206	0.0010	mg/Kg wet	0.0200		103	70-130	5.78	20		
Diethyl Ether	0.0179	0.010	mg/Kg wet	0.0200		89.7	70-130	6.05	20		
Diisopropyl Ether (DIPE)	0.0183	0.0010	mg/Kg wet	0.0200		91.6	70-130	5.25	20		
1,4-Dioxane	0.209	0.10	mg/Kg wet	0.200		105	40-160	0.495	20	V-16	
Ethylbenzene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	4.67	20		
Hexachlorobutadiene	0.0245	0.0020	mg/Kg wet	0.0200		122	70-130	9.69	20		
2-Hexanone (MBK)	0.212	0.020	mg/Kg wet	0.200		106	40-160	6.50	20		
Isopropylbenzene (Cumene)	0.0223	0.0020	mg/Kg wet	0.0200		112	70-130	4.56	20		
p-Isopropyltoluene (p-Cymene)	0.0224	0.0020	mg/Kg wet	0.0200		112	70-130	6.40	20		
Methyl tert-Butyl Ether (MTBE)	0.0258	0.0040	mg/Kg wet	0.0200		129	70-130	12.5	20	V-20	
Methylene Chloride	0.0192	0.010	mg/Kg wet	0.0200		96.1	70-130	1.81	20		
4-Methyl-2-pentanone (MIBK)	0.209	0.020	mg/Kg wet	0.200		104	40-160	7.05	20		
Naphthalene	0.0212	0.0040	mg/Kg wet	0.0200		106	70-130	7.39	20		
n-Propylbenzene	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130	3.25	20		
Styrene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	4.98	20		
1,1,1,2-Tetrachloroethane	0.0225	0.0020	mg/Kg wet	0.0200		112	70-130	7.88	20		
1,1,2,2-Tetrachloroethane	0.0228	0.0010	mg/Kg wet	0.0200		114	70-130	6.66	20		
Tetrachloroethylene	0.0205	0.0020	mg/Kg wet	0.0200		103	70-130	5.16	20		
Tetrahydrofuran	0.0183	0.010	mg/Kg wet	0.0200		91.3	70-130	1.62	20		
Toluene	0.0194	0.0020	mg/Kg wet	0.0200		96.9	70-130	3.92	20		
1,2,3-Trichlorobenzene	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130	5.89	20		
1,2,4-Trichlorobenzene	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130	9.26	20		
1,1,1-Trichloroethane	0.0183	0.0020	mg/Kg wet	0.0200		91.4	70-130	4.14	20		
1,1,2-Trichloroethane	0.0198	0.0020	mg/Kg wet	0.0200		99.1	70-130	0.413	20		
Trichloroethylene	0.0190	0.0020	mg/Kg wet	0.0200		94.9	70-130	5.65	20		
Trichlorofluoromethane (Freon 11)	0.0141	0.010	mg/Kg wet	0.0200		70.4	70-130	2.28	20		
1,2,3-Trichloropropane	0.0197	0.0020	mg/Kg wet	0.0200		98.6	70-130	7.40	20		
1,2,4-Trimethylbenzene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130	7.82	20		
1,3,5-Trimethylbenzene	0.0215	0.0020	mg/Kg wet	0.0200		107	70-130	5.65	20		
Vinyl Chloride	0.0137	0.010	mg/Kg wet	0.0200		68.3 *	70-130	8.03	20	L-04	
m+p Xylene	0.0420	0.0040	mg/Kg wet	0.0400		105	70-130	5.31	20		
o-Xylene	0.0211	0.0020	mg/Kg wet	0.0200		105	70-130	4.50	20		
Surrogate: 1,2-Dichloroethane-d4	0.0471		mg/Kg wet	0.0500		94.2	70-130				
Surrogate: Toluene-d8	0.0484		mg/Kg wet	0.0500		96.7	70-130				
Surrogate: 4-Bromofluorobenzene	0.0478		mg/Kg wet	0.0500		95.6	70-130				

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Prepared: 04	/02/19 Analy	yzed: 04/03/1	9			
ND	0.17								
									V-34
									V-34
									v-34
	0.34								
	0.34								
	0.17								V-34
	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.66	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.17	mg/Kg wet							
ND	0.17	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.17	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.17	mg/Kg wet							
ND	0.34	mg/Kg wet							V-05
ND	0.34	mg/Kg wet							
ND	0.17	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.34	mg/Kg wet							
ND	0.66	mg/Kg wet							
ND	0.34	mg/Kg wet							
	ND N	ND 0.17 ND 0.34 ND 0.34 ND 0.17 ND 0.34 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.17 ND 0.34	ND	ND	ND	Prepared: 04/02/19 Analyzed: 04/03/1 ND 0.17 mg/Kg wet ND 0.34 mg/Kg wet ND 0.34 mg/Kg wet ND 0.17 mg/Kg wet ND 0.34 mg	ND	Prepared: 04/02/19 Analyzed: 04/03/19 ND 0.17 mg/Kg wet ND 0.18 mg/Kg wet ND 0.19 mg/Kg wet ND 0.17 mg/Kg wet ND 0.18 mg/Kg wet ND 0.19 mg/Kg wet ND 0.19 mg/Kg wet ND 0.19 mg/Kg wet ND 0.34 mg/Kg wet ND 0.35 mg/Kg wet ND 0.36 mg/Kg wet ND 0.37 mg/Kg wet ND 0.39 mg/Kg wet ND 0.39 mg/Kg wet ND 0.30 mg/Kg wet ND 0.31 mg/Kg wet ND 0.32 mg/Kg wet ND 0.33 mg/Kg wet ND 0.34 mg/Kg wet ND 0.35 mg/Kg wet ND 0.36 mg/Kg wet ND 0.37 mg/Kg wet ND 0.39 mg/Kg wet ND 0.39 mg/Kg wet ND 0.30 mg/Kg wet ND 0.30 mg/Kg wet ND 0.31 mg/Kg wet ND 0.32 mg/Kg wet ND 0.33 mg/Kg wet ND 0.34 mg/Kg wet	Prepared: 04/02/19 Analyzed: 04/03/19

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227222 - SW-846 3546										
Blank (B227222-BLK1)				Prepared: 04	/02/19 Analy	zed: 04/03/1	9			
Phenol	ND	0.34	mg/Kg wet							
Pyrene	ND	0.17	mg/Kg wet							
Pyridine	ND	0.34	mg/Kg wet							
1,2,4-Trichlorobenzene	ND	0.34	mg/Kg wet							
2,4,5-Trichlorophenol	ND	0.34	mg/Kg wet							
2,4,6-Trichlorophenol	ND	0.34	mg/Kg wet							
Surrogate: 2-Fluorophenol	6.15		mg/Kg wet	6.67		92.2	30-130			
Surrogate: Phenol-d6	6.54		mg/Kg wet	6.67		98.0	30-130			
Surrogate: Nitrobenzene-d5	3.20		mg/Kg wet	3.33		95.9	30-130			
Surrogate: 2-Fluorobiphenyl	3.32		mg/Kg wet	3.33		99.6	30-130			
Surrogate: 2,4,6-Tribromophenol	7.60		mg/Kg wet	6.67		114	30-130			
Surrogate: p-Terphenyl-d14	4.21		mg/Kg wet	3.33		126	30-130			
LCS (B227222-BS1)				Prepared: 04	/02/19 Anal	/zed: 04/03/1	9			
Acenaphthene	1.10	0.17	mg/Kg wet	1.67		65.9	40-140			
Acenaphthylene	1.13	0.17	mg/Kg wet	1.67		67.8	40-140			
Acetophenone	1.07	0.34	mg/Kg wet	1.67		64.2	40-140			
Aniline	0.607	0.34	mg/Kg wet	1.67		36.4 *	40-140			L-07, V-34
Anthracene	1.24	0.17	mg/Kg wet	1.67		74.2	40-140			
Benzo(a)anthracene	1.18	0.17	mg/Kg wet	1.67		70.6	40-140			
Benzo(a)pyrene	1.28	0.17	mg/Kg wet	1.67		76.6	40-140			
Benzo(b)fluoranthene	1.19	0.17	mg/Kg wet	1.67		71.6	40-140			
Benzo(g,h,i)perylene	1.35	0.17	mg/Kg wet	1.67		80.9	40-140			
Benzo(k)fluoranthene	1.23	0.17	mg/Kg wet	1.67		74.0	40-140			
Bis(2-chloroethoxy)methane	1.33	0.34	mg/Kg wet	1.67		79.6	40-140			
Bis(2-chloroethyl)ether	1.17	0.34	mg/Kg wet	1.67		70.0	40-140			
Bis(2-chloroisopropyl)ether	1.37	0.34	mg/Kg wet	1.67		82.4	40-140			
Bis(2-Ethylhexyl)phthalate	1.46	0.34	mg/Kg wet	1.67		87.5	40-140			
l-Bromophenylphenylether	1.22	0.34	mg/Kg wet	1.67		73.3	40-140			
Butylbenzylphthalate	1.42	0.34	mg/Kg wet	1.67		85.5	40-140			
1-Chloroaniline	0.614	0.66	mg/Kg wet	1.67		36.9	15-140			V-34
2-Chloronaphthalene	1.03	0.34	mg/Kg wet	1.67		61.6	40-140			
2-Chlorophenol	1.12	0.34	mg/Kg wet	1.67		67.0	30-130			
Chrysene	1.20	0.17	mg/Kg wet	1.67		71.8	40-140			
Dibenz(a,h)anthracene	1.27		mg/Kg wet	1.67		76.0	40-140			
Dibenzofuran Di n bytylektholoto	1.17	0.34	mg/Kg wet	1.67		69.9	40-140			
Di-n-butylphthalate	1.34	0.34	mg/Kg wet	1.67		80.2	40-140			
1,2-Dichlorobenzene	0.939	0.34	mg/Kg wet	1.67		56.3	40-140			
,3-Dichlorobenzene	0.910	0.34	mg/Kg wet	1.67		54.6	40-140			
,4-Dichlorobenzene	0.922	0.34	mg/Kg wet	1.67		55.3	40-140			V/ 24
3,3-Dichlorobenzidine 2,4-Dichlorophenol	0.818	0.17 0.34	mg/Kg wet mg/Kg wet	1.67		49.1 65.7	40-140			V-34
2,4-Dichlorophenol Diethylphthalate	1.10	0.34	mg/Kg wet	1.67		65.7 77.0	30-130 40-140			
2,4-Dimethylphenol	1.28	0.34	mg/Kg wet	1.67		77.0 69.3	40-140			
Dimethylphthalate	1.15	0.34	mg/Kg wet	1.67 1.67		69.3 74.8	30-130 40-140			
2,4-Dinitrophenol	1.25 0.720	0.66	mg/Kg wet	1.67		43.2	15-140			
2,4-Dinitrotoluene		0.34	mg/Kg wet	1.67		71.7	40-140			
2,6-Dinitrotoluene	1.20 1.25	0.34	mg/Kg wet	1.67		75.0	40-140			
Di-n-octylphthalate	1.25 1.44	0.34	mg/Kg wet	1.67		86.2	40-140			
1,2-Diphenylhydrazine/Azobenzene	1.32	0.34	mg/Kg wet	1.67		79.0	40-140			
Fluoranthene	1.32	0.17	mg/Kg wet	1.67		79.0	40-140			
Fluorene	1.17	0.17	mg/Kg wet	1.67		70.3	40-140			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B227222 - SW-846 3546										
.CS (B227222-BS1)				Prepared: 04	/02/19 Analyzed: 04/0	03/19				
Iexachlorobenzene	1.16	0.34	mg/Kg wet	1.67	69.7	40-140				
Hexachlorobutadiene	0.986	0.34	mg/Kg wet	1.67	59.2	40-140				
Iexachloroethane	0.986	0.34	mg/Kg wet	1.67	59.1	40-140				
ndeno(1,2,3-cd)pyrene	1.29	0.17	mg/Kg wet	1.67	77.6	40-140				
sophorone	1.18	0.34	mg/Kg wet	1.67	71.1	40-140				
-Methylnaphthalene	1.13	0.17	mg/Kg wet	1.67	68.1	40-140				
-Methylphenol	0.884	0.34	mg/Kg wet	1.67	53.0	30-130			V-05	
/4-Methylphenol	1.10	0.34	mg/Kg wet	1.67	66.3	30-130				
Japhthalene	1.03	0.17	mg/Kg wet	1.67	62.1	40-140				
Vitrobenzene	1.06	0.34	mg/Kg wet	1.67	63.3	40-140				
-Nitrophenol	1.13	0.34	mg/Kg wet	1.67	67.7	30-130				
-Nitrophenol	1.18	0.66	mg/Kg wet	1.67	70.8	15-140				
entachlorophenol	1.09	0.34	mg/Kg wet	1.67	65.3	30-130				
henanthrene	1.22	0.17	mg/Kg wet	1.67	73.3	40-140				
rhenol	1.11	0.34	mg/Kg wet	1.67	66.7	15-140				
yrene	1.32	0.17	mg/Kg wet	1.67	79.2	40-140				
yridine	0.677	0.34	mg/Kg wet	1.67	40.6	30-140				
,2,4-Trichlorobenzene	0.077	0.34	mg/Kg wet	1.67	59.8	40-140				
4,5-Trichlorophenol	1.17	0.34	mg/Kg wet	1.67	70.0	30-130				
4,6-Trichlorophenol	1.17	0.34	mg/Kg wet	1.67	73.1	30-130				
· · · · · · · · · · · · · · · · · · ·		0.51								_
arrogate: 2-Fluorophenol	4.31		mg/Kg wet	6.67	64.6	30-130				
urrogate: Phenol-d6	4.70		mg/Kg wet	6.67	70.4	30-130				
urrogate: Nitrobenzene-d5	2.31		mg/Kg wet	3.33	69.2	30-130				
urrogate: 2-Fluorobiphenyl	2.42		mg/Kg wet	3.33	72.7	30-130				
urrogate: 2,4,6-Tribromophenol	5.26		mg/Kg wet	6.67	78.8	30-130				
urrogate: p-Terphenyl-d14	2.88		mg/Kg wet	3.33	86.5	30-130				
CS Dup (B227222-BSD1)				Prepared: 04	/02/19 Analyzed: 04/0	03/19				
Acenaphthene	1.03	0.17	mg/Kg wet	1.67	61.7	40-140	6.68	30		
cenaphthylene	1.06	0.17	mg/Kg wet	1.67	63.4	40-140	6.68	30		
acetophenone	1.01	0.34	mg/Kg wet	1.67	60.8	40-140	5.50	30		
Aniline	0.760	0.34	mg/Kg wet	1.67	45.6	40-140	22.4	30	V-34	
nthracene	1.14	0.17	mg/Kg wet	1.67	68.4	40-140	8.05	30		
enzo(a)anthracene	1.10	0.17	mg/Kg wet	1.67	66.1	40-140	6.61	30		
Benzo(a)pyrene	1.21	0.17	mg/Kg wet	1.67	72.4	40-140	5.64	30		
enzo(b)fluoranthene	1.14	0.17	mg/Kg wet	1.67	68.3	40-140	4.66	30		
enzo(g,h,i)perylene	1.26	0.17	mg/Kg wet	1.67	75.7	40-140	6.61	30		
enzo(k)fluoranthene	1.16	0.17	mg/Kg wet	1.67	69.5	40-140	6.27	30		
is(2-chloroethoxy)methane	1.21	0.34	mg/Kg wet	1.67	72.8	40-140	8.95	30		
is(2-chloroethyl)ether	1.06	0.34	mg/Kg wet	1.67	63.5	40-140	9.68	30		
is(2-chloroisopropyl)ether	1.25	0.34	mg/Kg wet	1.67	74.8	40-140	9.62	30		
is(2-Ethylhexyl)phthalate	1.32	0.34	mg/Kg wet	1.67	79.2	40-140	9.89	30		
	1.14	0.34	mg/Kg wet	1.67	68.5	40-140	6.74	30		
-Bromophenylphenylether		0.34	mg/Kg wet	1.67	78.0	40-140	9.15	30		
	1.30	0.54							V-34	
tutylbenzylphthalate	1.30 0.779		mg/Kg wet	1.67	46.7	15-140	23.6	30	V14	
utylbenzylphthalate -Chloroaniline	0.779	0.66	mg/Kg wet	1.67 1.67	46.7 58.4	15-140 40-140	23.6 5.34	30 30	V-34	
Butylbenzylphthalate -Chloroaniline -Chloronaphthalene	0.779 0.973	0.66 0.34	mg/Kg wet	1.67	58.4	40-140	5.34	30	V-34	
outylbenzylphthalate -Chloroaniline -Chloronaphthalene -Chlorophenol	0.779 0.973 1.05	0.66 0.34 0.34	mg/Kg wet mg/Kg wet	1.67 1.67	58.4 63.2	40-140 30-130	5.34 5.81	30 30	V-34	
ButylbenzylphthalateChloroanilineChlorophenol Chrysene	0.779 0.973 1.05 1.13	0.66 0.34 0.34 0.17	mg/Kg wet mg/Kg wet mg/Kg wet	1.67 1.67 1.67	58.4 63.2 67.9	40-140 30-130 40-140	5.34 5.81 5.55	30 30 30	V-34	
Butylbenzylphthalate -Chloroaniline -Chloronaphthalene -Chlorophenol Chrysene Dibenz(a,h)anthracene	0.779 0.973 1.05 1.13 1.19	0.66 0.34 0.34 0.17	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet	1.67 1.67 1.67 1.67	58.4 63.2 67.9 71.5	40-140 30-130 40-140 40-140	5.34 5.81 5.55 6.05	30 30 30 30	V-3 4	
-Bromophenylphenylether Butylbenzylphthalate -Chloroaniline -Chloronaphthalene -Chlorophenol Chrysene Dibenz(a,h)anthracene Dibenzofuran Di-n-butylphthalate	0.779 0.973 1.05 1.13	0.66 0.34 0.34 0.17	mg/Kg wet mg/Kg wet mg/Kg wet	1.67 1.67 1.67	58.4 63.2 67.9	40-140 30-130 40-140	5.34 5.81 5.55	30 30 30	V-3 4	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227222 - SW-846 3546										
LCS Dup (B227222-BSD1)				Prepared: 04	/02/19 Analy	yzed: 04/03/	19			
,3-Dichlorobenzene	0.851	0.34	mg/Kg wet	1.67		51.1	40-140	6.70	30	
,4-Dichlorobenzene	0.851	0.34	mg/Kg wet	1.67		51.0	40-140	8.01	30	
,3-Dichlorobenzidine	0.935	0.17	mg/Kg wet	1.67		56.1	40-140	13.3	30	V-34
,4-Dichlorophenol	1.03	0.34	mg/Kg wet	1.67		61.6	30-130	6.47	30	
Diethylphthalate	1.20	0.34	mg/Kg wet	1.67		72.2	40-140	6.43	30	
,4-Dimethylphenol	1.06	0.34	mg/Kg wet	1.67		63.5	30-130	8.64	30	
Dimethylphthalate	1.17	0.34	mg/Kg wet	1.67		70.3	40-140	6.28	30	
,4-Dinitrophenol	0.670	0.66	mg/Kg wet	1.67		40.2	15-140	7.24	30	
,4-Dinitrotoluene	1.14	0.34	mg/Kg wet	1.67		68.7	40-140	4.36	30	
,6-Dinitrotoluene	1.17	0.34	mg/Kg wet	1.67		69.9	40-140	6.93	30	
Di-n-octylphthalate	1.30	0.34	mg/Kg wet	1.67		77.8	40-140	10.3	30	
,2-Diphenylhydrazine/Azobenzene	1.19	0.34	mg/Kg wet	1.67		71.1	40-140	10.5	30	
luoranthene	1.11	0.17	mg/Kg wet	1.67		66.6	40-140	5.41	30	
luorene	1.13	0.17	mg/Kg wet	1.67		67.9	40-140	5.67	30	
Iexachlorobenzene	1.10	0.34	mg/Kg wet	1.67		65.9	40-140	5.69	30	
Iexachlorobutadiene	0.925	0.34	mg/Kg wet	1.67		55.5	40-140	6.42	30	
Iexachloroethane	0.922	0.34	mg/Kg wet	1.67		55.3	40-140	6.71	30	
ndeno(1,2,3-cd)pyrene	1.21	0.17	mg/Kg wet	1.67		72.5	40-140	6.72	30	
sophorone	1.09	0.34	mg/Kg wet	1.67		65.7	40-140	7.96	30	
-Methylnaphthalene	1.07	0.17	mg/Kg wet	1.67		64.2	40-140	5.84	30	
-Methylphenol	0.840	0.34	mg/Kg wet	1.67		50.4	30-130	5.14	30	V-05
/4-Methylphenol	1.03	0.34	mg/Kg wet	1.67		62.0	30-130	6.64	30	
laphthalene	0.981	0.17	mg/Kg wet	1.67		58.8	40-140	5.36	30	
Titrobenzene	0.976	0.34	mg/Kg wet	1.67		58.5	40-140	7.88	30	
-Nitrophenol	1.06	0.34	mg/Kg wet	1.67		63.7	30-130	6.12	30	
-Nitrophenol	1.09	0.66	mg/Kg wet	1.67		65.6	15-140	7.69	30	
entachlorophenol	1.01	0.34	mg/Kg wet	1.67		60.7	30-130	7.17	30	
henanthrene	1.14	0.17	mg/Kg wet	1.67		68.7	40-140	6.54	30	
henol	1.03	0.34	mg/Kg wet	1.67		62.1	15-140	7.15	30	
Pyrene	1.20	0.17	mg/Kg wet	1.67		72.3	40-140	9.21	30	
Pyridine	0.609	0.34	mg/Kg wet	1.67		36.6	30-140	10.6	30	
,2,4-Trichlorobenzene	0.946	0.34	mg/Kg wet	1.67		56.8	40-140	5.28	30	
2,4,5-Trichlorophenol	1.10	0.34	mg/Kg wet	1.67		66.3	30-130	5.55	30	
,4,6-Trichlorophenol	1.15	0.34	mg/Kg wet	1.67		68.7	30-130	6.20	30	
urrogate: 2-Fluorophenol	4.09		mg/Kg wet	6.67		61.4	30-130			
urrogate: Phenol-d6	4.33		mg/Kg wet	6.67		64.9	30-130			
urrogate: Nitrobenzene-d5	2.11		mg/Kg wet	3.33		63.4	30-130			
Surrogate: 2-Fluorobiphenyl	2.23		mg/Kg wet	3.33		66.9	30-130			
Surrogate: 2,4,6-Tribromophenol	5.07		mg/Kg wet	6.67		76.0	30-130			
surrogate: p-Terphenyl-d14	2.60		mg/Kg wet	3.33		77.9	30-130			
Matrix Spike (B227222-MS1)	Sou	rce: 19C1572	2-02	Prepared: 04	/02/19 Analy	zed: 04/03/	19			
Acenaphthene	1.41	0.18	mg/Kg dry	1.73		81.3	40-140			
Acenaphthylene	1.45	0.18	mg/Kg dry	1.73	ND		40-140			
acetophenone	1.37	0.35	mg/Kg dry	1.73	ND		40-140			
Aniline	0.952	0.35	mg/Kg dry	1.73	ND		40-140			V-34
Anthracene	1.56	0.18	mg/Kg dry	1.73	ND		40-140			
Benzo(a)anthracene	1.50	0.18	mg/Kg dry	1.73	ND		40-140			
Benzo(a)pyrene	1.63	0.18	mg/Kg dry	1.73	ND		40-140			
Benzo(b)fluoranthene	1.60	0.18	mg/Kg dry	1.73	ND ND		40-140			
Benzo(g,h,i)perylene	1.71	0.18	mg/Kg dry	1.73	ND ND		40-140			
Benzo(k)fluoranthene	1.62	0.18	mg/Kg dry	1.73	ND ND		40-140			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227222 - SW-846 3546										
Matrix Spike (B227222-MS1)	Sour	rce: 19C1572	-02	Prepared: 04	1/02/19 Analyz	red: 04/03/1	9			
Bis(2-chloroethoxy)methane	1.70	0.35	mg/Kg dry	1.73	ND	98.0	40-140			
Bis(2-chloroethyl)ether	1.39	0.35	mg/Kg dry	1.73	ND	80.5	40-140			
Bis(2-chloroisopropyl)ether	1.64	0.35	mg/Kg dry	1.73	ND	94.6	40-140			
Bis(2-Ethylhexyl)phthalate	1.90	0.35	mg/Kg dry	1.73	ND	110	40-140			
4-Bromophenylphenylether	1.49	0.35	mg/Kg dry	1.73	ND	85.8	40-140			
Butylbenzylphthalate	1.89	0.35	mg/Kg dry	1.73	ND	109	40-140			
4-Chloroaniline	1.06	0.69	mg/Kg dry	1.73	ND	61.3	40-140			V-34
2-Chloronaphthalene	1.33	0.35	mg/Kg dry	1.73	ND	76.7	40-140			
2-Chlorophenol	1.35	0.35	mg/Kg dry	1.73	ND	77.8	30-130			
Chrysene	1.53	0.18	mg/Kg dry	1.73	ND	88.2	40-140			
Dibenz(a,h)anthracene	1.60	0.18	mg/Kg dry	1.73	ND	92.6	40-140			
Dibenzofuran	1.49	0.35	mg/Kg dry	1.73	ND	86.0	40-140			
Di-n-butylphthalate	1.69	0.35	mg/Kg dry	1.73	ND	97.5	40-140			
1,2-Dichlorobenzene	1.05	0.35	mg/Kg dry	1.73	ND	60.6	40-140			
1,3-Dichlorobenzene	0.978	0.35	mg/Kg dry	1.73	ND	56.5	40-140			
1,4-Dichlorobenzene	1.01	0.35	mg/Kg dry	1.73	ND	58.2	40-140			
3,3-Dichlorobenzidine	1.47	0.18	mg/Kg dry	1.73	ND	85.0	40-140			V-34
2,4-Dichlorophenol	1.34	0.35	mg/Kg dry	1.73	ND	77.4	30-130			
Diethylphthalate	1.64	0.35	mg/Kg dry	1.73	ND	94.9	40-140			
2,4-Dimethylphenol	1.36	0.35	mg/Kg dry	1.73	ND	78.6	30-130			
Dimethylphthalate	1.58	0.35	mg/Kg dry	1.73	ND	91.2	40-140			
2,4-Dinitrophenol	0.961	0.69	mg/Kg dry	1.73	ND	55.5	30-130			
2,4-Dinitrotoluene	1.58	0.35	mg/Kg dry	1.73	ND	91.5	40-140			
2,6-Dinitrotoluene	1.60	0.35	mg/Kg dry	1.73	ND	92.2	40-140			
Di-n-octylphthalate	2.33	0.35	mg/Kg dry	1.73	ND	135	40-140			
1,2-Diphenylhydrazine/Azobenzene	1.60	0.35	mg/Kg dry	1.73	ND	92.4	40-140			
Fluoranthene	1.57	0.18	mg/Kg dry	1.73	ND	90.9	40-140			
Fluorene	1.54	0.18	mg/Kg dry	1.73	ND	88.7	40-140			
Hexachlorobenzene	1.43	0.35	mg/Kg dry	1.73	ND	82.7	40-140			
Hexachlorobutadiene	1.18	0.35	mg/Kg dry	1.73	ND	68.4	40-140			
Hexachloroethane	1.06	0.35	mg/Kg dry	1.73	ND	61.0	40-140			
Indeno(1,2,3-cd)pyrene	1.62	0.18	mg/Kg dry	1.73	ND	93.4	40-140			
Isophorone	1.53	0.35	mg/Kg dry	1.73	ND	88.3	40-140			
2-Methylnaphthalene	1.46	0.18	mg/Kg dry	1.73	ND	84.4	40-140			
2-Methylphenol	1.10	0.35	mg/Kg dry	1.73	ND	63.5	30-130			V-05
3/4-Methylphenol	1.38	0.35	mg/Kg dry	1.73	ND	79.5	30-130			
Naphthalene	1.33	0.18	mg/Kg dry	1.73	ND	77.1	40-140			
Nitrobenzene	1.36	0.35	mg/Kg dry	1.73	ND	78.4	40-140			
2-Nitrophenol	1.45	0.35	mg/Kg dry	1.73	ND	84.0	30-130			
4-Nitrophenol	1.71	0.69	mg/Kg dry	1.73	ND	98.6	30-130			
Pentachlorophenol	1.33	0.35	mg/Kg dry	1.73	ND	77.1	30-130			
Phenanthrene	1.56	0.18	mg/Kg dry	1.73	ND	90.1	40-140			
Phenol	1.41	0.35	mg/Kg dry	1.73	ND	81.5	30-130			
Pyrene	1.68	0.18	mg/Kg dry	1.73	ND	96.8	40-140			
1,2,4-Trichlorobenzene	1.26	0.35	mg/Kg dry	1.73	ND	72.8	40-140			
2,4,5-Trichlorophenol	1.49	0.35	mg/Kg dry	1.73	ND	86.0	30-130			
2,4,6-Trichlorophenol	1.55	0.35	mg/Kg dry	1.73	ND	89.4	30-130			
Surrogate: 2-Fluorophenol	4.98		mg/Kg dry	6.92		71.9	30-130			
Surrogate: 2-Fruorophenor Surrogate: Phenol-d6	5.80		mg/Kg dry	6.92		83.8	30-130			
Surrogate: Prienor-do Surrogate: Nitrobenzene-d5						83.1				
DULLUZALE, INTERDEDIZEDE-U 1	2.88		mg/K o are	3 46		0.3 1	3()=13()			
Surrogate: 2-Fluorobiphenyl	2.88 3.06		mg/Kg dry mg/Kg dry	3.46 3.46		88.3	30-130 30-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227222 - SW-846 3546									
Matrix Spike (B227222-MS1)	Sourc	e: 19C1572-02	Prepared: 04	1/02/19 Analy	yzed: 04/03/	19			
Surrogate: p-Terphenyl-d14	3.56	mg/Kg dry	3.46		103	30-130			
Matrix Spike Dup (B227222-MSD1)	Sourc	e: 19C1572-02	Prepared: 04	1/02/19 Anal	/zed: 04/03/	19			

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (B227222-MSD1)	Sourc	e: 19C1572	-02	Prepared: 04/0	2/19 Analyz	ed: 04/03	/19			
4-Nitrophenol	1.62	0.70	mg/Kg dry	1.76	ND	92.1	30-130	5.22	30	
Pentachlorophenol	1.32	0.36	mg/Kg dry	1.76	ND	74.8	30-130	1.34	30	
Phenanthrene	1.52	0.18	mg/Kg dry	1.76	ND	86.4	40-140	2.58	30	
Phenol	1.39	0.36	mg/Kg dry	1.76	ND	79.0	30-130	1.46	30	
Pyrene	1.67	0.18	mg/Kg dry	1.76	ND	95.1	40-140	0.157	30	
1,2,4-Trichlorobenzene	1.25	0.36	mg/Kg dry	1.76	ND	70.9	40-140	0.952	30	
2,4,5-Trichlorophenol	1.47	0.36	mg/Kg dry	1.76	ND	83.4	30-130	1.39	30	
2,4,6-Trichlorophenol	1.53	0.36	mg/Kg dry	1.76	ND	87.1	30-130	0.948	30	
Surrogate: 2-Fluorophenol	5.09		mg/Kg dry	7.04		72.3	30-130			
Surrogate: Phenol-d6	5.72		mg/Kg dry	7.04		81.3	30-130			
Surrogate: Nitrobenzene-d5	2.85		mg/Kg dry	3.52		80.9	30-130			
Surrogate: 2-Fluorobiphenyl	2.99		mg/Kg dry	3.52		85.1	30-130			
Surrogate: 2,4,6-Tribromophenol	6.58		mg/Kg dry	7.04		93.5	30-130			
Surrogate: p-Terphenyl-d14	3.53		mg/Kg dry	3.52		100	30-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Polychlorinated Biphenyls with 3540 Soxhlet Extraction - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227240 - SW-846 3540C										
Blank (B227240-BLK1)				Prepared: 04	/02/19 Analy	zed: 04/04/1	9			
Aroclor-1016	ND	0.020	mg/Kg wet							
Aroclor-1016 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1221	ND	0.020	mg/Kg wet							
Aroclor-1221 [2C]	ND	0.020	mg/Kg wet							
aroclor-1232	ND	0.020	mg/Kg wet							
aroclor-1232 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1242	ND	0.020	mg/Kg wet							
Aroclor-1242 [2C]	ND	0.020	mg/Kg wet							
aroclor-1248	ND	0.020	mg/Kg wet							
Aroclor-1248 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1254	ND	0.020	mg/Kg wet							
Aroclor-1254 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1260	ND	0.020	mg/Kg wet							
Aroclor-1260 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1262	ND	0.020	mg/Kg wet							
aroclor-1262 [2C]	ND	0.020	mg/Kg wet							
aroclor-1268	ND	0.020	mg/Kg wet							
aroclor-1268 [2C]	ND	0.020	mg/Kg wet							
urrogate: Decachlorobiphenyl	0.209		mg/Kg wet	0.200		105	30-150			
urrogate: Decachlorobiphenyl [2C]	0.207		mg/Kg wet	0.200		103	30-150			
urrogate: Tetrachloro-m-xylene	0.218		mg/Kg wet	0.200		109	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.220		mg/Kg wet	0.200		110	30-150			
CS (B227240-BS1)				Prepared: 04	/02/19 Analy	zed: 04/04/1	9			
Aroclor-1016	0.18	0.020	mg/Kg wet	0.200		91.4	40-140			
aroclor-1016 [2C]	0.16	0.020	mg/Kg wet	0.200		80.2	40-140			
aroclor-1260	0.18	0.020	mg/Kg wet	0.200		87.9	40-140			
aroclor-1260 [2C]	0.16	0.020	mg/Kg wet	0.200		79.0	40-140			
urrogate: Decachlorobiphenyl	0.191		mg/Kg wet	0.200		95.5	30-150			
surrogate: Decachlorobiphenyl [2C]	0.188		mg/Kg wet	0.200		93.9	30-150			
Surrogate: Tetrachloro-m-xylene	0.192		mg/Kg wet	0.200		96.0	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.190		mg/Kg wet	0.200		94.8	30-150			
.CS Dup (B227240-BSD1)				Prepared: 04	/02/19 Analy	zed: 04/04/1	9			
Aroclor-1016	0.20	0.020	mg/Kg wet	0.200		99.7	40-140	8.74	30	
Aroclor-1016 [2C]	0.18	0.020		0.200		88.1	40-140	9.34	30	
Aroclor-1260	0.19	0.020	mg/Kg wet	0.200		94.4	40-140	7.06	30	
Aroclor-1260 [2C]	0.17	0.020	mg/Kg wet	0.200		85.2	40-140	7.53	30	
Surrogate: Decachlorobiphenyl	0.205		mg/Kg wet	0.200		102	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.202		mg/Kg wet	0.200		101	30-150			
Surrogate: Tetrachloro-m-xylene	0.208		mg/Kg wet	0.200		104	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.208		mg/Kg wet	0.200		104	30-150			

QUALITY CONTROL

Polychlorinated Biphenyls with 3540 Soxhlet Extraction - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227240 - SW-846 3540C										
Matrix Spike (B227240-MS1)	Sou	rce: 19C1572	-01	Prepared: 04	1/02/19 Analy:	zed: 04/04/	19			
Aroclor-1016	0.21	0.082	mg/Kg dry	0.206	ND	101	40-140			
Aroclor-1016 [2C]	0.19	0.082	mg/Kg dry	0.206	ND	92.5	40-140			
Aroclor-1260	0.20	0.082	mg/Kg dry	0.206	ND	94.7	40-140			
Aroclor-1260 [2C]	0.18	0.082	mg/Kg dry	0.206	ND	85.0	40-140			
Surrogate: Decachlorobiphenyl	0.196		mg/Kg dry	0.206		95.1	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.182		mg/Kg dry	0.206		88.3	30-150			
Surrogate: Tetrachloro-m-xylene	0.201		mg/Kg dry	0.206		97.7	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.196		mg/Kg dry	0.206		95.1	30-150			
Matrix Spike Dup (B227240-MSD1)	Sou	rce: 19C1572	-01	Prepared: 04	1/02/19 Analy	zed: 04/04/	19			
Aroclor-1016	0.22	0.079	mg/Kg dry	0.196	ND	114	40-140	6.50	50	
Aroclor-1016 [2C]	0.19	0.079	mg/Kg dry	0.196	ND	98.8	40-140	1.67	50	
Aroclor-1260	0.19	0.079	mg/Kg dry	0.196	ND	97.8	40-140	1.72	50	
Aroclor-1260 [2C]	0.17	0.079	mg/Kg dry	0.196	ND	88.4	40-140	0.925	50	
Surrogate: Decachlorobiphenyl	0.194		mg/Kg dry	0.196		98.6	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.181		mg/Kg dry	0.196		92.1	30-150			
Surrogate: Tetrachloro-m-xylene	0.207		mg/Kg dry	0.196		105	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.203		mg/Kg dry	0.196		103	30-150			

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227221 - SW-846 3546										
Blank (B227221-BLK1)				Prepared: 04	1/02/19 Anal	yzed: 04/03/	19			
TPH (C9-C36)	ND	8.3	mg/Kg wet							
Surrogate: 2-Fluorobiphenyl	1.65		mg/Kg wet	3.33		49.6	40-140			
LCS (B227221-BS1)				Prepared: 04	1/02/19 Anal	yzed: 04/03/	19			
TPH (C9-C36)	24.6	8.3	mg/Kg wet	33.3		73.8	40-140			
Surrogate: 2-Fluorobiphenyl	2.68		mg/Kg wet	3.33		80.5	40-140			
LCS Dup (B227221-BSD1)	Prepared: 04/02/19 Analyzed: 04/03/19									
TPH (C9-C36)	25.8	8.3	mg/Kg wet	33.3		77.3	40-140	4.63	30	
Surrogate: 2-Fluorobiphenyl	2.83		mg/Kg wet	3.33		85.0	40-140			
Matrix Spike (B227221-MS1)	Sou	rce: 19C1572	2-01	Prepared: 04	1/02/19 Anal	yzed: 04/04/	19			
TPH (C9-C36)	29.7	8.4	mg/Kg dry	33.8	6.28	69.3	40-140			
Surrogate: 2-Fluorobiphenyl	2.75		mg/Kg dry	3.38		81.3	40-140			
Matrix Spike Dup (B227221-MSD1)	Sou	rce: 19C1572	2-01	Prepared: 04	1/02/19 Anal	yzed: 04/04/	19			
TPH (C9-C36)	28.2	8.6	mg/Kg dry	34.4	6.28	63.7	40-140	5.31	30	
Surrogate: 2-Fluorobiphenyl	2.69		mg/Kg dry	3.44		78.2	40-140			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting	***	Spike	Source	0/77=	%REC	P. 7-	RPD	27.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B227094 - SW-846 7471										
Blank (B227094-BLK1)				Prepared: 04	1/02/19 Analy	zed: 04/03/	19			
Mercury	ND	0.025	mg/Kg wet							
LCS (B227094-BS1)				Prepared: 04	1/02/19 Analy	zed: 04/03/	19			
Mercury	2.63	0.37	mg/Kg wet	3.71		70.8	65-135			
LCS Dup (B227094-BSD1)				Prepared: 04	1/02/19 Analy	zed: 04/03/	19			
Mercury	3.19	0.37	mg/Kg wet	3.71		86.0	65-135	19.3	30	
Batch B227367 - SW-846 3050B										
Blank (B227367-BLK1)				Prepared: 04	1/03/19 Analy	zed: 04/04/	19			
Antimony	ND	1.7	mg/Kg wet							
Arsenic	ND	1.7	mg/Kg wet							
Barium	ND	1.7	mg/Kg wet							
Beryllium	ND	0.17	mg/Kg wet							
Cadmium	ND	0.17	mg/Kg wet							
Chromium	ND	0.33	mg/Kg wet							
Lead	ND	0.50	mg/Kg wet							
Nickel	ND	0.33	mg/Kg wet							
Selenium	ND	3.3	mg/Kg wet							
Silver	ND	0.33	mg/Kg wet							
Γhallium	ND	1.7	mg/Kg wet							
Vanadium	ND	0.67	mg/Kg wet							
Zine	ND	0.67	mg/Kg wet							
LCS (B227367-BS1)				Prepared: 04	1/03/19 Analy	zed: 04/04/	19			
Antimony	64.2	4.8	mg/Kg wet	89.6		71.6	3.3-196.4			
Arsenic	200	4.8	mg/Kg wet	202		99.1	82.7-117.3			
Barium	260	4.8	mg/Kg wet	270		96.2	82.6-117.8			
Beryllium	90.8	0.48	mg/Kg wet	96.8		93.8	83.4-116.7			
Cadmium	128	0.48	mg/Kg wet	141		91.0	83-117			
Chromium	159	0.96	mg/Kg wet	167		95.4	81.4-118			
Lead	70.9	1.4	mg/Kg wet	73.8		96.0	82.9-117.1			
Nickel	85.7	0.96	mg/Kg wet	89.4		95.8	82.9-117.5			
Selenium	50.0	9.6	mg/Kg wet	49.9		100	79.2-120.6			
Silver	72.1	0.96	mg/Kg wet	71.1		101	79.7-120.1			
Thallium	59.2	4.8	mg/Kg wet	58.5		101	80.7-119.5			
Vanadium	52.7	1.9	mg/Kg wet	58.2		90.6	79-121			
Zinc	246	1.9	mg/Kg wet	264		93.2	80.7-119.3			
LCS Dup (B227367-BSD1)				Prepared: 04	1/03/19 Analy	zed: 04/04/	19			
Antimony	60.6	4.9	mg/Kg wet	89.6		67.7	3.3-196.4	5.72	30	
Arsenic	183	4.9	mg/Kg wet	202		90.4	82.7-117.3	9.17	30	
Barium	240	4.9	mg/Kg wet	270		89.0	82.6-117.8	7.82	30	
Beryllium	85.0	0.49	mg/Kg wet	96.8		87.8	83.4-116.7	6.53	30	
Cadmium	125	0.49	mg/Kg wet	141		88.7	83-117	2.48	30	
Chromium	150	0.97	mg/Kg wet	167		89.6	81.4-118	6.23	30	
Lead	65.4	1.5	mg/Kg wet	73.8		88.6	82.9-117.1	8.08	30	
Nickel	82.6	0.97	mg/Kg wet	89.4		92.4	82.9-117.5	3.57	30	
Selenium	46.8	9.7	mg/Kg wet	49.9		93.8	79.2-120.6	6.57	30	
Silver	66.3	0.97	mg/Kg wet	71.1		93.2	79.7-120.1	8.46	30	
Thallium	56.0	4.9	mg/Kg wet	58.5		95.6	80.7-119.5	5.66	30	
Vanadium	48.9	1.9	mg/Kg wet	58.2		84.1	79-121	7.49	30	
Zinc	232	1.9	mg/Kg wet	264		88.0	80.7-119.3	5.71	30	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Lillit	Omis	Level	Result	/0KEC	Lillits	KFD	Liiiit	ivotes
Satch B227367 - SW-846 3050B										
Ouplicate (B227367-DUP1)	Sour	ce: 19C1572	2-06	Prepared: 04	1/03/19 Analyz	zed: 04/04	/19			
Antimony	ND	1.8	mg/Kg dry		ND			NC	35	
Arsenic	5.81	1.8	mg/Kg dry		5.00			14.9	35	
Barium	22.7	1.8	mg/Kg dry		20.9			8.09	35	
Beryllium	0.242	0.18	mg/Kg dry		0.252			4.07	35	
Cadmium	0.195	0.18	mg/Kg dry		ND			NC	35	
Chromium	9.31	0.35	mg/Kg dry		9.05			2.80	35	
ead	4.65	0.53	mg/Kg dry		3.89			17.7	35	
Nickel	7.38	0.35	mg/Kg dry		7.14			3.33	35	
Selenium	ND	3.5	mg/Kg dry		ND			NC	35	
Silver	ND	0.35	mg/Kg dry		ND			NC	35	
Thallium	ND	1.8	mg/Kg dry		ND			NC	35	
<i>V</i> anadium	12.6	0.71	mg/Kg dry		12.4			2.10	35	
Zinc	17.1	0.71	mg/Kg dry		16.6			2.58	35	
MRL Check (B227367-MRL1)				Prepared: 04	1/03/19 Analyz	zed: 04/04	/19			
ead	0.492	0.48	mg/Kg wet	0.482		102	80-120			
Matrix Spike (B227367-MS1)	Sour	ce: 19C1572	2-06	Prepared: 04	1/03/19 Analyz	zed: 04/04	/19			
Antimony	7.26	1.7	mg/Kg dry	17.2	ND	42.2	* 75-125			MS-07
Arsenic	20.8	1.7	mg/Kg dry	17.2	5.00	91.9	75-125			
Barium	39.9	1.7	mg/Kg dry	17.2	20.9	110	75-125			
Beryllium	15.8	0.17	mg/Kg dry	17.2	0.252	90.6	75-125			
Cadmium	15.8	0.17	mg/Kg dry	17.2	0.151	91.2	75-125			
Chromium	25.8	0.34	mg/Kg dry	17.2	9.05	97.3	75-125			
Lead	19.5	0.52	mg/Kg dry	17.2	3.89	90.6	75-125			
Nickel	24.2	0.34	mg/Kg dry	17.2	7.14	99.4	75-125			
Selenium	19.5	3.4	mg/Kg dry	17.2	ND	113	75-125			
Silver	16.7	0.34	mg/Kg dry	17.2	0.306	95.4	75-125			
Thallium Thallium	16.4	1.7	mg/Kg dry	17.2	ND	95.1	75-125			
Vanadium	30.1	0.69	mg/Kg dry	17.2	12.4	103	75-125			
Zinc	49.7	0.69	mg/Kg dry	34.4	16.6	96.2	75-125			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Back B227022-SW-846-9014 Back B227022-BLK1) Reactive Cyanide ND 0.40 mg/Kg Prepared: 03/30/19 Analyzed: 03/31/19 Reactive Cyanide 0,7 0.40 mg/Kg 10 0 96 0 83.6-11 Prepared: 03/30/19 Analyzed: 03/31/19 Back B227024-SW-846-9030 Back B227024-BLK1) Reactive Sulfide ND 2.0 mg/Kg Prepared: 03/30/19 Analyzed: 03/31/19 Reactive Sulfide ND 2.0 mg/Kg Prepared: 03/30/19 Analyzed: 03/31/19 Reactive Sulfide ND 2.0 mg/Kg Reactive Sulfide ND 2.0	Analyta	D coult	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Propertice 03/01/9 Analyzed: 03/31/9 A		Kesuit	Liiiit	UIIIIS	Level	Result	/0KEC	Lillits	KLD	LIIIII	inotes
Reactive Cyanide ND 0.40 mg/Kg Prepared: 03/30/19 Analyzed: 03/31/19 Reactive Cyanide 9.7 0.40 mg/Kg 10.0 96.9 83.6-11	Batch B227022 - SW-846 9014										
Prepared: 03/01/9 Analyzed: 03/31/19 Sa.6-111 Sa.6-112 Sa.6-113 Sa.	Blank (B227022-BLK1)				Prepared: 03	3/30/19 Anal	yzed: 03/31	/19			
Reactive Cyanide 9,7 0.40 mg/Kg 10.0 96.9 83.6-111 Barch B227024 - SW-846 9030A Blank (B227024 - BLK1)	Reactive Cyanide	ND	0.40	mg/Kg							
Prepared 03/30/19 Analyzed 03/31/19 Secrific conductance Prepared 03/30/19 Analyzed 03/30/19 Secrific conductance Prepared 03/30/19 Analyzed 03/30/19 Secrific conductance Prepared 03/30/19 Secrific conductance 03/30/1	LCS (B227022-BS1)				Prepared: 03	3/30/19 Anal	yzed: 03/31	/19			
Prepared: 03/30/19 Analyzed: 03/31/19 Analyzed: 03/31/19 Reactive Sulfide ND 2.0 mg/L Prepared: 03/30/19 Analyzed: 03/31/19 Reactive Sulfide 12 2.0 mg/L 14.8 83.8 54.9-121 Batch B227052-SW-846-9045C Prepared & Analyzed: 03/30/19 Analyzed: 03/30/19 Put	Reactive Cyanide	9.7	0.40	mg/Kg	10.0		96.9	83.6-111			
Reactive Sulfide	Batch B227024 - SW-846 9030A										
Prepared O3/30/19 Analyzed O3/31/19	Blank (B227024-BLK1)				Prepared: 03	3/30/19 Anal	yzed: 03/31	/19			
Reactive Sulfide 12 2.0 mg/L 14.8 83.8 54.9-121 Batch B227052 - SW-846 9045C LCS (B227052-BS1)	Reactive Sulfide	ND	2.0	mg/L							
Prepared & Analyzed: 03/30/19	LCS (B227024-BS1)				Prepared: 03	3/30/19 Anal	yzed: 03/31	/19			
Prepared & Analyzed: 03/30/19 Prepared & Analyzed: 03/31/19 Prep	Reactive Sulfide	12	2.0	mg/L	14.8		83.8	54.9-121			
PH Units 6.00 101 90-110 LCS (B227052-BS2) Prepared & Analyzed: 03/30/19 PH Units 6.00 100 90-110 Duplicate (B227052-DUP1) Source: 19C1572-08 Prepared & Analyzed: 03/30/19 PH 06.2 PH Units 6.4 2.53 5 H-03 Batch B227054 - SM21-22 2510B Modified Blank (B227054-BLK1) Prepared & Analyzed: 03/31/19 Specific conductance ND 2.0 µmhos/cm Prepared & Analyzed: 03/31/19 Specific conductance 190 µmhos/cm 192 99.3 90-110 Blank (B227087 - SM21-22 2510B Modified Blank (B227087 - SM21-22 2510B Modified Blank (B227087-BLK1) Prepared & Analyzed: 04/01/19 Specific conductance ND 2.0 µmhos/cm Prepared & Analyzed: 04/01/19 Prepared & Analyzed: 04/01/19	Batch B227052 - SW-846 9045C										
Prepared & Analyzed: 03/30/19 Prepared & Analyzed: 03/31/19 Prepared & Analyzed: 04/01/19 Prepared & Analyzed: 04/01/1	LCS (B227052-BS1)				Prepared &	Analyzed: 03	/30/19				
Duplicate (B227052-DUP1) Source: 19C1572-08 Prepared & Analyzed: 03/30/19	pH	6.03		pH Units	6.00		101	90-110			
Source: 19C1572-08 Prepared & Analyzed: 03/30/19	LCS (B227052-BS2)				Prepared &	Analyzed: 03	/30/19				
pH Units 6.4 2.53 5 H-03 Batch B227054 - SM21-22 2510B Modified Blank (B227054-BLK1) Prepared & Analyzed: 03/31/19 Specific conductance ND 2.0 μmhos/cm LCS (B227054-BS1) Prepared & Analyzed: 03/31/19 Specific conductance 190 μmhos/cm 192 99.3 90-110 Batch B227087 - SM21-22 2510B Modified Blank (B227087-BLK1) Prepared & Analyzed: 04/01/19 Specific conductance ND 2.0 μmhos/cm Prepared & Analyzed: 04/01/19 Specific conductance ND 2.0 μmhos/cm Prepared & Analyzed: 04/01/19	рН	6.01		pH Units	6.00		100	90-110			
Batch B227054 - SM21-22 2510B Modified Blank (B227054-BLK1) Prepared & Analyzed: 03/31/19 Specific conductance ND Prepared & Analyzed: 03/31/19 LCS (B227054-BS1) Prepared & Analyzed: 03/31/19 Specific conductance 190 μmhos/cm 192 99.3 90-110 Blank (B227087 - SM21-22 2510B Modified Blank (B227087-BLK1) Prepared & Analyzed: 04/01/19 Specific conductance ND 2.0 μmhos/cm Prepared & Analyzed: 04/01/19 Specific conductance ND Prepared & Analyzed: 04/01/19	Duplicate (B227052-DUP1)	Sou	rce: 19C1572	-08	Prepared &	Analyzed: 03	/30/19				
Prepared & Analyzed: 03/31/19	pH	6.2		pH Units		6.4	ļ.		2.53	5	H-03
Specific conductance ND 2.0 μmhos/cm LCS (B227054-BS1) Prepared & Analyzed: 03/31/19 Specific conductance 190 μmhos/cm 192 99.3 90-110 Batch B227087 - SM21-22 2510B Modified Prepared & Analyzed: 04/01/19 Blank (B227087-BLK1) Prepared & Analyzed: 04/01/19 Specific conductance ND 2.0 μmhos/cm LCS (B227087-BS1) Prepared & Analyzed: 04/01/19	Batch B227054 - SM21-22 2510B Modified										
LCS (B227054-BS1) Specific conductance 190 μmhos/cm 192 99.3 90-110 Batch B227087 - SM21-22 2510B Modified Blank (B227087-BLK1) Specific conductance ND 2.0 μmhos/cm Prepared & Analyzed: 04/01/19 LCS (B227087-BS1) Prepared & Analyzed: 04/01/19	Blank (B227054-BLK1)				Prepared &	Analyzed: 03	/31/19				
Specific conductance 190 μmhos/cm 192 99.3 90-110 Batch B227087 - SM21-22 2510B Modified Blank (B227087-BLK1) Prepared & Analyzed: 04/01/19 Specific conductance ND 2.0 μmhos/cm LCS (B227087-BS1) Prepared & Analyzed: 04/01/19	Specific conductance	ND	2.0	μmhos/cm							
Blank (B227087 - SM21-22 2510B Modified Prepared & Analyzed: 04/01/19 Specific conductance ND 2.0 μmhos/cm LCS (B227087-BS1) Prepared & Analyzed: 04/01/19	LCS (B227054-BS1)				Prepared &	Analyzed: 03	/31/19				
Blank (B227087-BLK1) Prepared & Analyzed: 04/01/19 Specific conductance ND 2.0 μmhos/cm LCS (B227087-BS1) Prepared & Analyzed: 04/01/19	Specific conductance	190		μmhos/cm	192		99.3	90-110			
Specific conductance ND 2.0 μmhos/cm LCS (B227087-BS1) Prepared & Analyzed: 04/01/19	Batch B227087 - SM21-22 2510B Modified										
LCS (B227087-BS1) Prepared & Analyzed: 04/01/19	Blank (B227087-BLK1)				Prepared &	Analyzed: 04	/01/19				
	Specific conductance	ND	2.0	μmhos/cm							
	LCS (B227087-BS1)				Prepared &	Analyzed: 04	/01/19				
	Specific conductance	200		μmhos/cm	192		102	90-110			

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)-Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B227087 - SM21-22 2510B Modified										
Duplicate (B227087-DUP1)	Sourc	e: 19C1572-06		Prepared & A	Analyzed: 04	/01/19				
Specific conductance	5.0	2.0 μι	nhos/cm		4.7			5.36	21	
Batch B227324 - % Solids										
Duplicate (B227324-DUP7)	Sourc	e: 19C1572-04		Prepared: 04	/03/19 Analy	zed: 04/04/1	9			
% Solids	94.9		% Wt		94.8			0.0636	20	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	

Lab Sample ID:	B227240-BS1		Date(s) Analyzed:	04/04/2019	04/04/201	9
Instrument ID (1):	ECD5	-	Instrument ID (2):	ECD5		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	COL RT RT WINDOW CONCENTRATION		CONCENTRATION	%RPD	
7.10.11.2	OOL	111	FROM	TO	OONOLIVITUUTION	70111 D
Aroclor-1016	1	0.000	-0.030	0.030	0.18	
	2	0.000	-0.030	0.030	0.16	11.8
Aroclor-1260	1	0.000	-0.030	0.030	0.18	
	2	0.000	-0.030	0.030	0.16	11.8

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Lab Sample ID:	B227240-BSD1		Date(s) Analyzed:	04/04/2019	04/04/2	2019
Instrument ID (1):	ECD5	_	Instrument ID (2):	ECD5		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD	
7.10.12112	002		FROM	TO	0011021111111111111	,,,,,,	
Aroclor-1016	1	0.000	-0.030	0.030	0.20		
	2	0.000	-0.030	0.030	0.18	10.5	
Aroclor-1260	1	0.000	-0.030	0.030	0.19		
	2	0.000	-0.030	0.030	0.17	11.1	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike

Lab Sample ID:	B227240-MS1		Date(s) Analyzed:	04/04/2019	04/04/2019	_
Instrument ID (1):	ECD5	-	Instrument ID (2):	ECD5		
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (r	mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD	
7.10.12112	002		FROM	TO	0011021111111111111	,,,,,,	
Aroclor-1016	1	0.000	-0.030	0.030	0.21		
	2	0.000	-0.030	0.030	0.19	10.0	
Aroclor-1260	1	0.000	-0.030	0.030	0.20		
	2	0.000	-0.030	0.030	0.18	10.5	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike Dup

Lab Sample ID:	B227240-MSD1		Date(s) Analyzed:	04/04/2019	04/04/2019	
Instrument ID (1):	ECD5	_	Instrument ID (2):	ECD5		
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD	
7	002		FROM	TO	CONCENTION	/ / / /	
Aroclor-1016	1	0.000	-0.030	0.030	0.22		
	2	0.000	-0.030	0.030	0.19	14.6	
Aroclor-1260	1	0.000	-0.030	0.030	0.19		
	2	0.000	-0.030	0.030	0.17	11.1	

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-03	Sample received after recommended holding time was exceeded.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
L-14	Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
O-32	A dilution was performed as part of the standard analytical procedure.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

CERTIFICATIONS

Analyte	Certifications
SW-846 1030 in Soil	
Ignitability	NY,NH,CT,NC,ME,VA
SW-846 6010D in Soil	
Antimony	CT,NH,NY,ME,VA,NC
Arsenic	CT,NH,NY,ME,VA,NC
Barium	CT,NH,NY,ME,VA,NC
Beryllium	CT,NH,NY,ME,VA,NC
Cadmium	CT,NH,NY,ME,VA,NC
Chromium	CT,NH,NY,ME,VA,NC
Lead	CT,NH,NY,AIHA,ME,VA,NC
Nickel	CT,NH,NY,ME,VA,NC
Selenium	CT,NH,NY,ME,VA,NC
Silver	CT,NH,NY,ME,VA,NC
Thallium	CT,NH,NY,ME,VA,NC
Vanadium	CT,NH,NY,ME,VA,NC
Zinc	CT,NH,NY,ME,VA,NC
SW-846 7471B in Soil	
Mercury	CT,NH,NY,NC,ME,VA
SW-846 8082A in Soil	
Aroclor-1016	CT,NH,NY,ME,NC,VA
Aroclor-1016 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1221	CT,NH,NY,ME,NC,VA
Aroclor-1221 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1232	CT,NH,NY,ME,NC,VA
Aroclor-1232 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1242	CT,NH,NY,ME,NC,VA
Aroclor-1242 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1248	CT,NH,NY,ME,NC,VA
Aroclor-1248 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1254	CT,NH,NY,ME,NC,VA
Aroclor-1254 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1260	CT,NH,NY,ME,NC,VA
Aroclor-1260 [2C]	CT,NH,NY,ME,NC,VA
Aroclor-1262	NY,NC,VA
Aroclor-1262 [2C]	NY,NC,VA
Aroclor-1268	NY,NC,VA
Aroclor-1268 [2C]	NY,NC,VA
SW-846 8260C in Soil	
Acetone	CT,NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	NH,NY,ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME

CERTIFICATIONS

Analyte	Certifications	
SW-846 8260C in Soil		
n-Butylbenzene	CT,NH,NY,ME	
sec-Butylbenzene	CT,NH,NY,ME	
tert-Butylbenzene	CT,NH,NY,ME	
Carbon Disulfide	CT,NH,NY,ME	
Carbon Tetrachloride	CT,NH,NY,ME	
Chlorobenzene	CT,NH,NY,ME	
Chlorodibromomethane	CT,NH,NY,ME	
Chloroethane	CT,NH,NY,ME	
Chloroform	CT,NH,NY,ME	
Chloromethane	CT,NH,NY,ME	
2-Chlorotoluene	CT,NH,NY,ME	
4-Chlorotoluene	CT,NH,NY,ME	
1,2-Dibromo-3-chloropropane (DBCP)	NY	
Dibromomethane	NH,NY,ME	
1,2-Dichlorobenzene	CT,NH,NY,ME	
1,3-Dichlorobenzene	CT,NH,NY,ME	
1,4-Dichlorobenzene	CT,NH,NY,ME	
Dichlorodifluoromethane (Freon 12)	NY,ME	
1,1-Dichloroethane	CT,NH,NY,ME	
1,2-Dichloroethane	CT,NH,NY,ME	
1,1-Dichloroethylene	CT,NH,NY,ME	
cis-1,2-Dichloroethylene	CT,NH,NY,ME	
trans-1,2-Dichloroethylene	CT,NH,NY,ME	
1,2-Dichloropropane	CT,NH,NY,ME	
1,3-Dichloropropane	NH,NY,ME	
2,2-Dichloropropane	NH,NY,ME	
1,1-Dichloropropene	NH,NY,ME	
cis-1,3-Dichloropropene	CT,NH,NY,ME	
trans-1,3-Dichloropropene	CT,NH,NY,ME	
1,4-Dioxane	NY	
Ethylbenzene	CT,NH,NY,ME	
Hexachlorobutadiene	NH,NY,ME	
2-Hexanone (MBK)	CT,NH,NY,ME	
Isopropylbenzene (Cumene)	CT,NH,NY,ME	
p-Isopropyltoluene (p-Cymene)	NH,NY	
Methyl tert-Butyl Ether (MTBE)	NH,NY	
Methylene Chloride	CT,NH,NY,ME	
4-Methyl-2-pentanone (MIBK)	CT,NH,NY	
Naphthalene	NH,NY,ME	
n-Propylbenzene	NH,NY	
Styrene	CT,NH,NY,ME	
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME	
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME	
Tetrachloroethylene	CT,NH,NY,ME	
Toluene	CT,NH,NY,ME	
1,2,3-Trichlorobenzene	NY	
1,2,4-Trichlorobenzene	NH,NY,ME	D 440
		• B 112

CERTIFICATIONS

Analyte	Certifications
SW-846 8260C in Soil	
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	CT,NH,NY,ME
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	CT,NH,NY,ME
1,3,5-Trimethylbenzene	CT,NH,NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME
SW-846 8270D in Soil	
Acenaphthene	CT,NY,NH
Acenaphthylene	CT,NY,NH
Acetophenone	NY,NH
Aniline	NY,NH
Anthracene	CT,NY,NH
Benzo(a)anthracene	CT,NY,NH
Benzo(a)pyrene	CT,NY,NH
Benzo(b)fluoranthene	CT,NY,NH
Benzo(g,h,i)perylene	CT,NY,NH
Benzo(k)fluoranthene	CT,NY,NH
Bis(2-chloroethoxy)methane	CT,NY,NH
Bis(2-chloroethyl)ether	CT,NY,NH
Bis(2-chloroisopropyl)ether	CT,NY,NH
Bis(2-Ethylhexyl)phthalate	CT,NY,NH
4-Bromophenylphenylether	CT,NY,NH
Butylbenzylphthalate	CT,NY,NH
4-Chloroaniline	CT,NY,NH
2-Chloronaphthalene	CT,NY,NH
2-Chlorophenol	CT,NY,NH
Chrysene	CT,NY,NH
Dibenz(a,h)anthracene	CT,NY,NH
Dibenzofuran	CT,NY,NH
Di-n-butylphthalate	CT,NY,NH
1,2-Dichlorobenzene	NY,NH
1,3-Dichlorobenzene	NY,NH
1,4-Dichlorobenzene	NY,NH
3,3-Dichlorobenzidine	CT,NY,NH
2,4-Dichlorophenol	CT,NY,NH
Diethylphthalate	CT,NY,NH
2,4-Dimethylphenol	CT,NY,NH
Dimethylphthalate	CT,NY,NH
2,4-Dinitrophenol	CT,NY,NH
2,4-Dinitrotoluene	CT,NY,NH
2,6-Dinitrotoluene	CT,NY,NH
Di-n-octylphthalate	CT,NY,NH

CERTIFICATIONS

Analyte	Certifications	
SW-846 8270D in Soil		
1,2-Diphenylhydrazine/Azobenzene	NY,NH	
Fluoranthene	CT,NY,NH	
Fluorene	NY,NH	
Hexachlorobenzene	CT,NY,NH	
Hexachlorobutadiene	CT,NY,NH	
Hexachloroethane	CT,NY,NH	
Indeno(1,2,3-cd)pyrene	CT,NY,NH	
Isophorone	CT,NY,NH	
2-Methylnaphthalene	CT,NY,NH	
2-Methylphenol	CT,NY,NH	
3/4-Methylphenol	CT,NY,NH	
Naphthalene	CT,NY,NH	
Nitrobenzene	CT,NY,NH	
2-Nitrophenol	CT,NY,NH	
4-Nitrophenol	CT,NY,NH	
Pentachlorophenol	CT,NY,NH	
Phenanthrene	CT,NY,NH	
Phenol	CT,NY,NH	
Pyrene	CT,NY,NH	
1,2,4-Trichlorobenzene	CT,NY,NH	
2,4,5-Trichlorophenol	CT,NY,NH	
2,4,6-Trichlorophenol	CT,NY,NH	
The CON-TEST Environmental Laboratory open	tes under the following certifications and accreditations:	

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

² Preservation Codes X = Sodium Hydroxide DW = Drinking Water B = Sodium Bisulfate GW = Ground Water S = Summa Canister WW = Waste Water ³Container Codes: O = Other (please 0 = Other (please 0 = Other (please A = Amber Glass S = Sulfuric Acid Von Soxhlet Preservation Code PCB ONLY O Field Filtered O Field Filtered Matrix Codes = Tedlar Bag Soxhlet N = Nitric Acid O Lab to Filter Lab to Filter W = Methanol Container Code SL = Sludge SOL = Solid ST = Sterile # of Containers **Shiosulfate** = Sodium G = Glass P = Plastic S = Soil V = Vial = Iced A = Air define) 무무 define) define) \square Please use the following codes to indicate possible sample concentration NELAC and AHA-LAP, LLC Accredited Chromatogram

AIHA-LAP, LLC East Longmeadow, MA 01028 AIHA-LAP, LLC H - High; M - Medium; L - Low; C - Clean; U - Unknown 4 ANALYSIS REQUESTED 39 Spruce Street within the Conc Code column above: d × Other 4 Doc # 381 Rev 1_03242017 × R Z 4 ☐ WRTA X at MA MCP Required × CT RCP Required RCP Certification Form Required MWRA MA State DW Required School MBTA <u>10C</u> 2 Special Requirements Z Email To: KSQSSON ENVOREXENGLION D http://www.contestlabs.com CHAIN OF CUSTODY RECORD Metrix Code 5 Municipality Brownfield FWSID # 3-Day 4-Day EXCE! Gas CLP Like Data Pkg Required: 100 600 Composite ヌ PDF Government Ending Pre-Time 1345 Due Date: 400 1200 1230 Format: Fax To # 135 1325 335 100 3/24/19/1305 Federal 3.5 7-Day -Day -Day City Project Entity Beginning Date/Time 3/28/9 Machindra Ot. Suk 322, Pusson LLA 19C 1592 Email: info@contestlabs.com Date/Time: 1040 H. Client Sample ID / Description Fax: 413-525-6405 pate/Time: (01-0) 111-1 Jate/Time: Date/Time: (01-9) 4/1-/ V-110 (5-10) 1-12 (0-2) 1-109 (5.10 V-115 (5.10) V-113 (0-5 V-107 (5-10) 5-0) 911-11 1-108 (0-5 CON-test OLH 2 ver's folge Project Manager: K. Sorson Invoice Recipient: K. Sosson Project Location: Moculous Phone: @17-275-5407 Con-Test Quote Name/Number: Sampled By: K.Sarsan メルタ Project Number: 네이어네구 uished by: (signature) 0 kelipqüisbed by: (signpture) 2 ved by: (signature) Work Order# Con-Test Address: 100 N Somments Page 113 of 115

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	rold	روع						
Receive	ed By	<u>5℃</u>		Date	3/24/19	Time	1840	
How were th	e samples	In Cooler		No Cooler	On Id	ce <u>, , , , , , , , , , , , , , , , , , ,</u>	No Ice	
receiv	ed?	Direct from Samp	oling		Ambie	ent	Melted Ice	
		•	By Gun #	3	Actual ⁻	Temp - ピル		
Were samp		T	By Blank #		Actual ¹	***************************************		•••
•	Custody S	eal Intact?	NA		ere Samples Tamp		MA	
	COC Relin		7717	-	s Chain Agree With		Ť	
		eaking/loose caps	on any sam	-	F	•		
Is COC in in		•	- · · · · · · · · · · · · · · · · · · ·		nples received with	in holding time?	FI	
Did COC ir	_	Client	· T	Analysis		ımpler Name	7	
pertinent Inf		Project	Τ.	ID's	T Collec	tion Dates/Time	es T	_
•		d out and legible?	-				-	
Are there La			=	-	Who was notifie	d?		
Are there Ru	shes?		6	•	Who was notifie	d?		_
Are there Sh	ort Holds?		Ţ	_	Who was notifie	d? Milmer		
Is there enou	igh Vol <mark>u</mark> me	?	T	_				
Is there Hear	dspace whe	ere applicable?	F		MS/MSD?_F			
Proper Media	a/Container	rs Used?	T	-	Is splitting sample	s required?	<u> </u>	_
Were trip bla	anks receive	ed?	F		On COC? F			
Do all sampl	es have the	proper pH?	NA	Acid	******	Base	****	
Viels	#	Containers:	#		#			#
Unp-		1 Liter Amb.			Plastic		oz Amb.	L. S.
HCL-		500 mL Amb.			. Plastic		mb/Clear	<u> </u>
Meoh-	8	250 mL Amb.			Plastic		mb/Clear	
Bisulfate-	<u> ما </u>	Flashpoint			acteria		mb/Clear	
DI-		Other Glass			Plastic		ncore	
Thiosulfate-		SOC Kit			c Bag	Frozen:		
Sulfuric-		Perchlorate			lock			
			1 4	Unused		T		#
Vials	#	Containers:	#	41:4	#	16	oz Amb.	*
Unp-		1 Liter Amb.			Plastic Plastic		Amb/Clear	id
HCL-		500 mL Amb. 250 mL Amb.			. Plastic		\mb/Clear	110
Meoh-	<u>a</u>	Col./Bacteria			npoint		Amb/Clear	
Bisulfate- DI-	16	Other Plastic	<u> </u>	<u> </u>	Glass		ncore	
U1"	1		 			Frozen:		
Thinguifate		SOC Kit	ł	TIBSU	ic dau i	ILIOZEII.		
Thiosulfate- Sulfuric-		SOC Kit Perchlorate			ic Bag lock	riozen.		
Thiosulfate- Sulfuric- Comments:		SOC Kit Perchlorate			lock	riozen.		

by basy hely

		MADE	P MCP Analytical N	lethod Report Cert	ification Form				
Laboratory Name: Con-Test Analytical Laboratory Project #: 1					Project #: 190	C1572			
Project Location: Wayland, MA RTN:									
This F	his Form provides certifications for the following data set: [list Laboratory Sample ID Number(s)]								
190	C1572-01 thru	ı 19C1572-10							
Matri	ces:	Soil							
CA	CAM Protocol (check all that below)								
8260 VOC 7470/7471 Hg MassDEP VPH CAM II A (X) CAM IIIB (X) CAM IV A ()		8082 PCB CAM V A (X)	9014 Total Cyanide/PAC CAM VI A ()	6860 Perchlorate CAM VIII B ()					
	SVOC II B (X)	7010 Metals CAM III C ()	MassDEP VPH CAM IV C ()	8081 Pesticides CAM V B ()	7196 Hex Cr CAM VI B ()		MassDEP APH CAM IX A ()		
	Metals III A (X)	6020 Metals CAM III D ()	MassDEP EPH CAM IV B ()	8151 Herbicides CAM V C ()	8330 Explosives CAM VIII A ()	I			
	А	ffirmative response	to Questions A throu	ghF is required for "P	resumptive Certainty'	' status			
A Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?					☑ Yes	□No¹			
B Were the analytical method(s) and all associated QC requirements specificed in the selected CAM protocol(s) followed?						☑ Yes			
Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?						☑ Yes			
Does the laboratory report comply with all the reporting requirements specified in CAM VII A, Quality Assurance and Quality Control Guidlines for the Acquisition and Reporting of Analytical Data?						☑ Yes	□No¹		
Еа			Vas each method conduc ual method(s) for a list of s			☐Yes			
Εb			he complete analyte list r		?	☐Yes			
F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all No responses to Qestions A through E)?					☑ Yes	□No¹			
			and I below is require						
G Were the reporting limits at or below all CAM reporting limits specified in the selected CAM ☐ Yes ☐ No¹ protocol(s)?						□No¹			
<u>Data User Note:</u> Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.									
H Were all QC perfomance standards specified in the CAM protocol(s) achieved?					□ _{Yes}	☑ _{No¹}			
Were results reported for the complete analyte list specified in the selected CAM protocol(s)?				☑ Yes	□No¹				
1 _{All}	Negative resp	onses must be addre	essed in an attached Er	nvironmental Laborator	y case narrative.				
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.									
Sigi	nature:	hisa W	orthungton_	Position:	Project Manager				
Printed Name: Lisa A. Worthington Date: 04/05/19									

April 18, 2019

Kristen Sarson Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114

Project Location: Wayland, MA

Client Job Number: Project Number: 46047

Laboratory Work Order Number: 19D0546

Jessica Hoffman

Enclosed are results of analyses for samples received by the laboratory on April 10, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
Sample Preparation Information	11
QC Data	12
Miscellaneous Air Analyses	12
B228259	12
Flag/Qualifier Summary	13
Certifications	14
Chain of Custody/Sample Receipt	15

Vertex Engineering - Boston 100 North Washington St. Suite 302 Boston, MA 02114

ATTN: Kristen Sarson

PURCHASE ORDER NUMBER:

REPORT DATE: 4/18/2019

PROJECT NUMBER: 46047

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19D0546

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wayland, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
V-SG-101	19D0546-01	Soil Gas		-	
				Modified EPA 3C	
V-SG-102	19D0546-02	Soil Gas		-	
				Modified EPA 3C	
V-SG-103	19D0546-03	Soil Gas		-	
				Modified EPA 3C	
V-SG-104	19D0546-04	Soil Gas		-	
				Modified EPA 3C	
V-SG-105	19D0546-05	Soil Gas		-	
				Modified EPA 3C	
V-SG-106	19D0546-06	Soil Gas		-	
				Modified EPA 3C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

best of my knowledge and belief, accurate and complete.

Lua Warrlengton

Lisa A. Worthington

Technical Representative

ANALYTICAL RESULTS

Project Location: Wayland, MA Date Received: 4/10/2019 Field Sample #: V-SG-101 Sample ID: 19D0546-01 Sample Matrix: Soil Gas Sampled: 4/9/2019 11:46 Sample Description/Location: Sub Description/Location: Canister ID: 1783 Canister Size: 6 liter Flow Controller ID: 4300 Sample Type: 30 min Work Order: 19D0546 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -5 Receipt Vacuum(in Hg): -3.3 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

Modified EPA 3C

ppmv					Date/Time			
Analyte	Results	RL	Flag/Qual	Dilution	Analyzed	Analyst		
Methane	ND	50		1	4/15/19 11:27	TPH		

ANALYTICAL RESULTS

Project Location: Wayland, MA Date Received: 4/10/2019 Field Sample #: V-SG-102 Sample ID: 19D0546-02 Sample Matrix: Soil Gas Sampled: 4/9/2019 12:48 Sample Description/Location: Sub Description/Location: Canister ID: 1265 Canister Size: 6 liter Flow Controller ID: 4288 Sample Type: 30 min Work Order: 19D0546 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -0.5 Receipt Vacuum(in Hg): -.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	ppm	v			Date/Time	
Analyte	Results	RL	Flag/Qual	Dilution	Analyzed	Analyst
Methane	ND	50		1	4/15/19 11:47	TPH

ANALYTICAL RESULTS

Project Location: Wayland, MA Date Received: 4/10/2019 Field Sample #: V-SG-103 Sample ID: 19D0546-03 Sample Matrix: Soil Gas Sampled: 4/9/2019 13:40 Sample Description/Location: Sub Description/Location: Canister ID: 1165 Canister Size: 6 liter Flow Controller ID: 4376 Sample Type: 30 min Work Order: 19D0546 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -4.5 Receipt Vacuum(in Hg): -3.5 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	ppm	v				Date/Time	
Analyte	Results	RL	Flag/Qual	I	Dilution	Analyzed	Analyst
Methane	ND	50	_		1	4/15/19 12:12	ТРН

ANALYTICAL RESULTS

Project Location: Wayland, MA Date Received: 4/10/2019 Field Sample #: V-SG-104 Sample ID: 19D0546-04 Sample Matrix: Soil Gas Sampled: 4/9/2019 14:45

Sample Description/Location: Sub Description/Location: Canister ID: 1612 Canister Size: 6 liter Flow Controller ID: 4375 Sample Type: 30 min Work Order: 19D0546 Initial Vacuum(in Hg): -29.5 Final Vacuum(in Hg): -4.5 Receipt Vacuum(in Hg): -3.9 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	ppm	v			Date/Time	
Analyte	Results	RL	Flag/Qual	Dilution	Analyzed	Analyst
Methane	ND	50		1	4/15/19 12:39	ТРН

ANALYTICAL RESULTS

Project Location: Wayland, MA Date Received: 4/10/2019 Field Sample #: V-SG-105 Sample ID: 19D0546-05 Sample Matrix: Soil Gas Sampled: 4/9/2019 15:45 Sample Description/Location: Sub Description/Location: Canister ID: 1320 Canister Size: 6 liter Flow Controller ID: 4293 Sample Type: 30 min Work Order: 19D0546
Initial Vacuum(in Hg): -28
Final Vacuum(in Hg): -4
Receipt Vacuum(in Hg): -4.7
Flow Controller Type: Fixed-Orifice
Flow Controller Calibration
RPD Pre and Post-Sampling: <20%

	ppm	v			Date/Time	
Analyte	Results	RL	Flag/Qual	Dilution	Analyzed	Analyst
Methane	ND	50		1	4/15/19 13:00	ТРН

ANALYTICAL RESULTS

Project Location: Wayland, MA Date Received: 4/10/2019 Field Sample #: V-SG-106 Sample ID: 19D0546-06 Sample Matrix: Soil Gas Sampled: 4/9/2019 17:23 Sample Description/Location: Sub Description/Location: Canister ID: 1081 Canister Size: 6 liter Flow Controller ID: 4292 Sample Type: 30 min Work Order: 19D0546 Initial Vacuum(in Hg): -27 Final Vacuum(in Hg): -4 Receipt Vacuum(in Hg): -5.2 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

	ppm	v			Date/Time	
Analyte	Results	RL	Flag/Qual	Dilution	Analyzed	Analyst
Methane	ND	50		1	4/15/19 13:23	TPH

Sample Extraction Data

Prep Method: TO-15 Prep-Modified EPA 3C		Pressure	Pre	Pre-Dil Initial	Pre-Dil Final	Default Injection	Actual Injection	
Lab Number [Field ID]	Batch	Dilution	Dilution	mL	mL	mL	mL	Date
19D0546-01 [V-SG-101]	B228259	1.5	1	N/A	1000	0.2	0.3	04/15/19
19D0546-02 [V-SG-102]	B228259	1.5	1	N/A	1000	0.2	0.3	04/15/19
19D0546-03 [V-SG-103]	B228259	1.5	1	N/A	1000	0.2	0.3	04/15/19
19D0546-04 [V-SG-104]	B228259	1.5	1	N/A	1000	0.2	0.3	04/15/19
19D0546-05 [V-SG-105]	B228259	1.5	1	N/A	1000	0.2	0.3	04/15/19
19D0546-06 [V-SG-106]	B228259	1.5	1	N/A	1000	0.2	0.3	04/15/19

QUALITY CONTROL

Miscellaneous Air Analyses - Quality Control

	ppm	v	ug/m3		Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppmv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B228259 - TO-15 Prep											
Blank (B228259-BLK1)					Prepared & A	Analyzed: 04	/15/19				
Methane	ND	50									
LCS (B228259-BS1)					Prepared & A	Analyzed: 04	/15/19				
Methane	4490				5000		89.7	80-120			
Duplicate (B228259-DUP1)		Source	e: 19D0546-01		Prepared & A	Analyzed: 04	/15/19				
Methane	ND	50	ND	33		ND				10	
Duplicate (B228259-DUP2)		Source	e: 19D0546-02		Prepared & A	Analyzed: 04	/15/19				
Methane	ND	50	ND	33		ND				10	
Duplicate (B228259-DUP3)		Source	e: 19D0546-03		Prepared & A	Analyzed: 04	/15/19				
Methane	ND	50	ND	33		ND				10	
Duplicate (B228259-DUP4)		Source	e: 19D0546-04		Prepared & A	Analyzed: 04	/15/19				
Methane	ND	50	ND	33		ND				10	
Duplicate (B228259-DUP5)		Source	e: 19D0546-05		Prepared & A	Analyzed: 04	/15/19				
Methane	ND	50	ND	33		ND				10	
Duplicate (B228259-DUP6)		Source	e: 19D0546-06		Prepared & A	Analyzed: 04	/15/19				
Methane	ND	50	ND	33		ND				10	

FLAG/QUALIFIER SUMMARY

OC result is outside of established fifth	*	OC result is outside of esta	ıblished	limits
---	---	------------------------------	----------	--------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

No certified Analyses included in this Report

 $The \ CON\text{-}TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

	Phone: 413-525-2332	Q	CHAI	4 OF CUST(CHAIN OF CUSTODY RECORD (AIR)	VIR	: ; :		39 Spruce Street	reet	a.	ge 1	of 1
TITT ANALYTICAL LABORATORY	Fax: 413-525-6405						٩	East Longneadow, MA 01028 ANALYSIS REOUESTED	ast Longme EOUESTEI	adow, <i>N</i>	M 0102	m	
	Email: info@contestlabs.com	_	7-Day		10-Day					;		157	
	The Vertex Companies, Inc.	ان	Due Date:		5-Day TAT					Hg H		lease nii oul Sign, date an	riease nii out completely, sign, date and retain the
Address: 100 N washington Street, Ste 302, Boston, MA 02114	Ste 302, Boston, MA 02114											yellow copy for your	y for your
TIUIC.	River's Edge		I-Day		3-Day		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				L		
Project Location:	OSSI OSSI:		2 Day		1-0ay						······	Summa canisters and	Summa canisters and
Project Number:	46047		Format:	PDF \	EXCEL	E			IILIA	inal nitia	Rece	sturned with	returned within 15 days of
Project Manager:	Kristen Sarson			•		1			ırı			ecelpt of rental	receipt of rental rees with apply
Con-Test Quote Name/Number:			CLP Like Data Pkg Required:	ita Pkg Req	uired:				2330		Pre		
Invoice Recipient;	Kristen Sarson		Email To:	ksarsor	ksarson@vertexeng.com	g.com			116		essu	ror summa canister and flow controller	canister and
Sampled By:	Kristen Sarson		Fax To #:									information please refer	please refer
Lab Use	Client: Use	Collection	ollection Data	Duration	Flow Rate	Matrix	Volume					Agreement	ment
Con-Test Work Order#	Client Sample ID / Description	Beginning Date/Time	Ending Date/Time	Total Minutes Sampled	m³/min ✓ L/min	Code	Lite Tight	Methane] <i>A</i>	Summa Can ID	Flow Controller ID
Ō	V-SG-101	4/9/19@11:16	4/9/19 @11:46	30	0.2	SG	9			30 5	cç,	1783	4300
୯୦	V-SG-102	4/9/19 @12:20	4/9/19 @12:48	28	0.2	SG	9			29 0.5	1 1	1265	4288
03	V-SG-103	4/9/19 @13:10	4/9/19 @13:40	30	0.2	0.2 SG	9			29 4.5	25	1165	4376
b	V-5G-104	4/9/19 @14:15	4/9/19 @143:45	30	0.2	SS	9		25	29.5 4.5	25.	1612	4375
OS	V-SG-105	4/9/19 @15:15	4/9/19 @15:45	30	0.2	SG	9			28 4	Cj	1320	4293
90	V-5G-106	4/9/19 @16:53	4/9/19 @17:23	30	0.2	SG	9			27 4	改	1081	4292
					A. C.								
Comments:				Plea H	Please use the following codes to indicate possible sample concentration within the Conc Code column above: H - High; M - Medium; L - Low; C - Clean; U - Unknown	owing code within the lium; L - Lc	s to indica Conc Code w; C - Cle	te possible s column abor an; U - Unkr	ample /e: iown		<u> </u>	Matrix Codes:	des:
Relinguished by: (Signature)	4/10/19 Date/Time:	10 th 22 cm 3			Special	Special Requirements MA MCP Rec	quiranenis MA MCP Required					IA = INDOOR AIR AMB = AMBIENT	OR AIR BIENT
Received by: (signature)	Date/Time:				MCP Cert	MCP Certification Form Required	n Required				9	55 = 508 SL D = DUP RI = RI ANK	LAB
Re/moushed by: (s/g)ature)]				RCP Cert	CT RCP Required RCP Certification Form Required	CT RCP Required tion Form Required	Manufacture of the control of the co	AMALYTICAL LABORATORY WWW.combestiada.com	ABORATO	Øz	0 = Other	4
Received by: signarting		1850 personal personal profession					Other	2011					
Relinquished by: (signature)		Project Entity	ity						NELAC and AlHA-LAP, LLC Accredited Other PC	MHA-LA	3 1 2	Accredited PC	ed PCB ONLY
			Government	□ {	Municipality		MWRA	☐ WRTA	5 	Chromatogram	ram		Soxhlet
Received by: (signature)	Date/Time:		Federal City		21 J Brownfield		Schoo! MBTA		₹ <u></u>	AIHA-LAP,LLC	277		Non Soxhlet

Doc #378 Rev 1_03242017

http://www.contestlabs.com.

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____

Doc# 278 Rev 6 2017

Air Media Sample Receip	ot Checklist - (Rejection Criteria Listing - Using Acceptance Policy) An	v False
Statement w	vill be brought to the attention of the Client - State True or False	•

Client Vert		e prougnt	to the attent	on or the Che	nt - State True or False	•	
Received By	PA		Date	4.10.19	Time	15:40	
How were the samples		In Cooler		On Ice	No Ice		
received?		In Box -	1	Ambient	Melted I	Warner and the same of the sam	
Were samples within	Temperature	;	By Gun #	•	Actual Temp -		
Compliance? 2	2-6°C	NA A	By Blank #		Actual Temp -		
Was Custody Sea	Intact?	NA	-	Were San	nples Tampered with?	RU	
Was COC Reling	uished?	7-	-		Agree With Samples?		
Are there any loo	se caps/valv	es on anv sa	imples?	F	rigida iriai Gampioo.		
Is COC in ink/ Legible?	·	<u> </u>	F		-		
Did COC Include all	Client	<u> </u>	Analysis	<u>T</u>	Sampler Name	T	
Pertinent Information?	Project	-	ID's		Collection Dates/Time	· -	
Are Sample Labels fille	d out and le	aible?	τ-			.0 1	
Are there Rushes?	F `	J	Who wa	s notified?			
Samples are received	withi <mark>n</mark> holding	time?	T			_	
Proper Me		1		Individually Ce	rtified Cans?		
Are there 7	rip Blanks?	E		Is there enoug		******	
9770000 CC							
Containers:	#	Size	Regulator	Duration	Acce	ssories:	
Summa Cans	6	100F	9	30 mm	Nut/Ferrule (o	IC Train	
Tedlar Bags					Tubing 18		
TO-17 Tubes					T-Connector	Shipping Charge	S
Radiello					Syringe		
Pufs/TO-11s					Tedlar		
Can #'s 1783				Reg #'s	4988		
1902					4330		_
1165					4293		
<u> 1619 </u>					<u>4a9a</u>		
1320					4315		
1081					4376		
Unused Media							
Unidoed Media				Pufs/T0	J-17's		
Comments:			l l				
					_		
analysis	ba i	red to	W K	of ch	ochod occ		
٠,	.		-	<u> </u>	ado OFF		

Page 16 of 16

APPENDIX K: RESUMES OF ENVIRONMENTAL PROFESSIONALS

[ksarson@vertexeng.com]

Expertise:

Environmental Health & Safety Remediation & Construction Management **Environmental Portfolio** Reviews Indoor Air Quality Phase II LSI Climate Change Consulting Groundwater & Soil Characterization Land Development Site Characterization Phase I ESAs **PCB** Database Review UST Removal Analysis **Environmental Permitting** Hazardous Materials/Waste Vapor Intrusion Investigations & Remediation Soil Disposal Radon Samplina Limited Removal Action (LRA) Radon Services

Education/Training:

M.S., Environmental Science, Climate Change Impact Assessments, University of Toronto, 2015 HBSc., Geography and Environmental Science, Wilfrid Laurier University, 2010

Biography:

Mrs. Sarson has a strong scientific background, focused in the physical environmental sciences. As a Project Manager, she is responsible for managing and conducting specific job functions related to Brownfield Site redevelopment, Phase I Environmental Site Assessments (ESAs), Phase II Subsurface Investigations, and remediation projects conducted under the Massachusetts Contingency Plan (MCP) including soil, groundwater, soil gas, and indoor air sampling for site and subsurface investigations, oversight of soil boring, monitoring well installation, UST removal, and soil excavation, and providing environmental oversight for remediation and redevelopment projects. Other project-specific tasks include managing regulatory compliance schedules for large remedial development sites, conducting historical and municipal research and file review for due diligence projects, as well as preparing phase reports, Immediate Response Action, Initial Site Investigation, Comprehensive Remedial Action, Tier Classification, Release Abatement Measure, and Temporary and Permanent Solution reports as well as all associated status reports for submittal to the Massachusetts Department of Environmental Protection (MassDEP). Ms. Sarson has also conducted environmental site assessments and limited subsurface investigations across multiple other states including California, Connecticut, Florida, Georgia, Nebraska, New Hampshire, New Jersey, New York, Minnesota, Virginia, and Other pertinent experiences include climate change impact assessments, sea level rise analysis, Tier II reporting, and Environmental Health & Safety projects multiple New England at Additionally, Mrs. Sarson places a strong emphasis on health and safety both in and out of the workplace. Based on this focus, Mrs. Sarson is also the Office Health and Safety Manager for the VERTEX Boston Office.

Licenses/Certifications:

8 Hour OSHA HAZWOPER Refresher Training (Annual)
40-Hour OSHA HAZWOPER
10-Hour OSHA Construction Certified
Environmental Professional In Training (EPt), Ontario
Asbestos Inspector
Supervisor: Health & Safety Training for Hazardous Waste Operations
Respiratory Protective Equipment Training

Associations:

ECO Canada Environmental Professional in training

Kristen Sarson Page 1/1

William Gibbons, PG, LSP Senior Project Manager

[bgibbons@vertexeng.com / 617-830-1540]

Expertise:

Environmental Portfolio Reviews Phase I ESAs Phase II LSI Groundwater & Soil Characterization Hazardous Materials/Waste Land Development Litigation Support & Expert Testimony (Environmental) LSP Services **PCB** Remedial Design & Feasibility Studies Remediation & Construction Management Site Characterization **UST Removal** Vapor Intrusion Investigations & Remediation

Education/Training:

B.S., Geology, University of New Hampshire

Biography:

Mr. Gibbons has more than 33 years of experience in oil and hazardous materials site investigation and remediation. He is an experienced project manager, has provided expert witness services on environmental litigation cases, has given public testimony regarding sensitive site cleanups, and has negotiated response actions with regulatory agencies on behalf of his clients. He has managed or conducted project activities under numerous regulatory systems, including Federal RCRA and CERCLA programs, more different state programs, and internationally. Mr. Gibbons specializes in the identification of effective and protective solutions to his client's environmental investigation and remediation needs. In doing this he recommends action-alternatives in consideration of the governing regulations and the client's specific needs, including but not limited to their current and foreseeable use of the property and the potential on-site and off-site environmental risks and liabilities.

Licenses/Certifications:

Professional Geologist (PG), PA, PG002931G Licensed Site Professional, MA, 5217 OSHA 40-hour Hazardous Waste Operations Health and Safety Training **OSHA 10-hour Construction Safety Training**

Associations:

Licensed Site Professional Association, Member, past Director, past Officer, and past Chair of Loss Prevention Committee YMCA of Greater Boston, Facilities and **Property** Committee YMCA of Greater Boston Camping Services Board of Advisors

Publications/Presentations:

November 9-11, 2008

"Environmental Due Diligence Begins During Site Selection," Business **Facilities** Magazine, June 2008 "Due Diligence for Every Deal," ESA Report Newsletter, Volume 13 July 7, Loss Prevention Case Study, Marine Terminal Investigation, Presentation to Licensed Site Professional Association, April 2002, published on LSPA Downgradient Property Status: Case Studies and Lessons Learned, Presentation to Licensed Site Professional Association, May 2005, published **LSPA** Brownfields Bill Opportunities and Challenges, Industrial Managers MA, Workshop, Concord, 1998 "Environmental Due Diligence: Getting What You Need and Lessons Learned," Invited Speaker, LiveXchange 2008, Huntington Beach, CA

William Gibbons, PG, LSP Page 1/1

Frank Calandra, PE, LSP **Division Manager - Remediation**

[fcalandra@vertexeng.com / 617-459-4962]

Highlights:

Subsurface Investigation Expertise

Expertise:

Environmental Health & Safety Remediation & Construction Management Engineering Geology **Environmental Permittina** Phase II LSI Civil Engineering Groundwater & Soil Characterization Land Development Remedial Design & Feasibility Studies LSP Services Site Characterization Phase I ESAs

Transaction Screen Letter of Reliance **PCB** Database Review Peer Review **UST Removal Environmental Permitting** Hazardous Materials/Waste Litigation Support & Expert Testimony (Environmental) Vapor Intrusion Investigations & Remediation **PCS** Limited Compliance Review

Limited Removal Action (LRA)

Sustainable Energy Services

Lead Paint **Compliance Audits** Biology

Environmental

Mechanical

Soil Disposal Facility Closure Radon Sampling

Radon Services SPCC Plan

Licenses/Certifications:

Professional Engineer (PE) – Environmental, MA, 46827

Licensed Site Professional, MA, 8396 40 Hour OSHA HAZWOPER Training

Associations:

Licensed Site Professional Association

Wakefield Conservation Commission

Education/Training:

M.S., Civil Engineering, Environmental Engineering/Hazardous Materials Management, Tufts University, 2000 B.S., Mechanical Engineering, University of Massachusetts at Lowell, 1990

Biography:

As Remediation Division Manager at VERTEX, Mr. Calandra's primary responsibility is the management of the Boston Office Remediation group. Responsibilities included senior project and program management of varied site assessment and remediation projects under both state and Federal programs. As Licensed Site Professional (LSP), Mr. Calandra has investigated and remediated dozens of hazardous waste and petroleum release site in Massachusetts.

8 Hour OSHA HAZWOPER Refresher Training, Annual

Frank Calandra, PE, LSP Page 1/1